
陽明山國家公園酸性溫泉物種調查 及生存機制之研究

陽明山國家公園管理處委託研究報告 中華民國九十八年十二月

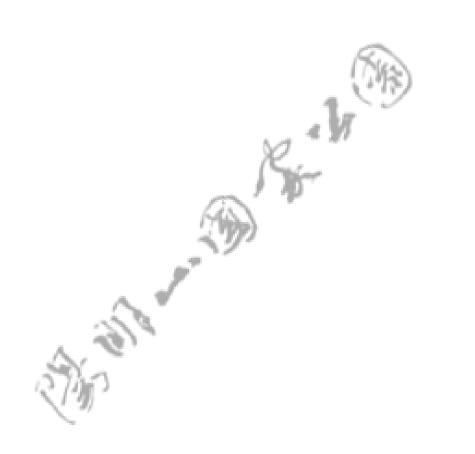
政府研究資訊系統編號(國科會 GRB 編號) PG9803-0667

本部研考資訊系統計畫編號 098-301020300G1-004

陽明山國家公園酸性溫泉物種調查 及生存機制之研究

受委託者: 財團法人私立東吳大學微生物學系

研究主持人:李重義副教授


協同主持人:張怡塘副教授

顧問:台灣大學動物學研究所 陳俊宏教授

台灣大學漁業科學研究所 周宏農教授

研究助理: 鍾雅玲


陽明山國家公園管理處委託研究報告 中華民國九十八年十二月

目次

表次・	• • • •	• • •	• •	• •	• •	• •	•	•	• •	•	•			Ш
圖次・			• •		• •	• •	•	•		•	•		,	V
摘要・					• •	• •	•	•		•	•			VII
第一章	緒論・			• •		•		• •	•		•	•	•	1
	第一節	研究緣	起與	背景	• •		•	•		•	•			1
	第二節	研究預	期目	標・	• •		•	•		•	•			7
第二章	研究方	法及過	程・・	• •	• •	•	• •	. /	2		•	•	•	9
	第一節	採集權	羨品 ・		• •	•		-17	Ye	Ν.	•	•	•	9
	第二節	分子生	上物学	퉏方 :	去・			1	20	7.	•	•	•	10
	第三節	水質分	}析·		•	•	٠,1	97.	•		•	•	•	12
	第四節	温泉微	生物	之分	離與	培養	41	77.	• •	•	•	•	•	15
	第五節	原生動	物之	調查	· /	K.		•	•		•	•	•	16
	第六節	無脊椎	動物	之調	查・	柳		•			•	•	•	17
	第七節	藻類之	調查	His	7				•		•	•	•	18
第三章	研究發	現・・		47	77.			•			•	•	•	19
	第一節	各溫泉	之探	勘・				•	•		•	•	•	19
	第二節	各採樣	點水	質之	分析			•			•	•	•	25
	第三節	各採樣	點沉	積物	中細	菌、	古直	自之	定量	<u> </u>	•		,	67
	第四節	古菌多	樣性	之調	查・			•			•	•	•	73
	第五節	細菌多	樣性	之調	查・			•			•	•	•	7 9
	第六節	原生動	物之	調查				•	•		•	•	•	86
	第七節	無脊椎	動物	多樣	性之	調查	· ·	•		•		•	•	87
	第八節	藻類多	·様性	之調	查・			•			•	•	•	91
	第九節	温泉微	生物	之生	存機	制·		•			•	•	•	94
第四章	結論與	建議・				•			•		•	•	•	101
	第一節	結論・							•		•	•	•	101
	第一節 第二節	建議・							•		•	•	•	105
附錄·	一 酸性	温泉微	生物訂	問査さ	こ各も	采樣.	點照	片。	•		•	•	•	107
附錄.	二 各採	樣點水	質分析	斤總表	ŧ٠.		• •			•		•	•	127
附錄.	三 各採	樣點第-	一季》	乙積物	y PC	R 反	應往	复之	電河	k相	片	• •	•	137
附錄I	四 本研	究各限	制酶当	對 16	SrD	NA	切等	割的	R	FL:	P 类	頁型	<u>J</u>	141
附錄.	五 嗜熱	古菌之	分類·							•		•	•	147
附錄:	六 本研	究所發:	現古菌	直之分	} 類₺	也位				•		•	•	151
	七 太研													

	附錄八	陽	明』	山	或	家	公	園	酸	性	溫	泉	無	脊	椎	動	物	調	查	照	片	•	•	•	155
	附錄九	陽	明	山	國	家	公	園	酸	性	溫	泉	藻	類	調	查	照	片	•	•	•	•	•	•	159
參	考文獻		•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	165

表次

表	1:	4	、研究	让使	一用	的] 紐	菌	`	古	菌	及	真	核	生	物	專	—	引	子	•	• •	•	•	•	11
表	2	: 4	人研 多	钌使	き用	P	C	R,	反	應	的	組	成	物	•		•	•	•		•	•	•	•	•	11
表	3	: 2	人研 多	气名	占捋	长梯	長黑	\$ <i>2</i>	上屆	区標	東	自身	马程	星。	•	•	•	•		•	•	•	•	•	•	24
表	4	: 4	各採村	羕黑	占々	生オ	r F	可服	寺眉	目杉	采彳	导ス	K 模	美之	こ温	品度	更剪	早醇	夋虧	负厚	ŧ,		•	•	•	25
表	5	: 4	各採村	羕黑	占す	生オ	r F] [寺鴈	目杉	采彳	导ス	と 様	美之	乙草	卓省	医度	Ę,	· 絲	包沒	字角	军区	国骨	豊	•	
		ļ	懸浮[固角	豊乃	支衫	蜀月	度・	•	•	•	•	•	•	•		•	•	•	•	• •	•	•	•	•	30
表	6	: 4	各採村	羕黑	占在	生オ	FF] [手眉	引衫	采名	导力	人枝	美之	こ象	门离	隹子	۲,	砀	是醛	发室	킨村	艮乃	支石	夼	
		į	酸根 4	含量	量。	•	•	•	•	•	•	•	•	•	•	•			Π	YA	Š	١.	•	•	•	35
表	7	: 4	各採 核	羕黑	占溫	显泉	之才	く貿	分	 大类	頁・	•	•	•	•	•			V	17	砂	/.	•	•	•	41
表	8	: 4	各採村	羕黑	占々	生才	r F	可服	寺眉	目杉	采彳	导ス	人核	美之	こ名	人利	重码	九八	七华	勿急	} §	1	•	•	•	42
表	9	: 4	各採札	羕黑	占々	生る	FF	可服	手眉	目杉	采彳	导ス	人枝	羨⋞	一剑	成合	>量	<u> </u>		•	•		•	•	•	46
表	10	:	中華	民	國	溫	泉	法	授	權	訂	定	溫	泉	水	質	標	準	(94	年	- 7	月	2	2	
			日)	•		•	•	•	•	•			٠	۴.	Ą	•	•	•	•	•	•	•	•	•	•	50
表	11	:	各採	樣	點	在	不	同	時	間	採	得	水	樣	符	合	溫	泉	法	規	定	義	之	狀		
			況·	•	•	•	•	•	•	•	4	ť	.,	•	•	•	•	•	•	•	•	•	•	•	•	52
表	12	:	各採	樣	點	在	不	同	時	間	採	得	水	樣	之	重	金.	屬	含	量	•	•	•	•	•	54
表	13	:	行政	院	環	境	保	護	署	訂	定	不	同	水	質	相	關	重	金	屬	含	量	之	標		
			準・	•		£	١,	ď	۳.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	58
表	14	:	各採	.樣	點	在	不	同	時	間	採	得	水	樣	之	重	金.	屬	含	量	符	合	各	種		
			水質	標	準	Z	狀	況	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	59
表	15	; :	泉質	與	其	相	對	適	合	症	狀	. •	•	•	•	•	•	•	•	•	•	•	•	•	•	61
表	16	:	各採	樣	點	在	不	同	時	間	採	得	水	樣	之	誉	養	物	含	量	•	•	•	•	•	62
表	17	' :	行政	院	環	境	保	護	署	訂	定	不	同	水	質	相	關	誉	養	物	含	量	之	標		
			準・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	66
表	18	3:	使用	不	同	引	子	對	在	各	採	樣	點	第	—	季	與	第	二	季	沉	積	物	中		
			偵測	真	核	微	生	物	含	量	之	結	果	•	•	•	•	•	•	•	•	•	•	•	•	68
表	19	:	馬槽	第	—	採	樣	點	第	—	季	沉	積	物	中	rI	ΟN	A	之	分	子	選	殖	.與	•	
			定序	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	69
表	20):	各採				-	•							-											
			果・																							71
表	21	. :	各溫	泉	第	_	季	沉	積	物	中	古	菌	R	FL	P	類	型	分	佈	•	•	•	•	•	75
-			各溫	-	•		•								-		•									78
•			各溫	•	•		•				•							_								81
表	24	:	各溫	.泉	第	_	季	沉	積	物	中	細	菌	類	型	分	佈	•	•	•	•	•	•	•	•	84

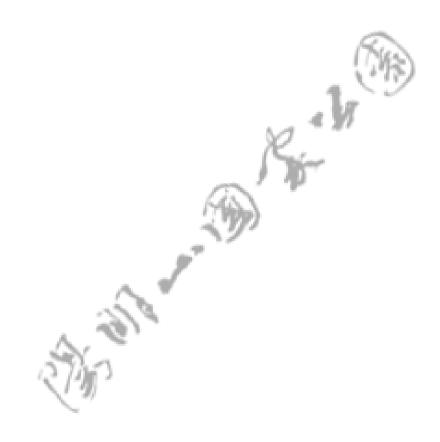

陽明山國家公園酸性溫泉物種調查 及生存機制之研究

表	25	:	各地	點採	集	浮涉	∮性	原	生	動	物	方	法	的	_	覽	表	•	•	•	•	•	•	86
表	26	:	八個	溫泉	露	頭夕	】圍	陸	域	發	現	蚯	蚓	統	計	表	•	•	•	•	•	•	•	88
表	27	:	八個	温泉	露	頭所	扩近	陸	域	發	現	蚛	蛛	統	計	表	•	•	•	•	•	•	•	89
表	28	:	八個	温泉	露.	頭所	近	水	域	或	陸	域	發	現	昆	蟲	統	計	表	•	•	•	•	90
表	29	:	藻類	調查	之	採集	長點	及	.其	特	性	•	•	•	•	•	•	•	•	•	•	•	•	91
表	30	:	藻類	調查	之	結界	₹.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	92
表	31	:	各採	樣點	樣品	品在	不	同日	酸	驗	变力	音	養	基	中县	音>	養.	之	结	果		•	•	97

圖次

圖	1	:	各	採	樣	點	在	國	家	公	園	內	的	相	對	位	置	•	•	•	•	•	•	•	•	•	•	23
圖	2	:	各	採	樣	點	各	季	之	溫	度	. (Te	m	pe	ra	tu	re) ;	與i	酸	驗	度	(]	рE	I)		
			分	佈	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	28
圖	3	:	各	採	樣	點	各	季	之	總	溶	解	固	體	(\mathbf{T}	DS	5)	與	導	電	度	(C	O]	N))	
			關	係	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	33
圖	4	:	各	採	樣	點	各	季	之	懸	浮	固	體	(SS) .	及	濁	度	(ΓU	JR) [酮	係	•	•	34
圖	5	:	溫	泉	陰	離	子	成	分	圖	•	•	•	•	•	•	•	•	•	•	P.	٠.		•	•	•	•	38
圖	6	:	各	採	樣	點	水	質	陰	離	子	成	分	圖	•	•	•	•	•	٠	17	H	4	•	•	•	•	40
圖	7	:	各	採	樣	點	各	季	之	亞	鐵	離	子	(F	'e ²	+)	與	總	鐵	離	子	(F	e)	關	俤			
			圖	•	•	•	•	•	•	•	•	•	•	•	•	•	•		Э	٠	•	•	•	•	•	•	•	49
圖	8	:	各	採	樣	點	各	季.	之	氨	氮	(N	H_4	, ŕ(,	與	總	氮	(T	N)	含	量	關	係	圖	•	•	•	65
圖	9	:	98	年	- 匹	季	採	樣	黒	纺	積	物	中	'古	醝	Ż	上妻		身	き温	品月	麦、	・軽	定鹹		更之	2	
			關	係	•	•	•	•	•	•	•	•		•	•#	•	Ą	F	•	•	•	•	•	•	•	•	•	94
圖	10	0	: 9	8 -	年	四	季.	採	樣.	點	沉	積	物	中:	細	菌	之	數	量	與	溫	度	•	酸	鹼	度	-	
			Ż	脲	仴	ķ •	•	•	•	•	•	•	ď	//	7.	•	•	•	•	•	•	•	•	•	•	•	•	95
圖	1	1	: ::	盈身	と西	夋鹹	负月	更具	具治	冗利	責生	勿口	P 7	5 菌	自己	支/	'或	細	菌	最	遃	[合	-生	.長	酸	を厳	Ì	
			度	Ż	- 脉	引併	.		•	d		•	•	•				•	•	•	•	•	•	•	•	•	•	100

摘要

關鍵詞:陽明山國家公園、溫泉、水質分析、細菌、古菌

一、研究緣起

陽明山國家公園以火山為主要特色,生態特殊。火山極端生態系的生物多樣性,如古菌、細菌、原生動物、無脊椎動物及藻類等,深值研究。火山噴氣孔活動不斷影響環境之酸鹼度,園區之物種何以生存,亦值得探討。本研究乃針對陽明山國家公園內各個代表性酸性溫泉內的生物多樣性進行調查,並探討其中某些生物之生存機制;同時分析溫泉之水質,以期建立有關酸性溫泉極端生態系之基礎資料,俾供經營管理參考並利爾後應用。

二、研究方法及過程

- 1. 採集溫泉樣品:以全球定位系統(Global Positioning System,簡稱 GPS)標定採樣點之座標與海拔高度,並以照片紀錄標示位置。採樣時現場測定溫度與pH值。
- 2. 分子生物學方法:使用市售 DNA 萃取及純化套組製備樣品 DNA,再用細菌、古菌及真核生物專一引子,進行 16S rRNA 基因及 18S rRNA 基因放大、定量,再將 PCR 產物進行基因選殖與定序。
- 3. 水質分析:依環保署公告之水質分析方法測定溫度、pH值、導電度、總溶解固體 (TDS)及懸浮固體 (SS)、水中離子、重金屬、總氮(TN)、總磷(TP)、硫化物 (S²-) 及總有機碳 (TOC)。
- 4. 溫泉微生物之分離與培養:以外加1 g/L Peptone 和 Yeast extract 的 DSMZ Medium 88 為液體培養基。固體培養基則再加入 8 mM 之 Mg 離子與 0.8%的 Gelrite。
- 5. 原生動物之調查:直接收集水樣加福馬林固定或以浮游生物網過濾水樣再以 70% 酒精沖洗、收集,攜回實驗室。以 3000rpm 離心後,取底層附近水樣置於顯微鏡下觀察。

陽明山國家公園酸性溫泉物種調查 及生存機制之研究

6. 無脊椎動物之調查:以目視採集或挖掘翻找方式調查,採集到的樣品帶 回實驗室後,以70%酒精固定,再以95%酒精保存,並以解剖顯微鏡觀察並拍 照。

7. 藻類之調查:採集表層水樣或刮取石頭表面附著物,以 3-5%福馬林固定,攜回實驗室,放置暗處 4°C 冷藏保存。保存樣品經過沉澱或過濾濃縮,再以顯微鏡觀察並拍照。

三、重要發現

- 1. 陽明山國家公園內的溫泉皆為酸性溫泉。溫度範圍約為 40-95°C,酸鹼度範圍約在 pH 1.5-6.5。依陰離子成分主要分為酸性硫酸鹽泉及接近中性的碳酸鹽泉兩大類。
- 2. 各採樣點溫泉水質不一定符合溫泉的法規定義。大多數水質不適合作為 游泳之用,亦不能飲用。
- 3. 現有 PCR 方法無法偵測到溫泉沉積物中的真核微生物。溫泉水體內亦未發現無脊椎動物或原生動物。
 - 4. 硫氣噴發口附近黑色岩壁下方的岩隙棲地是藻類的良好棲息所。
- 5. 各採樣點內古菌及細菌種類差異很大,分別屬於不同的門。16S rDNA 序列分析顯示有許多目前尚未被發現的物種。
- 6. 極端的酸鹼度和溫度不利於古菌及/或細菌的生存。pH 2.5-6 及 40-60 °C 之間的溫泉可發現較多古菌,pH 2-6.5 及 40-60 °C 之間的溫泉可發現較多細菌。 多數溫泉中的古菌及/或細菌最適合生長的酸鹼度接近溫泉本身的酸鹼度。pH 值小於或等於 2 的強酸性溫泉內許多微生物可能產生休眠性細胞(例如孢子)抵抗強酸。

四、主要建議事項

(一)立即可行建議:由陽明山國家公園管理處逐年編列預算,以多年期每年較小金額的經費長期持續委託學術機構從事台灣特有陽明山國家公園溫泉微生物的分離、分類、形態和生理特性研究。

主辦單位:陽明山國家公園管理處

協辦單位:東吳大學微生物學系李重義副教授研究室

本研究選定的各個溫泉中古菌及細菌種類差異很大,且從 DNA 資訊可知絕大多數屬於未曾被發現的新種甚至是新屬的微生物。由於大眾對於溫泉微生物所知有限,更不瞭解現代生物學有關細菌、古菌分類的進展,因此無論站在保育研究或將來為民眾解說之便,都應該積極進行溫泉古菌的分離與分類,並進一步探討其形態和生理特性。如此不但非常有助於生物多樣性與保育之研究,更能建立陽明山國家公園的特色。研究可大至分為:(1)好氧異營性古菌及細菌之分離、分類與形態和生理特性研究;(2) 厭氧異營性古菌及細菌之分離、分類與形態和生理特性研究;(3) 化學自營性古菌及細菌之分離、分類與形態和生理特性研究。可逐年進行。

(二)中長期建議:

主辦單位:陽明山國家公園管理處

協辦單位:東吳大學微生物學系李重義副教授研究室、台灣大學漁業科學研究所藻類研究室、台灣大學動物學研究所無脊椎動物研究室

由陽明山國家公園管理處逐年編列預算,進行下列研究:(1)陽明山國家公園硫氣噴發口附近黑色岩壁下方岩隙棲地內的單細胞紅藻之研究;(2)陽明山國家公園內蚯蚓之全面調查研究;(3)陽明山國家公園內溫泉露頭及噴氣孔附近蜘蛛目之全面調查研究。

ABSTRACT

Keywords: Yangmingshan National Park, hot springs, water quality analysis, Bacteria, Archaea

1. Introduction

The biodiversity of eukaryotic organisms in hot springs in the Yangmingshan National Park has never been investigated. Owing to the acidic nature, the temperature, pH value and chemical composition of these hot springs are usually varied with quantity of spring water. Therefore, it is necessary to monitor the change of biodiversity in these hot springs at different times. The purpose of this study is to investigate the biodiversity and the survival mechanism of some isolated organisms in selected sites of hot springs. The temperature, pH value and chemical composition will also be determined. Collected data will provide for better management.

2. Methodology

- 1. Sampling: Location of sampling sites were identified by the Global Positioning System (GPS) and photopictures.
- 2. Molecular biology methods: Commercial DNA extraction and purification kits were used to prepare the DNA samples. Specific primers for Archaea, Bacteria and eukaryotic microorganisms were used to amplified and quantified genes of 16S rRNA and 18S rRNA. The PCR products were subjected to molecular cloning and sequencing.
- 3. Analysis of water: Temperautre, pH, conductivity, total dissolved solid, suspended solid, ions, heavy metals, total nitrogen, total phosphrous, sulfide, and total organic carbon were analyzed according to standard methos of the Environmental Protection Admistration.
- 4. Cultivation of thermophilic microorganisms: The DSMZ Medium 88 supplemented with 1 g/L of Peptone and Yeast extract was used as a liquid medium. The liquid medium supplemented with 8 mM of Mg ion and 0.8% of Gelrite was used as a solid medium.

- 5. Investigation of invertebrate: Samples were collected by hand, fixed by 70% alcohol, and preserved in 95% alcohol. Samples were observed by stereomicroscope.
- 6. Investigation of protozoan: Water samples were filtrated through plankton net, fixed with 70% alcohol, and observed by light microscope.
- 7. Investigation of algae: Surface water of pond or stream and adhesive materials on the surface of rocks were collected and fixed in 3-5% formalin. Concentrated samples were observed by light microscope.

3. Results

- 1. All hot springs located in the Yangmingshan National Park are acidic springs with a temperature of 40-95 °C and a pH range of 1.5 6.5. They can be classified as acidic sulfate springs and near-neutral carbonate springs.
- 2. Having elevated temperature, some spring sites are not fulfilled the official definition of hot (warm) spring. Most spring waters are not qualified for the use as swimming water according to the official standard. They are also not suitable as drinking water.
- 3. The current PCR method is not suitable for the quantification of eukaryotic microorganisms in sediments of hot springs. No invertebrate animal nor protozoan is found in hot springs.
- 4. The inter- and endolithic environments are good habitats for algae to live near fumaroles from which volcanic gas escapes into the atmosphere.
- 5. Both the archaeal and bacterial species in sediments of each studied sites are very diverse and belonged to different phyla. Many non-cultured species are waiting to be discovered according to the analysis of 16S rDNA sequences.
- 6. Extreme pH values and temperatures are difficult for archaea or bacteria to survive. More archaea can be found in springs with a pH between 2.5-6 and temperature between 40-60 °C while more bacteria can be found in springs with a pH between 2-6 and temperature between 40-60 °C. The optimal pH for growth of archaea and/or bacteria in most springs is close to the pH of that spring. Producing endospores to resist strong acid may be the strategy used by many microorganisms in springs with a pH lower than 2.

4. Suggestions

- 1. Projects should be performed immediately: Using smaller budgets for continuous studies on (1) the isolation, classification, and characterization of aerobic-heterotrophic-thermophilic archaea and bacteria in hot springs in the Yangmingshan National Park; (2) the isolation, classification, and characterization of anaerobic-heterotrophic-thermophilic archaea and bacteria in hot springs in the Yangmingshan National Park; and (3) the isolation, classification, and characterization of autotrophic-thermophilic archaea and bacteria in hot springs in the Yangmingshan National Park.
- 2. Projects could be performed in the near future: (1) Investigation, classification and characterization of algae belonging to the Family of Cyanidiaceae in the interand endolithic environments near fumaroles in the Yangmingshan National Park. (2) Investigation and classification of earthworms in the Yangmingshan National Park. (3) Investigation and classification of spiders near hot springs in the Yangmingshan National Park.

第一章 緒 論

第一節 研究緣起與背景

壹、研究緣起

陽明山國家公園以火山為主要特色,生態特殊。火山噴氣孔活動不斷影響環境之酸鹼度,園區之物種何以生存,深值探討。尤其全球日趨暖化及酸化現象,未來人類因應之道也許在其中可找到答案。所以火山極端生態系的生物多樣性,如古菌、細菌、原生動物、無脊椎動物及藻類等,深值研究。本研究乃針對陽明山國家公園內各個代表性酸性溫泉內的生物多樣性進行調查,並探討其中某些生物之生存機制;同時分析溫泉之水質,以期建立有關酸性溫泉極端生態系之基礎資料,俾供經營管理參考並利爾後應用。

貳、研究主題背景及相關研究之檢討

自然界中許多環境因子會對生物的活力及演化產生重大影響。這些環境因子 包括日照、溫度、氧化還原電位、酸鹼度、鹽度、水壓、水活性、養份濃度、電 磁及游離輻射等,其中以溫度最易被人類感覺和測定,而成為最受重視的一項環 境因子。由於高溫環境牽涉到生命存在的極限條件,因此格外受到重視。

自然界高溫環境的成因可粗略分為太陽輻射、燃燒、地熱和人為熱源等四大類。太陽輻射可使土壤溫度達到 60℃,但僅限於陽光照射的數小時內。燃燒現象通常是由微生物對有機物質氧化釋放熱量而造成,例如乾草堆,甚至垃圾的自熱現象,溫度常達 70℃或更高;但隨著可燃物減少,溫度亦無法長期維持。人類活動的大型熱源包括各式工廠和發電廠,其對生態雖有相當程度的影響,但也只有百餘年的歷史。唯獨地熱活動除了普遍存在於世界各地,對生態有一定影響外;因其追溯時代久遠,對生物亦有演化上的意義。此外伴隨火山活動的溫泉常達到 90-100℃的沸騰溫度(隨所處位置的地表高度而異),甚至超過 100℃ (海底溫泉),近數十年來卻發現細菌可在其中生存,因而開啟人們對生物生存溫度上限的認識與探究的興趣 (Brock, 1978)。

Carl Woese 從 1970 年代開始研究細胞核糖體 16S rRNA 的核苷酸序列,從而發現生物世界依演化觀點可分為古菌域(Archaea)、細菌域(Bacteria)和真核生物域(Eucarya)三大領域(Domain)(Woese et al., 1990)。真核生物域包括原生生物界(Protista)、真菌界(Fungi)、動物界(Animalia)及植物界(Plantae)等,其共同特徵是細胞的染色體存在於具有雙層膜構造的細胞核(因此稱為真核)內,從演化的觀點來說它們的親源關係較近。古菌和細菌的細胞則不擁有具有雙層膜構造的細胞核,其染色體在細胞內折疊成稱為類核(nucleoid)的構造,因此它們又被稱為原核生物(Prokaryotes)。雖然細胞結構簡單而類似,但從演化的觀點來說它們的親源關係較遠。古菌、細菌和真核生物還有許多相同、相異之處。古菌在代謝上很多方面接近細菌,然而在基因轉錄和轉譯這兩個分子生物學的中心過程上,並不明顯表現出細菌的特徵,反而非常接近真核生物。大多數細菌都有細胞壁,且以肽聚糖(peptidoglycan)為主要成分;許多古菌沒有細胞壁,即使有細胞壁也不含肽聚糖。此外,細菌和真核生物細胞膜的磷脂質為甘油酯(glycerol ester),而古菌細胞膜中則是甘油醚(glycerol ether)。

Thomas D. Brock 根據各方的報告指出:高等真核生物(包括動物和植物)能夠生活的最高溫度為 50° C,藻類和真菌等真核微生物的生活上限溫度較高,約為 60° C,超過此溫度能生活的生物則完全屬於原核生物(包括古菌及細菌)(Brock, 1985)。由於屬於多毛類的龐貝蟲(Alvinella pompejana)在海底溫泉煙囱(hydrothermal vent chimneys)上的洞穴中被發現(Cary et al., 1998),而海底溫泉煙囱的平均溫度為 68° C 且經常超過 81° C,因此 Brock 對於高等真核生物生活溫度上限的說法受到挑戰。

一般而言,最適(快)生長溫度超過 40° C者被稱為嗜熱生物(thermophiles)。 許多嗜熱原核生物的生活溫度下限超過真核生物生活上限溫度($50\sim60^{\circ}$ C),被稱為絕對嗜熱菌(obligate thermophiles)或極端嗜熱菌(extreme thermophiles) (Brock, 1986);亦有將生活溫度下限超過 40° C者稱為極端嗜熱菌者(Cowan, 1992a)。某些絕對嗜熱菌更能在接近 100° C 的溫度生長,其最適(快)生長溫度超過 80° C,被稱為超級嗜熱菌(hyperthermophiles)(Stetter, 1998)。

嗜熱生物的天然地熱棲息所 (geothermal habitats) 隨酸鹼度的不同,可分為 鹼性溫泉與酸性溫泉兩大類 (Cowan, 1992a)。當大量地下水滲入地底受岩漿 (magma)加熱回到地表,由於溶解相當多的礦物質和二氧化碳(pKa of bicarbonate = 6.3; pKa of carbonate = 10.2),使得泉水呈現中性到鹼性(pH 6.9);主要的陰離子為氣離子和碳酸氫根。地表的鹼性溫泉常位於小山丘的底部,水量充沛且水溫穩定。海底溫泉由鹽份高的海水取代地下水而形成,由於水壓的關係溫度可超過 100° C,而硫化氫含量的多寡也使得酸鹼度在微酸到微鹼性之間(pH 5.8)。至於酸性溫泉的成因則是由於地下水水量較小或熱源較接近地表,多出現在火山區(volcanic areas)。伴隨地熱活動釋出地面的硫化氫氧化成硫磺再進一步氧化(微生物作用或非生物作用)產生硫酸(pKa of sulfate = 1.8),溶解於地表水或少量上升的地下水使得酸鹼度達到強酸性(pH 1.2)。酸性溫泉水量不穩定,有時僅形成噴氣孔(fumaroles),因此水溫變化較大。酸性溫泉除了富含硫及鐵之外,其他礦物質含量較少。

台灣位於西太平洋的火山島弧中花彩列島上,境內多溫泉,有記錄者近百處,然而孕育於火山區的溫泉僅 15處。除了龜山島及綠島兩處之外,其他絕大多數的火山區溫泉位於北台灣的大屯火山群,而成為陽明山國家公園最具獨特風格的自然景觀(楊,1992)。陽明山溫泉大多數為酸性溫泉,pH 值可達 1-2 左右;但也有 pH 值介於 6-7 之間的碳酸泉。

自然環境中微生物(包括細菌、古菌、原生生物、真菌等)種類及數量皆甚龐大,且許多微生物不易培養,故使用培養及分離的方法研究生態系統中微生物相的組成與變化,有其實質上的困難或容易產生很大的偏差。近年由於分子生物學技術的發展,不需要培養而直接萃取環境樣品中 DNA 進行分析的高效率方法被用於許多地區溫泉中嗜熱微生物相的研究。例如在美國黃石公園(Hugenholtz et. al., 1998; Boomer et. al., 2002),日本(Takai and Sako, 1999),冰島(Hjorleifsdottir et. al., 2001),印尼西爪哇(Baker et. al., 2001),印度(Ghosh et. al., 2003),泰國(Kanokratana et. al., 2004),義大利拿波里(Kvist et. al., 2005)等地溫泉中針對細菌及/或古菌的研究都發現了許多未知的分類世系(lineages)。對於溫泉中真核生物的調查研究則較少。在紐西蘭的研究發現酸性溫泉中層疊石(stromatolites)的生物相(biota)主要為真菌及少數矽藻(Jones et. al., 2000)。在美國的研究指出酸性溫泉中可發現綠藻(chlorophytes)、矽藻(diatoms)、金黃藻(chrysophytes)等光營性(phototrophic)和纖毛蟲(ciliates)、

變形蟲 (amoebae)、鞭毛蟲 (flagellates) 等異營性 (heterotrophic) 的原生生物 (protists),以及真菌 (fungi) (Brown and Wolfe, 2006)。在較不酸的環境,尤其是藻叢 (algal mats) 中則偶爾發現六足蟲 (hexapods)、線蟲 (nematodes)、扁形動物 (platyhelminths) 等後生動物 (metazoans) 的蹤跡。

過去有關陽明山國家公園之生態研究包括各種動物資源調查,植被分析,苔 蘚地衣類資源調查等,皆屬於多細胞高等真核生物的範疇,且調查範圍以涵蓋整 個國家公園為主。然而對於最具特色的溫泉,其內獨具的溫泉微生物之調查工作 則十分缺乏。

台灣過去有關溫泉中微生物的研究,大多屬於零星式的調查或培養分離。(1)藻類方面:早期曾有關於藍綠藻、矽藻、眼虫藻、紅藻之調查(張蒼碧,1966);近年則有藍球藻、火山頁藻(梁素雲,1990)及矽藻(林基烈,1996)之研究;及針對陽明山紅藻 Cyanidium caldarium(約在 50℃、pH 2 的環境下生長)生理、生化的研究(阮雪芬,1994;江志文,1998)。(2)嗜熱真菌:包括烏來(Chen et. al., 2000)和陽明山(Chen et. al., 2003)的溫泉。(3)嗜熱細菌或古菌方面:包括耐熱酵素生產菌的研究,如:生產澱粉酶的 Bacillus stearothermophilus (陳明賢,2000)、生產酯解酶的 Bacillus acidocaldarius (蔡國正,2000)、生產葡萄糖異構酶的 Bacillus acidocaldarius (柯舜文,1996)、生產洋菜酶的 Alterococcus agarolyticus (李健瑋,2001);亦有發現新種的研究,如:陽明大學程樹德教授指導其學生在陽明山溫泉分離嗜熱古菌而發現 Sulfolobus yangmingensis (Jan et. al., 1999)、台灣大學謝文陽教授指導其學生在綠島海岸溫泉分離各種嗜熱菌而發現 Alterococcus agarolyticus (Shieh and Jean, 1998)。

近年來已有一些採用分子生物學技術進行溫泉微生物相的研究,如:大規模分離培養台灣各地 19 個溫泉中的嗜熱細菌,再利用 16S rDNA 分子序列與微生物資料庫進行比對,主要目的在於建立台灣嗜熱菌種源庫 (陳懋彦,2002),其中只選擇了兩個位於大屯火山群的溫泉:北投溫泉 (42-78°C, pH 3.3-5.9)和陽明山溫泉 (41-80°C, pH 4.5-5.8)。另外,也有利用變性梯度膠體電泳 (DGGE)分析台灣三個溫泉樣本 DNA 中 16S rDNA 變異區序列,並配合 16S rDNA 完整分子序列分析,以瞭解溫泉中細菌群落的組成 (何佩楨,2004),其中位於大屯火山群的溫泉為馬槽溫泉 (pH 2-4)。

本人曾於民國 95 年利用 16S rDNA 放大技術進行陽明山國家公園溫泉微生物多樣性之研究(李重義,2006)。發現所有經過實地檢測的溫泉皆為酸性,其pH 值小於 7。所有酸性溫泉中皆可發現細菌(Bacteria),而古菌(Archaea)則在酸度略低(pH>2)的溫泉中較多。序列分析與比對後發現大多數細菌皆屬於已知的物種,而絕大多數的古菌皆屬於未曾被分離鑑定過的物種。

溫泉可由溫度、pH值、化學組成區分為不同的泉質。依溫度區分為低溫溫泉、中溫溫泉、高溫溫泉、沸騰溫泉。依pH值區分為酸性、中性、鹼性泉。根據氣離子、碳酸氫根、硫酸根等三種常見的陰離子在溫泉中的含量,大致分為碳酸鹽泉、硫酸鹽泉、氯化物泉,再依鈉、鉀、鎂、鈣、鐵、鋁、矽等常見的陽離子在溫泉中的含量,再細分為不同的溫泉類型(王懿德,2004;宋聖榮,2005)。

溫泉的化學組成會受地下水來源、母岩礦物組成及天水混入的影響(陳耀麟,2002)。而溫泉的溫度與 pH 值也會影響水中物質的沈澱與溶解情形。總溶解固體代表溫泉中所有離子的總量,亦可經由導電度監測。懸浮固體代表水體中所含固體物之多寡,固體物來源包括無機物與有機物,當固體物過多時會影響水體的透視度(江漢全,2004;李中光等人,2004)。

火山氣體中含有大量的硫化氫,硫化氫會溶於溫泉水中。當溫泉湧出地面而混入氧氣後,硫化氫被逐步氧化代謝為硫、硫代硫酸根、四磺酸根、亞硫酸根,最後形成硫酸根。此外,火山氣體中亦含有二氧化硫,二氧化硫溶於水中會形成亞硫酸根,再與水中溶氧反應為硫酸根。硫化氫具有臭味,且硫酸具有高腐蝕性,因此硫的各種氧化還原態常被用於監測環境品質(江漢全,2004;李中光等人,2004;陳文福,2007;陳耀麟,2002)。鹵素離子可能來自於地層水、火山氣體冷凝或溶解火成岩成分,因此檢測鹵素離子濃度可推知周遭岩石的化學組成。溫泉在儲存與流動的過程中,會溶解周遭岩石的成分,使得陽離子進入水體,因此陽離子濃度與pH值、溫度及周遭岩石成分有關(宋聖榮,2005)。

溫泉之高熱環境有助於岩石中的重金屬溶解,使得水中存在砷、鎘、鉻、錳、鉛等重金屬,長期接觸可能會造成輕重不一的傷害,對人體與環境造成危害。大屯火山區溫泉中已發現有相當濃度的砷、錳、鉛等重金屬(王懿德,2004;陳文福,2007;陳柏淳等人,2007)。

天然的水體中有機物含量低,但受到人為污染後含量會大幅提高。硝酸鹽類

陽明山國家公園酸性溫泉物種調查 及生存機制之研究

及磷酸鹽類為微生物生長所需之營養鹽,由於天然的水體中兩者之含量極低,當濃度過高時多由人為污染引起(王懿德,2004)。而近期發生的污染,氮多以氨氮與有機氮形式存在,之後才會轉變成硝酸鹽類。總氮可代表氨氮與有機氮的總和(江漢全,2004;李中光等人,2004)。

如前所述,過去未曾有過針對陽明山國家公園溫泉內真核生物多樣性的研究。另一方面,陽明山國家公園內的溫泉屬於酸性溫泉,其溫度、酸鹼度與化學組成常受水量多寡的影響而變動,因此有必要在不同時段監測其中生物多樣性的變化。

本研究計畫乃針對陽明山國家公園內各個代表性酸性溫泉內的生物多樣性 進行調查,並探討其中某些生物之生存機制;同時分析溫泉之水質,以期建立有 關酸性溫泉極端生態系之基礎資料,俾供經營管理參考並利爾後應用。

第二節 研究預期目標

本研究預期完成工作項目及範圍如下:

- (一) 蒐集及探討相關文獻。
- (二)針對陽明山國家公園內大油坑、小油坑、馬槽、硫磺谷、龍鳳谷、八煙、 中山樓及庚子坪等8處酸性溫泉生態系的生物多樣性進行調查,並探討其 中某些生物之生存機制。
- (三)進行上述8處溫泉之水質分析,並討論其與溫泉內生物多樣性之關係。

第二章 研究方法及過程

第一節 採集樣品

壹、衛星定位

以全球定位系統 (Global Positioning System, 簡稱 GPS) 標定採樣點之座標與高程,並以照片紀錄標示位置 (附錄一)。

貳、水質分析之採樣

依現地狀況使用附有長柄之不銹鋼伸縮式採樣器。依據檢測項目將水樣分別盛裝於聚乙烯(polyethylene, PE)瓶或棕色玻璃瓶,並依需要分別進行過濾、酸化等前處理,攜回實驗室,於 4° C保存。(NIEA W104.51C, 2005)

參、沉積物之採樣

使用固定於長柄之聚丙烯 (polypropylene, PP) 採樣器 (TPP centrifuge tubes, gamma-sterilized),採取約含等量水及表層沉積物 (0-10 cm) 的樣品,攜回實驗室,於-30°C 冷凍保存。

第二節 分子生物學方法

壹、萃取 DNA

將採集到的樣品,使用市售 DNA 萃取套組 (PowerSoilTM DNA isolation kit)及 DNA 純化套組 (Soil Genomic DNA purification kit),按照廠商說明步驟進行操作。

貳、rRNA 基因放大與定量

分別使用細菌、古菌及真核微生物專一引子 (specific primers) (表 1) 進行 PCR 反應 (94°C-5min; 30 cycles of 94°C-1min, 55/57°C-1min, 72°C-1.5min; 72°C, 2min)。PCR 反應的組成物如表 2 所示。使用 1.6%洋菜醣 凝膠進行電泳、染色、照相後觀察被放大的基因片段。

參、選殖 rRNA 基因片段

將 PCR 產物(細菌用 Bac 8F/Bac 1512R;古菌用 Arch 26f/ Arch 973R; 真核微生物用 Euk 82FM/Euk 1520RM)進行洋菜凝膠電泳(1.6%),確認片段大小後連接到 pGEM-T Easy Vector (Promega, USA)。連接產物再使用熱休克法轉形 $E.\ coli\ JM109$ 勝任細胞。轉形株在含有 ampicillin(100 μ g/mL)並添加 100 μ L 100mM IPTG 及 20 μ L 40 mg/mL X-gal 的 Luria-Bertani agar plates 進行藍/白菌落篩選。利用接種針挑出白色單一菌落至無菌水,95°C 加熱 5 分鐘後利用 M13/pUC 定序引子對(sequencing primers)進行 PCR,再以電泳確認選殖片段大小正確。

肆、rRNA 基因片段的限制酶片段長度多型性分析及序列分析

將 M13/pUC 定序引子對放大的 rRNA 基因片段分別用 Rsa I、Sau3A I、Hha I 進行分解,然後以 2.0%洋菜凝膠進行電泳分析,以肉眼觀察將不同片段長度多型性予以分類。最後選擇同一類型的 rRNA 基因送交廠商進行序列分析。再將序列送到 NCBI 網站上進行比對。

表1:本研究使用的細菌、古菌及真核生物專一引子

Primer	Sequence $(5' \rightarrow 3')$	$T_{m}(^{\circ}\mathbb{C})$
Bac 8F (27f)	AGAGTTTGATCCTGGCTCAG	62.9
Bac 1492r	TACGGYTACCTTGTTACGACTT	
Bac 1512R	ACGGYTACCTTGTTACGACTT	
Arch 21F	TTCCGGTTGATCCYGCCGGA	69.0
Arch 26f	GGTTGATCCYGCCGGA	
Arch 958R	YCCGGCGTTGAMTCCAATT	64.1
Arch 973R	GGCGTTGAMTCCAATT	
	176	()
Euk 82F	GAAACTGCGAATGGCTC	59.9
Euk 82FM	AAACTGCGAATGGCTC	
Euk 1520R	CYGCAGGTTCACCTAC	57.9
Euk 1520RM	AGGTTCACCTAC	
Euk 1643R	ACGGGCGTGTGTRC	62.5

R=A/G Y=C/T M=A/C

F, forward; R, reverse; Arch, archaeal (DeLong, 1992); Bac, bacterial (Lane, 2002); Euk, eukaryotic (Dawson and Pace, 2002)

表 2:本研究使用 PCR 反應的組成物

Component	Final concentration
Water, nuclease-free	_
10X <i>Taq</i> buffer	1X
2mM dNTP mix	0.2mM of each
Primer I	0.4μM
Primer II	0.4μΜ
Taq DNA polymerase	1.25u/50μL
25mM MgCl ₂	4mM
Template DNA	10ρg-1μg / 50μL

PCR kit: Fermentas *Taq* DNA polymerase (recombinant)

第三節 水質分析

壹、溫度

依環保署公告之水質分析方法經由校正之溫度計測定現場水溫。(NIEA W217.51A, 1999)

貳、pH值

依環保署公告之水質分析方法利用玻璃電極測定樣品之電位以得知氫離子活性,並以氫離子濃度指數表示。(NIEA W424.52A,2008)。實際採樣時測定溫度,並使用攜帶式酸鹼度計調整溫度後測定 pH 值。

多、導電度

依環保署公告之水質分析方法以電極測定水樣之導電度。(NIEA W203.51B, 2000)

肆、總溶解固體 (TDS)及懸浮固體 (SS)

依環保署公告之水質分析方法將攪拌均勻之水樣以一已知重量之玻璃纖維 濾片過濾,濾片移入 103 ~ 105 ℃ 烘箱中乾燥至恆重,其所增加之重量即為 懸浮固體重。濾液置於已知重量之蒸發皿中,移入 103 ~ 105 ℃ 之烘箱蒸乾至恆重,所增加之重量即為總溶解固體重。(NIEA W210.57A,2006)

伍、水中離子分析

依環保署公告之水質分析方法使用流洗液流經一系列陰(陽)離子層析管柱分離,分離後再流經一高容量陽(陰)離子交換樹脂抑制裝置,經轉換後之待測離子再流經電導度偵測器,即可依其滯留時間及波峰面積、高度或感應強度予以定性及定量。(NIEA W415.52B,2005)

陸、重金屬

依環保署公告之水質分析方法利用感應耦合電漿原子發射光譜法

(Inductively Coupled Plasma Atomic Emission Spectrometry, ICP - AES) 進行元素 之定性及定量。(NIEA W311.51B, 2004)

柒、亞鐵離子(Fe²⁺)

使用商用試劑組中鄰-菲羅啉(1,10-phenanthroline)試劑與水樣所含的亞鐵離子進行化學反應,產生紅色的化合物,以水質分析儀(Merck Spectroquant®方法 161)測定其 510 nm 吸光值,得知水樣中亞鐵離子濃度,此方法原理參照 美國水質標準檢測方法 3500-Fe D。

捌、硫化物(S²⁻)

調整水樣 pH 值至 5 以下,使水樣中硫化氫離子(HS^-)、硫離子(S^{2-})均轉化成溶解的硫化氫氣體(H_2S),再添加商用試劑組進行化學反應,產生藍色的甲烯藍(methylene blue)化合物,以水質分析儀(Merck Spectroquant®方法 80)測定其吸光值,得知水樣中硫化物濃度,此方法原理參照美國水質標準檢測方法 $4500\text{-}S^{2-}$ D(EPA 376.2)。

玖、亞硫酸離子 (SO32-)

以氫氧化鈉調整水樣 pH 值至中性,使用商用試劑組中 Ellman 試劑 (2,2'-dinitro-5,5'-dithiodibenzoic acid) 與水樣中亞硫酸離子反應,形成有機硫代硫酸鹽,進而釋放黃色的硫醇類 (thiol) 化合物,以水質分析儀 (Merck Spectroquant®方法 187) 偵測其 412 nm 吸光值,得知水樣中亞硫酸離子濃度。 拾、總氫 (TN)

水樣添加商用試劑組之氧化劑後,於120℃加熱消化(Koroleff's method), 將有機氮與無機氮均轉變為硝酸鹽。取消化後水樣在濃硫酸中與苯甲酸(benzoic acid)試劑反應,產生紅色的氮化合物,以水質分析儀(Merck Spectroquant®方法68)偵測其吸光值,得知水樣中總氮濃度。

拾壹、總磷(TP)

水樣添加商用試劑組之硫酸與過硫酸鹽 (peroxodisulfate)後,於 120℃加熱

消化,破壞含磷化合物,使其轉變成正磷酸鹽(orthophosphate)。在硫酸溶液中正磷酸鹽離子與鉬酸鹽(molybdate)離子反應形成磷鉬酸(molybdophosphoric acid),再添加維他命 C(ascorbic acid)還原磷鉬酸成藍色的鉬藍複合物(phosphomolybdenum blue; PMB),以水質分析儀(Merck Spectroquant®方法56)偵測其880 nm 吸光值,得知水樣中總磷濃度,此方法為美國環保署水質標準分析方法(USEPA 365.2)。

拾貳、總有機碳 (TOC)

依環保署公告之水質分析方法進行分析,水樣經由自動注射器或手動注射方式注入一連續吹入氣體之反應器,內裝有紫外光照射燈及以一定速率補充的過氧焦硫酸鹽溶液及酸溶液,水樣中的有機碳、無機碳分別被氧化、轉換為二氧化碳,隨即被載流氣體導入可吸收二氧化碳特定波長的非分散式紅外線分析儀,依儀器設定條件,分別求得總碳、無機碳、總有機碳、非揮發性有機碳等的濃度。(NIEA W531.51C,2000)

第四節 温泉微生物之分離與培養

壹、液體培養

基礎培養基為 DSMZ Medium 88 (Sulfolobus medium),其組成為每公升含有:1.3 g (NH₄)₂SO₄, 0.28 g KH₂PO₄, 0.25 g MgSO₄·7H₂O, 0.07 g CaCl₂·2H₂O, 0.02 g FeCl₃·6H₂O, 1.80 mg MnCl₂·4H₂O, 4.50 mg Na₂B₄O₇·10H₂O, 0.22 mg ZnSO₄·7H₂O, 0.05 mg CuCl₂·2H₂O, 0.03 mg Na₂MoO₄·2H₂O, 0.03 mg VOSO₄·2H₂O, 0.01 mg CoSO₄。 以硫酸或氫氧化鈉調整 pH 到所需的數值。另外分別添加 1 g/L 的 Peptone 和 Yeast extract。在含有5 mL 液體培養基的20 mL 玻璃試管中添加50 μ L 的溫泉樣品液 (溫泉底泥懸浮液靜置數分鐘之後的上清液) 或細胞懸浮液 (固體培養基上的菌落用液體培養基懸浮),然後在指定的溫度振盪培養。

貳、固體培養

取 2.5 mL 適當稀釋的溫泉樣品液或細胞懸浮液與 2.5 mL 經過滅菌的 0.8% Gelrite 水溶液(維持在 60-70 °C)混合均匀,傾倒在底層培養基上,然後在指定的溫度培養。底層培養基由兩倍濃度的液體培養基(多添加 16 mM 之 $MgCl_2\cdot 6H_2O$,pH 3)與 1.6%的 Gelrite 水溶液等體積混合後,傾倒至培養皿。

第五節 原生動物之調查

壹、採集樣品

(A) 過濾濃縮:以網目大小 30 µm 的浮游生物網過濾 3 公升的水樣,再以 70% 酒精沖洗,收集沖洗後的水樣,攜回實驗室。(B) 直接收集:收集 1 公升的水樣,加入 30ml 福馬林固定後,攜回實驗室。

貳、樣品觀察

將採集到的水樣以 3000rpm 離心後,取底層附近水樣滴於載玻片上,再蓋上蓋玻片,置於顯微鏡下觀察。

第六節 無脊椎動物之調查

壹、採集樣品

以中山樓、硫磺谷、龍鳳谷、小油坑、大油坑、馬槽、八煙和庚子坪等八個溫泉露頭為調查區域,將環境區分為溫泉水體、溫泉附近陸域、溫泉外圍水體和溫泉外圍陸域4種類型的區域,以目視採集或挖掘翻找方式調查溫泉附近的無脊椎動物相。

貳、樣品處理

採集到的無脊椎動物樣品帶回實驗室後,以 70%酒精固定,再以 95%酒精保存,並以解剖顯微鏡進行物種鑑定與資料建檔。

第七節 藻類之調查

壹、採集樣品

(A) 浮游性:以採水瓶採集表層水樣,注入廣口塑膠瓶中,以 3-5%福馬林固定,攜回實驗室,放置暗處 4℃ 冷藏保存。(B) 附著性:選取特殊的層疊石或附著藻叢的石頭,以刮杓刮取一定面積之刮取物,置入裝有 3-5%福馬林固定液之採集瓶中並予以打散,攜回實驗室,放置暗處 4℃ 冷藏保存。(NIEA E504.41T,1993; NIEA E505.50C,2003)

貳、樣品觀察

保存樣品經過沉澱或過濾濃縮,再以顯微鏡觀察並拍照,測量其大小並與圖 鑑比較。

參、分子生物學方法

將硫磺谷第一採樣點(常溫水池)及馬槽第一採樣點的藻類樣品 LHG1 及 MC1-1 以市售(Yeastern Biotech Co., Ltd.)的真核生物 DNA 萃取套组 (UniversAll) 萃取 DNA,然後依第二節所述進行基因放大、選殖與序列分析。

第三章 研究發現

第一節 各溫泉之探勘

壹、硫磺谷 (Liouhuanggu)

硫磺谷別名大磺嘴,為呈東西向延伸的盆谷。位於中正山南麓、石壇山和大砲岩北側,行義路、惇敘工商西側,石壇路與泉源路間,是北投磺港溪的上游。由行義路經泉源路(往北投方向)到硫磺谷地熱景觀區,再由眺望台旁進入。硫磺谷東側有許多將地表水注入地熱噴氣口的水池(地熱池),算是人工溫泉,是北投溫泉的源頭,水質為酸性硫酸鹽泉(程楓萍,1987)。硫磺谷西側為一常溫水池,水池最東側有地熱加熱現象,但量小不足以影響整個水池的溫度。水池沒有明確出、入水口,可能是降水蓄積而成。

本區採樣點有三個:

LHG1 為硫磺谷西側常溫水池的西北側。3 月水位高,水呈混濁綠色;5 月水位下降,水呈透明綠色;8 月水位最低,水呈褐色透明;10 月底水位回升,水色轉為青色。

LHG2 為位於硫磺谷最東側、位置最高的地熱池。係抽取地下水由池子的東北側注入,經地熱噴氣加熱,滿溢後由位於池子西北側的出水口流出。採樣點遠離入水口,在出水口南側約一米處。3月與5月水量甚多;8月則幾乎乾枯:10月底地熱噴氣口有一些泉水湧出。

LHG3 為位於 LHG2 西北側的下方地熱池。較高處地熱池溢出的熱水由池子的東側注入,經地熱噴氣加熱,滿溢後由位於池子西側的出水口流出。採樣點在出水口北側約二米處。3 月與5 月水量甚多;8 月水位最低: 10 月底水位略為回升。

貳、龍鳳谷(Longfonggu)

龍鳳谷位於紗帽山西側,惇敘工商東邊和東南邊,行義路東側,泉源路與 紗帽路間,南磺溪上遊的山谷內,是天母磺溪的上游。龍鳳谷的溫泉分為「頂北 投溫泉區」和「雙重溪溫泉區」兩處。前者位於溪谷中,密集分布許多溫泉,包括:台北市政府闢建的公共浴室,如「龍鳳溫泉(又稱羅漢窟溫泉)」和「鳳凰溫泉(又稱媽祖窟溫泉、觀音媽池)」;浴客自行組成會員共同出資建成的浴室,如自強池、長春池、竹仔腳池;和私人闢建經營者,如龍鳳谷餐廳、七窟溫泉餐廳等(惇敘工商,2003)。頂北投溫泉區的溫泉是由岩隙湧出的天然溫泉,水質為中性碳酸鹽泉(程楓萍,1987)。南磺溪離開山谷進入所謂「雙重溪溫泉區」,此處的溫泉則是將地表水注入地熱噴氣孔的人工溫泉(程楓萍,1987)。

本區採樣點有二個:

LFG1 為龍鳳谷公共溫泉浴池(羅漢窟)的集水池。沿龍鳳谷餐廳側邊道路前行,遇北投龍泉宮石刻旁的階梯下行至南磺溪邊的龍鳳谷公共溫泉浴池(羅漢窟)。公共溫泉浴池一邊是男生浴池、一邊是女生浴池。其設計為利用馬達抽取地下溫泉集中於一個石砌水池中,再將溫泉水分別送到男生浴池和女生浴池。採樣點為石砌水池。除泉水外,另刮取水中石壁上的暗紅色附著物。

LFG2 為龍鳳谷公共溫泉浴池旁的溪水。僅採取水樣最為對照之用。

參、中山樓 (Jhongshan Building)

中山樓溫泉區的溫泉有四處:中山樓左側溪谷、右側溪谷、革命實踐研究院 (現名為介壽堂)前方水池及其東側溝渠中(程楓萍,1987)。經過現地勘查決 定以介壽堂前方大型地熱池為研究對象。其現況為山溝水由池子的東北側注入, 經地熱噴氣加熱,滿溢後由位於池子東南側的出水口流出。四次採樣觀察,水位 相當穩定。

本區採樣點有二個:

JSB1 採樣點在地熱池出水口西北側約三米處。

JSB2 採樣點位於出水口對面,入水口西南西側。

肆、小油坑 (Siaoyoukeng)

小油坑為一處後火山活動地質景觀區,位於七星山的西北麓,由陽金公路的 小觀音站右轉可達觀景步道,海拔約805公尺,以「後火山作用」所形成之噴氣 孔、硫磺結晶、溫泉及壯觀的崩塌地形最具特色。

本區採樣點有二個:

SYK1:越過觀景台進入崩塌地區較上方位置的天然溫泉。有黑色沉積物。

SYK2:第二個採樣點在崩塌地區較下方位置的溫泉。由於地形關係,可阻擋上方留下來的地表水,而形成一個較大的天然溫泉。四次採樣中,5月發現溫泉水已流失,幾乎乾枯,其餘月分水量較穩定。

伍、馬槽 (Macao)

陽金公路馬槽橋南側溪谷中的溫泉區,與小油坑同為塌陷凹谷。

本區主要採樣點有二個,水量皆相當穩定:

MC1:由馬槽橋下方小徑往上行。較下方位置的天然湧泉位於一個小石洞旁,水量不大。石壁上有許多綠色附著物。

MC2:由馬槽橋下方小徑往上行。較上方的位置。用水管收集上方熱水, 再由地熱噴氣加熱。

第三個採樣點為 MC3: MC2 上行,最上方位置的小溪流,5 月水底細砂附著許多紅蟲。

六、大油坑 (Dayoukeng)

大油坑位於七股山與大尖後山之間,海拔 550 公尺,為一向東北開口之極狹 長的傾斜谷地。東西寬約 150 公尺,南北長約 300 公尺,有數處活動力激烈的硫 氣孔,是大屯火山群中最為激烈的地熱爆裂口。其中一個噴氣孔噴氣量甚大且活 動劇烈(噴氣活躍、嘶聲驚人),溫度可以達到攝氏 120 度左右,有強烈硫化物 的臭味。由陽金公路台汽客運大油坑站旁的礦區產業道路上山,約行一公里可 達。該地採硫礦已歇業停產,道路年久失修,且芒草叢生。

本區採樣點有二個:

DYK1 為大油坑主噴發口旁邊溫泉小水流較上方位置的溫泉,有黃色沉積物。

DYK2 為大油坑主噴發口旁邊溫泉小水流較下方位置的溫泉,有黑色沉積物。

柒、八煙 (Bayan)

八煙溫泉是由大屯火山地熱噴氣孔,加熱山澗水形成溫泉瀑布,位於台北縣 金山鄉,北磺溪小支流上。從台北往金山陽金公路5公里標示牌後左轉第一個小 叉路經過八煙溫泉會館約行1.5公里處。八煙野溪溫泉湍急、常有落石、溫泉溫 度極高,陽明山國家公園管理處早已將該區列為潛在危險之區域,並於出入口處 設有禁止進入告示牌及柵門禁止遊客進入。國家公園警察隊不定時前往巡查,但 遊客違規進入,絡繹不絕。

本區採樣點有三個:

BY1:離大量噴氣孔加熱山澗水的源頭下游不遠處的溫泉池,位於瀑布的上端。

BY2:溫泉瀑布流到下游與另一股中性冷溪流會合處。

BY3:温泉水流到更下游,經過民眾泡湯之後的水池。

捌、庚子坪 (Gengzihping)

庚子坪溫泉也有寫為焿子坪溫泉者,依據宋聖榮(2005)的座標資料比對台灣 1/50,000 地圖,其位置在磺嘴山東北側山腳下,接近磺山。該地區屬於三金鑛業的礦區,距離萬里鄉磺潭村的長春谷溫泉會館(該處位於國家公園界線之外,因屬違建已遭拆除)不遠。地圖資料也顯示往北約1.5公里處有地名為焿仔坪或為舊地名粳仔坪者(在金山鄉,國家公園界線之外)。若從地理位置來說,稱為磺山溫泉或許更貼切,但積習已久不易更替了。從台北往金山走陽金公路至天籟社區,續走礦山產業道路經過四磺坪,再行約4.5公里處。或由陽金公路到金山右轉往萬里方向走基金公路,到警察局右轉加投路,經員潭路往清水坑方向,再往長春谷溫泉會館方向到達三金鑛業礦區。

本區主要採樣點有二個:

GZP1:三金鑛業礦區道路西側的天然湧泉,有黑色沉積物。10 月底已遭土 石掩埋。

GZP2:三金鑛業礦區道路東側的天然湧泉,有灰白色沉積物。10月底已遭 土石掩埋。

第三個採樣點為 GZP3:GZP1 南側小溪,5 月水底細砂附著許多紅蟲(體

型較 MC3 者為大)。

玖、各採樣點之位置

各採樣點在國家公園內的相對位置如圖 1 所示。其以全球定位系統標 測 定之座標 (TWD67) 與高程如表 3 所示。

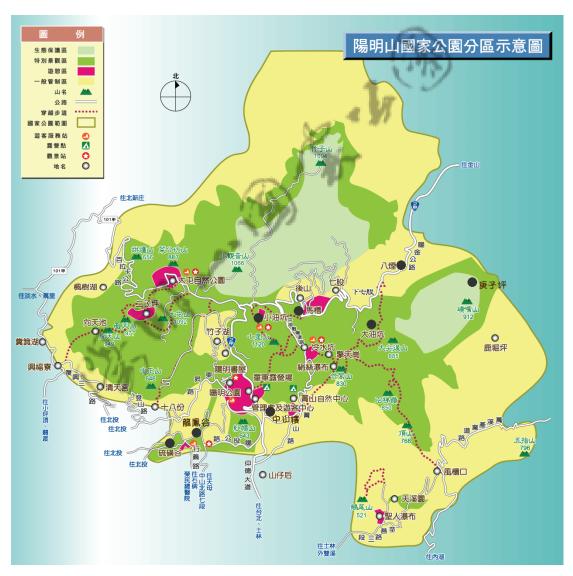


圖1:各採樣點在國家公園內的相對位置。

表 3: 本研究各採樣點之座標與高程

<u> </u>						
溫泉區	採樣點	X 座標**	Y 座標**	高程 (m)		
硫磺谷(Liouhuanggu*)	LHG1	301836	2782016	151		
	LHG2	302048	2782030	157		
	LHG3	301935	2782034	153		
龍鳳谷 (Longfonggu)	LFG1	302748	2782510	229		
	LFG2	302759	2782530	234		
中山樓(Jhongshan Building)	JSB1	304626	2783069	441		
	JSB2	304605	2783084	440		
小油坑(Siaoyoukeng)	SYK1	304369	2785512	820		
	SYK2	304326	2785548	811		
馬槽 (Macao)	MC1	305832	2785787	597		
	MC2	305798	2785761	606		
	MC3	305798	2785723	609		
大油坑 (Dayoukeng)	DYK1	307625	2785184	546		
	DYK2	307625	2785187	545		
八煙 (Bayan)	BY1	308635	2787609	224		
1	BY2	308663	2787603	209		
_	BY3	308653	2787622	202		
庚子坪(Gengzihping)	GZP1	311049	2786961	409		
A \$	GZP2	311063	2786958	410		
8 21:	GZP3	311055	2786943	411		

^{*} 通用拼音

^{**} TWD67

第二節 各採樣點水質之分析

壹、各採樣點水樣之溫度與酸鹼度

於 98 年 3 月 23~28 日 (第一季)、5 月 18~21 日 (第二季)、8 月 20~23 日 (第三季)、10 月 27~28 日 (第四季)分別在八個溫泉區的不同採樣點進行 採樣並在現地測量溫度與酸鹼度。結果如表 4 所示。

表 4: 各採樣點在不同時間採得水樣之溫度與酸鹼度

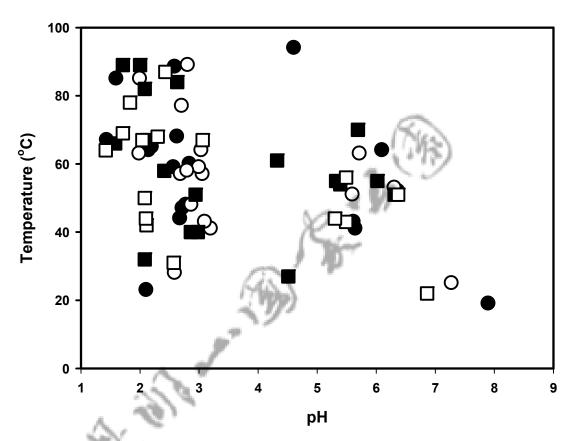

溫泉區	樣品	採樣日期	温度	酸鹼度
四水四	/永口口	1本依日朔	(°C)	(pH)
硫磺谷 (Liouhuanggu)	LHG1-1	2009/03/23	23	2.11
	LHG1-2	2009/05/18	28	2.59
	LHG1-3	2009/08/20	32	2.08
	LHG1-4	2009/10/28	31	2.57
	LHG2-1	2009/03/23	64	2.15
	LHG2-2	2009/05/18	57	2.69
	LHG2-3	2009/08/20	89	2.00
4	LHG2-4	2009/10/28	87	2.43
<i>y</i>	LHG3-1	2009/03/23	60	2.84
. 4	LHG3-2	2009/05/18	57	3.06
	LHG3-3	2009/08/20	82	2.08
218	LHG3-4	2009/10/28	67	3.06
龍鳳谷 (Longfonggu)	LFG1-1	2009/03/25	52	6.37
- V-	LFG1-2	2009/05/18	53	6.41
(3.7/lm)	LFG1-3	2009/08/20	51	6.31
179	LFG1-4	2009/10/28	51	6.37
~	LFG2-1	2009/03/25	19	7.90
	LFG2-2	2009/05/18	25	7.28
	LFG2-3	2009/08/20	27	4.51
	LFG2-4	2009/10/28	22	6.86
中山樓(Jhongshan Building)	JSB1-1	2009/03/23	41	5.65
	JSB1-2	2009/05/18	51	5.60
	JSB1-3	2009/08/20	54	5.39
	JSB1-4	2009/10/28	43	5.49
	JSB2-1	2009/03/23	43	5.62
	JSB2-3	2009/08/20	55	5.32
	JSB2-4	2009/10/28	44	5.30

表 4 (續):各採樣點在不同時間採得水樣之溫度與酸鹼度

		1017 1018 COM	温度	酸鹼度
溫泉區	樣品	採樣日期	(°C)	(pH)
小油坑(Siaoyoukeng)	SYK1-1	2009/03/28	94	4.61
	SYK1-2	2009/05/20	59	3.00
	SYK1-3	2009/08/21	61	4.32
	SYK1-4	2009/10/27	68	2.30
	SYK2-1	2009/03/28	65	2.20
	SYK2-2	2009/05/20	77	2.71
	SYK2-3	2009/08/21	70	5.69
	SYK2-4	2009/10/27	64	1.42
馬槽 (Macao)	MC1-1	2009/03/27	48	2.78
	MC1-2	2009/05/18	48	2.87
	MC1-3	2009/08/21	51	2.94
	MC1-4	2009/10/27	50	2.08
	MC2-1	2009/03/27	64	6.10
	MC2-2	2009/05/18	63	5.72
	MC2-3	2009/08/21	55	6.02
	MC2-4	2009/10/27	56	5.49
	MC3-2	2009/05/18	28	2.80
大油坑 (Dayoukeng)	DYK1-1	2009/03/28	85	1.60
. , , , , , , , , , , , , , , , , , , ,	DYK1-2	2009/05/20	85	2.00
	DYK1-3	2009/08/22	89	1.71
	DYK1-4	2009/10/28	78	1.83
	DYK2-1	2009/03/28	67	1.44
	DYK2-2	2009/05/20	63	1.99
~ ~	DYK2-3	2009/08/22	66	1.58
118	DYK2-4	2009/10/28	69	1.71
八煙 (Bayan)	BY1-1	2009/03/25	68	2.63
(A)	BY1-2	2009/05/21	64	3.04
(3.7/de)	BY1-3	2009/08/23	67	2.12
1.7	BY1-4	2009/10/27	67	2.04
1	BY2-1	2009/03/25	47	2.72
	BY2-2	2009/05/21	41	3.20
	BY2-3	2009/08/23	40	2.86
	BY2-4	2009/10/27	42	2.11
	BY3-1	2009/03/25	44	2.68
	BY3-2	2009/05/21	43	3.10
	BY3-3	2009/08/23	40	2.98
	BY3-4	2009/10/27	44	2.10
庚子坪(Gengzihping)	GZP1-1	2009/03/27	88.5	2.59
	GZP1-2	2009/05/21	89	2.81
	GZP1-3	2009/08/23	84	2.63
	GZP2-1	2009/03/27	59	2.57
-	GZP2-2	2009/05/21	58	2.80
-	GZP2-3	2009/08/23	58	2.41
	GZP3-2	2009/05/21	34	3.29

溫度方面,第一季溫度最高為94℃(SYK1-1),最低為19℃(LFG2-1); 第二季溫度最高為 89[℃](GZP1-2),最低為 25[℃](LFG2-2);第三季溫度最高 為 89°C (LHG2-3、DYK1-3), 最低為 27°C (LFG2-3); 第四季溫度最高為 87 $^{\circ}$ C (LHG2-4), 最低為 22 $^{\circ}$ C (LFG2-4)。根據中華民國溫泉法授權訂定溫泉水 質標準(中華民國 94 年 7 月 22 日經濟部經水字第 09404605610 號令)之規定, 凡露頭或泉孔孔口測得之泉溫為攝氏三十度以上及其水質符合標準之一者,稱之 為溫泉。各溫泉區採樣點中硫磺谷常溫水池 (LHG1)、龍鳳谷溫泉邊的南磺溪 溪水(LFG2)和馬槽溫泉小溪流(MC3-2)皆不能稱之為溫泉,其水溫亦皆低 於 30°C;而焿子坪溫泉區的小溪流(GZP3-2)水溫雖略高於 30°C(34°C),依 現場觀察實難將其歸類為溫泉,水溫略高或許是陽光曝曬的結果。其餘各點的水 溫皆高於 40°C, 硫磺谷(LHG2)、小油坑(SYK1)、大油坑(DYK1)、焿子坪(GZP1) 甚至有高於 85℃者。根據宋聖榮與劉佳玫 (2003) 的說法,泉溫可分為低溫溫 泉(高於年平均溫度 5℃至 49℃,台灣地區為 25~49℃)、中溫溫泉(50~74℃)、 高溫溫泉(75~96℃)及沸騰溫泉(97℃以上)。八煙第二採樣點與第三採樣點 (BY2、BY3)屬於低溫溫泉。馬槽第一採樣點(MC1)、中山樓溫泉(JSB1、 JSB2)水量相當穩定,有時候溫度略高於 50 \mathbb{C} ,若以最高溫劃分為中溫溫泉, 但年平均溫度仍低於 49℃,平均而言應屬低溫溫泉。龍鳳谷第一採樣點 (LFG1)、馬槽第二採樣點(MC2)、大油坑第二採樣點(DYK2)、八煙第 一採樣點(BY1)、庚子坪第二採樣點(GZP2)皆屬於中溫溫泉。小油坑第二 採樣點(SYK2)、硫磺谷第三採樣點(LHG3)於水量大減時溫度高於75°C, 但年平均溫度仍低於 74℃,平均而言應屬中溫溫泉。硫磺谷第三採樣點(LHG3) 水量及溫度變化很大,第一季與第二季水量多且溫度低於74℃(64、57℃), 第三季與第四季水量極少則溫度高於 75℃ (89、87℃) ,年平均溫度介於 74~ 75℃,整體而言劃分為高溫溫泉。小油坑第一採樣點(SYK1)後三季雖屬中溫 溫泉,但若以最高溫之第一季 (94℃) 劃分則應屬高溫溫泉。大油坑第一採樣點 (DYK1) 與庚子坪第一採樣點 (GZP1) 則屬於高溫溫泉。

酸鹼度方面,第一季 pH 值最高為 7.90(LFG2-1),最低為 1.44(DYK2-1); 第二季 pH 值最高為 7.28 (LFG2-2),最低為 1.99(DYK2-2);第三季 pH 值 最高為 6.31 (LFG1-3),最低為 1.58 (DYK2-3);第四季 pH 值最高為 6.86 (LFG2-4),最低為 1.42 (SYK2-4)。除了南磺溪溪水 (LFG2) 第一季與第二季為微鹼性之外,所有採樣點皆為酸性,但可分為強酸性 $(pH=1\sim3.5)$ 及弱酸性 $(pH=4.5\sim6.5)$ 兩大類 (見圖 2)。

圖 2:各採樣點各季之溫度(Temperature)與酸鹼度(pH)分佈。(第一季水 樣 ●;第二季水樣 ○;第三季水樣 ■;第四季水樣 □)

硫磺谷(LHG1、LHG2、LHG3)、小油坑第二、四季第一採樣點(SYK1-2、SYK1-4)、小油坑第一、二、四季第二採樣點(SYK2-1、SYK2-2、SYK2-4)、馬槽第一採樣點(MC1)與第三採樣點(MC3)、大油坑(DYK1、DYK2)、八煙(BY1、BY2、BY3)、庚子坪(GZP1、GZP2、GZP3)皆屬於強酸性。龍鳳谷第一採樣點(LFG1)、小油坑第一季第一採樣點(SYK1-1)、小油坑第三季第二採樣點(SYK2-3)、馬槽第二採樣點(MC2)則屬於弱酸性。此結果與先前研究之結論「陽明山國家公園內溫泉酸鹼度範圍在 pH1.5-7,且主要集中在pH1.5-3.5及 pH5-7 兩個範圍」(李重義,2006)相吻合。先前研究又發現強酸

性溫泉的「溫度範圍較大,從約 40°C到接近 100°C」,而弱酸性溫泉的「溫度範圍較小且較低,從約 35°C到約 65°C」。推測原因是陽明山國家公園內溫泉主要位於火山岩區,屬於新生代的造山帶,其地底岩漿庫提供大量熱源,且富含大量火山氣體,若地下水層被間接加熱,則其中硫酸含量較低,形成較低溫之弱酸性泉,若為地層水直接溶解高溫火山氣體或火山氣體與水蒸氣混合冷凝而成,則多屬於強酸性之高溫或沸騰溫泉(宋聖榮,2003)。此外,碳酸氫根存在的酸鹼度範圍約為 pH4-12,在低於 pH4 的環境中會轉變成二氧化碳氣體逸散或以碳酸形式溶解(江漢全,2004),溫度愈高時二氧化碳的溶解度愈低,水中碳酸氫根濃度亦隨之降低,故碳酸氫根只存在低溫且弱酸性的環境。本研究發現除了小油坑第一採樣點第一季水樣與第二採樣點第三季水樣(SYK1-1、SYK2-3)酸度較弱(pH4.61 及 5.69)但溫度很高(94°C 及 70°C)之外,其餘弱酸性溫泉的溫度皆未超過 65°C,也和先前研究相吻合。

貳、各溫泉採樣點水質之導電度、總溶解固體(TDS)、懸浮固體(SS)及濁度

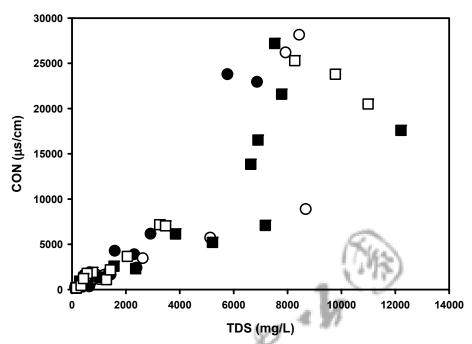
98 年第一季至第四季在八個採樣區測量各採樣點水樣之導電度、總溶解固體、懸浮固體、濁度結果如表 5 所示。

導電度方面,第一季最高為 23750.0 μ s/cm (DYK1-1) ,最低為 124.7 μ s/cm (JSB2-1) ;第二季最高為 28100.0 μ s/cm (DYK1-2) ,最低為 178.5 μ s/cm (JSB1-2) ;第三季最高為 27200.0 μ s/cm (DYK1-3) ,最低為 162.0 μ s/cm (JSB1-3) ;第四季最高為 25300.0 μ s/cm (DYK1-4) ,最低為 173.0 μ s/cm (JSB1-4) 。

總溶解固體方面,第一季最高為 6887.5 mg/L(DYK2-1),最低為 156.0 mg/L (JSB2-1)。第二季最高為 8694.0 mg/L(GZP1-2),最低為 129.2 mg/L(JSB1-2);第三季最高為 12211.0 mg/L(SYK2-3),最低為 141.0 mg/L(JSB2-3);第四季最高為 10992.0 mg/L(LHG1-4),最低為 161.0 mg/L(JSB1-4)。

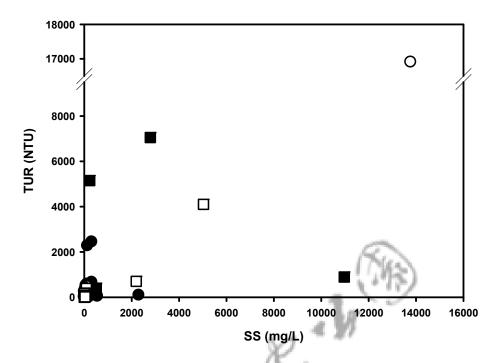
表 5: 各採樣點在不同時間採得水樣之導電度、總溶解固體、懸浮固體及濁度

Comple	Conductivity	TDS	SS	Turbidity
Sample	(µs/cm)	(mg/L)	(mg/L)	(NTU)
LHG1-1	1003.0	604.5	7.2	3.7
LHG1-2	954.0	569.5	6.3	1.4
LHG1-3	6140.0	3841.0	8.0	1.9
LHG1-4	20490.0	10992.0	3.4	3.7
LHG2-1	3840.0	2325.7	320.5	665.0
LHG2-2	1680.0	876.0	45.5	115.0
LHG2-3	16520.0	6902.0	505.0	400.0
LHG2-4	7170.0	3257.0	22.0	393.5
LHG3-1	727.0	703.3	9.5	159.0
LHG3-2	1142.0	814.2	11.0	160.0
LHG3-3	13850.0	6637.0	104.0	251.0
LHG3-4	1514.0	498.0	91.0	182.5
LFG1-1	1234.0	1210.5	1.5	7.1
LFG1-2	1570.0	1201.8	7.5	6.2
LFG1-3	1359.0	1053.0	7.0	8.2
LFG1-4	1093.0	1278.0	4.0	7.1
LFG2-1	297.0	655.5	18.5	8.3
LFG2-2	549.5	434.7	46.5	5.8
LFG2-3	588.0	587.0	23.0	7.0
LFG2-4	317.0	297.0	14.0	5.0
JSB1-1	128.1	187.2	4.2	247.0
JSB1-2	178.5	129.2	41.8	234.0
JSB1-3	162.0	163.0	80.0	222.5
JSB1-4	173.0	161.0	14.0	183.0
JSB2-1	124.7	156.0	5.1	264.0
JSB2-3	191.0	141.0	17.0	223.0
JSB2-4	184.1	163.0	6.4	162.0
SYK1-1	1601.0	1448.0	556.8	49.0
SYK1-2	3410.0	2640.5	157.5	151.0
SYK1-3	2310.0	2362.5	218.5	119.5
SYK1-4	3660.0	2056.0	679.0	705.0
SYK2-1	6115.0	2392.0	136.1	2275.0
SYK2-3	17590.0	12211.0	2788.0	7052.0
SYK2-4	7040.0	3471.0	5030.0	4100.0


表 5 (續):各採樣點在不同時間採得水樣之導電度、總溶解固體、懸浮固體及 濁度

Sample	Conductivity	TDS	SS	Turbidity
1	(µs/cm)	(mg/L)	(mg/L)	(NTU)
MC1-1	1615.0	1272.9	4.0	56.0
MC1-2	1915.0	1399.0	138.5	70.0
MC1-3	2580.0	1557.0	10.0	126.5
MC1-4	2170.0	1425.0	15.0	29.3
MC2-1	370.0	305.7	131.3	160.0
MC2-2	485.0	467.5	142.0	466.0
MC2-3	573.0	358.0	43.0	65.9
MC2-4	450.0	337.0	49.0	80.1
MC3-2	1377.0	1107.5	26.5	22.0
DYK1-1	23750.0	5785.7	72.8	522.0
DYK1-2	28100.0	8451.5	40.0	68.0
DYK1-3	27200.0	7523.5	108.5	66.5
DYK1-4	25300.0	8269.0	6.1	2.7
DYK2-1	22900.0	6887.5	2302.5	92.0
DYK2-2	26150.0	7944.0	141.5	29.0
DYK2-3	21600.0	7781.5	190.5	122.5
DYK2-4	23800.0	9778.0	40.0	18.0
BY1-1	1626.0	564.6	42.4	52.0
BY1-2	1855.0	681.0	180.5	133.0
BY1-3	1750.0	610.0	79.5	71.8
BY1-4	1900.0	761.0	48.0	36.1
BY2-1	1154.0	431.1	32.9	41.0
BY2-2	1101.5	1022.0	73.0	57.0
BY2-3	1351.0	438.5	40.0	40.6
BY2-4	1784.0	558.0	29.0	27.1
BY3-1	1106.0	488.8	35.3	34.0
BY3-2	1225.0	621.0	2.5	42.0
BY3-3	923.0	283.0	22.0	18.4
BY3-4	1214.0	424.0	33.0	19.4
GZP1-1	4230.0	1600.0	316.4	2445.0
GZP1-2	8835.0	8694.0	13773.0	16907.0
GZP1-3	5210.0	5213.0	229.0	5150.0
GZP2-1	2365.0	2411.3	121.8	587.0
GZP2-2	5680.0	5145.5	53.4	409.0
GZP2-3	7090.0	7177.0	10970.5	896.0

懸浮固體方面,第一季最高為 2302.5 mg/L (DYK2-1),最低為 1.5 mg/L (LFG1-1);第二季最高為 13773.0 mg/L (GZP1-2),最低為 2.5 mg/L (BY3-2);第三季最高為 10970.5 mg/L (GZP2-3),最低為 7.0 mg/L (LFG1-3);第四季最高為 5030.0 mg/L (SYK2-4),最低為 3.4 mg/L (LHG1-4)。


濁度方面,第一季最高為 2445.0 NTU(GZP1-1),最低為 3.7 NTU(LHG1-1); 第二季最高為 16907.0 NTU(GZP1-2),最低為 1.4 NTU(LHG1-2);第三季 最高為 7052.0 NTU(SYK2-3),最低為 1.9 NTU(LHG1-3);第四季最高為 4100.0 NTU(SYK2-4),最低為 2.7 NTU(DYK1-4)。

總溶解固體超過 500 mg/L 即符合中華民國溫泉水質標準。中山樓溫泉(JSB1, JSB2)及馬槽第二採樣點 (MC2)不符標準,推測原因為補注水流經岩層的距 離較短,導致溶解岩層中所含離子的時間不足;而山溝水(中山樓)或上方泉水 (馬槽)的注入也可能是總溶解固體量偏低的原因。八煙溫泉第一採樣點(BY1) 符合標準;第二採樣點(BY2)和第三採樣點(BY3)第一季與第三季總溶解固 體低於 500 mg/L,則可能是摻和了冷溪水的關係;第二季總溶解固體則高於 500 mg/L,而第四季總溶解固體亦有提高的現象,可能是溪水量減少使相對濃度提 高。整體而言,各樣品導電度與總溶解固體呈正相關,其比值約為1:2(圖3), 表示溫泉中總溶解固體大致上屬於影響該溫泉導電度高低的離子,因此可藉由測 量溫泉的導電度推測該溫泉中的總溶解固體量。若以導電度與總溶解固體比值為 基準線,庚子坪第二季與第三季的兩個採樣點(GZP1-2、GZP2-2、GZP1-3、 GZP2-3)的散佈位置偏向基準線下方,其總溶解固體量遠大於經由導電度推測 的量,顯示該等樣品含有能穿透 1.2 µm 濾膜孔徑的小顆粒或其他不導電的有機 分子。另外值得一提的是大油坑溫泉的總溶解固體和導電度皆遠高於其他溫泉, 散佈位置偏向基準線上方,代表水中的總離子濃度相當高,推測價數可能多在二 價以上。

圖 3:各採樣點各季之總溶解固體 (TDS) 與導電度 (CON) 關係。(第一季水 様 ● , 樣本數= 18 , r=0.9568 ; 第二季水樣 ○ , 樣本數= 16 , r=0.8610 ; 第三季水樣 ■ , 樣本數= 18 , r=0.8528 ; 第四季水樣 \square , 樣本數= 16 , r=0.9688)

至於懸浮固體及濁度方面,庚子坪第二季第一採樣點(GZP1-2)的懸浮固體大於 13000 mg/L,濁度大於 16000 NTU,庚子坪第三季第二採樣點(GZP2-3)的懸浮固體大於 10000 mg/L,濁度僅 896 NTU,均屬於離散點,其中庚子坪第三季第二採樣點可能含有大量沉降迅速的顆粒,導致水樣混合不均而使濁度測值偏低。根據繪製之懸浮固體及濁度關係圖(圖 4),得知前三季兩者間並沒有一致的關係,僅第四季呈正相關。由於濁度是檢測波長 420 nm 入射光線的散射程度,懸浮固體則是將直徑大於 1.2 μm 的固體過濾後稱重,因此濁度雖然受到懸浮固體量的影響,但是樣本中所含小於 1.2 μm 的顆粒亦會造成入射光線的散射,導致濁度亦受到這類微小顆粒量的影響。由於樣本取自各採樣點的表層水體,不同採樣點的地質類型、不同季別的水量差異與溫泉的擾動狀況,均可能造成微小顆粒量的變化,導致濁度的不規則變動。

圖 4:各採樣點各季之懸浮固體 (SS) 及濁度 (TUR) 關係。(第一季水樣 ●, 樣本數=18, r=0.0118; 第二季水樣 ○,樣本數=15, r=0.2950; 第三季水樣 ■, 樣本數=18, r=0.2105; 第四季水樣 □,樣本數=16, r=0.9612)

依據環保署水污染防治法第六條第一項訂定之地面水體分類及水質標準,適於游泳等直接接觸人體的活動之甲類水體中懸浮固體上限值為25 mg/L。硫磺谷第一採樣點(LHG1)、龍鳳谷第一採樣點(LFG1)及中山樓第二採樣點(JSB2)各季的懸浮固體皆符合該標準。龍鳳谷第二採樣點(LFG2)及馬槽第一採樣點(MC1)有三季的懸浮固體符合標準。硫磺谷第三採樣點(LHG3)、中山樓第一採樣點(JSB1)及八煙第三採樣點(BY3)僅有二季的懸浮固體符合標準。硫磺谷第二採樣點(LHG2)及大油坑第一採樣點(DYK1)只有一季的懸浮固體符合標準,其餘皆高於標準值。

參、各採樣點水樣之碳酸氫根、氯離子及硫酸根含量

98 年第一季至第四季在八個採樣區測量各採樣點水樣之碳酸氫根 (HCO_3^-) 、氯離子 (Cl^-) 及硫酸根 (SO_4^{2-}) 含量結果如表 6 所示。

表 6: 各採樣點在不同時間採得水樣之碳酸氫根、氯離子及硫酸根含量

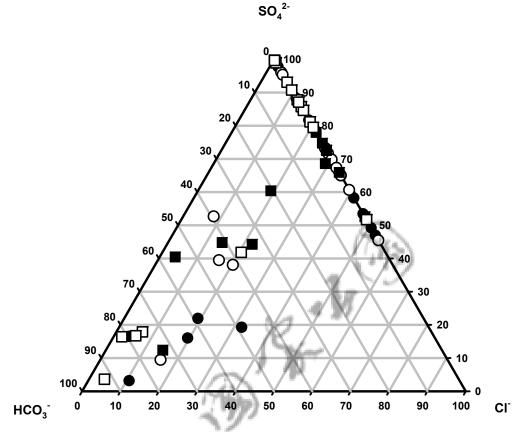
衣 0 · 合体依點任个问时间体件不依之恢睃型根、氣離了及硫酸根否里					
Sample	Temp.	рН	HCO ₃	Cl ⁻	SO ₄ ²⁻
Sample	(°C)	pm	(mg/L)	(mg/L)	(mg/L)
LHG1-1	23	2.11	BDL	20.07	88.85
LHG1-2	28	2.59	BDL	38.19	143.88
LHG1-3	32	2.08	BDL	12.49	1473.86
LHG1-4	31	2.57	BDL	38.57	522.33
LHG2-1	64	2.15	BDL	45.24	337.38
LHG2-2	57	2.69	BDL	106.75	268.05
LHG2-3	89	2.00	BDL	5.95	2601.70
LHG2-4	87	2.43	BDL	18.38	1750.21
LHG3-1	60	2.84	BDL	73.48	83.95
LHG3-2	57	3.06	BDL	105.03	193.84
LHG3-3	82	2.08	BDL	21.14	2785.94
LHG3-4	67	3.06	BDL	42.02	302.93
LFG1-1	52	6.37	1099.2	138.86	38.92
LFG1-2	53	6.41	683.3	145.46	85.22
LFG1-3	51	6.31	630.4	128.75	107.33
LFG1-4	51	6.37	3216.3	140.56	126.43
LFG2-1	19	7.90	115.5	35.29	28.53
LFG2-2	25	7.28	92.6	45.52	84.46
LFG2-3	27	4.51	9.6	8.88	28.22
LFG2-4	22	6.86	54.5	29.81	60.71
JSB1-1	41	5.65	30.4	20.07	11.95
JSB1-2	51	5.60	27.0	9.78	23.85
JSB1-3	54	5.39	25.9	8.88	28.22
JSB1-4	43	5.49	149.9	13.51	35.64
JSB2-1	43	5.62	28.7	9.48	10.65
JSB2-3	55	5.32	21.6	14.34	28.59
JSB2-4	44	5.30	149.9	10.86	32.27

樣品代號第一數字代表採樣處,第二數字表示採樣季

BDL:低於指示劑變色範圍(HCO3 存在之 pH 值下限)

表 6 (續): 各採樣點在不同時間採得水樣之碳酸氫根、氯離子及硫酸根含量

Sample	Temp.	рН	HCO ₃	Cl	SO ₄ ²⁻
Sample	(°C)	PII	(mg/L)	(mg/L)	(mg/L)
SYK1-1	94	4.61	BDL	188.76	166.37
SYK1-2	59	3.00	BDL	580.59	481.30
SYK1-3	61	4.32	18.2	228.76	539.06
SYK1-4	68	2.30	BDL	619.87	663.61
SYK2-1	65	2.20	BDL	3.22	585.79
SYK2-3	70	5.69	BDL	6.08	4801.70
SYK2-4	64	1.42	BDL	6.44	2091.33
MC1-1	48	2.78	BDL	129.83	180.00
MC1-2	48	2.78	BDL	157.25	425.15
MC1-3	51	2.94	BDL	137.29	486.40
MC1-4	50	2.08	BDL	144.17	621.15
MC2-1	64	6.10	163.9	8.51	33.87
MC2-2	63	5.72	74.0	15.32	98.87
MC2-3	55	6.02	98.6	7.19	71.93
MC2-4	<u> </u>	5.49	422.5	11.29	85.20
DYK1-1	85	1.60	BDL	1397.66	1346.54
DYK1-1	85 85	2.00	BDL	2021.32	3096.26
DYK1-2	89 89	1.71	BDL	2714.45	
					3010.84
DYK1-4	78	1.83	BDL	1286.35	4985.62
DYK2-1 DYK2-2	67	1.44	BDL BDL	792.40	1493.42
	63	1.99		1475.87	3388.53
DYK2-3	66	1.58	BDL	1691.43	3272.60
DYK2-4		1.71	BDL	563.29	5526.63
BY1-1	68	2.63	BDL	48.96	95.95
BY1-2	64	3.04	BDL	92.44	171.02
BY1-3	67	2.12	BDL	84.80	225.58
BY1-4	67	2.04	BDL	50.04	301.21
BY2-1	47	2.72	BDL	34.87	65.84
BY2-2	41	3.20	BDL	51.22	104.80
BY2-3	40	2.86	BDL	53.32	140.81
BY2-4	42	2.11	BDL	31.64	174.29
BY3-1	44	2.68	BDL	32.70	67.27
BY3-2	43	3.10	BDL	47.64	129.97
BY3-3	40	2.98	BDL	41.45	122.55
BY3-4	44	2.10	BDL	31.64	213.53
GZP1-1	88.5	2.59	BDL	4.67	579.26
GZP1-2	89	2.81	BDL	127.72	3009.78
GZP1-3	84	2.63	BDL	6.70	2739.10
GZP2-1	59	2.57	BDL	7.25	297.33
GZP2-2	58	2.30	BDL	84.68	1680.69
GZP2-3	58	2.41	BDL	6.85	2678.57


BDL:低於指示劑變色範圍(HCO3 存在之 pH 值下限)

碳酸氫根方面,第一季濃度最高為 1099.2 mg/L (LFG1-1),其餘除了龍鳳谷第二採樣點 (LFG2-1)、中山樓 (JSB1-1、JSB2-1)、馬槽第二採樣點 (MC2-1)外皆幾乎為零;第二季濃度最高為 683.3 mg/L (LFG1-2),其餘除了龍鳳谷第二採樣點 (LFG2-2)、中山樓第一採樣點 (JSB1-2)、馬槽第二採樣點 (MC2-2)外皆幾乎為零;第三季濃度最高為 630.4 mg/L (LFG1-3),其餘除了龍鳳谷第二採樣點 (LFG2-3)、中山樓 (JSB1-3, JSB2-3)、小油坑第一採樣點 (SYK1-3)、馬槽第二採樣點 (MC2-3)外皆幾乎為零。第四季濃度最高為 3216.3 mg/L (LFG1-4),其餘除了龍鳳谷第二採樣點 (LFG2-4)、中山樓 (JSB1-4, JSB2-4)、馬槽第二採樣點 (MC2-4)外皆幾乎為零。

氣離子方面,第一季濃度最高為 1397.66 mg/L (DYK1-1),最低為 3.22 mg/L (SYK2-1);第二季濃度最高為 2021.32 mg/L (DYK1-2),最低為 9.78 mg/L (JSB1-2);第三季濃度最高為 2714.45 mg/L (DYK1-3),最低為 5.95 mg/L (LHG2-3);第四季濃度最高為 1286.35 mg/L (DYK1-4),最低為 6.44 mg/L (SYK2-4)。

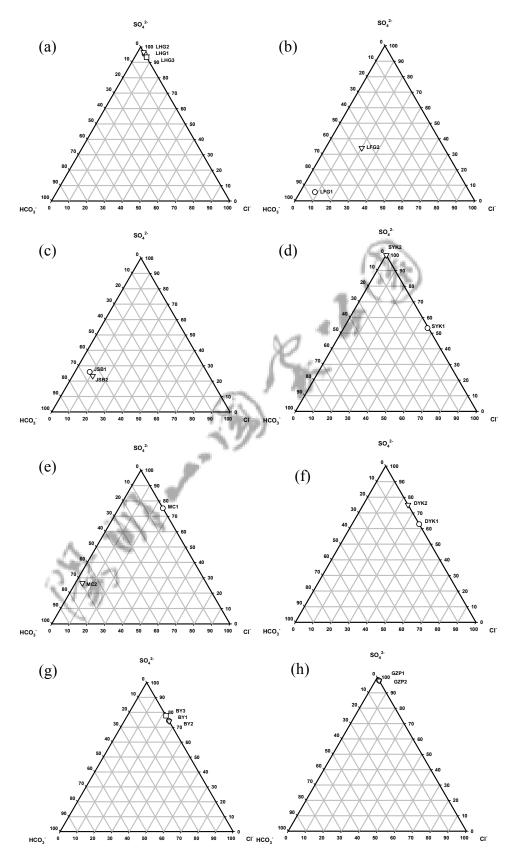
硫酸根方面,第一季濃度最高為 1493.42 mg/L(DYK2-1),最低為 10.65 mg/L (JSB2-1);第二季濃度最高為 3388.53 mg/L (DYK2-2),最低為 23.85 mg/L (JSB1-2);第三季濃度最高為 4801.70 mg/L (SYK2-3),最低為 28.22 mg/L (LFG2-3、JSB1-3);第四季濃度最高為 5526.63 mg/L (DYK2-4),最低為 32.27 mg/L (JSB2-4)。

台灣溫泉可依水中氣離子、碳酸氫根及硫酸根相對含量分為三大類: 氯化物泉、碳酸鹽泉、硫酸鹽泉。將本研究採取水樣中此三種陰離子所佔比例繪製成陰離子成分圖(圖 5)。如其所示,本研究各採樣點主要分為不含碳酸氫根的水質及含有碳酸氫根的水質兩大類,前者包括一些氣離子濃度大於硫酸根濃度的泉質。

圖 5:溫泉陰離子成分圖。(第一季水樣 ●;第二季水樣 ○;第三季水樣 ■; 第四季水樣 □)

將各採樣點四季水質陰離子的平均值繪製入個樣區水質的陰離子成分圖(圖6),再依據 pH、各陰離子佔總陰離子的比例作為分類標準(程楓萍,1987),本研究各採樣點主要為酸性硫酸鹽泉及接近中性的碳酸鹽泉兩大類(表7),但部分採樣點有其獨特性。雖然由於未檢測水中陽離子含量,難以細分出其他六類(宋聖榮、劉佳玫,2003),但仍有討論的空間。

酸性硫酸鹽泉的化學特性如下: SO_4^{2-} 為主要成分, H^+ 含量大於或等於 Na^+ 、 Ca^{2+} 含量,pH 值為 $1\sim3$ 。硫磺谷(LHG1、LHG2、LHG3)、馬槽第一採樣點(MC1)、 大油坑第二採樣點(DYK2)、八煙(BY1、BY2、BY3)和庚子坪(GZP1、GZP2) 皆符合 SO_4^{2-} 為主要成分且 pH 值為 $1\sim3$ 的特性,應屬於酸性硫酸鹽泉。小油坑第二採樣點(SYK2) 符合 SO_4^{2-} 為主要成分,但第三季 pH 5.69 卻不符合酸性硫酸鹽泉的特性。


酸性硫酸鹽氯化物泉的化學特性如下: H^+ 含量大於或等於 Na^+ 含量, Na^+ 為

主要陽離子,CI'含量高於 SO_4^{2-} 含量, SO_4^{2-} 約佔總陰離子 $20\sim40$ %,pH 值為 $1\sim4$ 。 小油坑第一採樣點(SYK1) CI'含量平均而言略低於 SO_4^{2-} 含量,但有時高於 SO_4^{2-} 含量;第一季和第三季的 pH 值也高於 4。宋聖榮(2005)將小油坑歸類於酸性硫酸鹽氯化物泉與本研究結果略有不同。大油坑第一採樣點(DYK1)CI'含量有時明顯小於 SO_4^{2-} 含量(DYK1-2、DYK1-4),有時接近 SO_4^{2-} 含量(DYK1-3),有時略大於 SO_4^{2-} 含量(DYK1-1)。程楓萍(1987)將大油坑歸屬於酸性硫酸鹽氯化物泉,宋聖榮(2005)則歸屬於酸性硫酸鹽泉。

碳酸氫鈣鈉泉的化學特性如下: HCO_3 ⁻為主要成分, Na^+ 含量高於 Ca^{2+} 含量, Ca^{2+} 約佔總陽離子 15%左右,pH 值為 $6\sim7$ 。 龍鳳谷浴池(LFG1)符合 HCO_3 ⁻為 主要成分且 pH 值為 $6\sim7$ 的特性,應屬於碳酸氫鈣鈉泉。

硫酸鹽碳酸氫鈉泉的化學特性如下:Na⁺為主要成分,HCO₃⁻含量高於 SO₄²⁻含量,SO₄²⁻約佔總陰離子 15~40%,pH 值為 7~8。中山樓溫泉(JSB1、JSB2)及馬槽第二採樣點(MC2)符合 HCO₃⁻含量高於 SO₄²⁻含量,SO₄²⁻約佔總陰離子 15~40%的特性,但 pH 值小於 6。依程楓萍(1987)的說法中山樓溫泉為弱酸性硫酸鹽泉,或許中山樓溫泉及馬槽第二採樣點可稱為弱酸性硫酸鹽碳酸氫鈉泉。

上述推論未考慮陽離子含量與比例。且在總離子濃度很低的情況下,某陰離子含量些微變化即造成比例上的大幅度變動,均可能導致判斷上的困難,例如中山樓溫泉的各項陰離子含量均不高,山溝水的注入可能會影響其比例變化。另外,溫泉水的化學成分濃度受到天水量、火山氣體流量等因素影響,導致水中離子濃度隨時間有很大的變化(陳耀麟,2003)。因此泉質認定可能必須累積多年資料才能有較佳的詮釋。

圖 6:各採樣點水質陰離子成分圖。(a) 硫磺谷;(b) 龍鳳谷;(c) 中山樓;(d) 小油坑;(e) 馬槽;(f) 大油坑;(g) 八煙;(h)庚子坪。(第一採樣點 \bigcirc ;第二採樣點 \bigcirc ;第三採樣點 \bigcirc)

表 7: 各採樣點溫泉水質分類

溫泉區	第一採樣點	第二採樣點	第三採樣點
硫磺谷	酸性硫酸鹽泉	酸性硫酸鹽泉	酸性硫酸鹽泉
龍鳳谷	碳酸氫鈣鈉泉	_	_
中山樓	弱酸性硫酸鹽 碳酸氫鈉泉?	弱酸性硫酸鹽 碳酸氫鈉泉?	_
小油坑	酸性硫酸鹽 氯化物泉?	酸性硫酸鹽泉?	修 -
馬槽	酸性硫酸鹽泉	弱酸性硫酸鹽 碳酸氫鈉泉?	_
大油坑	酸性硫酸鹽泉/ 酸性硫酸鹽氯化物泉	酸性硫酸鹽泉	_
八煙	酸性硫酸鹽泉	酸性硫酸鹽泉	酸性硫酸鹽泉
庚子坪	酸性硫酸鹽泉	酸性硫酸鹽泉	_

[?]代表雖然可分類為該種泉質,但仍有部分疑問。

主要陰離子碳酸氫根、硫酸根或氣離子含量超過 250mg/L 即符合中華民國溫泉水質標準。由表 6 結果可知硫磺谷第二採樣點 (LHG2)、龍鳳谷浴池 (LFG1)、小油坑第二採樣點(SYK2)、大油坑(DYK1、DYK2)和庚子坪(GZP1、GZP2) 結果皆符合此標準。小油坑第一採樣點 (SYK1-2、SYK1-3、SYK1-4)及馬槽第一採樣點 (MC1-2、MC1-3、MC1-4)則有三季符合標準。硫磺谷第一採樣點與第三採樣點 (LHG1-3、LHG1-4、LHG3-3、LHG3-4)只有二季符合標準。僅有一季結果符合標準的為馬槽第二採樣點 (MC2-4)及八煙第一採樣點 (BY1-4),其餘則不符合。

肆、各採樣點水質之各種硫化物含量

98 年第一季至第四季在八個採樣區測量各採樣點水樣之各種硫化物含量結 果如表 8 所示。

表 8: 各採樣點在不同時間採得水樣之各種含硫化合物含量

	SO ₄ ²⁻	SO ₃ ²	$S_2O_3^{2-}$	S ²⁻	Total S	S ²⁻ ratio*
Sample	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(%)
LHG1-1	88.85	18.6	ND	1.03	108.48	0.95
LHG1-2	143.88	1.8	ND	ND	145.68	0.00
LHG1-3	1473.86	2.1	ND	0.03	1475.94	< 0.01
LHG1-4	522.33	2.3	0.13	0.07	524.83	0.01
LHG2-1	337.38	5.3	0.13	3.13	345.94	0.90
LHG2-2	268.05	30.9	1.13	10.71	310.79	3.45
LHG2-3	2601.70	3.0	ND	0.08	2604.73	< 0.01
LHG2-4	1750.21	15.7	ND	0.49	1766.4	0.03
LHG3-1	83.95	2.1	0.34	2.77	89.16	3.11
LHG3-2	193.84	21.1	0.53	6.04	221.51	2.73
LHG3-3	2785.94	3.8	0.46	2.54	2792.69	0.09
LHG3-4	302.93	3.2	ND	0.08	306.21	0.03
LFG1-1	38.92	1.4	ND	0.22	40.54	0.55
LFG1-2	85.22	1.8	ND	ND	87.02	0.00
LFG1-3	107.33	5.3	ND	0.02	112.64	0.02
LFG1-4	126.43	2.0	ND	0.03	128.46	0.02
LFG2-1	28.53	2.5	ND	0.04	31.07	0.14
LFG2-2	84.46	2.2	ND	ND	86.66	0.00
LFG2-3	28.22	5.0	ND	0.03	33.2	0.09
LFG2-4	60.71	1.8	ND	0.05	62.56	0.08
JSB1-1	11.95	7.2	1.17	7.13	27.45	25.97
JSB1-2	23.85	2.8	1.47	0.60	28.72	2.09
JSB1-3	28.22	3.4	ND	5.88	37.45	15.69
JSB1-4	35.64	3.6	0.53	7.53	47.3	15.92
JSB2-1	10.65	68.1	2.46	2.80	84.01	3.33
JSB2-3	28.59	12.8	1.09	14.80	57.23	25.86
JSB2-4	32.27	38.7	0.83	39.15	110.95	35.29
SYK1-1	166.37	4.9	0.72	0.13	172.12	0.08
SYK1-2	481.30	2.3	ND	0.19	483.79	0.04
SYK1-3	539.06	3.8	ND	2.13	544.99	0.39
SYK1-4	663.61	6.3	ND	1.05	670.96	0.16
SYK2-1	585.79	8.7	ND	0.04	594.53	0.01
SYK2-3	4801.70	47.1	0.98	0.17	4849.95	< 0.01
SYK2-4	2091.33	0.3	ND	2.62	2094.25	0.13

表 8 (續): 各採樣點在不同時間採得水樣之各種含硫化合物含量

Sample	SO_4^{2-}	SO_3^{2-}	$S_2O_3^{2-}$	S ²⁻	Total S	S ²⁻ ratio*
1	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(%)
MC1-1	180.00	1.6	ND	0.11	131.54	0.08
MC1-2	425.15	2.1	ND	ND	427.25	0.00
MC1-3	486.40	3.3	ND	0.07	489.77	0.01
MC1-4	621.15	2.2	ND	0.03	623.38	< 0.01
MC2-1	33.87	19.3	0.57	0.33	54.07	0.61
MC2-2	98.87	5.3	3.85	ND	108.02	0.00
MC2-3	71.93	30.0	5.83	1.72	109.48	1.57
MC2-4	85.20	4.0	5.35	7.10	101.65	6.98
DYK1-1	1346.54	10.2	ND	ND	1356.74	0.00
DYK1-2	3096.26	16.3	ND	0.16	3112.72	0.01
DYK1-3	3010.84	2.1	1.41	0.29	3014.59	0.01
DYK1-4	4985.62	13.3	0.33	0.35	4999.6	0.01
DYK2-1	1493.42	8.1	ND	ND	1501.52	0.00
DYK2-2	3388.53	10.1	ND	0.12	3398.75	< 0.01
DYK2-3	3272.60	2.6	0.42	0.20	3275.81	0.01
DYK2-4	5526.63	14.5	ND	0.11	5541.24	< 0.01
BY1-1	95.95	1.6	ND	0.08	97.63	0.08
BY1-2	171.02	3.1	ND	0.15	174.27	0.09
BY1-3	225.58	2.5	ND	0.06	228.08	0.02
BY1-4	301.21	1.0	ND	0.05	302.26	0.02
BY2-1	65.84	1.4	ND	0.03	67.27	0.05
BY2-2	104.80	2.4	ND	ND	107.2	0.00
BY2-3	140.81	2.6	ND	0.07	143.43	0.05
BY2-4	174.29	1.4	ND	0.07	175.76	0.04
BY3-1	67.27	1.7	ND	0.02	68.99	0.03
BY3-2	129.97	2.3	ND	ND	132.27	0.00
BY3-3	122.55	2.4	ND	0.05	125.00	0.04
BY3-4	213.53	2.0	ND	0.06	215.59	0.03
GZP1-1	579.26	6.8	ND	7.00	593.06	1.18
GZP1-2	3009.78	45.9	ND	1.37	3057.05	0.04
GZP1-3	2739.10	5.8	0.61	1.40	2746.91	0.05
GZP2-1	297.33	2.0	ND	6.14	305.47	2.01
GZP2-2	1680.69	11.0	0.93	5.07	1697.69	0.30
GZP2-3	2678.57	6.6	0.59	4.30	2690.01	0.16

在SO₄²·方面,第一季濃度最高為1493.42 mg/L(DYK2-1),最低為10.65 mg/L (JSB2-1); 第二季濃度最高為 3388.53 mg/L (DYK2-2), 最低為 23.85 mg/L (JSB1-2); 第三季濃度最高為 4801.70 mg/L (SYK2-3), 最低為 28.22 mg/L (LFG2-3, JSB1-3); 第四季濃度最高為 5526.63 mg/L (DYK2-4), 最低為 32.27 mg/L (JSB2-4)。在 SO₃²⁻方面,第一季濃度最高為 68.1 mg/L (JSB2-1),最低為 1.4 mg/L (LFG1-1、BY2-1); 第二季濃度最高為 45.9 mg/L (GZP1-2), 最低為 1.8 mg/L (LHG1-2、LFG1-2); 第三季濃度最高為 30.0 mg/L (MC2-3), 最低為 2.1 mg/L (LHG1-3、DYK1-3); 第四季濃度最高為 38.7 mg/L (JSB2-4), 最低為 0.3 mg/L (SYK2-4)。在 S₂O₃²⁻方面,第一季濃度最高為 2.46 mg/L (JSB2-1),其 餘除了硫磺谷第二採樣點與第三採樣點(LHG2-1、LHG3-1)、中山樓第一採樣點 (JSB1-1)、小油坑第一採樣點(SYK1-1)、馬槽第二採樣點(MC2-1)外皆低於偵測 極限;第二季濃度最高為 3.85 mg/L (MC2-2),其餘除了硫磺谷第二採樣點與第 三採樣點(LHG2-2、LHG3-2)、中山樓第一採樣點(JSB1-2)、庚子坪第二採樣點 (GZP2-2)外皆低於偵測極限;第三季濃度最高為 5.83 mg/L (MC2-3),其餘除了 硫磺谷第三採樣點(LHG3-3)、中山樓第二採樣點(JSB2-3)、小油坑第二採樣點 (SYK2-3)、大油坑(DYK1-3、DYK2-3) 庚子坪(GZP1-3、GZP2-3)外皆低於 偵測極限;第四季濃度最高為 5.35 mg/L (MC2-4),其餘除了硫磺谷第一採樣點 (LHG1-4)、中山樓 (JSB1-4、JSB2-4)、大油坑第一採樣點(DYK1-4)外皆低於偵 測極限。在 S^2 -方面,第一季濃度最高為 7.13 mg/L (JSB1-1),其餘除了大油坑 $(DYK1-1 \cdot DYK2-1)$ 低於偵測極限外亦皆多少測到一些 S^{2-} ; 第二季濃度最高為 10.71 mg/L (LHG2-2),但有更多採樣點如硫磺谷第一採樣點(LHG1-2)、龍鳳谷 (LFG1-2、LFG2-2)、馬槽第一採樣點與第二採樣點(MC1-2、MC2-2)、八煙第二 採樣點與第三採樣點(BY2-2、BY3-2)皆低於偵測極限;第三季濃度最高為 14.8 mg/L (JSB2-3), 最低為 0.02 (LFG1-3); 第四季濃度最高為 39.15 mg/L (JSB2-4), 最低為 0.03 (LFG1-4、MC1-4)。

總硫化物 (total sulfide; S²⁻) 超過 1 mg/L 即符合中華民國溫泉水質標準。由表 8 結果可知第一季硫磺谷 (LHG1-1、LHG2-1、LHG3-1)、中山樓 (JSB1-1、JSB2-1) 和庚子坪 (GZP1-1、GZP2-1) 符合此標準;第二季硫磺谷第二與第三採樣點 (LHG2-2、LHG3-2) 和庚子坪 (GZP1-2、GZP2-2) 符合此標準;第三

季硫磺谷第三採樣點(LHG3-3)、中山樓(JSB1-3、JSB2-3)、小油坑第一採樣點(SYK1-3)、馬槽第二採樣點(MC2-3)和庚子坪(GZP1-3、GZP2-3)符合此標準;第四季中山樓(JSB1-4、JSB2-4)、小油坑(SYK1-4、SYK2-4)和馬槽第二採樣點(MC2-4)符合此標準。上述各點的總硫化物佔總含硫化合物(total sulfur-contained compound)的比率(S^{2-} ratio)也大體在百分之一以上。例外包括硫磺谷第三季第三採樣點(LHG3-3)、小油坑第三季第一採樣點(SYK1-3)、小油坑第四季採樣點(SYK1-4、SYK2-4)、庚子坪第二季與第三季採樣點(GZP1-2、GZP2-2、GZP1-3、GZP2-3) S^{2-} 濃度超過 1 mg/L,但因 SO_4^{2-} 濃度遽增導致 S^{2-} ratio 低於 1%;中山樓第二季第一採樣點、第三季第二採樣點、第四季第一採樣點及第二採樣點(JSB1-2、JSB2-3、JSB1-4、JSB2-4) S^{2-} 濃度低於 1 mg/L,但因 SO_4^{2-} 濃度過低導致 S^{2-} ratio 高於 1%。

溫泉中硫的存在價態受到氧化還原電位控制 (陳文福,2007),各型態硫的含量可能與各採樣點的環境條件有關。本研究的溫泉主要為火山氣體加入地面水形成。由於地面水中含有溶氧,且混合過程亦將氧氣混入,加上高溫使未溶入水中之硫化氫氣體加速溢散,使得溫泉偏向氧化環境,因此所有採樣點的硫多溶於水中,形成硫酸根此一氧化態存在。但溫泉中尚存在銨離子/硝酸根、亞鐵離子/三價鐵離子等參與氧化還原反應的離子,彼此相互反應以達平衡狀態,受到存在離子濃度差異的影響,造成不同的溫泉之間各種氧化還原態的硫所佔比例不同。

伍、各採樣點水質之鐵含量

98年第一季至第四季在八個採樣區測量各採樣點水樣之鐵含量如表9所示。

表 9: 各採樣點在不同時間採得水樣之鐵含量

Sample	Temp.	рН	Total Fe (mg/L)	Fe ²⁺ (mg/L)
LHG1-1	23	2.11	16.002	0.330
LHG1-2	28	2.59	9.175	7.23
LHG1-3	32	2.08	255.723	63.40
LHG1-4	31	2.57	38.146	9.63
LHG2-1	64	2.15	71.184	11.360
LHG2-2	57	2.69	5.882	5.60
LHG2-3	89	2.00	101.510	98.40
LHG2-4	87	2.43	227.333	30.90
LHG3-1	60	2.84	11.852	1.920
LHG3-2	57	3.06	5.432	5.96
LHG3-3	82	2.08	288.500	232.00
LHG3-4	67	3.06	18.992	17.50
LFG1-1	52	6.37	5.428	0.110
LFG1-2	53	6.41	2.847	1.04
LFG1-3	51	6.31	0.957	0.91
LFG1-4	51	6.37	1.303	0.50
LFG2-1	19	7.90	1.670	0.036
LFG2-2	25	7.28	0.337	0.10
LFG2-3	27	4.51	1.297	0.78
LFG2-4	22	6.86	0.668	0.14
JSB1-1	41	5.65	0.967	0.084
JSB1-2	51	5.60	0.252	0.35
JSB1-3	54	5.39	0.162	0.19
JSB1-4	43	5.49	0.197	0.26
JSB2-1	43	5.62	0.283	0.056
JSB2-3	55	5.32	0.228	0.20
JSB2-4	44	5.30	0.228	0.28
SYK1-1	94	4.61	0.828	0.074
SYK1-2	59	3.00	10.247	7.54
SYK1-3	61	4.32	0.828	0.81
SYK1-4	68	2.30	8.763	10.99
SYK2-1	65	2.20	74.442	13.200
SYK2-3	70	5.69	359.000	13.44
SYK2-4	64	1.42	99.809	11.18

表9(續):各採樣點在不同時間採得水樣之鐵含量

Sample	Temp.	рН	Total Fe	Fe^{2+} (mg/L)
_	(°C)	-	(mg/L)	, ,
MC1-1	48	2.78	12.300	2.320
MC1-2	48	2.87	9.137	4.85
MC1-3	51	2.94	11.530	12.23
MC1-4	50	2.08	11.478	9.06
MC2-1	64	6.10	2.148	0.091
MC2-2	63	5.72	1.962	1.76
MC2-3	55	6.02	0.663	0.85
MC2-4	56	5.49	0.487	0.88
DYK1-1	85	1.60	124.359	20.200
DYK1-2	85	2.00	113.385	107.00
DYK1-3	89	1.71	152.150	135.20
DYK1-4	78	1.83	210.084	31.15
DYK2-1	67	1.44	158.200	25.300
DYK2-2	63	1.99	143.765	128.00
DYK2-3	66	1.58	166.650	188.00
DYK2-4	69	1.71	225.667	35.25
BY1-1	68	2.63	5.647	0.770
BY1-2	64	3.04	7.688	4.56
BY1-3	67	2.12	10.195	6.13
BY1-4	67	2.04	0.452	0.86
BY2-1	47	2.72	4.115	0.500
BY2-2	41	3.20	4.382	1.92
BY2-3	40	2.86	4.828	2.77
BY2-4	42	2.11	7.512	5.19
BY3-1	44	2.68	4.547	0.400
BY3-2	43	3.10	5.943	2.62
BY3-3	40	2.98	259.335	2.65
BY3-4	44	2.10	5.542	4.37
GZP1-1	88.5	2.59	254.750	17.000
GZP1-2	89	2.81	742.830	310.40
GZP1-3	84	2.63	200.667	396.00
GZP2-1	59	2.57	20.233	3.960
GZP2-2	58	2.30	108.165	130.10
GZP2-3	58	2.41	191.734	153.20

在 Fe^{2+} 方面,第一季濃度最高為 25.300 mg/L (DYK2-1),最低為 0.036 mg/L (LFG2-1);第二季濃度最高為 310.40 mg/L (GZP1-2),最低為 0.10 mg/L (LFG2-2);第三季濃度最高為 396.00 mg/L (GZP1-3),最低為 0.19 mg/L (JSB1-3);第四季濃度最高為 35.25 mg/L (DYK2-4),最低為 0.14 mg/L (LFG2-4)。在總鐵方面,第一季最高濃度為 254.750 mg/L (GZP1-1) ,最低為 0.283 mg/L (JSB2-1);第二季最高濃度為 742.83 mg/L (GZP1-2) ,最低為 0.252 mg/L (JSB1-2);第三季最高濃度為 359.000 mg/L (SYK2-3) ,最低為 0.162 mg/L (JSB1-3);第四季最高濃度為 227.333 mg/L (LHG2-4) ,最低為 0.197 mg/L (JSB1-4)。

就亞鐵離子(Fe²⁺)與總鐵含量而言,本研究以商用試劑組測定亞鐵離子含量,總鐵含量則以ICP-AES測定,兩種分析方法的差異可能使檢測值及有效位數有所不同,且兩種項目進行測定的時間不同,可能導致部分水樣的亞鐵離子檢測值高於總鐵檢測值。另外由於樣本中亞鐵離子容易氧化,水樣雖經密封保存於4°C,至檢測時已間隔一段時間,因此可能低估亞鐵離子含量。溫泉中亞鐵離子與總鐵含量隨地點而不同,可能受到溫度、酸鹼度、地質等因素影響;但整體而言,由圖7結果可看出除了庚子坪第三季第一採樣點之亞鐵離子偏高,屬於離散點,其餘大致可以分為兩類:(1)氧化程度較高的一類,其亞鐵離子含量約為總鐵含量的20-25%,表示該處當時可能屬於氧化環境,亞鐵離子已受氧化作用轉變為鐵離子;(2)氧化程度較低的一類,亞鐵離子含量則約與總鐵含量相等,表示該處當時可能屬於還原環境,尚未受氧化作用而維持亞鐵離子型態。

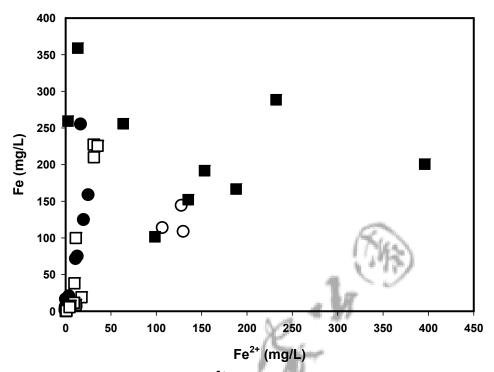


圖 7:各採樣點各季之亞鐵離子(Fe²⁺)與總鐵離子(Fe)關係圖。(第一季水樣●; 第二季水樣○;第三季水樣■;第四季水樣□)

總鐵離子 (Fe²⁺及 Fe³⁺) 超過 10 mg/L 即符合中華民國溫泉水質標準。由表 9 結果可知硫磺谷三個採樣點除第二季 (LHG1-2、LHG2-2、LHG3-2) 之外的所 有樣品、小油坑第二季第一採樣點 (SYK1-2)、小油坑第二採樣點 (SYK2) 所 有樣品、馬槽第一採樣點二季 (MC1-2) 之外的所有樣品、大油坑 (DYK1、DYK2) 所有樣品、八煙第一採樣點及第三採樣點第三季 (BY1-3、BY3-3) 和庚子坪 (GZP1、GZP2) 所有樣品符合此標準。鐵離子愈接近中性環境愈易成為氫氧化鐵而不溶,龍鳳谷 (LFG1、LFG2)、中山樓 (JSB1、JSB2)、和馬槽第二採樣點 (MC2)的鐵含量低,應該和水樣 pH 值較高有關。

陸、各採樣點水質是否符合溫泉法規的定義

根據中華民國溫泉法授權訂定溫泉水質標準(中華民國 94 年 7 月 22 日經濟部經水字第 09404605610 號令)之規定,凡露頭或泉孔孔口測得之泉溫為攝氏三十度以上及其水質符合總溶解固體、主要陰離子、特殊成分(游離二氧化碳、總硫化物、總鐵離子或鐳)標準之一者,稱之為溫泉(表 10)。

VIO 1 4 N四亚水公汉作时人温水小员小干(/ 1 1 / / / / / / / / / / / / / / / / /						
條件一	露頭或泉孔孔口測得之泉溫為攝氏三一	十度以上				
條件二	符合下列任一項	17/125				
	一、溶解固體量 (TDS)	500 mg/L 以上				
	二、主要含量陰離子(碳酸氫根、硫	250 mg/L 以上				
	酸根或氯離子)	E 3/7				
	三、特殊成分					
	游離二氧化碳(CO ₂)	250 mg/L 以上				
	總硫化物(Total sulfide)	大於 1 mg/L				
	總鐵離子(Fe ²⁺ 及 Fe ³⁺)	大於 10 mg/L				
	鐳 (Ra)	大於一億分之一(curie/L)				

表 10:中華民國溫泉法授權訂定溫泉水質標準 (94年7月22日)

98 年第一季至第四季在八個採樣區測量各採樣點水樣經過水質分析後判定是否為溫泉之結果(表11)如下所述:

- 1. 硫磺谷西側常溫水池(LHG1),不是溫泉。
- 2. 龍鳳谷公共溫泉浴池旁的溪水(LFG2),不是溫泉。
- 3. 馬槽集水加熱池 (MC2) 是用水管收集上方熱水,再由地熱噴氣加熱。 第一季及第二季水質分析結果不符合溫泉定義;第三季、第四季水樣則 因主要陰離子大於 250 mg/L 或總硫化物大於 1 mg/L 而符合溫泉定義。
- 4. 中山樓之介壽堂前地熱池(JSB),總溶解固體、主要陰離子、總鐵離子含量皆不符合溫泉定義,第一季、第三季、第四季水樣僅因總硫化物大於1 mg/L 而符合溫泉定義。
- 5. 八煙溫泉區上、中、下三個採樣點(BY1、BY2、BY3),其主要陰離子、硫化物、總鐵離子含量大致皆不符合溫泉定義,第一採樣點離源頭最近,因總溶解固體大於500 mg/L 而符合溫泉定義;第二、第三採樣

點與溪水混流,部分水樣因總溶解固體降低而不符合溫泉定義。

6. 硫磺谷第二採樣點(LHG2)、硫磺谷第三採樣點(LHG3)、龍鳳谷第一採樣點(LFG1)、小油坑兩個採樣點(SYK1、SYK2)、馬槽第一採樣點(MC1)、大油坑兩個採樣點(DYK1、DYK2)、庚子坪兩個採樣點(GZP1、GZP2)皆為溫泉,其總溶解固體皆大於500 mg/L 且至少再符合一項水質含量標準。

由以上結果可知,有些採樣點以常規看法視為溫泉,皆因導入溪水或山泉水而使其水質不一定符合溫泉的法規定義。這類溫泉可能屬於直接人為引水的人工溫泉,例如馬槽集水加熱池(MC2);或因排水而自然導入地表水者,例如中山樓之介壽堂前地熱池(JSB)和八煙溫泉區第二、第三採樣點(BY2、BY3)。另外值得一提的是,硫磺谷的第二、第三採樣點(LHG2、LHG3)雖然也是導引地表水到噴氣口而形成的人工溫泉,但其水質卻符合溫泉的法規定義,可見地表水的水質、水量及噴氣口的噴氣量和其成分皆與形成的溫泉是否符合法規定義有關。

表 11:各採樣點在不同時間採得水樣符合溫泉法規定義之狀況

	- 10-11/13/V		4 1.4 41-14	4 1/4-14 1	- 12-74-17	70. C 4.4 C	,, o
樣品	露頭或	温度	總溶解	主要陰	硫化物	總鐵	是否符合
7永口口	孔口	四反	固體	離子	491L1 L 1/91	離子	温泉定義
LHG1-1	-	-	+	-	+	+	-
LHG1-2	-	1	+	-	-	1	ı
LHG1-3	-	+	+	+	-	+	-
LHG1-4	-	-	+	+	-	+	-
LHG2-1	+	+	+	+	+	+	+
LHG2-2	+	+	+	+	+	-	+
LHG2-3	+	+	+	+	-	+	+
LHG2-4	+	+	+	+	-	+	+
LHG3-1	+	+	+	-	+ 100	+	+
LHG3-2	+	+	+	-	+ (7)	(53)	+
LHG3-3	+	+	+	+	+ 1/4	77	+
LHG3-4	+	+	-	-	4-	4	+
LFG1-1	+	+	+	+	. W	1	+
LFG1-2	+	+	+	NH "	111	-	+
LFG1-3	+	+	+	Æ,	-	1	+
LFG1-4	+	+	+	1	-	1	+
LFG2-1	-	1	1	7	-	1	ı
LFG2-2	-	ı	MAN (-	-	ı	ı
LFG2-3	-	-	477	-	-	-	-
LFG2-4	-	- 4	4.5	-	-	-	-
JSB1-1	+	+	-	-	+	-	+
JSB1-2	+	÷	-	-	-	ı	ı
JSB1-3	+	+	-	-	+	ı	+
JSB1-4	Ĩ	+	-	-	+	ı	+
JSB2-1 🔥	+	+	-	-	+	ı	+
JSB2-3	N.A	+	-	-	+	1	+
JSB2-4	//)(i+)	+	-	-	+	-	+
SYK1-1	7//+	+	+	-	-	-	+
SYK1-2	+	+	+	+	-	+	+
SYK1-3	+	+	+	+	+	-	+
SYK1-4	+	+	+	+	+	-	+
SYK2-1	+	+	+	+	-	+	+
SYK2-3	+	+	+	+	-	+	+
SYK2-4	+	+	+	+	+	+	+

表 11 (續): 各採樣點在不同時間採得水樣符合溫泉法規定義之狀況

水 II (順)· 行外体配在小月的同外内外体的自血水石的人或一阶//							
樣品	露頭或	温度	總溶解	主要陰	硫化物	總鐵	是否符合
	孔口		固體	離子	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	離子	温泉定義
MC1-1	+	+	+	-	-	+	+
MC1-2	+	+	+	+	-	ı	+
MC1-3	+	+	+	+	-	+	+
MC1-4	+	+	+	+	-	+	+
MC2-1	+	+	-	-	-	-	-
MC2-2	+	+	-	-	-	-	-
MC2-3	+	+	-	-	+	-	+
MC2-4	+	+	-	+	+	-	+
DYK1-1	+	+	+	+	- <i>R</i>	7	+
DYK1-2	+	+	+	+	- []	M2+)	+
DYK1-3	+	+	+	+	7	9	+
DYK1-4	+	+	+	+	Lo	+	+
DYK2-1	+	+	+	+1	1 3/7	+	+
DYK2-2	+	+	+	УŦ	-	+	+
DYK2-3	+	+	+	j	-	+	+
DYK2-4	+	+	+	q V	-	+	+
BY1-1	+	+	(#)	-	-	-	+
BY1-2	+	+	1770	-	-	-	+
BY1-3	+	+	74/	-	-	+	+
BY1-4	+	+ 107	+	+	-	-	+
BY2-1	?	Ŧ	-	-	-	-	-
BY2-2	? 🔨	+	+	1	-	1	+
BY2-3	?	+	-	-	-	-	ı
BY2-4	?	+	+	-	-	-	+
BY3-1	?	+	-	-	-	-	-
BY3-2	?	+	+	-	-	-	+
BY3-3	?	+	-	-	-	+	+
BY3-4	?	+	-	-	-	-	ı
GZP1-1	+	+	+	+	+	+	+
GZP1-2	+	+	+	+	+	+	+
GZP1-3	+	+	+	+	+	+	+
GZP2-1	+	+	+	+	+	+	+
GZP2-2	+	+	+	+	+	+	+
GZP2-3	+	+	+	+	+	+	+
样口小贴第一數字小主校样店,第一數字主三校样 禾							

[?]代表該處採樣點可能有一些小的溫泉湧出口

柒、各溫泉採樣點水質之重金屬含量

98 年在八個採樣區測量各採樣點水樣之重金屬含量如表 12 所示。

表 12:各採樣點在不同時間採得水樣之重金屬含量

₹12.4	孙水和工个	113 113 111 111 111 111 111	于小像~里	亚闽占里
樣品	砷 (As)	鉛 (Pb)	鉻 (Cr)	錳(Mn)
738.00	(mg/L)	(mg/L)	(mg/L)	(mg/L)
LHG1-1	0.020	ND	0.023	0.145
LHG1-2	0.044	ND	0.003	0.237
LHG1-3	ND	ND	0.048	0.683
LHG1-4	0.014	ND	0.052	0.334
LHG2-1	0.035	0.018	1.237	0.579
LHG2-2	0.058	ND	0.003	0.713
LHG2-3	0.113	ND	3.773	0.529
LHG2-4	ND	ND	4.037	0.995
LHG3-1	0.042	ND	0.045	0.552
LHG3-2	0.058	ND	0.003	0.737
LHG3-3	0.042	ND	0.067	1.384
LHG3-4	0.057	ND	0.320	0.255
LFG1-1	0.062	ND	0.048	0.738
LFG1-2	0.077	ND	ND	0.720
LFG1-3	0.062	0.013	0.002	0.685
LFG1-4	0.057	ND	0.005	0.755
LFG2-1	0.022	ND	0.038	0.152
LFG2-2	0.038	ND	ND	0.115
LFG2-3	0.042	0.018	0.005	0.517
LFG2-4	0.013	ND	0.002	0.153
JSB1-1	0.017	ND	0.028	0.013
JSB1-2	0.008	ND	ND	0.015
JSB1-3	0.018	0.022	0.002	0.018
JSB1-4	ND	ND	0.002	0.012
JSB2-1	ND	ND	ND	0.012
JSB2-3	ND	0.018	0.003	0.018
JSB2-4	ND	ND	0.002	0.013
SYK1-1	0.032	0.023	0.020	2.325
SYK1-2	0.083	ND	ND	2.883
SYK1-3	0.045	0.023	0.007	2.495
SYK1-4	0.027	ND	0.022	3.522
SYK2-1	0.382	0.033	0.411	0.914
SYK2-3	0.593	ND	0.994	1.947
SYK2-4	0.240	ND	0.045	0.825

樣品代號第一數字代表採樣處,第二數字表示採樣季 ND:低於偵測極限

表 12 (續):各採樣點在不同時間採得水樣之重金屬含量

横品 (As) 場 (Pb) 像 (Cr) 銭 (Mn) (mg/L)	(V) T (V)				主业沟口里
MC1-1 0.148 0.018 ND 1.422 MC1-2 0.102 ND ND 1.292 MC1-3 0.095 ND 0.082 1.612 MC1-4 0.062 ND 0.003 1.213 MC2-1 0.037 0.018 0.022 0.713 MC2-2 0.045 ND ND 0.660 MC2-3 0.030 0.025 0.003 0.607 MC2-4 0.008 0.002 0.003 0.532 DYK1-1 0.780 0.065 0.360 0.312 DYK1-2 0.792 ND 0.008 0.297 DYK1-3 0.762 ND 14.613 1.017 DYK2-1 0.675 0.047 0.370 0.288 DYK2-1 0.675 0.047 0.370 0.288 DYK2-3 0.698 ND 0.130 0.232 DYK2-4 0.422 ND 3.002 0.603 BY1-1 0.033	樣品	砷 (As)	鉛 (Pb)	鉻 (Cr)	錳 (Mn)
MC1-2 0.102 ND ND 1.292 MC1-3 0.095 ND 0.082 1.612 MC1-4 0.062 ND 0.003 1.213 MC2-1 0.037 0.018 0.022 0.713 MC2-2 0.045 ND ND 0.660 MC2-3 0.030 0.025 0.003 0.607 MC2-4 0.008 0.002 0.003 0.532 DYK1-1 0.780 0.065 0.360 0.312 DYK1-2 0.792 ND 0.008 0.297 DYK1-3 0.762 ND 14.613 1.017 DYK1-4 0.360 ND 7.562 0.515 DYK2-1 0.675 0.047 0.370 0.288 DYK2-1 0.675 0.047 0.370 0.288 DYK2-2 0.793 ND 0.062 0.307 DYK2-3 0.698 ND 0.130 0.232 DYK2-4 0.422			· •		· •
MC1-3 0.095 ND 0.082 1.612 MC1-4 0.062 ND 0.003 1.213 MC2-1 0.037 0.018 0.022 0.713 MC2-2 0.045 ND ND 0.660 MC2-3 0.030 0.025 0.003 0.607 MC2-4 0.008 0.002 0.003 0.532 DYK1-1 0.780 0.065 0.360 0.312 DYK1-2 0.792 ND 0.008 0.297 DYK1-3 0.762 ND 14.613 1.017 DYK1-4 0.360 ND 7.562 0.515 DYK2-1 0.675 0.047 0.370 0.288 DYK2-2 0.793 ND 0.062 0.307 DYK2-3 0.698 ND 0.130 0.232 DYK2-4 0.422 ND 3.002 0.603 BY1-1 0.033 ND 0.038 0.292 BY1-2 0.067					1.422
MC1-4 0.062 ND 0.003 1.213 MC2-1 0.037 0.018 0.022 0.713 MC2-2 0.045 ND ND 0.660 MC2-3 0.030 0.025 0.003 0.607 MC2-4 0.008 0.002 0.003 0.532 DYK1-1 0.780 0.065 0.360 0.312 DYK1-2 0.792 ND 0.008 0.297 DYK1-3 0.762 ND 14.613 1.017 DYK1-4 0.360 ND 7.562 0.515 DYK2-1 0.675 0.047 0.370 0.288 DYK2-2 0.793 ND 0.062 0.307 DYK2-3 0.698 ND 0.130 0.232 DYK2-4 0.422 ND 3.002 0.603 BY1-1 0.033 ND 0.038 0.292 BY1-2 0.067 ND 0.583 0.358 BY1-3 0.042	MC1-2	0.102	ND	ND	1.292
MC2-1 0.037 0.018 0.022 0.713 MC2-2 0.045 ND ND 0.660 MC2-3 0.030 0.025 0.003 0.607 MC2-4 0.008 0.002 0.003 0.532 DYK1-1 0.780 0.065 0.360 0.312 DYK1-2 0.792 ND 0.008 0.297 DYK1-3 0.762 ND 14.613 1.017 DYK1-4 0.360 ND 7.562 0.515 DYK2-1 0.675 0.047 0.370 0.288 DYK2-2 0.793 ND 0.062 0.307 DYK2-3 0.698 ND 0.130 0.232 DYK2-4 0.422 ND 3.002 0.603 BY1-1 0.033 ND 0.038 0.292 BY1-2 0.067 ND 0.583 0.358 BY1-3 0.042 0.023 0.188 0.505 BY1-4 0.007				0.082	
MC2-2 0.045 ND ND 0.660 MC2-3 0.030 0.025 0.003 0.607 MC2-4 0.008 0.002 0.003 0.532 DYK1-1 0.780 0.065 0.360 0.312 DYK1-2 0.792 ND 0.008 0.297 DYK1-3 0.762 ND 14.613 1.017 DYK1-4 0.360 ND 7.562 0.515 DYK2-1 0.675 0.047 0.370 0.288 DYK2-2 0.793 ND 0.062 0.307 DYK2-3 0.698 ND 0.130 0.232 DYK2-4 0.422 ND 3.002 0.603 BY1-1 0.033 ND 0.038 0.292 BY1-2 0.067 ND 0.583 0.358 BY1-3 0.042 0.023 0.188 0.505 BY1-4 0.007 ND 0.002 0.313 BY2-1 0.025		0.062	ND		
MC2-3 0.030 0.025 0.003 0.607 MC2-4 0.008 0.002 0.003 0.532 DYK1-1 0.780 0.065 0.360 0.312 DYK1-2 0.792 ND 0.008 0.297 DYK1-3 0.762 ND 14.613 1.017 DYK1-4 0.360 ND 7.562 0.515 DYK2-1 0.675 0.047 0.370 0.288 DYK2-2 0.793 ND 0.062 0.307 DYK2-3 0.698 ND 0.130 0.232 DYK2-4 0.422 ND 3.002 0.603 BY1-1 0.033 ND 0.038 0.292 BY1-2 0.067 ND 0.583 0.358 BY1-3 0.042 0.023 0.188 0.505 BY1-4 0.007 ND 0.002 0.313 BY2-1 0.025 ND ND 0.235 BY2-2 0.065	MC2-1	0.037	0.018	0.022	0.713
MC2-4 0.008 0.002 0.003 0.532 DYK1-1 0.780 0.065 0.360 0.312 DYK1-2 0.792 ND 0.008 0.297 DYK1-3 0.762 ND 14.613 1.017 DYK1-4 0.360 ND 7.562 0.515 DYK2-1 0.675 0.047 0.370 0.288 DYK2-2 0.793 ND 0.062 0.307 DYK2-3 0.698 ND 0.130 0.232 DYK2-4 0.422 ND 3.002 0.603 BY1-1 0.033 ND 0.038 0.292 BY1-2 0.067 ND 0.583 0.358 BY1-3 0.042 0.023 0.188 0.505 BY1-4 0.007 ND 0.002 0.313 BY2-1 0.025 ND ND 0.235 BY2-2 0.065 ND ND 0.253 BY3-1 0.032 <		0.045	ND	ND	0.660
DYK1-1 0.780 0.065 0.360 0.312 DYK1-2 0.792 ND 0.008 0.297 DYK1-3 0.762 ND 14.613 1.017 DYK1-4 0.360 ND 7.562 0.515 DYK2-1 0.675 0.047 0.370 0.288 DYK2-2 0.793 ND 0.062 0.307 DYK2-3 0.698 ND 0.130 0.232 DYK2-4 0.422 ND 3.002 0.603 BY1-1 0.033 ND 0.038 0.292 BY1-2 0.067 ND 0.583 0.358 BY1-3 0.042 0.023 0.188 0.505 BY1-4 0.007 ND 0.002 0.313 BY2-1 0.025 ND ND 0.235 BY2-2 0.065 ND ND 0.240 BY3-3 0.035 0.023 0.010 0.253 BY3-1 0.032 <	MC2-3	0.030	0.025	0.003	0.607
DYK1-2 0.792 ND 0.008 0.297 DYK1-3 0.762 ND 14.613 1.017 DYK1-4 0.360 ND 7.562 0.515 DYK2-1 0.675 0.047 0.370 0.288 DYK2-2 0.793 ND 0.062 0.307 DYK2-3 0.698 ND 0.130 0.232 DYK2-4 0.422 ND 3.002 0.603 BY1-1 0.033 ND 0.038 0.292 BY1-2 0.067 ND 0.583 0.358 BY1-3 0.042 0.023 0.188 0.505 BY1-4 0.007 ND 0.002 0.313 BY2-1 0.025 ND ND 0.235 BY2-2 0.065 ND ND 0.240 BY2-3 0.035 0.023 0.010 0.253 BY3-1 0.032 ND ND 0.253 BY3-2 0.060 ND </td <td>MC2-4</td> <td>0.008</td> <td>0.002</td> <td>0.003</td> <td>0.532</td>	MC2-4	0.008	0.002	0.003	0.532
DYK1-3 0.762 ND 14.613 1.017 DYK1-4 0.360 ND 7.562 0.515 DYK2-1 0.675 0.047 0.370 0.288 DYK2-2 0.793 ND 0.062 0.307 DYK2-3 0.698 ND 0.130 0.232 DYK2-4 0.422 ND 3.002 0.603 BY1-1 0.033 ND 0.038 0.292 BY1-2 0.067 ND 0.583 0.358 BY1-3 0.042 0.023 0.188 0.505 BY1-4 0.007 ND 0.002 0.313 BY2-1 0.025 ND ND 0.235 BY2-2 0.065 ND ND 0.240 BY2-3 0.035 0.023 0.010 0.253 BY3-1 0.032 ND ND 0.253 BY3-2 0.060 ND ND 0.253 BY3-3 0.017 ND	DYK1-1	0.780	0.065	0.360	0.312
DYK1-4 0.360 ND 7.562 0.515 DYK2-1 0.675 0.047 0.370 0.288 DYK2-2 0.793 ND 0.062 0.307 DYK2-3 0.698 ND 0.130 0.232 DYK2-4 0.422 ND 3.002 0.603 BY1-1 0.033 ND 0.038 0.292 BY1-2 0.067 ND 0.583 0.358 BY1-3 0.042 0.023 0.188 0.505 BY1-4 0.007 ND 0.002 0.313 BY2-1 0.025 ND ND 0.235 BY2-2 0.065 ND ND 0.240 BY2-3 0.035 0.023 0.010 0.253 BY3-1 0.032 ND ND 0.253 BY3-1 0.032 ND ND 0.253 BY3-2 0.060 ND ND 0.352 BY3-3 0.017 ND	DYK1-2	0.792	ND		0.297
DYK2-1 0.675 0.047 0.370 0.288 DYK2-2 0.793 ND 0.062 0.307 DYK2-3 0.698 ND 0.130 0.232 DYK2-4 0.422 ND 3.002 0.603 BY1-1 0.033 ND 0.038 0.292 BY1-2 0.067 ND 0.583 0.358 BY1-3 0.042 0.023 0.188 0.505 BY1-4 0.007 ND 0.002 0.313 BY2-1 0.025 ND ND 0.235 BY2-2 0.065 ND ND 0.240 BY2-3 0.035 0.023 0.010 0.253 BY3-1 0.032 ND ND 0.253 BY3-1 0.032 ND ND 0.253 BY3-2 0.060 ND ND 0.352 BY3-3 0.017 ND 0.063 0.793 BY3-4 ND ND <	DYK1-3	0.762	ND	14.613	1.017
DYK2-2 0.793 ND 0.062 0.307 DYK2-3 0.698 ND 0.130 0.232 DYK2-4 0.422 ND 3.002 0.603 BY1-1 0.033 ND 0.038 0.292 BY1-2 0.067 ND 0.583 0.358 BY1-3 0.042 0.023 0.188 0.505 BY1-4 0.007 ND 0.002 0.313 BY2-1 0.025 ND ND 0.235 BY2-2 0.065 ND ND 0.240 BY2-3 0.035 0.023 0.010 0.253 BY3-1 0.032 ND ND 0.253 BY3-1 0.032 ND ND 0.253 BY3-2 0.060 ND ND 0.352 BY3-3 0.017 ND 0.063 0.793 BY3-4 ND ND 0.063 0.793 BY3-4 ND ND 0.06	DYK1-4	0.360	ND	7.562	0.515
DYK2-3 0.698 ND 0.130 0.232 DYK2-4 0.422 ND 3.002 0.603 BY1-1 0.033 ND 0.038 0.292 BY1-2 0.067 ND 0.583 0.358 BY1-3 0.042 0.023 0.188 0.505 BY1-4 0.007 ND 0.002 0.313 BY2-1 0.025 ND ND 0.235 BY2-2 0.065 ND ND 0.240 BY2-3 0.035 0.023 0.010 0.253 BY3-4 ND ND 0.008 0.507 BY3-1 0.032 ND ND 0.253 BY3-2 0.060 ND ND 0.352 BY3-3 0.017 ND 0.063 0.793 BY3-4 ND ND 0.003 0.380 GZP1-1 0.312 0.145 0.724 2.721 GZP1-2 0.672 ND <	DYK2-1	0.675	0.047	0.370	0.288
DYK2-4 0.422 ND 3.002 0.603 BY1-1 0.033 ND 0.038 0.292 BY1-2 0.067 ND 0.583 0.358 BY1-3 0.042 0.023 0.188 0.505 BY1-4 0.007 ND 0.002 0.313 BY2-1 0.025 ND ND 0.235 BY2-2 0.065 ND ND 0.240 BY2-3 0.035 0.023 0.010 0.253 BY3-4 ND ND ND 0.253 BY3-1 0.032 ND ND 0.352 BY3-2 0.060 ND ND 0.352 BY3-3 0.017 ND 0.063 0.793 BY3-4 ND ND 0.003 0.380 GZP1-1 0.312 0.145 0.724 2.721 GZP1-2 0.672 ND 0.380 7.363 GZP2-1 0.210 0.023 <	DYK2-2	0.793	ND	0.062	0.307
BY1-1 0.033 ND 0.038 0.292 BY1-2 0.067 ND 0.583 0.358 BY1-3 0.042 0.023 0.188 0.505 BY1-4 0.007 ND 0.002 0.313 BY2-1 0.025 ND ND 0.235 BY2-2 0.065 ND ND 0.240 BY2-3 0.035 0.023 0.010 0.253 BY2-4 ND ND 0.008 0.507 BY3-1 0.032 ND ND 0.253 BY3-2 0.060 ND ND 0.352 BY3-3 0.017 ND 0.063 0.793 BY3-4 ND ND 0.063 0.793 BY3-4 ND ND 0.003 0.380 GZP1-1 0.312 0.145 0.724 2.721 GZP1-2 0.672 ND 0.397 8.280 GZP2-1 0.210 0.023 <t< td=""><td>DYK2-3</td><td>0.698</td><td>ND</td><td>0.130</td><td>0.232</td></t<>	DYK2-3	0.698	ND	0.130	0.232
BY1-2 0.067 ND 0.583 0.358 BY1-3 0.042 0.023 0.188 0.505 BY1-4 0.007 ND 0.002 0.313 BY2-1 0.025 ND ND 0.235 BY2-2 0.065 ND ND 0.240 BY2-3 0.035 0.023 0.010 0.253 BY2-4 ND ND 0.008 0.507 BY3-1 0.032 ND ND 0.253 BY3-2 0.060 ND ND 0.352 BY3-3 0.017 ND 0.063 0.793 BY3-4 ND ND 0.003 0.380 GZP1-1 0.312 0.145 0.724 2.721 GZP1-2 0.672 ND 0.397 8.280 GZP1-3 0.337 ND 0.380 7.363 GZP2-1 0.210 0.023 0.022 2.962 GZP2-2 0.295 ND	DYK2-4	0.422	ND	3.002	0.603
BY1-3 0.042 0.023 0.188 0.505 BY1-4 0.007 ND 0.002 0.313 BY2-1 0.025 ND ND 0.235 BY2-2 0.065 ND ND 0.240 BY2-3 0.035 0.023 0.010 0.253 BY3-4 ND ND 0.008 0.507 BY3-1 0.032 ND ND 0.253 BY3-2 0.060 ND ND 0.352 BY3-3 0.017 ND 0.063 0.793 BY3-4 ND ND 0.003 0.380 GZP1-1 0.312 0.145 0.724 2.721 GZP1-2 0.672 ND 0.397 8.280 GZP1-3 0.337 ND 0.380 7.363 GZP2-1 0.210 0.023 0.022 2.962 GZP2-2 0.295 ND 0.192 6.732	BY1-1	0.033	ND	0.038	0.292
BY1-4 0.007 ND 0.002 0.313 BY2-1 0.025 ND ND 0.235 BY2-2 0.065 ND ND 0.240 BY2-3 0.035 0.023 0.010 0.253 BY2-4 ND ND 0.008 0.507 BY3-1 0.032 ND ND 0.253 BY3-2 0.060 ND ND 0.352 BY3-3 0.017 ND 0.063 0.793 BY3-4 ND ND 0.003 0.380 GZP1-1 0.312 0.145 0.724 2.721 GZP1-2 0.672 ND 0.397 8.280 GZP1-3 0.337 ND 0.380 7.363 GZP2-1 0.210 0.023 0.022 2.962 GZP2-2 0.295 ND 0.192 6.732	BY1-2	0.067	ND	0.583	0.358
BY2-1 0.025 ND ND 0.235 BY2-2 0.065 ND ND 0.240 BY2-3 0.035 0.023 0.010 0.253 BY2-4 ND ND 0.008 0.507 BY3-1 0.032 ND ND 0.253 BY3-2 0.060 ND ND 0.352 BY3-3 0.017 ND 0.063 0.793 BY3-4 ND ND 0.003 0.380 GZP1-1 0.312 0.145 0.724 2.721 GZP1-2 0.672 ND 0.397 8.280 GZP1-3 0.337 ND 0.380 7.363 GZP2-1 0.210 0.023 0.022 2.962 GZP2-2 0.295 ND 0.192 6.732	BY1-3	0.042	0.023	0.188	0.505
BY2-2 0.065 ND ND 0.240 BY2-3 0.035 0.023 0.010 0.253 BY2-4 ND ND 0.008 0.507 BY3-1 0.032 ND ND 0.253 BY3-2 0.060 ND ND 0.352 BY3-3 0.017 ND 0.063 0.793 BY3-4 ND ND 0.003 0.380 GZP1-1 0.312 0.145 0.724 2.721 GZP1-2 0.672 ND 0.397 8.280 GZP1-3 0.337 ND 0.380 7.363 GZP2-1 0.210 0.023 0.022 2.962 GZP2-2 0.295 ND 0.192 6.732	BY1-4	0.007	ND	0.002	0.313
BY2-3 0.035 0.023 0.010 0.253 BY2-4 ND ND 0.008 0.507 BY3-1 0.032 ND ND 0.253 BY3-2 0.060 ND ND 0.352 BY3-3 0.017 ND 0.063 0.793 BY3-4 ND ND 0.003 0.380 GZP1-1 0.312 0.145 0.724 2.721 GZP1-2 0.672 ND 0.397 8.280 GZP1-3 0.337 ND 0.380 7.363 GZP2-1 0.210 0.023 0.022 2.962 GZP2-2 0.295 ND 0.192 6.732	BY2-1	0.025	ND	ND	0.235
BY2-4 ND ND 0.008 0.507 BY3-1 0.032 ND ND 0.253 BY3-2 0.060 ND ND 0.352 BY3-3 0.017 ND 0.063 0.793 BY3-4 ND ND 0.003 0.380 GZP1-1 0.312 0.145 0.724 2.721 GZP1-2 0.672 ND 0.397 8.280 GZP1-3 0.337 ND 0.380 7.363 GZP2-1 0.210 0.023 0.022 2.962 GZP2-2 0.295 ND 0.192 6.732	BY2-2	0.065	ND	ND	0.240
BY3-1 0.032 ND ND 0.253 BY3-2 0.060 ND ND 0.352 BY3-3 0.017 ND 0.063 0.793 BY3-4 ND ND 0.003 0.380 GZP1-1 0.312 0.145 0.724 2.721 GZP1-2 0.672 ND 0.397 8.280 GZP1-3 0.337 ND 0.380 7.363 GZP2-1 0.210 0.023 0.022 2.962 GZP2-2 0.295 ND 0.192 6.732	BY2-3	0.035	0.023	0.010	0.253
BY3-2 0.060 ND ND 0.352 BY3-3 0.017 ND 0.063 0.793 BY3-4 ND ND 0.003 0.380 GZP1-1 0.312 0.145 0.724 2.721 GZP1-2 0.672 ND 0.397 8.280 GZP1-3 0.337 ND 0.380 7.363 GZP2-1 0.210 0.023 0.022 2.962 GZP2-2 0.295 ND 0.192 6.732	BY2-4	ND	ND	0.008	0.507
BY3-3 0.017 ND 0.063 0.793 BY3-4 ND ND 0.003 0.380 GZP1-1 0.312 0.145 0.724 2.721 GZP1-2 0.672 ND 0.397 8.280 GZP1-3 0.337 ND 0.380 7.363 GZP2-1 0.210 0.023 0.022 2.962 GZP2-2 0.295 ND 0.192 6.732		0.032	ND	ND	
BY3-4 ND ND 0.003 0.380 GZP1-1 0.312 0.145 0.724 2.721 GZP1-2 0.672 ND 0.397 8.280 GZP1-3 0.337 ND 0.380 7.363 GZP2-1 0.210 0.023 0.022 2.962 GZP2-2 0.295 ND 0.192 6.732	BY3-2	0.060	ND	ND	0.352
GZP1-1 0.312 0.145 0.724 2.721 GZP1-2 0.672 ND 0.397 8.280 GZP1-3 0.337 ND 0.380 7.363 GZP2-1 0.210 0.023 0.022 2.962 GZP2-2 0.295 ND 0.192 6.732	BY3-3	0.017	ND	0.063	0.793
GZP1-2 0.672 ND 0.397 8.280 GZP1-3 0.337 ND 0.380 7.363 GZP2-1 0.210 0.023 0.022 2.962 GZP2-2 0.295 ND 0.192 6.732	BY3-4	ND		0.003	0.380
GZP1-3 0.337 ND 0.380 7.363 GZP2-1 0.210 0.023 0.022 2.962 GZP2-2 0.295 ND 0.192 6.732	GZP1-1	0.312	0.145	0.724	2.721
GZP2-1 0.210 0.023 0.022 2.962 GZP2-2 0.295 ND 0.192 6.732	GZP1-2	0.672	ND	0.397	8.280
GZP2-2 0.295 ND 0.192 6.732	GZP1-3	0.337	ND	0.380	7.363
	GZP2-1	0.210	0.023	0.022	2.962
GZP2-3 0.267 ND 0.237 12.648	GZP2-2	0.295	ND	0.192	6.732
	GZP2-3	0.267	ND	0.237	12.648

樣品代號第一數字代表採樣處,第二數字表示採樣季 ND:低於偵測極限

在砷方面,第一季濃度最高為 0.780 mg/L (DYK1-1), 中山樓 (JSB2-1) 則低 於偵測極限;第二季濃度最高為 0.793 mg/L (DYK2-2), 最低為 0.008 mg/L (JSB1-2); 第三季濃度最高為 0.762 mg/L (DYK1-3), 硫磺谷 (LHG1-3) 與中山 樓 (JSB2-3) 則低於偵測極限;第四季濃度最高為 0.422 mg/L (DYK2-4), 硫磺谷 (LHG2-4) 與中山樓 (JSB1-4、JSB2-4) 則低於偵測極限。在鉛方面,第一季濃 度最高為 0.145 mg/L (GZP1-1), 硫磺谷第一與第三採樣點 (LHG1-1、LHG3-1)、 龍鳳谷 (LFG1-1、LFG2-1)、中山樓 (JSB1-1、JSB2-1)、八煙 (BY1-1、BY2-1、 BY3-1) 皆低於偵測極限;第二季所有樣點的濃度皆低於偵測極限;第三季濃度 最高為 0.025 mg/L (MC2-3),除了龍鳳谷 (LFG1-3、LFG2-3)、中山樓 (JSB1-3、 JSB2-3)、小油坑第一採樣點(SYK1-3)、八煙第一與第二採樣點(BY1-3、BY3-3) 外皆低於偵測極限;第四季濃度最高為 0.002 mg/L (MC2-4), 其餘樣點的濃度皆 低於偵測極限。在鉻方面,第一季濃度最高為 1.237 mg/L (LHG2-1),中山樓第 二採樣點 (JSB2-1)、馬槽第一採樣點 (MC1-1)、八煙第二與第三採樣點 (BY2-1、BY3-1) 皆低於偵測極限;第二季濃度最高為 0.583 mg/L (BY1-2), 龍 鳳谷 (LFG1-2、LFG2-2)、中山樓第一採樣點 (JSB1-2)、小油坑第一採樣點 (SYK1-2)、馬槽第一與第二採樣點 (MC1-2、MC2-2)、八煙第二與第三採樣點 (BY2-2、BY3-2)皆低於偵測極限;第三季濃度最高為 14.613 mg/L (DYK1-3),最 低為 0.002 mg/L (LFG1-3、JSB1-3); 第四季濃度最高為 7.562 mg/L (DYK1-4), 最低為 0.002 mg/L (LFG2-4、JSB1-4、JSB2-4、BY1-4)。在錳方面,第一季濃度 最高為 2.962 mg/L (GZP2-1), 最低為 0.012 mg/L (JSB2-1); 第二季濃度最高為 8.280 mg/L (GZP1-2), 最低為 0.015 mg/L (JSB1-2); 第三季濃度最高為 12.648 mg/L (GZP2-3), 最低為 0.018 mg/L (JSB1-3, JSB2-3); 第四季濃度最高為 3.522 mg/L (SYK1-4), 最低為 0.012 mg/L (JSB1-4)。

上述結果與過去有關溫泉內重金屬成分的研究相似。例如:溫泉中重金屬成分以砷和錳的比例最高,並發現鉻、鉛的存在(王懿德,2004)。日本國家衛生研究室之溫泉水質調查結果中酸性泉的砷平均含量為 0.49 mg/L (Tanaka,1990)。Kikawada 等人(2008)檢測屬於火成岩地質的草津溫泉區,該區酸鹼值達1左右,其中出水量最大的 Bendaiko 溫泉中砷含量為 10 mg/L,此溫泉區的土壤中砷平均含量為 36 mg/kg,露頭附近土壤中砷含量更高達 130-170 mg/kg。河

野等人(2005)檢測日本23處中性與鹼性溫泉源頭,發現泉中鉛含量低於偵測極限;砷含量為0.010-0.337 mg/L,少數低於偵測極限;錳含量為0.010-2.335 mg/L,半數低於偵測極限,也與本研究結果雷同。

参照行政院環境保護署依水污染防治法訂定之「放流水標準」、「地面水體分類及水質標準」及依飲用水管理條例訂定之「飲用水水質標準」中相關重金屬的規定(表 13),整理出各溫泉採樣點第一季至第四季水樣之重金屬含量符合各種水質標準的狀況(表 14)可知:

- 1. 部分溫泉水樣因砷或鉻含量過高,不符放流水標準。例如:(1) 小油坑第二採樣點第三季(SYK2-3)、大油坑第一季至第三季(DYK1-1、DYK1-2、DYK1-3、DYK2-1、DYK2-2、DYK2-3)和庚子坪第一採樣點第二季(GZP1-2)的水質因砷含量過高,不符放流水標準。(2)硫磺谷第二採樣點第三季與第四季(LHG2-3、LHG2-4)、大油坑第一採樣點第三季與第四季(DYK1-3、DYK1-4)和第二採樣點第四季(DYK2-4)的水質因鉻含量過高,不符放流水標準。
- 2. 除了中山樓溫泉 (JSB1, JSB2) 的水質以外,所有採樣點皆因錳含量過高不符合甲類水體標準,其他溫泉水質也大多伴隨砷和鉻含量超過甲類水體標準的現象而不適合作為游泳之用,因此泡湯的安全性值得討論。目前國內已有研究指出,無論溫泉中所含的重金屬濃度高低或泡溫泉頻率多寡,對於人體累積劑量均無明顯相關性,因此無法證實浸泡溫泉時溫泉中重金屬可能會對人體造成暴露影響(毛義方等人,2006)。日本亦無相關規定禁止浸泡含重金屬之溫泉(温泉百科フレーム;河野等人,2005)。但是如果皮膚有傷口,效應也許又另當別論。
- 3. 主要因為「砷」和「錳」的緣故,八個溫泉區採樣點的水都不適合飲用,亦應避免作為煮食之用。由於砷會廣佈在身體各個器官系統,因此會引起多種器官發生病變(陳建仁,2004),例如皮膚炎、色素沉澱及皮膚角質化等皮膚病,雷諾氏症候群、烏腳病等血管疾病,肝腫大及肝硬化等肝臟疾病,骨髓造血功能被壓抑而有全血球數目下降的情形。在流行病學研究中已證實砷會引發皮膚癌、肺癌、膀胱癌等癌症產生,國際癌症研究組織(The International Agency for Research on Cancer, IARC)也已將其歸類為第一類(Group 1)致癌物質(IARC, 1980)。在台灣飲用水砷含量為 10-1820 ppb 的一些地區曾盛行烏腳病,智利的Antotagasta 地方也曾經發現許多人出現雷諾氏症候群及手足發鉗的現象,其飲

用水中的砷含量則為 20-400 ppb (陳建仁,2004)。聯合國糧農組織/世界衛生組織聯合食品添加物專家委員會 (FAO/WHO JECFA) 根據砷的毒性,暫定無機砷的每週可容許攝入量為 15 微克/公斤體重 (行政院衛生署,2009),長期飲用可能造成慢性中毒。錳雖是人體必需元素,但有研究指出人體所需濃度與致毒性濃度之間的差異相當小,若暴露濃度稍微偏高,便可能傷害人體 (Hsiang et al., 2004)。成人每日攝取量建議為 1-5 毫克 (WHO,1999),攝入過量錳會造成嚴重的神經系統疾病,致使四肢震顫、肌肉僵硬、行動障礙、心智和情緒的異常、智能下降、巴金森氏症候群,且此病變雖然可服用藥物減少部份症狀,但卻是永久性傷害;另外動物實驗亦發現過量錳會傷害睪丸,造成不孕(行政院勞工委員會,1997;鍾麗華,2005)。以日本為例,並非所有種類溫泉均適宜飲用,且患有不同病症的人各有其不適合飲用的泉質(表15),另外每次飲用不得超過一杯(約200-250 毫升),每日飲用溫泉水量則不得超過1公升,其中含有砷、鐵的溫泉更必須經過確認對人體無害,取得飲用許可後才可飲用(溫泉百科フレ一ム;河野等人,2005)。因此有些民眾認為飲用「鐵泉」(龍鳳谷浴池)有益健康,顯然大有問題。

表 13: 行政院環境保護署訂定不同水質相關重金屬含量之標準

相關重金屬	上限濃度(mg/L)							
竹崩里並働	放流水標準 ^a	甲類水體標準 b	飲用水標準 ^c					
砷 (As)	0.5	0.05	0.01					
鉛 (Pb)	1.0	0.1	0.05					
鉻 (Cr)	2.0	0.05	0.05					
錳 (Mn)	10.0	0.05	0.05					

a 放流水標準 (事業、污水下水道系統及建築物污水處理設施之廢污水共同適用) (中華民國 96 年 9 月 3 日環署水字第 0960065740 號令)

b 地面水體分類及水質標準 (中華民國 87 年 6 月 24 日環署水字第 0039159 號 令):適合游泳之用

c 飲用水水質標準(中華民國 97 年 1 月 2 日環署毒字第 0960100652 號令)

表 14:各採樣點在不同時間採得水樣之重金屬含量符合各種水質標準之狀況

1 寸 · 任孙 称	-11-12	砷	- 1 1-4 1	P(= 1 3 ··	鉛	<u> </u>	三/寅 古	<u>里刊</u> 鉻	<u> </u>	-1 1 -1-	<u>貝</u> 你· 錳	+~n
樣品	放流水標準	甲類水體標準	飲用水標準	放流水標準	甲類水體標準	飲用水標準	放流水標準	甲類水體標準	飲用水標準	放流水標準	甲類水體標準	飲用水標準
LHG1-1	+	+	-	+	+	+	+	+	+	+	-	-
LHG1-2	+	+	-	+	+	+	+	+	+	+	-	-
LHG1-3	+	+	+	+	+	+	+	+	+	+	-	-
LHG1-4	+	+	-	+	+	+	+	-	Ri	*\t	-	-
LHG2-1	+	+	-	+	+	+	+	-	1.51	145	-	-
LHG2-2	+	-	-	+	+	+	+	#	V.F	4	-	-
LHG2-3	+	-	-	+	+	+	_	1,		+	-	-
LHG2-4	+	+	+	+	+	+		3 //	-	+	-	-
LHG3-1	+	+	-	+	+	蚁	7+	+	+	+	-	-
LHG3-2	+	-	-	+	+	4	- 1	# +	+	+	-	-
LHG3-3	+	+	-	+	<u></u>	14	1	-	-	+	-	-
LHG3-4	+	-		+/	X	+	+	-	-	+	-	-
LFG1-1	+	-	-	47	14)) +	+	+	+	+	ı	-
LFG1-2	+	-	-	4	7	+	+	+	+	+	1	-
LFG1-3	+	-	-	ļt,	+	+	+	+	+	+	1	-
LFG1-4	+	-	الت	+	+	+	+	+	+	+	-	-
LFG2-1	+	1	v	+	+	+	+	+	+	+	-	-
LFG2-2	+%	74	L -	+	+	+	+	+	+	+	-	-
LFG2-3	+	9.3	-	+	+	+	+	+	+	+	-	-
LFG2-4	# + ["]	+	-	+	+	+	+	+	+	+	-	-
JSB1-1	LF)	+	-	+	+	+	+	+	+	+	+	+
JSB1-2	///	+	+	+	+	+	+	+	+	+	+	+
JSB1-3	+	+	-	+	+	+	+	+	+	+	+	+
JSB1-4	+	+	+	+	+	+	+	+	+	+	+	+
JSB2-1	+	+	+	+	+	+	+	+	+	+	+	+
JSB2-3	+	+	+	+	+	+	+	+	+	+	+	+
JSB2-4	+	+	+	+	+	+	+	+	+	+	+	+
SYK1-1	+	+	1	+	+	+	+	+	+	+	ı	-
SYK1-2	+	-	1	+	+	+	+	+	+	+	ı	-
SYK1-3	+	+	-	+	+	+	+	+	+	+	-	-
SYK1-4	+	+	-	+	+	+	+	+	+	+	-	-
SYK2-1	+	-	-	+	+	+	+	-	-	+	-	-
SYK2-3	-	-	-	+	+	+	+	-	-	+	-	-
SYK2-4	+		- 小士	+ 1& 1¥	+	十	+	+	+	+	-	-

樣品代號第一數字代表採樣處,第二數字表示採樣季

+:符合標準 -: 不符合標準

表 14(續):各採樣點在不同時間採得水樣之重金屬含量符合各種水質標準之狀況

	砷			鉛	当 鉻				錳			
		甲			甲			甲			甲	
樣品	放流水標準	類水體標	飲用水標準	放流水標準	類水體標	飲用水標準	放流水標準	類水體標	飲用水標準	放流水標準	類水體標	飲用水標準
MC1 1		準			準			準			準	
MC1-1	+	-	-	+	+	+	+	+	+	+	-	-
MC1-2	+	-	-	+	+	+	+	+	+	+	-	-
MC1-3	+	-	-	+	+	+	+	-	174	7	-	-
MC1-4	+	-	-	+	+	+	+	+	41	37)	-	-
MC2-1	+	+	-	+	+	+	+	4	\£.	\mathcal{I}	-	-
MC2-2	+	+	-	+	+	+	+	3.0	+	+	-	-
MC2-3	+	+	-	+	+	±_	+4	377	+	+	-	-
MC2-4	+	+	+	+	+	90	# +	+	+	+	-	-
DYK1-1	-	-	-	+	+	1-74	16. E.		-	+	-	-
DYK1-2	-	-	-	+		#	+	+	+	+	-	-
DYK1-3	-	-	ı	+/	100	+	-	-	-	+	-	-
DYK1-4	+	-	1	+3	1+/	+ (-	-	-	+	-	-
DYK2-1	-	-	-	+ "	J.	+	+	-	-	+	-	-
DYK2-2	-	-	- 1	#	+	+	+	-	-	+	-	-
DYK2-3	-	-	1	+	+	+	+	-	-	+	-	-
DYK2-4	+	\sim	_	+	+	+	-	-	-	+	-	-
BY1-1	4	747	-	+	+	+	+	+	+	+	-	-
BY1-2	+	3	-	+	+	+	+	-	-	+	-	-
BY1-3	/ +	+	-	+	+	+	+	-	-	+	-	-
BY1-4	(半)	+	+	+	+	+	+	+	+	+	-	-
BY2-1	7/+	+	-	+	+	+	+	+	+	+	-	-
BY2-2	+	-	-	+	+	+	+	+	+	+	-	-
BY2-3	+	-	-	+	+	+	+	+	+	+	-	-
BY2-4	+	+	+	+	+	+	+	+	+	+	-	-
BY3-1	+	+	_	+	+	+	+	+	+	+	_	_
BY3-2	+	_	-	+	+	+	+	+	+	+	_	_
BY3-3	+	+	_	+	+	+	+	_	_	+	_	_
BY3-4	+	+	+	+	+	+	+	+	+	+	_	_
GZP1-1	+	_	-	+	_	_	+	_	_	+	_	_
GZP1-2	_	_	_	+	+	+	+	_	_	+	_	_
GZP1-3	+	_	_	+	+	+	+	_	_	+	_	_
GZP2-1	+	_	_	+	+	+	+	+	+	+	_	_
GZP2-2	+	_		+	+	+	+	_	_	+	_	_
GZI 2-2 GZP2-3	+			+	+	+	+					
ULFZ-3	T	-	-	Τ.		T	T	-	_	-	-	-

樣品代號第一數字代表採樣處,第二數字表示採樣季

+:符合標準 -: 不符合標準

表 15: 泉質與其相對適合症狀

								14 3									
	高	動	糖	痛	肥	膽	慢	肝	慢	慢	貧	慢	月	虚	慢	割	燒
	血	脈	尿	風	胖	結	性	臟	性	性	血	性	經	弱	性	傷	燙
	壓	硬	病			石	膽	病	消	便		婦	障	兒	皮		傷
		化					囊		化	秘		人	礙	童	膚		
							炎		器			病			病		
									病								
單純溫泉	適月	用所	有病	症	ı	1	1	ı	ı	ı	A	2	١	ī	ı	ī	
氯化物泉									☆	☆		0	\$)	0	0	0	0
碳酸鹽泉			☆	☆				☆	☆	.1	10	No. of	P		0	0	0
硫酸鹽泉		0	☆	☆	☆	☆	☆	00	7	☆	n				0	0	0
二氧化碳泉	0	0						7	☆	☆						0	0
鐵泉						B	2		4		☆		0				
銅鐵泉					- 4		"				☆		0				
酸性泉					ş,				☆						0		
硫磺泉	O ▲	0	0 ☆	☆						☆		0			0	0	
放射能泉	Ŋ.,	0	-	O ☆		O ☆	O ☆		☆			0			0		

▲硫化氫類 ○適於浸泡 ☆適於飲用

捌、各溫泉採樣點水質之營養物含量

98 年第一季至第四季在八個採樣區測量各採樣點水樣之營養物 (氨氮、總 氮、總磷、總有機碳)含量如表 16 所示。

表 16:各採樣點在不同時間採得水樣之營養物含量

		Estat And Indiable id		1
搓口	氨氮 (NIII +)	總氮(TN)	總磷 (TP)	總有機碳
樣品	(NH_4^+)	(mg/L)	(mg/L)	(TOC)
LUC1 1	(mg/L)			(mg/L)
LHG1-1	ND 1.00	0.6	0.38	2.01
LHG1-2	1.09	1.6	0.19	1.03
LHG1-3	1.64	2.5	0.12	3.06
LHG1-4	1.02	1.2	0.41	0.66
LHG2-1	0.80	1.4	0.40	1.08
LHG2-2	1.46	2.3	0.48	0.66
LHG2-3	1.25	1.7	0.49	2.21
LHG2-4	4.07	0.7	2.35	2.17
LHG3-1	0.73	1.7	0.25	0.79
LHG3-2	1.49	3.0	0.24	0.87
LHG3-3	1.12	2.9	0.90	6.36
LHG3-4	0.32	0.8	0.30	0.71
LFG1-1	0.62	3.1	0.34	1.98
LFG1-2	0.95	1.4	0.25	1.13
LFG1-3	▼T.11	1.1	0.36	1.42
LFG1-4	0.54	1.9	0.89	1.38
LFG2-1	ND	2.0	0.28	0.53
LFG2-2	ND	1.8	0.19	0.79
LFG2-3	1.12	2.6	0.20	0.38
LFG2-4	0.42	0.8	0.29	0.29
JSB1-1	ND	0.7	0.81	2.40
JSB1-2	0.74	1.1	0.16	2.75
JSB1-3	0.30	0.5	0.13	2.52
JSB1-4	0.09	0.2	0.17	1.57
JSB2-1	ND	0.9	1.61	2.51
JSB2-3	0.20	1.0	0.14	2.79
JSB2-4	0.09	0.4	0.43	1.70
SYK1-1	1.28	8.8	1.97	9.15
SYK1-2	1.50	1.7	0.78	0.67
SYK1-3	1.55	2.0	0.27	0.92
SYK1-4	0.95	0.3	1.48	0.61
SYK2-1	ND	1.5	0.89	4.20
SYK2-3	4.64	4.8	0.51	6.32
SYK2-4	0.55	0.4	2.47	2.72
			<u>ーー・・・・</u> ウナームドチ	

樣品代號第一數字代表採樣處,第二數字表示採樣季

ND:低於偵測極限

表 16 (續):各採樣點在不同時間採得水樣之營養物含量

<u> </u>	E E		1-11-1-12-12-12-12	14 + 11/4 -14
上	氨氮 (NHL+)	總氮(TN)	總磷 (TP)	總有機碳
樣品	(NH_4^+)	(mg/L)	(mg/L)	(TOC)
	(mg/L)	, , ,		(mg/L)
MC1-1	ND	0.6	2.03	0.67
MC1-2	0.50	0.8	0.56	0.97
MC1-3	0.49	0.7	0.11	8.78
MC1-4	0.26	0.5	0.98	0.71
MC2-1	ND	0.2	0.71	0.52
MC2-2	ND	0.6	1.00	1.01
MC2-3	0.21	1.1	0.20	9.74
MC2-4	0.03	1.6	0.81	0.52
DYK1-1	0.48	14.8	0.90	2.37
DYK1-2	ND	0.7	ND	4.85
DYK1-3	1.71	3.7	0.38	4.11
DYK1-4	0.37	4.8	ND	1.83
DYK2-1	1.36	21.6	0.98	1.59
DYK2-2	ND	1.9	ND	2.15
DYK2-3	2.56	3.4	1.72	1.31
DYK2-4	1.62	0.6	ND	1.56
BY1-1	ND	0.4	0.67	0.35
BY1-2	0.27	0.7	0.47	0.49
BY1-3	0.51	2.4	0.26	0.50
BY1-4	1.60	0.9	0.41	0.32
BY2-1	ND	0.4	0.29	0.27
BY2-2	ND	0.5	0.67	0.40
BY2-3	0.34	1.8	0.32	0.29
BY2-4	ND	0.3	0.33	0.31
BY3-1	ND	0.3	0.36	0.35
BY3-2	0.20	1.6	0.36	0.44
BY3-3	0.36	2.3	0.25	0.30
BY3-4	0.13	0.2	0.74	0.41
GZP1-1	ND	2.8	0.64	8.40
GZP1-2	0.62	2.9	4.64	10.90
GZP1-3	2.11	1.9	0.17	6.68
GZP2-1	0.19	0.8	0.45	3.82
GZP2-2	ND	2.3	1.47	9.49
GZP2-3	5.62	5.9	0.87	10.04

樣品代號第一數字代表採樣處,第二數字表示採樣季

ND:低於偵測極限

在氨氮方面,第一季濃度最高為 1.36 mg/L (DYK2-1),其餘除了硫磺谷第二採樣點與第三採樣點 (LHG2-1、LHG3-1)、龍鳳谷第一採樣點 (LFG1-1)、小油坑第一採樣點 (SYK1-1)、大油坑第一採樣點 (DYK1-1)、庚子坪第二採樣點 (GZP2-1)外皆低於偵測極限;第二季濃度最高為 1.50 mg/L (SYK1-2),龍鳳谷第二採樣點 (LFG2-2)、馬槽第二採樣點與第三採樣點 (MC2-2、MC3-2)、大油坑 (DYK1-2、DYK2-2)、八煙第二採樣點 (BY2-2)、庚子坪第二採樣點 (GZP2-2) 則低於偵測極限;第三季濃度最高為 5.62 mg/L (GZP2-3),最低為 0.20 mg/L (JSB2-3);第四季濃度最高為 25.46 mg/L (MC2-4),八煙第二採樣點 (BY2-4)則低於偵測極限。

在總氮方面,第一季濃度最高為 21.6 mg/L (DYK2-1),最低為 0.2 mg/L (MC2-1);第二季濃度最高為 3.0 mg/L (LHG3-2),最低為 0.5 mg/L (BY2-2);第三季濃度最高為 5.9 mg/L (GZP2-3),最低為 0.7 mg/L (MC1-3);第四季濃度最高為 4.8 mg/L (DYK1-4),最低為 0.2 mg/L (JSB1-4、BY3-4)。在總磷方面,第一季濃度最高為 2.03 mg/L (MC1-1),最低為 0.25 mg/L (LHG3-1);第二季濃度最高為 4.64 mg/L (GZP1-2),大油坑 (DYK1-2、DYK2-2) 則低於偵測極限;第三季濃度最高為 1.72 mg/L (DYK2-3),最低為 0.11 mg/L (MC1-3);第四季濃度最高為 2.47 mg/L (SYK2-4),大油坑 (DYK1-4、DYK2-4) 則低於偵測極限。在總有機碳方面,第一季濃度最高為 9.15 mg/L (SYK1-1),最低為 0.27 mg/L (BY2-1);第二季濃度最高為 10.90 mg/L (GZP1-2) ,最低為 0.40 mg/L (BY2-2);第三季濃度最高為 10.04 mg/L (GZP2-3),最低為 0.29 mg/L (BY2-3);第四季濃度最高為 2.72 mg/L (SYK2-4) ,最低為 0.29 mg/L (LFG2-4)。

各採樣點水樣中氨氮與總氮第一季與第三季成高度正相關(r>0.7視為高度相關,第一季r=0.7227,第三季r=0.8864),第二季與第四季呈中度正相關(0.3< < r<0.7 視為中度相關,第二季r=0.5083;第四季r=0.5378)(圖 8)。由於氨氮可能轉變為硝酸鹽氮、亞硝酸鹽氮、有機氮等其他型態的氮,因此氨氮與總氮間僅呈現中度相關。本研究以 IC 檢測氨氮含量,總氮含量則以商用試劑組檢測,兩種分析方法的差異可能使測定值與有效位數有所差異,運送過程、樣本保存至檢驗的時間或許都會造成影響,導致部分水樣的氨氮比例經計算後超過 100%。

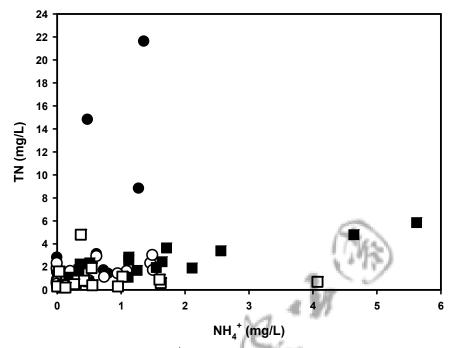


圖 8:各採樣點各季之氨氮(NH₄⁺)與總氮(TN)含量關係圖。(第一季水樣●,樣本數= 18, r=0.7227;第二季水樣○,樣本數= 16, r=0.5083;第三季水樣■,樣本數= 18, r=0.8864;第四季水樣□,樣本數= 12, r=0.5378)

參照行政院環境保護署依水污染防治法訂定之「放流水標準」及「地面水體分類及水質標準」中有關氫、磷、有機碳之規定(表 17)可知:除了第四季中山樓(JSB1-4)和馬槽(MC1-4、MC2-4)不符 NH4⁺放流水標準及第四季小油坑(SYK2-4)不符總磷放流水標準外,所有水樣皆符合放流水標準。而由於 NH4⁺和總磷濃度超出標準,大多不適宜作為公共用水;也全部不符合游泳用水之標準。黃石公園中位於火山口附近的 Washburnip 溫泉含有 15-63 mM 氨氮,原因為母岩中氮含量高達 2520 ppm,經過熱泉水溶解並轉變為氨氮形式(Holloway et al., 2001)。有些地區的母岩雖也含有高濃度氮,但其溫泉 pH 值大於 8,且含有具酸鹼緩衝效果的碳酸鹽,使得氮以氨氣形式蒸發逸散,水中僅有 1 mg L⁻¹ 左右,而 Norris Geyser Basin 的酸性溫泉水中則含有 0.03-80 mg L⁻¹ 氮,因此溫泉中營養鹽濃度尚受到母岩性質、溶解、蒸發、冷凝等作用影響(Holloway et al., 2003)。由於本研究處於露頭或孔口的採樣點多位於受管制之人煙罕至處,應無人為污染來源,但水質分析結果顯示溫泉中所含的氨氮、總氮、總磷濃度均高於甲級水體標準,推測是溫泉本身即存在一定濃度之營養鹽,而非外來污染源導致。

表 17: 行政院環境保護署訂定不同水質相關營養物含量之標準

		上	限濃度(1	mg/L)	
適用水質	NO ₃	$\mathrm{NH_4}^+$	TP	COD	BOD
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
事業、污水下水道系 統放流水 ^a	50	10.0	4.0°	100-600	30-80
餐飲業、觀光旅館 (飯店) 放流水 ^a				150	50
污水下水道系統之 公共下水道放流水 ^a		15.0 ^d	2.0	100-150	30-50
三級公共用水b		0.3	-		4
甲類水體(適合游泳 之用) ^b		0.1	0.02	(1)	1

- a 放流水標準 (中華民國 96 年 9 月 3 日環署水字第 0960065740 號令)
- b 地面水體分類及水質標準 (中華民國 87 年 6 月 24 日環署水字第 0039159 號令)
- c 正磷酸鹽(PO43-)標準
- d 總氮標準

各採樣點在不同時間採得水樣之水質分析總和結果列於附錄二。

第三節 各採樣點沉積物中細菌、古菌之定量

壹、現有 PCR 方法無法偵測到溫泉沉積物中的真核微生物

前人研究(Brown and Wolfe, 2006)利用 PCR 技術進行酸性溫泉地區真核微生物調查工作時使用數組引子 (primers)。本研究針對 98 年第一季在八個採樣區各採樣點獲得之附著物進行探討,發現使用引子對 82F/1520R 和 55℃的黏合溫度 (annealing temperature)以及引子對 82F/1643R 和 57℃的黏合溫度可以明顯獲得較多的 PCR 產物 (表 18)。電泳、染色、照相後的相片如附錄三所示。再針對第二季樣品以 82F/1520R 和 55℃的黏合溫度進行 PCR 反應,結果發現大多數樣品的 PCR 產物較第一季為低。進一步針對馬槽第一採樣點進行 18S rRNA基因選殖,結果得到 114 個插入片段長度介於 250~2500 bp 的選殖株。經過定序、比對後發現 80% (82/102)與資料庫中的任何基因無明顯相似度;20% (20/102)雖然比對到與 rRNA 基因相似度很高,但卻是屬於原核的古菌而非真核微生物(表 19)。因此以現有 PCR 方法無法偵測到溫泉沉積物中的真核微生物。

表 18:使用不同引子對在各採樣點第一季與第二季沉積物樣品中偵測真核微生物含量之結果

Relative quantity of PCR product											
Sample	Temp.	рН	82F/	82F/	82F/	82F/					
Sample	(℃)	pm	1520R ^a	1643R ^a	1520R ^b	1643R ^b					
LHG1-1	23	2.11	+	+/_	+/_	+/_					
LHG1-2	28	2.59	_	.,	.,	.,					
LHG2-1	64	2.15	_	=							
LHG2-2	57	2.69	_								
LHG3-1	60	2.84	++	+++	+	++					
LHG3-2	57	3.06	+								
LFG1-1	52	6.37	+	+	6	+					
LFG1-2	53	6.31	+/_		17:162						
JSB1-1	41	5.65	++		(17)	++					
JSB1-2	51	5.60	+	1.	7						
JSB2-1	43	5.62	++	. 4 %	_	++					
SYK1-1	94	4.61	- X	/							
SYK1-2	59	3.00	-1"	Show.							
SYK2-1	65	2.20	7	P -							
SYK2-2	77	2.71	E								
MC1-1	48	2.78	##+	+++	++	+++					
MC1-2	48	2.87	++								
MC2-1	64	6.10	_	_							
MC2-2	63	5.72	_								
DYK1-1	85	1.60	_	=							
DYK1-2	85	2.00	_								
DYK2-1	67	1.44	++	_	_	_					
DYK2-2	63	1.99	+/_								
BY1-1	68	2.63	_	_							
BY1-2	64	3.04	_								
BY2-1	47	2.72	_	_							
BY2-2	41	3.20	_								
BY3-1	44	2.68	_	_	_	++					
BY3-2	43	3.10	++								
GZP1-1	88.5	2.59	_	_							
GZP1-2	89	2.81	_								
GZP2-1	59	2.57	++	++	_	++					
GZP2-2	58	2.80	+/_								

樣品代號第一數字代表採樣處,第二數字表示採樣季

+++, ++, +, +/-, 和一代表 rDNA 經過 PCR 反應得到的相對產物量; 空白表示沒有進行實驗。

^aPCR 黏合溫度 (annealing temperature): 55℃ ^bPCR 黏合溫度 (annealing temperature): 57℃

表 19: 馬槽第一採樣點第一季沉積物中 rDNA 之分子選殖與定序

	177 于心识的	$\frac{1}{\sqrt{1 + 1}}$	1 1 这准兴人门
Number	Number of	Number of	Number of
of clones	sequenced	sequences	sequences
	clones		similar to
			Archaeal
		target	rDNA
1			
5	2	1	1 (84%) ^a
1	1	1	
3	3	3	
3	3	3	
2	2	2	7
14	12	12	(2.W.
16	15	7	8 (92-98%) ^a
16	16	7	9 (90-98%) ^a
2	2	2	
15	15	13	2 (97-98%) ^a
1	1	1	
5	3	3	
16	15	15	
3	3	3	
4	4	4	
5	5	5	
\sim 1			
A 1			
114	102	82	20
	Number of clones 1 5 1 3 3 2 14 16 16 2 15 1 5 16 3 4 5 1 1	Number of clones Number of sequenced clones 1 5 2 1 3 3 2 2 14 12 16 15 16 16 2 2 15 15 1 1 5 3 16 15 3 3 4 4 5 5 1 1 1 1	of clones sequenced clones sequences without any similar target 1 5 2 1 1 1 1 1 3 3 3 3 3 3 3 3 2 2 2 2 16 15 7 1 16 16 7 2 2 2 2 2 15 15 13 1 1 1 1 1 5 3 3 3 4 4 4 4 5 5 5 5

^a Identities

貳、沉積物中古菌與細菌之定量

沿用先前研究所建立的條件(李重義,2006)分別針對古菌、細菌進行16S rRNA基因(16S rDNA)的放大。第一季樣品的電泳、染色、照相後的相片如附錄三所示。整理第一季至第四季結果(表20)後發現:

- 1. 各採樣點沉積物中古菌 rDNA 的 PCR 產物量大多低於細菌,但大油坑 第二採樣點 (DYK2) 卻是古菌 rDNA 的 PCR 產物量較高。
- 2. 八個溫泉區中不同的採樣點,古菌與細菌的數量差異很大。
- 3. 同一個採樣點四季樣品中古菌與細菌的數量也有很大差異。
- 4. 根據第一季各樣品中古菌與細菌的數量及溫泉酸鹼度特性,選擇下列樣 品以分子生物學方法進行溫泉微生物相調查分析:
 - (1) 硫磺谷第三採樣點 (LHG3): 酸性硫酸鹽泉且古菌與細菌數量多;
 - (2) 中山樓 (JSB2): 弱酸性硫酸鹽泉且古菌與細菌數量多;
 - (3) 馬槽 (MC1):酸性硫酸鹽泉,與LHG3 有相當距離且古菌與細菌數量多;
 - (4)大油坑第二採樣點 (DYK2):酸性硫酸鹽氯化物泉且古菌較細菌數量多;
 - (5) 庚子坪第二採樣點 (GZP2): 酸性硫酸鹽泉,與 LHG3 和 MC1 有相當距離且古菌與細菌數量亦多。

表 20:各採樣點不同時間沉積物中偵測古菌與細菌含量之結果

120 - 1		1 10 707頁 707	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Sample	Temp.	рН		of PCR product*
-	(°C)		Arch	Bac
LHG1-1	23	2.11	_	++
LHG1-2	28	2.59	_	+/
LHG1-3	32	2.08	_	+/-
LHG1-4	31	2.57	+/-	+++
LHG2-1	64	2.15	_	_
LHG2-2	57	2.69	_	
LHG2-3	89	2.00	_	_
LHG2-4	87	2.43	_	
LHG3-1	60	2.84	+	+++
LHG3-2	57	3.06	+ 196	+++
LHG3-3	82	2.08	- (14)	£) +
LHG3-4	67	3.06	4 / 1	/ -
LFG1-1	52	6.37	. 10	+/
LFG1-2	53	6.31	+/	+/
LFG1-3	51	6.31	2 _	+++
LFG1-4	51	6.37	Blood -	+++
JSB1-1	41	5.65	W ++	+++
JSB1-2	51	5.60	++	+++
JSB1-3	54	5.39	+++	+++
JSB1-4	43	5.49	+++	+++
JSB2-1	43	5.62	++	+++
JSB2-3	55	5.32	+++	+++
JSB2-4	44	5.30	+++	+++
SYK1-1	94	4.61	_	+/
SYK1-2	59	3.00	_	_
SYK1-3	61	4.32	_	+
SYK1-4	68	2.30	_	_
SYK2-1	65	2.20	_	+/
SYK2-2	77	2.71	_	_
SYK2-3	70	5.69	_	_
SYK2-4	64	1.42	_	
MC1-1	48	2.78	++	++
MC1-2	48	2.87	++	+++
MC1-3	51	2.94	++	+++
MC1-4	50	2.08	_	_
MC2-1	64	6.10	+/	++
MC2-2	63	5.72	_	+
MC2-3	55	6.02	+++	+++
MC2-4	56	5.49	++	+++
* rDNA 如温 Da	OD 丘座但到4	DITA WHY		

^{*}rDNA 經過 PCR 反應得到的 DNA 濃度:

^{-,} 檢測不到;+/-, 0.5 ng/μl;+, 1 ng/μl;++, 2 ng/μl;+++, 4 ng/μl

表 20 (續): 各採樣點不同時間沉積物中偵測古菌與細菌含量之結果

G 1	Temp.			y of PCR product*
Sample	$(^{\circ}\mathbb{C})$	pН	Arch	Bac
DYK1-1	85	1.60	_	+/
DYK1-2	85	2.00	_	_
DYK1-3	89	1.71	_	+/
DYK1-4	78	1.83	_	_
DYK2-1	67	1.44	+	+/
DYK2-2	63	1.99	+/	_
DYK2-3	66	1.58	_	_
DYK2-4	69	1.71		_
BY1-1	68	2.63	- ~	_
BY1-2	64	3.04	- 186	_
BY1-3	67	2.12	- 119	S) —
BY1-4	67	2.04	# \ ;	
BY2-1	47	2.72	. 1/17	_
BY2-2	41	3.20	4 371	_
BY2-3	40	2.86	2 . –	_
BY2-4	42	2.11	Spirit -	++
BY3-1	44	2.68	TP -	+++
BY3-2	43	3.10	+/—	+++
BY3-3	40	2.98	+	+++
BY3-4	44	2.10	—	++
GZP1-1	88.5	2.59		+/-
GZP1-2	89	2.81		+/-
GZP1-3	84	2.63		_
GZP2-1	59	2.57	+	+
GZP2-2	58	2.80	+/—	+++
GZP2-3	58	2.41	_	_

樣品代號第一數字代表採樣處,第二數字表示採樣季

^{*}rDNA 經過 PCR 反應得到的 DNA 濃度:

^{-,} 檢測不到;+/-, 0.5 ng/μl;+, 1 ng/μl;++, 2 ng/μl;+++, 4 ng/μl

第四節 古菌多樣性之調查

針對選定的 5 處溫泉第一季沉積物中古菌進行 rDNA 的分子選殖及限制酶 片段長度多型性 (RFLP) 分析,依據各限制酶對 16S DNA 切割的 RFLP 類型(見附錄四)分群(表 21),發現 5 個採樣點古菌 16S DNA 的 RFLP 類型差異很大,顯示 5 個地點古菌種類可能差異很大。選取各 RFLP 類型之代表性選殖 DNA 予以定序及比對資料庫,結果顯示 5 處古菌種類確 實差異很大 (表 22)。

就泉古菌門(Crenarchaeote)與廣古菌門(Euryarchaeote)的比例而言, 大油坑第二採樣點為 100:0;庚子坪第二採樣點為 96:4;硫磺谷第 三採樣點為 52:48;中山樓溫泉和馬槽第一採樣點皆為 30:70。

就獨特性而言,硫磺谷第三採樣點(60° C, pH 2.84)有 13%(4/31)的 古菌屬於暖球形菌屬(Caldisphaera)為本次研究其他採樣點未發現者;但先前研究(李重義,2006)在庚子坪大露頭(90° C, pH 1.8)、庚子坪人工池(48° C, pH 3.1)和硫磺谷水泥池(65° C, pH 4.0)皆曾發現暖球形菌屬的古菌(分別佔35%,5%及12%),而前人研究磺山熱泉區兩處露頭(HS03:82.4°C, pH 2.3 與HS04:80.7°C, pH 0.82)也發現在沉積物中小部分為厭氧的暖球形菌屬(鄭婷文、林立虹,2007)。

大油坑第二採樣點的菌全部屬於硫化葉菌目(Sulfolobales)亦為本次研究其他採樣點未發現者。先前研究(李重義,2006)曾在庚子坪大露頭(90° C,pH 1.8)、庚子坪人工池(48° C,pH 3.1)發現少數(8° 及 5°)屬於硫化葉菌目的古菌。前人研究磺山熱泉區兩處露頭內的微生物,僅在水體中發現屬於硫化葉菌屬(Sulfolobus)的古菌,且佔懸浮性微生物的絕大多數(鄭婷文、林立虹,2007)。本研究皆採取沉積物樣品,大油坑第二採樣點(67° C,pH 1.44)為小型露頭、水很淺,環境應為好氧性,採集到的古菌皆與主要存在於水體中的懸浮性硫化葉菌屬類似,或許不足為奇。馬槽第一採樣點(48° C,pH 2.78)亦為小型露頭、水很淺,但溫度較低,或許不利於硫化葉菌的生長(最適生長條件 $75-80^{\circ}$ C,pH 2-3)。

陽明山國家公園酸性溫泉物種調查 及生存機制之研究

此外,16S rDNA 序列相似度至少要在 97%以上才有可能為同一物種 (species),本研究發現各採樣點大多數古菌的 16S rDNA 序列皆未與特定物種 有足夠的相似度,應為目前未被發現的古菌物種。

本研究選定的五處溫泉中古菌種類確實差異很大,且顯示其中大多數古菌應為目前未被發現的物種。由於大眾對於溫泉微生物所知有限,更不瞭解現代生物學有關細菌、古菌分類的進展,因此無論站在保育研究或將來為民眾解說之便,都應該積極進行溫泉古菌的分離與分類,並進一步探討其形態和生理特性。

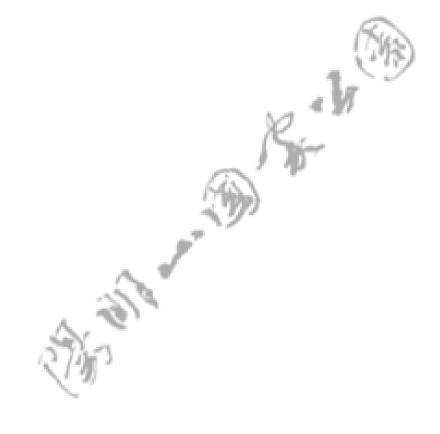


表 21:各溫泉第一季沉積物中古菌 RFLP 類型分佈

G : 1				· 沁槓物中古图 RFLF 類型分佈						
Serial number	RFLP ty	pe of arch rDNA	aeal 168		Nı	umber of o	clones			
of RFLP	Rsa I			硫磺						
types	(Afa I)	Sau 3A I	HhaI	谷 3	中山樓 2	馬槽 1	大油坑2	庚子坪2		
1	II-2	II-1	II-2	1						
2	II-2	II-1	IV-5	2						
3	II-2	II-1	VI-1					1		
4	II-2	II-5	II-1					1		
5	II-2	III-7	IV-5	1						
6	II-2	III-8	V-7	1		15				
7	II-3	II-5	IV-17			17463	1			
8	II-3	III-3	III-10			100	2			
9	II-3	III-3	IV-20		-	(B)	1			
10	II-3	III-3	V-2		4	77	1			
11	II-3	IV-3	IV-17	- 5	e.		6			
12	II-3	IV-3	IV-21		K		1			
13	II-3	IV-3	V-3	1	j.		1			
14	II-3	IV-3	VI-5	4			2			
15	II-5	II-1	IV-18	7			1			
16	II-5	IV-8	IV-5				1			
17	II-5	IV-9	IV-4				1			
18	II-5	IV-9	V-2				1			
19	II-5	IV-9	V-6				1			
20	II-6	l-1	IV-1		1					
21	II-6] II-1	IV-1	5						
22	WI-4	II-1	III-10				1			
23	III-4	II-1	V-2				3			
24	III-4	II-1	V-3				2			
25	III-4	II-1	VI-5				2			
26	III-5	II-1	V-2				1			
27	III-5	IV-6	III-11					1		
28	III-8	II-1	VI-1		2					
29	III-8	II-1	VI-3		1					
30	III-9	III-5	IV-19				1			
31	III-9	IV-4	IV-10					2		
32	III-10	II-2	III-14	1						
33	III-10	II-2	III-15	1						
34	III-10	II-4	III-12		1	2				
35	III-10	III-2	IV-3				3			

表 21 (續 1):各溫泉第一季沉積物中古菌 RFLP 類型分佈

Serial number	RFLP ty	P type of archaeal 16S rDNA			N	umber of o	clones	
of RFLP types	Rsa I (Afa I)	Sau 3A I	HhaI	硫磺 谷3	中山樓 2	馬槽 1	大油坑2	庚子坪2
36	III-10	III-2	VI-5				1	
37	III-10	III-5	VI-5				1	
38	III-10	III-6	III-1			1		
39	III-10	III-6	III-12	3				
40	III-10	IV-5	V-7					1
41	III-10	IV-6	V-3				1	
42	III-11	I -1	IV-1		1	1746	/	
43	III-11	II-1	III-12			8)	
44	III-11	II-1	III-13		*	1		
45	III-11	II-1	IV-1		4	6		
46	III-11	II-1	IV-1	3	25			
47	III-11	II-1	IV-13		Ł	1		
48	III-11	III-1	IV-1	\mathcal{N}	Į.	1		
49	III-11	III-5	V-9	(4dd	1			
50	III-12	II-2	V-12	7		1		
51	III-13	IV-7	IV-10	3				
52	III-14	IV-6	III-11	1				
53	III-15	J-Total	IV-15	1				
54	IV-3	II-2	IV-17				1	
55	IV-3	II-2	V-2				1	
56	IV-3	II -2	V-3				2	
57	IV-5	II-2	V-3			1		
58	IV-6	I-1	V-6			1		
59	IV-6	II-1	IV-8			3		
60	IV-6	II-1	V-10					1
61	IV-6	II-1	VI-1		4	2		12
62	IV-6	II-1	VI-2	5				
63	IV-6	II-2	IV-16	1				
64	IV-6	II-2	VI-2			1		19
65	IV-6	II-2	VI-4	3				
66	IV-6	III-1	V-10			2		
67	IV-6	IV-1	IV-14	1				
68	IV-6	IV-1	V-7					1
69	IV-6	IV-1	V-10					2
70	IV-6	IV-1	VI-2					1

表 21 (續 2): 各溫泉第一季沉積物中古菌 RFLP 類型分佈

X 21 (例 2 J· 谷血水炉)				7 001	170 十 6 医	4 111 11 7	<u> </u>			
Serial number	RFLP ty	pe of arch rDNA	aeal 16S	Number of clones						
of RFLP	Dag I	IDNA		硫磺						
types	Rsa I (Afa I)	Sau 3A I	HhaI	硫 頓 谷3	中山樓 2	馬槽 1	大油坑2	庚子坪2		
71	IV-6	V-1	V-11					1		
72	IV-7	II-1	III-5				1			
73	IV-7	II-1	III-10				1			
74	IV-7	II-1	V-2				5			
75	IV-7	IV-7	IV-8					1		
76	IV-8	II-2	III-5				1			
77	IV-8	IV-5	IV-12			17463	1	3		
78	IV-8	II-2	V-2			1 177	1			
79	IV-8	II-2	V-3		4) -	3			
80	IV-9	II-2	IV-1		14	7				
81	IV-9	II-2	IV-2	- 5	3					
82	IV-9	II-2	V-1							
83	IV-10	IV-7	IV-8	Ź	2					
84	IV-11	II-3	IV-11		1					
85	IV-12	II-1	IV-1	7	1					
86	IV-14	II-1	III-3			8				
87	IV-14	JI-1 - ∉	IV-13			1				
88	IV-15	_LIPbs	III-12			1				
89	IV-15	II-2	IV-2	8						
90	IV-16	ll-1	III-12	1						
91	V-1	II-2	IV-2		1					
92	VI-1	III-2	V-13				1			
93	VII-1	II-1	VI-1		1					
7	Total numb	er of clone:	S	39	47	41	53	47		
R	ichness of	RFLP typ	ne	17	16	17	33	14		

表 22:各溫泉第一季沉積物中古菌類型分佈

衣 44・ 合温水丸	子儿俱	177 日 国	規 空 カ か		
古菌序列比對結果		數	目(相似度	%)	
古 图	硫磺谷3	中山樓2	馬槽1	大油坑2	庚子坪2
Crenarchaeote (Phylum)	3(85-86)	2(83)			10(82-83)
Caldisphaerales (Order)					
Caldisphaera draconis	2(96-98)				
Caldisphaera lagunensis	2(99)				
Desulfurococcales (Order)			1(84)		3(82-83)
Acidilobus saccharovorans		5(83)	3(83)		12(82-83)
Sulfolobales (Order)			17/63	Λ	
Acidianus brierleyi		_	1.33	1(98)	
Acidianus infernus		- 1	9	14(96)	
Metallosphaera hakonensis	۵	041	77	4(95-98)	
Sulfolobus sp.	(1	Marine		1(87)	
Sulfolobus metallicus	~ 1	40		11(90-97)	
Sulfolobus tokodaii	447			4(98-99)	
Thermoproteales (Order)	9(83-84)	1(84)	4(83)		
Euryarchaeote (Phylum)		7(84-98)			
Thermoplasmatales (Order)	10(92-98)	1(95)	16(89-96)		1(86)
Ca. Aciduliprofundum boonei	5(85-86)	11(83-86)	3(84-86)		
Total	31	27	27	35	26
Crenarchaeote (Phylum)	16	8	8	35	25
Euryarchaeote (Phylum)	15	19	19	0	1
Crenarchaeote : Euryarchaeote	52:48	30:70	30:70	100:0	96:4

第五節 細菌多樣性之調查

針對選定的 5 處溫泉第一季沉積物中細菌進行 rDNA 的分子選殖,大油坑第二採樣點未能得到 PCR 放大的 DNA。將其餘 4 處樣品的選殖基因片段進行限制酶片段長度多型性 (RFLP)分析,依據各限制酶對 16S DNA 切割的RFLP類型 (見附錄四)分群 (表 23),發現 4 個採樣點細菌 16S DNA的RFLP類型差異很大,顯示 4 個地點細菌種類可能差異很大。選取各RFLP類型之代表性選殖 DNA 予以定序及比對資料庫,結果顯示 4 個地點細菌種類確實差異很大 (表 24)。中山樓第二採樣點的細菌歧異度最大,除了 41% (16/39)未能歸屬的細菌之外分別屬於 9 個門。馬槽第一採樣點的細菌歧異度次大,分別屬於 4 個門。硫磺谷第三採樣點和庚子坪第二採樣點的細菌則分別屬於 2 個門。

屬於變形菌門 (Proteobacteria) δ 變形菌綱 (δ Proteobacteria) 脫硫短桿菌屬 (Desulfurella) 的細菌均可在硫磺谷第三採樣點、中山樓第二採樣點、馬槽第一採樣點及庚子坪第二採樣點這 4 個地點發現,其數量分別佔該採樣點菌數的 18% (6/33)、10% (4/39)、42% (11/26) 及 9% (3/35)。

屬於產水菌門(Aquificae)生水小桿菌屬(Hydrogenobaculum)的細菌均可在硫磺谷第三採樣點、中山樓第二採樣點及馬槽第一採樣點這 3 個地點發現,其數量分別佔該採樣點菌數的 58% (19/33)、13% (5/39) 及 19% (5/26)。前人研究在美國黃石國家公園(Yellowstone National Park)含有亞砷酸鹽(arsenite)的酸性溫泉(63° C, pH 3.1)中分離到能夠氧化亞砷酸鹽的絕對化學自營性(obligate chemolithoautotrophic)生水小桿菌屬的菌株(Donahoe-Christiansen et. al., 2004)。

硫磺谷第三採樣點除了 18% (6/33) 的脫硫短桿菌屬和 58% (19/33) 的生水小桿菌屬細菌外,尚有 24% (8/33) 可能屬於 β 變形菌綱硫桿菌屬 (Thiobacillus) 的細菌。中山樓第二採樣點除了 10% (4/39) 的脫硫短桿菌屬、13% (5/39) 的生水小桿菌屬和 41% (16/39) 未能歸屬的細菌外,尚有 18% (7/39) 可能屬於熱袍菌門 (Thermotogae) 熱袍菌屬 (Thermotoga)

的細菌及 18% (7/39) 分別屬於 7 個門的細菌。馬槽第一採樣點除了 42% (11/26) 的脫硫短桿菌屬和 19% (5/26) 的生水小桿菌屬細菌外,尚有 38% (10/26) 分別屬於 4 個門的細菌。庚子坪第二採樣點除了 9% (3/35) 的脫硫短桿菌屬細菌外,尚有 60% (21/35) 屬於厚壁菌門 (Firmicutes) 環脂酸芽孢桿菌科(Alicyclobacillaceae)(主要為環脂酸芽孢桿菌屬 *Alicyclobacillus*, 20/35) 的細菌、23% (8/35) 屬於 γ 變形菌網 (γ Proteobacteria) 酸硫桿菌屬 (Acidithiobacillus) 的細菌和 9% (3/35) 其他分別屬於 α 變形菌網、 β 變形菌網、 γ 變形菌網的細菌。

本研究選定的四處溫泉中細菌種類確實差異很大,且顯示其中有許多細菌應為目前未被發現的物種。由於大眾對於溫泉微生物所知有限,更不瞭解現代生物學有關細菌、古菌分類的進展,因此無論站在保育研究或將來為民眾解說之便,都應該積極進行溫泉細菌的分離與分類,並進一步探討其形態和生理特性。

表 23:各溫泉第一季沉積物中細菌 RFLP 類型分佈

			C-17C-174 C						
RFLP ty		erial 16S	Number of clones						
Afa I				1 . 11 0	111. 4		L - 2 1 - 2		
(Rsa I)	Sau 3A I	Hha I	硫磺谷3	中山樓2	馬槽 I	大油坑2	庚子坪2		
II-1	I-1	V-23			1				
III-3	III-6	III-9		1					
IV-1	II-1	VI-1	5						
IV-1	II-3	V-6		4					
IV-2	I -1	II-1			1				
IV-3	IV-9	V-14		2	1000				
IV-3	IV-12	II-2		1	1740	٨.			
IV-4	II-6	IV-9	1		1000)			
IV-4	III-4	II-1		1	1 1				
IV-4	IV-1	II-3		2	7				
IV-4	IV-1	IV-1	X				1		
IV-4	IV-1	IV-9	6	No.					
IV-4	IV-1	V-25	1	P					
IV-4	IV-1	VII-1	640	1					
IV-4	IV-2	IV-1	1						
IV-5	I -1	III-12			1				
IV-5	J-1	V-5			5				
IV-5	II-3	V-5			4				
IV-5	II-3	V-6		1					
IV-5	III-3	IV-11		1					
IV-5	IV-12	VI-6			1				
IV-6	IV-13	II-1		1					
IV-6	V-5	VI-4			1				
IV-7	II-5	V-8			1				
IV-7	III-4	IV-12		1					
IV-8	IV-9	IV-13		1					
IV-8	IV-11	II-3					1		
IV-9	II-3	V-6	14						
IV-9	II-3	V-12		1					
IV-9	III-4	V-6	1						
IV-10	III-4	III-13	1						
IV-10	III-5	III-10		1					
IV-11	II-5	V-17					1		
IV-11	III-7	IV-14		1					
IV-12	IV-8	V-18					1		
	Afa I (Rsa I) II-1 III-3 IV-1 IV-1 IV-2 IV-3 IV-4 IV-4 IV-4 IV-4 IV-4 IV-5 IV-5 IV-5 IV-5 IV-7 IV-7 IV-8 IV-9 IV-9 IV-10 IV-11 IV-11	RFLP type of bactor DNA Afa I (Rsa I) II-1	RFLP type of bacterial 16S rDNA Afa I (Rsa I) Sau 3A I Hha I II-1 I-1 V-23 III-3 III-6 III-9 IV-1 II-1 VI-1 IV-1 II-3 V-6 IV-2 I-1 II-1 IV-3 IV-9 V-14 IV-3 IV-9 II-4 IV-4 III-4 II-1 IV-4 IV-1 IV-1 IV-4 IV-1 IV-9 IV-4 IV-1 IV-9 IV-4 IV-1 IV-9 IV-4 IV-1 IV-9 IV-4 IV-1 IV-1 IV-5 I-1 III-12 IV-5 I-1 V-5 IV-5 III-3 V-6 IV-5 III-3 IV-11 IV-6 V-5 VI-4 IV-7 III-5 V-8 IV-7 III-4 IV-12 IV-8 IV-9 III-3 IV-9 III-1 IV-1 III-1 IIII-1 III-1 IIII-1 IIII-1 IIII-1 IIIIIII IIIIIII IIIIIIII	RFLP type of bacterial 16S rDNA Afa I (Rsa I) Sau 3A I Hha I 硫磷含3 II-1 I-1 V-23 III-3 III-6 III-9 IV-1 III-1 VI-1 5 IV-1 III-1 VI-1 5 IV-2 I-1 III-1 III-1 IV-2 III-2 III-2 IV-4 III-4 IV-1 IV-9 6 IV-4 IV-1 IV-1 III-1 IV-9 6 IV-4 IV-1 IV-1 III-1 IV-9 III-1 IV-1 IV-1 IV-1 IV-1 IV-1 IV-1 IV-	RFLP type of bacterial 16S rDNA Afa I (Rsa I) Sau 3A I Hha I 硫磷谷 3 中山樓 2 II-1 I-1 V-23 III-3 III-6 III-9 1 IV-1 II-1 VI-1 5 IV-1 II-3 V-6 4 IV-2 I-1 II-1	RFLP type of bacterial 168 rDNA Afa I (Rsa I) Sau 3A I Hha I 硫磷谷 3 中山樓 2 馬槽 1 III-1 I-1 V-23	Rafa I Rafa I		

表 23 (續 1):各溫泉第一季沉積物中細菌 RFLP 類型分佈

	12 20 ()	スェノ・10-	了·谷血水中。子儿俱初下細菌 NILI 规型为冲								
Serial number	RFLP ty	pe of bactorDNA	erial 16S		Nur	nber of c	lones				
of RFLP	Afa I	Sau 3A I	Hha I	硫磺谷3	中山樓 2	馬槽 1	大油坑2	庚子坪2			
types 36	(Rsa I)			7.C X G -	1 2/12 =	. 714	7 214 173 =				
	IV-12	IV-16	IV-7					1			
37	IV-12	VI-2	V-18					5			
38	IV-13	IV-14	V-18					3			
39	IV-13	IV-14	V-20					2			
40	IV-14	IV-15	V-21					1			
41	IV-14	V-4	IV-17			5		1			
42	V-3	IV-10	IV-10		3	17:44	\				
43	V-5	IV-1	V-15		1	1.01	/				
44	V-8	III-11	III-2		1	1 1					
45	V-8	V-1	III-2	6.0	. 4 %	2					
46	V-8	V-1	III-7	X	1						
47	V-8	V-1	IV-19			1					
48	V-8	V-3	III-7	`\`	1						
49	V-10	II-4	V-6	plo)I							
50	V-10	III-4	IV-12	5							
51	V-10	IV-1	IV-12	1							
52	V-10	IV-12	III-2			1					
53	V-12	IV-1	IV-9		4						
54	V-12	IV-2	IV-1		2						
55	V-13	II-1	V-22			1					
56	V-13	II- 5	IV-12					1			
57	V-13	III-4	IV-12		7						
58	V-14	II-3	III-9		1						
59	V-15	II-1	III-8		1						
60	V-16	II-3	III-7		1						
61	V-17	III-3	III-9		1						
62	V-17	III-9	III-11					1			
63	V-17	IV-16	IV-7					2			
64	V-18	II-2	VI-5			1					
65	V-18	III-2	V-17					1			
66	V-18	III-4	IV-12			1					
67	V-19	IV-16	IV-15					1			
68	V-20	IV-16	IV-7					1			
69	V-21	III-10	V-24			1					
70	VI-1	II-5	IV-12			3					

表 23 (續 2): 各溫泉第一季沉積物中細菌 RFLP 類型分佈

Serial	Serial RFLP type of bacterial 16S		于700模拟 W 国 I E E X 至 N I P							
number	ICI LI ty	rDNA	criar 105	Number of clones						
of RFLP types	Afa I (Rsa I)	Sau 3A I	Hha I	硫磺谷3	中山樓2	馬槽1	大油坑2	庚子坪2		
71	VI-1	III-4	IV-12			7				
72	VI-1	III-6	IV-12			1				
73	VI-3	II-3	III-7		1					
74	VI-4	IV-11	V-14		1					
75	VI-5	II-3	III-8		1					
76	VI-6	V-1	III-7		1	Real				
77	VI-6	V-3	III-2			(47))			
78	VI-7	II-3	III-7		2					
79	VI-8	II-5	III-9	00	, 47	,		2		
80	VI-8	II-5	IV-16	K	the same			1		
81	VI-8	II-5	IV-17	/	D			14		
82	VI-8	II-5	V-19	77				3		
83	VI-9	Ⅲ-8	Ⅲ-11	17"				3		
84	VI-9	Ⅲ-8	V-17					1		
85	VI-10	∏-5	V-8					2		
86	VI-10	II-1	V-8	2		1				
87	VI-11	V-6	IV-18			1				
88	VII-1	Ⅱ-3	Ⅲ-7		10					
89	VII-1	∏-3	V-16		1					
90	VII-2	Ⅱ -4	V-8		1					
7	Γotal numb	er of clones	S	39	60	39	0	50		
R	ichness of	RFLP typ	ne	12	33	23	0	23		

表 24:各溫泉第一季沉積物中細菌類型分佈

衣 24 · 合温采乐一名	一 7007貝 477		E // IIP 目(相似度	%)	
細菌序列比對結果	硫磺谷3	中山樓2	馬槽1	大油坑2	庚子坪2
Bacterium clone		5(92-93)			
Acidobacteria (Phylum)		1(79)			
Acidobacterium sp.		, ,	1(93)		
Actinobacteria (Phylum)					
Rubrobacteraceae (Family)		1(81)			
Aquificae (Phylum)					
Hydrogenobaculum sp.	19(96-97)	5(86-97)	5(95-97)		
Chlorobi (Phylum)		- /	1621		
Chlorobiaceae (green sulfur bacterium) (Family)		1(85)	(1)		
Chloroflexi (Phylum)		J W	1(84)		
Anaerolinea thermophila	60	1(88)			
Firmicutes (Phylum)	150	Lour			
Alicyclobacillaceae (Family)	. / 4				1(92)
Alicyclobacillus sp.	7				20(94-99)
Thermoanaerobacteriaceae (Family)	ניק				
Thermoanaerobacter sp.		1(81)			
Proteobacteria (Phylum)					
α Proteobacteria (Class)					
Sphingomonadaceae (Family)					
Sphingomonas sp.					1(99)
β Proteobacteria (Class)					
Burkholderiaceae (Family)					
Ralstonia sp.					1(99)
Comamonadaceae (Family)					
Thiomonas sp.			1(95)		
Hydrogenophilaceae (Family)					
Thiobacillus sp.	8(91-92)		1(90)		
γ Proteobacteria (Class)					
Acidithiobacillaceae (Family)					
Acidithiobacillus sp.					8(97-98)
Chromatiaceae (Family)					
Rheinheimera sp.					1(90)

表 24 (續):各溫泉第一季沉積物中細菌類型分佈

化 47 (例)	一 子心俱初于阿因烈至为师									
/_ 花 点 私儿 业 从 田		數	目(相似度	%)						
細菌序列比對結果	硫磺谷3	中山樓 2	馬槽 1	大油坑2	庚子坪2					
Proteobacteria (Phylum)										
δ Proteobacteria (Class)			4(82-96)							
Desulfurellaceae (Family)										
Desulfurella sp.		4(91-98)	1 (86)		3(97-98)					
Desulfurella kamchatkensis	6(97-98)		10(96-98)							
Desulfovibrionaceae (Family)										
Desulfovibrio sp.		1(80)	120							
Syntrophaceae (Family)		(2(82)							
Spirochaetes (Phylum)		1(97)	1.15							
Thermotogae (Phylum)		1,,	1							
Thermotoga sp.	4.00	7(88-89)								
Filamentous bacterium	X	11(83-98)								
Total	33	39	26	0	35					
Acidobacteria (Phylum)	/,	1	1							
Actinobacteria (Phylum)	(4)	1								
Aquificae (Phylum)	19	5	5							
Chlorobi (Phylum)		1								
Chloroflexi (Phylum)		1	1							
Firmicutes (Phylum)		1			21					
Proteobacteria (Phylum)	14	5	19		14					
Spirochaetes (Phylum)		1								
Thermotogae (Phylum)		7								
Unknown		16								
The state of the s										

第六節 原生動物之調查

如第三節所述,針對馬槽第一採樣點的沉積物,以 PCR 方法無法偵測到真核微生物。因此改用以網目大小 30 μ m 的浮游生物網過濾水樣或直接取樣的方法,試圖收集浮游性原生動物以便用顯微鏡觀察 (表 25),結果除了八煙中性 pH 值的常溫溪水有觀察到類似草覆蟲的生物,其他所有採集的酸性水樣中皆未觀察到原生動物的蹤跡。

表 25:各地點採集浮游性原生動物方法的一覽表

	• • • • • • • • • • • • • • • • • • • •		** * ** ** > > > > > > > > > >	
나 포트	地點 溫泉		溪水豆	戈池水
地高	浮游生物網	直接取樣	浮游生物網	直接取樣
硫磺谷	_	37.Y	+	+
龍鳳谷	+	(1/1/1)+)	+	+
中山樓	+	+	_	_
小油坑	+ 🌶	+	_	_
馬槽	A+ 4/	+	+	+
大油坑	1 B	+	_	_
八煙	165	+	+	+
庚子坪	+	_	+	+

第七節 無脊椎動物多樣性之調查

無脊椎動物(Invertebrate)是背側沒有脊柱的動物,其種類數占動物總種類 數的 95%。無脊椎動物這個名字並沒有分類學上的意義,無脊椎動物是相對於 脊椎動物(Vertebrate)而言的。脊椎動物外的動物都屬於無脊椎動物。如果按 形態學分類的話,無脊椎動物首先按照組成的細胞數,分為單細胞動物(即原生 動物 Protozoa) 和多細胞動物(即後生動物 Metazoa) 兩種。多細胞動物再被分 為側生動物 (Parazoa) 和真後生動物 (Eumetazoa)。前者包括多孔動物門 (Porifera), 扁盤動物門 (Placozoa)、直泳蟲門 (Orthonectida) 等。真後生動 物按照其身體對稱方式被分為輻射對稱動物和兩側對稱動物。前者包括刺胞動物 門 (Cnidaria) 和櫛水母動物門 (Ctenophora)。兩側對稱的動物包括扁形動物門 (Platyhelminthes)、輪形動物門(Rotatoria)、紐形動物門(Nemertea)、苔蘚動 物門 (Bryozoa)、帚蟲動物門 (Phoronida)、軟體動物門 (Mollusca)、環節動物 門(Annelida)、線蟲動物門(Nematoda)、節肢動物門(Arthropoda), 棘皮動物 門(Echinodermata)、星蟲動物門(Sipunculida)、螠蟲動物門(Echiura)、須腕 動物門 (Pogonophora),內肛動物門 (Entoprocta)、腕足動物門 (Brachiopoda) 等,及脊索動物門(Chordata)中的兩個亞門:頭索動物亞門(Cephalochordata) 和尾索動物亞門 (Urochordata)。

根據上述,欲全面進行無脊椎動物的多樣性調查實屬巨大工程,難以短時間完成。本研究乃以中山樓、硫磺谷、龍鳳谷、小油坑、大油坑、馬槽、八煙和庚子坪等八個溫泉露頭為調查區域,將環境區分為溫泉水體、溫泉附近陸域、溫泉外圍水體和溫泉外圍陸域4種類型的區域,以目視採集或挖掘翻找方式調查溫泉附近的重點無脊椎動物,包括蚯蚓、蜘蛛及廣為網友流傳的野溪溫泉中的『紅蟲』。結果如下:

壹、環帶綱 (Clitellata)

在八個溫泉露頭附近並未挖掘到或發現任何蚯蚓的活動痕跡,蚯蚓皆發現 於溫泉外圍陸域。蚯蚓共發現1科1屬3種3隻次(表26)。

		中	硫	龍	小	大	馬	八	庚
科名	學名	山	磺	鳳	油	油			子
		樓	谷	谷	坑	坑	槽	煙	坪
巨蚓科	皮質遠環蚓 (Amynthas								
(Megascolecidae)	corticus)				•				
巨蚓科	多腺遠環蚓 (Amynthas								
(Megascolecidae)	polyglandularis)							•	
巨蚓科	泰雅遠環蚓 (Amynthas				•				
(Megascolecidae)	tayalis)								

表 26:八個溫泉露頭外圍陸域發現蚯蚓統計表

發現物種分別為皮質遠環蚓(Amynthas corticis)(附錄八圖 1A)、多腺遠環 蚓(Amynthas polyglandularis)(附錄八圖 1G)和泰雅遠環蚓(Amynthas tayalis) (附錄八圖 1D),其中皮質遠環蚓與多腺遠環蚓的發現位置在鄰近大屯橋的路旁 水溝,距離最近的小油坑調查點有 305 公尺,而多腺遠環蚓發現於往八煙溫泉的 山徑上,距離最近的八煙溫泉調查點有 190 公尺。

皮質遠環蚓為世界廣布種,常見於台灣平地至中海拔地區,不論都會公園、學校或山區都很容易發現此種蚯蚓;而多腺遠環蚓為台灣特有種,主要分布於台灣北部的低海拔地區;秦雅遠環蚓亦為台灣特有種,主要分布於台灣北部低海拔山區,本種在陽明山國家公園的分布狀況值得進一步研究。

溫泉露頭附近陸域並沒有發現任何蚯蚓,這可能與土壤化學性質有關,大部分蚯蚓不耐酸性土壤,而溫泉露頭附近土壤為火山灰燼土或弱育土(蔡呈奇等人,2008),不僅有機質不高且土壤偏酸性,並不適合蚯蚓生存。

2002 年行政院農業委員會『台灣北部地區生物資源調查及研究之十』曾進行陽明山地區的蚯蚓種類分布調查,該調查係以各道路可及範圍為主要調查區域,共有37個採集點,採集蚯蚓總數100隻,分屬於1科2屬13種(陳俊宏,2003)。而本調查發現蚯蚓種類於2002年已曾發現。但該調查涵蓋範圍甚小,且調查點侷限於國家公園內已人為開發利用地區,未經人為利用區域的蚯蚓種類則尚未調查。因此,仍需全面性調查,才能更瞭解陽明山國家公園內蚯蚓相。

貳、蛛形綱(Arachnida)

在溫泉露頭附近陸域共發現6種蜘蛛,主要以地表遊走型與地面結網型的蜘

蛛為主,屬於豹蛛科 1 種、跳蛛科 2 種、鷲蛛科 1 種、橫疣蛛科 1 種,另外尚有一未知蜘蛛種類待進行鑑定(表 27)。其中狼蛛 sp.1 發現於硫磺谷、小油坑、大油坑、馬槽、八煙、及庚子坪(附錄八圖 2),為分佈最廣的種類;跳蛛 sp.2 發現於小油坑、八煙、庚子坪;跳蛛 sp.3 發現於八煙(附錄八圖 3);鷲蛛 sp.4 發現於八煙(附錄八圖 3),橫疣蛛 sp.5 發現於硫磺谷、小油坑、庚子坪(附錄八圖 4)。未知的蜘蛛 sp.6 發現於小油坑、大油坑(附錄八圖 4)。

此外,在大油坑外圍地區發現有金蛛科2種蜘蛛(附錄八圖4)。

溫泉地區的裸露地形因植被結構單調或缺乏植物覆蓋,故蜘蛛以地表遊走型 與地面結網型為主,概因其他種類的蜘蛛(如結圓網型)缺乏結網的附著點及掩 蔽空間等資源(卓逸民,2003)。此外,分佈最廣的種類狼蛛 sp.1 可能為 Pardosa takahashii,尚待進一步鑑定。該種蜘蛛主要活動在地表裸露的棲地環境中,例 如沙地(千國,1989)。Pardosa takahashii 活動非常敏捷,因此像大油坑這種地 表障礙少的環境,很適合其生存(卓逸民、2003)。

	100								
A 1	V	中	硫	龍	小	大	馬	八	庚
科名	學名	山	磺	鳳	油	油			子
. "(62		樓	谷	谷	坑	坑	槽	煙	坪
狼蛛科	Sp.1		•		•	•	•	•	•
(Lycosidae)									
跳蛛科	Sp.2				•			•	•
(Salticidae)									
跳蛛科	Sp.3							•	
(Salticidae)									
鷲蛛科	Sp.4							•	
(Gnaphosidae)									
横疣蛛科	Sp.5		•		•				•
(Hahniidae)									
未知的蜘蛛	Sp.6				•	•			
(Unkown)									

表 27:八個溫泉露頭附近陸域發現蜘蛛統計表

參、昆蟲綱 (Insecta)

在溫泉露頭附近水域或陸域發現記錄5種昆蟲(表28)。

		中	硫	龍	小	大	馬	八	庚
科名	學名	山	磺	鳳	油	油			子
		樓	谷	谷	坑	坑	槽	煙	坪
划椿科	横紋划椿 (Sigara						•		
(Corixidae)	substriata)								
石蛉科	石蛉科幼蟲 Sp.7						•		
(Corydalidae)									
搖蚊科	搖蚊科幼蟲 Sp.8						•		•
(Chironomidae)									
水黽科	Sp.9		•		and the last	No.			
(Gerroidae)					14	15			
蟻科(Formicidae)	未知的螞蟻 Sp.10				•	79		•	•

表 28:八個溫泉露頭附近水域或陸域發現昆蟲統計表 a

在水體方面,水黽科(附錄八圖 5F)僅於硫磺谷溫泉附近水體(水溫低於 30°C 的綠波池)中發現,橫紋划椿(附錄八圖 5A)、石蛉科幼蟲(附錄八圖 5B)僅於馬槽的溫泉附近小溪流(水溫低於 30°C)發現。而搖蚊科幼蟲則於馬槽溫泉附近小溪流(水溫低於 30°C)(附錄八圖 5C)與庚子坪溫泉附近小溪流(水溫 34°C)(附錄八圖 5D)有記錄到,且數量非常多。搖蚊科幼蟲又被稱為『紅蟲』,會成群棲息於溪流的岩石上或泥質底質中(附錄八圖 6),對水質耐受性高。馬槽及庚子坪搖蚊科幼蟲的生活水域 pH 值分別為 2.8 及 3.3,足見其在嚴苛環境下的生存能力。

在陸域方面,溫泉露頭附近發現昆蟲僅有螞蟻,在小油坑(附錄八圖 7A)、 大油坑(附錄八圖 7B)、八煙(附錄八圖 7C)和庚子坪(附錄八圖 7D)都有發 現及採集到螞蟻。

溫泉區昆蟲出現與否與溫度有很高關聯性;溫泉溫度超過 45℃後,大部分 昆蟲便會死亡,不適合昆蟲生存(陳俊雄,2006)。本調查亦僅在溫泉附近低溫 水域中才發現到水生昆蟲,而在溫泉露頭高溫水體中則完全沒有發現任何水生昆 蟲。

a媽蟻在溫泉露頭附近陸域發現,其它溫泉露頭附近冷水域發現。

第八節 藻類多樣性之調查

在探勘溫泉的過程中發現硫磺谷第一採樣點(LHG1)是一個常溫大水池,沒有明確出、入水口,可能由降水蓄積而成。由於水色偏綠,其中可能生存藻類。 3月23日測得之溫度為23℃,pH2.11;5月18日測得之溫度為28℃,pH2.59。由於前人在西班牙流經鐵礦區的酸性(pH2)河水中發現許多包括藻類在內的真核微生物(Zettler et. al., 2002),因此該常溫水池的藻類調查成為一個重點。另外在小油坑、馬槽、八煙、庚子坪溫泉附近的石頭或岩壁也有發現綠色附著物,其特性分別描述如表29,也分別予以採集觀察。

表 29:藻類調查之採集點及其特性

	· · · · · · · · · · · · · · · · · · ·	77.77.7 CICAL 2017.11
溫泉區	採樣點代號	採樣點描述
硫磺谷	LHG1	常溫大水池(LHG1)綠色池水及岸邊綠色沉積物。
		7月7日測得之水溫為32℃,pH 2.55。
小油坑	SYK1-A	小油坑第一採樣溫泉(SYK1)附近有水的綠色物。
		7月9日測得之水溫為50°C,pH3.39。
	SYK1-B	SYK1 附近有水的黄色物。
	SYK1-C	SYK1 附近水旁岩石上的綠色物。
Λ	SYK1-D	SYK1 附近白色岩壁上的綠色物。
164	SYK1-E	SYK1 附近黑色岩壁上的綠色物
馬槽	MC1-A	小油坑第一採樣溫泉(MC1)上方石壁上的綠色
/	3/	物。7月7日測得之水溫為51°C,pH2.50。
	MC1-B	MC1 附近冷水灘的沉積物。7月7日測得之水溫為
		29°C → pH 2.46
	MC1-C	MC1 附近黑色岩壁上的綠色物。
	MC1-D	小油坑第一採樣溫泉(MC1)上方石壁上的綠色
		物。9月2日採樣。
	MC1-E	MC1 附近白色岩壁上的綠色物。9月2日採樣。
八煙	BY	八煙溫泉源頭附近石頭表面綠色附著物。7月9日
		測得之水溫為 62℃, pH 2.26。
庚子坪	GZP3	庚子坪溫泉附近小溪流岸邊石頭上的綠色物。7月
		9 日測得之水溫為 33℃, pH 2.63。

根據顯微鏡觀察,主要發現兩大類的藻類,分別為單細胞紅藻及矽藻(表 30及附錄九照片)。前者張蒼碧早於1966年碩士論文中即指出可在陽明山(招 待所)和新北投(公路旁)的溫泉中發現,當時分類為 Rhodococcus caldarius(=Cyanidium caldarium)。梁素雲於 1990 年碩士論文中也在大磺嘴和四磺坪硫磺噴氣孔採集到單細胞紅藻,經過培養和顯微鏡觀察,發現其藉由內生孢子生殖,鑑定為 Cyanidium caldarium。隨著國際研究的進展,現在已知酸性溫泉區域酸性、高溫環境下生存的單細胞紅藻至少有三個屬,分別為 Cyanidium, Cyanidioschyzon 和 Galdieria,它們型態類似都歸類在 Cyanidiales 目(Order)Cyanidiaceae 科(Family);而利用分子生物學的方法發現可能還有更多個屬的單細胞紅藻(Ciniglia et. al., 2004)。Yoon等人(2006)利用環境 PCR 的方法也在義大利地熱區的岩隙棲地(inter- and endolithic habitats)中發現 Cyanidium 和 Galdieria 的蹤跡。

₹50 条数 ₩ 量 ~ 流水														
溫泉區	採樣點 代號	單細胞紅藻			矽藻種類									
		單細胞紅藻科 異極藻科			舟形藻科									
	T \ 3/10	-9	1	2	3	4	5	6	7	8	9	10	11	12
硫磺谷	LHG1	-	_	_		_	_	_	_	_	+	_	_	_
小油坑	SYK1-A	7	+							_		+	+	
	SYK1-B	713-								_			_	
	SYK1-C	6, -	_	_	_	_	_	_	_	_	_	_	_	_
	SYK1-D	+	_	_	_	_	_	_	_	_	_	_	_	_
	SYK1-E	++				+		+		_			_	+
馬槽	MC1-A	_								_		+	_	
	MC1-B	_					+			_	+		_	
	MC1-C	++			_		+	+	_	_	+		_	+
	MC1-D	++			+		_	_	_	_	+		_	_
	MC1-E	+						+		_				
八煙	BY	_	_	_	_	_	_		+	_	_	_	_	_
庚子坪	GZP3	_	_	+	_	_	_		+	+	_	_	_	_
		- 				-			+	+				

表 30:藻類調查之結果

一:未發現;+:有發現;++:有發現且數量較多。

由表 30 的結果發現:

1. 硫磺谷的常溫水池和庚子坪的常溫溪水雖然很酸,皆未發現單細胞紅藻,可能是溫度低的原因。

- 2. 八煙溫泉源頭附近石頭表面也未發現單細胞紅藻,可能是溫度過高的原因。
- 3. 小油坑和馬槽的石壁,尤其是黑色岩壁下方的岩隙棲地發現許多單細胞紅藻。
 - 4. 前述岩隙棲地也發現較多種類的矽藻。

由於岩隙棲地表面被黑色物質覆蓋,理論上不利於光合作用的進行,但可保有水分並阻擋有害物質,因此反而是硫氣噴發口附近的良好棲息所。其中的微生物相值得深入研究。

採樣點的選擇以觀察到綠色物質為主(表29),除了發現偏綠色的單細胞紅藻之外,也觀察到許多直徑1-3 µm 的綠色顆粒(尤其在硫磺谷綠色水池),推測可能是屬於色球藻目(Chroococcales)的原核生物。馬槽冷水灘的沉積物為土黃色,可觀察到兩種矽藻,其餘綠色採樣點發現的矽藻可能不是優勢生物,並不能影響該處的外觀色澤。

單細胞紅藻 Cyanidium caldarium 可在光照下同時合成藻膽蛋白 (phycobiliproteins)及葉綠素 a (chlorophyll a),被視為從藍藻綱(Cyanophyceae) 原核生物到紅藻綱 (Rhodophyceae) 真核生物的過渡物種 (Fredrick, 1976)。其生存適應酸性 (小於 pH 5) 及高溫 (高達 55-56°C) 環境,最適合生長在 pH 2-3及 45°C條件下;低於 35°C 的自然水域和鹼性溫泉則無法發現 (Doemel and Brock, 1971)。硫磺谷的常溫水池和庚子坪的常溫溪水以及八煙溫泉源頭附近石頭表面未發現單細胞紅藻的結果與之相符合。

在研究緣起一節中,委託單位提到「全球日趨暖化及酸化現象,未來人類因應之道也許在其中可找到答案」。全球暖化是大量燃燒煤和石油製品,釋放大量二氧化碳於大氣中,導致溫室效應加強的結果。酸雨是燃燒含硫量高的煤和燃料油產生二氧化硫,再進一步氧化並與水作用形成硫酸所致。邱耀興(2003)曾利用小球藻(Chlorella)針對火力發電廠的廢氣進行生物固碳的研究。本研究發現小油坑和馬槽有許多單細胞紅藻,由於此等藻類可在酸性條件下行光合作用吸收二氧化碳,因此應該更適合於低價燃煤和燃料油(含硫量高)火力發電廢氣的處理,以收同步減緩二氧化碳與二氧化硫危害之功效。

第九節 温泉微生物之生存機制

壹、溫泉沉積物中古菌、細菌之數量與溫度、酸鹼度之關係

將各採樣點沉積物中古菌、細菌之數量與該地水樣之各項理化數值進行比 對,除了溫度、酸鹼度之外並未發現明顯關連。

根據表 20 的數據,將溫度、酸鹼度 (pH)與古菌、細菌之相對數量作圖 (圖 9、圖 10),結果可以看出:

- 1. 在 pH 1.5 到 6.5 之間都有可能發現古菌和細菌的蹤跡;但古菌主要在 pH 2.5 到 6 之間,細菌則主要在 pH 2 到 6.5 之間。
- 2. 古菌的蹤跡集中在 40-70 °C 之間,主要在 40-60 °C 之間;細菌則在 20-95 °C 之間都可能發現,但主要也在 40-60 °C 之間。

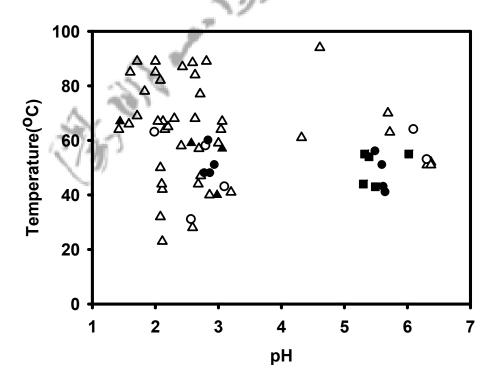


圖 9:98 年四季採樣點沉積物中古菌之數量與溫度、酸鹼度之關係。 古菌檢出量: \triangle ,-; \bigcirc ,+/-;▲,+; \blacksquare ,+++。

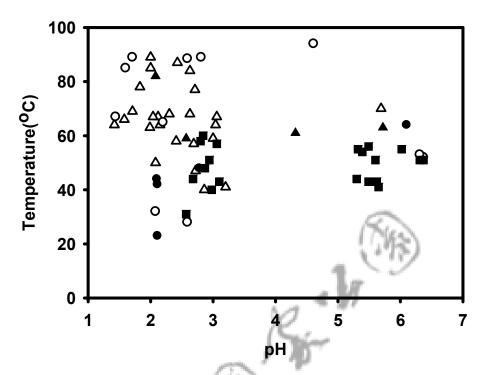


圖 10:98 年四季採樣點沉積物中細菌之數量與溫度、酸鹼度之關係。 細菌檢出量: \triangle , -; \bigcirc , +/-; ▲, +; ■, ++; ≡, +++。

貳、不同酸鹼度對溫泉沉積物中古菌及/或細菌生長之影響

將不同時間採集到的新鮮溫泉沉積物懸浮液,分別接種到不同 pH 值且同時添加了 1 g/L Peptone 和 Yeast extract 的液體培養基,於 60° C 或 45° C 下振盪培養 6-10 天,測定培養液的 pH 值和 OD_{660} ,作為溫泉沉積物中 古菌及/或細菌生長之依據(表 31),並將溫泉 pH 與其內好氧異營性微生物最適生長 pH 作圖(圖 11)。結果發現:

- 1. 除了中山樓 1 (JSB1)、小油坑 1 (SYK1)、小油坑 2 (SYK2) 8 月的 三個採樣點內微生物最適生長 pH 比溫泉 pH 低 1 到 2 個 pH 值單位之外,大多 數採樣點內微生物最適生長 pH 都比溫泉 pH 要高。前述三個樣品的 pH 介於 4.3-5.7 之間,顯然其中的嗜酸菌需要忍受不那麼酸的環境。
- 2. 龍鳳谷 1 (LFG1) 與馬槽 2 (MC2) 為中性碳酸鹽泉。7、8 月採樣時 pH 介於 5.9-6.3 之間,其內微生物最適生長 pH 在 7,比溫泉 pH 略高不到 1。顯然其中的微生物為嗜中性菌。

- 3. 中山樓 1 (JSB1) 為弱酸性硫酸鹽泉。7 月採樣時溫度 54°C、pH 5.48, 其內微生物最適生長 pH 在 7,比溫泉 pH 約高 1.5;8 月採樣時溫度 (54°C)、pH (5.39) 與 7 月相同,其內微生物最適生長 pH 在 4,卻比溫泉 pH 約低 1.4。顯 然其內有嗜酸菌也有嗜中性菌,且其相對數量可能會隨時間而變動,此推測與中 山樓溫泉具有最大細菌多樣性的結果吻合。pH5.4-5.5 對嗜酸菌而言不會過鹼, 對嗜中性菌而言又不會過酸;雖皆不利於其最適生長,但終究能緩慢生長。
- 4. pH 值大於 2、小於 3.5 的酸性溫泉,其內微生物最適生長 pH 為 3 或 4。 顯然其中的微生物仍為嗜酸菌。pH 2-3.5 對這些嗜酸菌而言稍酸而不利其生 長,但終究能緩慢生長。
- 5. pH 值小於或等於 2 的強酸性溫泉如如硫磺谷 2 (LHG2, 2009/08/20)、大油坑 1 (DYK1, 2009/08/22)、大油坑 2 (DYK2, 2009/08/22)、庚子坪 2 (GZP2, 2009/07/09),其內微生物最適生長 pH 為 5-7。顯然這些微生物不是利用快速生長來對應強酸性,或許產生休眠性的細胞(例如孢子)抵抗強酸是一種方法,只有當環境 pH 值不那麼酸時才開始生長。此推測與庚子坪第二採樣點具有超過半數環脂酸芽孢桿菌屬細菌的結果吻合。

表 31:各採樣點樣品在不同酸鹼度培養基中培養之結果

硫磺谷 1 (LHG1, 2009/08/20, 32°C, pH 2.08) pH 10 20 30 40 50 60 70												
рН	1.0	2.0	3.0	4.0	5.0	6.0	7.0					
pH ₇ (60°C)	-	2.08	4.23	6.45	6.66	6.31	6.00					
$\triangle \text{OD}_7(60^{\circ}\text{C})$	-	0.034	0.419	0.486	0.197	0.199	0.016					
硫磺谷 2 (LHG2, 20	009/08/20	, 89°C, pF	H 2.00)									
рН	1.0	2.0	3.0	4.0	5.0	6.0	7.0					
pH ₇ (60°C)	-	1.98	2.76	3.43	3.93	4.24	5.38					
$\triangle OD_7(60^{\circ}C)$	-	0.002	0.002	0.032	0.067	0.010	0.000					
硫磺谷 3 (LHG3, 20	009/07/07	, 54°C, pF	H 2.90)									
pН	1.0	2.0	3.0	4.0	5.0	6.0	7.0					
pH ₁₃ (60°C)	-	1.86	3.09	4.06	5.06	-	6.46					
$\triangle OD_{13}(60^{\circ}C)$	0	0.002	0.049	0	0.005	0.003	0.004					
硫磺谷 3 (LHG3, 20	009/08/20	, 82°C, pF	H 2.08)	1.	~ ~							
pН	1.0	2.0	3.0	4.0	5.0	6.0	7.0					
pH ₇ (60°C)	-	2.02	2.86	3.47	3.99	4.34	5.28					
$\triangle OD_7(60^{\circ}C)$	-	0.001	0.014	0.114	0.084	0.057	0.073					
龍鳳谷1(LFG1, 20	009/07/08	8, 52 °C,	pH 6.26)	b.								
рН	3.0	4.0	5.0	6.0	7.0	8.0	9.0					
pH ₉ (60°C)	3.21	4.17	5.09	6.04	7.03	8.31	9.23					
$\triangle OD_9(60^{\circ}C)$	0.006	0.010	0.035	0.140	0.304	0.129	0.055					
龍鳳谷1(LFG1, 20	009/08/20	0, 51 °C,	pH 6.31)									
рН	3.0	4.0	5.0	6.0	7.0	8.0	9.0					
pH ₇ (60°C)	3.08	4.16	5.18	7.81	6.99	-	-					
$\triangle \text{OD}_7(60^{\circ}\text{C})$	0.001	0.000	0.000	0.288	0.328	-	-					
中山樓 1 (JSB1, 20	09/07/08	, 54 °C, p	oH 5.48)									
рН	3.0	4.0	5.0	6.0	7.0	8.0	9.0					
pH ₉ (60°C)	3.14	4.04	5.17	6.13	7.05	8.08	9.15					
$\triangle OD_9(60^{\circ}C)$	0.012	0.014	0.014	0.113	0.331	0.164	0.010					
中山樓 1 (JSB1, 20	09/08/20	, 54 °C, p	oH 5.39)									
рН	3.0	4.0	5.0	6.0	7.0	8.0	9.0					
pH ₇ (60°C)	3.06	6.95	6.55	6.15	6.64	-	-					
$\triangle \text{OD}_7(60^{\circ}\text{C})$	0.003	0.218	0.134	0.014	0.021	-	-					

pH: 培養基的初始酸鹼度; pH_x (Y°C): 在Y°C 下培養 X 天後,培養基的酸鹼度; $\triangle OD_x$ (Y°C): 在Y°C 下培養 X 天後,培養基增加的混濁度。

表 31 (續 1):各採樣點樣品在不同酸鹼度培養基中培養之結果

小油坑 1 (SYK1, 2009/07/09, 57°C, pH 3.39)												
рН	1.0	2.0	3.0	4.0	5.0	6.0	7.0					
pH ₈ (60°C)	0.83	1.88	3.0	5.92	4.96	5.74	6.41					
△OD ₈ (60°C)	0.001	0.000	0.014	0.442	0.008	0.008	0.002					
小油坑 1 (SYK1, 20	09/08/21,	61 °C, pF	H 4.32)									
рН	1.0	2.0	3.0	4.0	5.0	6.0	7.0					
pH ₆ (60°C)	-	2.04	4.57	6.57	7.45	6.54	6.80					
$\triangle OD_6(60^{\circ}C)$	-	0.000	0.341	0.230	0.151	0.078	0.049					
小油坑 2 (SYK2, 20	09/08/21,	70 °C, pH	H 5.69)		RIN							
рН	1.0	2.0	3.0	4.0	5.0	6.0	7.0					
pH ₆ (60°C)	ı	1.93	2.70	3.09	3.66	3.83	4.24					
$\triangle OD_6(60^{\circ}C)$	ı	0.005	0.059	0.193	0.155	0.079	0.078					
馬槽 1 (MC1, 2009/	07/07, 51	°C, pH 2.	50)	,								
рН	1. 0	2.0	3.0	4.0	5.0	6.0	7.0					
pH ₇ (45°C)	0.70	2.70	6.0	6.7	6.5	6.1	7.0					
$\triangle \text{OD}_7(45^{\circ}\text{C})$	0	0	0.444	0.062	0.216	0.039	0.021					
馬槽 1 (MC1, 2009/	08/21, 51	°C, pH 2.	94)									
рН	1.0	2.0	3.0	4.0	5.0	6.0	7.0					
pH ₆ (60°C)	4	2.02	5.34	5.96	6.43	6.34	6.52					
$\triangle OD_6(60^{\circ}C)$	8-14	0.001	0.376	0.223	0.179	0.036	0.002					
馬槽 2 (MC2, 2009/	07/07, 54	°C, pH 5.9	92)									
рН	3.0	4.0	5.0	6.0	7.0	8.0	9.0					
pH ₁₀ (60°C)	3.12	4.21	5.15	6.07	7.0	8.03	9.11					
$\triangle OD_{10}(60^{\circ}C)$	0.002	0.002	0.022	0.204	0.397	0.223	0.038					
馬槽 2 (MC2, 2009/08/21, 55 °C, pH 6.02)												
рН	3.0	4.0	5.0	6.0	7.0	8.0	9.0					
pH ₆ (60°C)	3.06	6.24	8.34	7.97	8.38	-	-					
$\triangle OD_6(60^{\circ}C)$	0.002	0.268	0.641	0.698	0.722	-	-					

pH: 培養基的初始酸鹼度; pH_x (Y°C): 在Y°C 下培養 X 天後,培養基的酸鹼度; $\triangle OD_x$ (Y°C): 在Y°C 下培養 X 天後,培養基增加的混濁度。

表 31 (續 2): 各採樣點樣品在不同酸鹼度培養基中培養之結果

大油坑 1 (DYK1, 2009/08/22, 89°C, pH 1.71)													
рН	2.0	3.0	4.0	5.0	6.0	7.0	8.0						
pH ₇ (60°C)	2.66	2.81	3.04	3.20	3.20	3.40	-						
△OD ₇ (60°C)	0.10	0.022	0.042	0.112	0.154	0.146	-						
大油坑 2 (DYK2, 20	009/08/22	, 66 °C, pl	H 1.58)										
рН	2.0	3.0	4.0	5.0	6.0	7.0	8.0						
pH ₇ (60°C)	2.22	3.01	3.53	3.47	3.47	3.76	ı						
$\triangle \text{OD}_7(60^{\circ}\text{C})$	0.005	0.093	0.155	0.092	0.161	0.100	ı						
八煙 1 (BY1, 2009/0)7/09, 56°	°C, pH 2.2	22)		RIN								
pH 1.0 2.0 3.0 4.0 5.0 6.0 7.0													
pH ₇ (60°C)	0.78	1.86	3.36	4.03	5.07	5.11	6.73						
$\triangle \text{OD}_7(60^{\circ}\text{C})$	0	0	0.264	0.006	0.008	0.02	0.017						
八煙 1 (BY1, 2009/0)8/23, 67°	°C, pH 2.1	2)	1									
рН	2.0	3.0	4.0	5.0	6.0	7.0	8.0						
pH ₆ (60°C)	1.97	6.11	6.15	6.25	6.29	5.90	-						
$\triangle OD_6(60^{\circ}C)$	0.013	0.303	0.112	0.034	0.040	0.021	ı						
八煙 2 (BY2, 2009/0)8/23, 40°	°C, pH 2.8	36)										
pН	2.0	3.0	4.0	5.0	6.0	7.0	8.0						
pH ₆ (60°C)	1.96	6.01	6.18	6.28	5.33	6.04	-						
$\triangle OD_6(60^{\circ}C)$	0.015	0.222	0.083	0.077	0.006	0.025	-						
庚子坪 1 (GZP1, 20	09/08/23,	84°C, pH	1 2.63)										
pН	2.0	3.0	4.0	5.0	6.0	7.0	8.0						
pH ₆ (60°C)	1.98	2.83	3.30	3.73	4	4.69	-						
$\triangle OD_6(60^{\circ}C)$	0.010	0.020	0.149	0.072	0.100	0.045	-						
庚子坪 2 (GZP2, 20	09/07/09,	57°C, pH	I 1.94)										
рН	1.0	2.0	3.0	4.0	5.0	6.0	7.0						
pH ₈ (60°C)	0.78	1.82	2.96	4.01	5.03	5.70	6.52						
$\triangle OD_8(60^{\circ}C)$	0.002	0.001	0.001	0.006	0.010	0.068	0.123						
庚子坪 2 (GZP2, 20)	09/08/23,	58 °C, pH	I 2.41)										
pН	2.0	3.0	4.0	5.0	6.0	7.0	8.0						
pH ₆ (60°C)	1.95	2.95	2.30	3.13	6.31	6.06	-						
$\triangle OD_6(60^{\circ}C)$	0.009	0.045	0.334	0.280	0.265	0.157	-						

pH: 培養基的初始酸鹼度; pH_x (Y°C): 在Y°C下培養 X 天後,培養基的酸鹼度; $\triangle OD_x$ (Y°C): 在Y°C下培養 X 天後,培養基增加的混濁度。

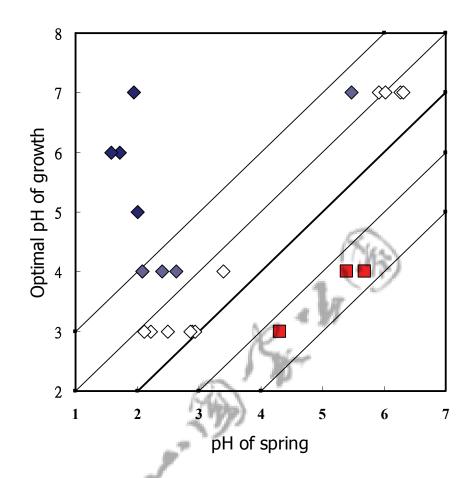


圖 11:溫泉酸鹼度與沉積物中古菌及/或細菌最適合生長酸鹼度之關係。

第四章 結論與建議

第一節 結論

壹、溫泉之酸鹼度及溫度範圍和先前研究相吻合

本研究測定陽明山國家公園內硫磺谷、龍鳳谷、中山樓、小油坑、馬槽、大油坑、八煙及庚子坪等 8 處地熱區溫泉之酸鹼度及溫度,發現皆為酸性溫泉。溫度範圍約為 40-95°C,酸鹼度範圍約在 pH 1.5-6.5。結果和先前研究之結論「陽明山國家公園內溫泉酸鹼度範圍在 pH1.5-7,且主要集中在 pH1.5-3.5 及 pH5-7兩個範圍」(李重義,2006)相吻合。先前研究又發現強酸性溫泉的溫度範圍較大,從約 40°C 到接近 100°C,而弱酸性溫泉的溫度範圍較小且較低,從約 35°C 到約 65°C。本研究發現除了小油坑第一採樣點第一季水樣與第二採樣點第三季水樣(SYK1-1、SYK2-3)酸度較弱(pH 4.61 及 5.69)但溫度很高(94°C 及 70°C)之外,其餘弱酸性溫泉的溫度皆未超過 65°C,也和先前研究相吻合。

貳、本研究溫泉主要為酸性硫酸鹽泉及接近中性的碳酸鹽泉兩大類

硫磺谷(LHG1、LHG2、LHG3)、馬槽第一採樣點(MC1)、大油坑第二採樣點(DYK2)、八煙(BY1、BY2、BY3)和庚子坪(GZP1、GZP2)皆符合 SO_4^{2-} 為主要成分且 pH 值為 $1\sim3$ 的特性,應屬於酸性硫酸鹽泉。小油坑第二採樣點(SYK2)符合 SO_4^{2-} 為主要成分,但第三季 pH 5.69 卻不符合酸性硫酸鹽泉的特性。酸性硫酸鹽氯化物泉的重要化學特性為 $C\Gamma$ 含量高於 SO_4^{2-} 含量,pH 值為 $1\sim4$ 。小油坑第一採樣點(SYK1) $C\Gamma$ 含量平均而言略低於 SO_4^{2-} 含量,但有時高於 SO_4^{2-} 含量;第一季和第三季的 pH 值也高於 4。大油坑第一採樣點 (DYK1) $C\Gamma$ 含量有時明顯小於 SO_4^{2-} 含量 (DYK1-2、DYK1-4),有時接近 SO_4^{2-} 含量 (DYK1-3),有時略大於 SO_4^{2-} 含量 (DYK1-1)。是否歸屬於酸性硫酸鹽氯化物泉仍有疑義。龍鳳谷浴池(LFG1)符合 HCO_3 ,為主要成分且 pH 值為 $6\sim7$ 的特性,應屬於碳酸氫鈣鈉泉。硫酸鹽碳酸氫鈉泉的重要化學特性為 HCO_3 。含量高於 SO_4^{2-} 含量, SO_4^{2-} 約佔總陰離子 $15\sim40$ %,pH 值為 $7\sim8$ 。中山樓溫泉(JSB1、JSB2)及馬槽

第二採樣點(MC2)符合 HCO_3 含量高於 SO_4^2 含量, SO_4^2 的佔總陰離子 $15\sim40\%$ 的特性,但pH值小於6,或許可稱為弱酸性硫酸鹽碳酸氫鈉泉。

參、溫泉之導電度與總溶解固體呈正相關

表示溫泉中總溶解固體大致上屬於影響該溫泉導電度高低的離子,因此可藉 由測量溫泉的導電度推測該溫泉中的總溶解固體量。例外的是庚子坪第二季與第 三季的兩個採樣點(GZP1-2、GZP2-2、GZP1-3、GZP2-3),其總溶解固體量遠 大於經由導電度推測的量,顯示該等樣品含有能穿透濾膜的小顆粒或其他不導電 的有機分子。

肆、各採樣點溫泉水質不一定符合溫泉的法規定義

根據中華民國溫泉法授權訂定溫泉水質標準(中華民國 94 年 7 月 22 日經濟部經水字第 09404605610 號令)之規定,凡露頭或泉孔孔口測得之泉溫為攝氏三十度以上及其水質符合總溶解固體、主要陰離子、特殊成分(游離二氧化碳、總硫化物、總鐵離子或鐳)標準之一者,稱之為溫泉。根據此一標準,硫磺谷常溫水池(LHG1)、龍鳳谷公共溫泉浴池旁的溪水(LFG2)、馬槽集水池附近的小溪流(MC3)不見露頭或泉孔,溫度也低,當然不是溫泉。馬槽集水加熱池(MC2)是用水管收集上方熱水,再由地熱噴氣加熱;中山樓之介壽堂前地熱池(JSB)因排水而自然導入地表水;八煙溫泉區第二、第三採樣點(BY2、BY3)與溪水混流。它們皆因導入溪水或山泉水而使其水質不一定符合溫泉的法規定義。

伍、泡湯的安全性值得討論

參照行政院環境保護署依水污染防治法訂定之標準,適於游泳等直接接觸人體活動者為甲類水體。然而(1)在懸浮固體方面只有硫磺谷第一採樣點(LHG1)、龍鳳谷第一採樣點(LFG1)及中山樓第二採樣點(JSB2)各季的懸浮固體皆符合該標準。其餘只有部分時間符合標準或全時段皆高於標準值。(2)除了中山樓溫泉(JSB1, JSB2)的水質以外,所有採樣點皆因錳含量過高不符合甲類水體標準,其他溫泉水質也大多伴隨砷和鉻含量超過甲類水體標準的現象而不適合作為游泳之用。(3)各採樣點水質由於NH4⁺和總磷濃度超出標準,大多

不適宜作為公共用水;也全部不符合游泳用水之標準。(4)主要因為「砷」和「錳」的緣故,八個溫泉區採樣點的水都不適合飲用,亦應避免煮食之用。有些民眾認為飲用「鐵泉」(龍鳳谷浴池)有益健康,顯然也大有問題。

陸、現有 PCR 方法無法偵測到溫泉沉積物中的真核微生物

本研究採用前人(Brown and Wolfe, 2006)使用的引子對進行溫泉沉積物中的真核微生物 rDNA 的 PCR 反應。雖然發現大多數樣品皆能獲得 PCR 產物,但進一步針對最適合的馬槽第一採樣點進行 rRNA 基因選殖、定序、比對後卻發現80% 的序列與資料庫中的任何基因無明顯相似度,20% 的序列雖然比對到相似度很高的 rRNA 基因,但卻是屬於原核的古菌而非真核微生物。因此以現有 PCR方法無法偵測到溫泉沉積物中的真核微生物。

柒、硫磺谷3、中山樓 2、馬槽 1、大油坑 2 與庚子坪 2 之古菌種類差異很大

就泉古菌門(Crenarchaeote)與廣古菌門(Euryarchaeote)的比例而言, 大油坑第二採樣點為 100:0;庚子坪第二採樣點為 96:4;硫磺谷第 三採樣點為 52:48;中山樓溫泉和馬槽第一採樣點皆為 30:70。另外, 硫磺谷第三採樣點有 13%的古菌屬於暖球形菌屬(Caldisphaera)為本次研 究其他採樣點未發現者;大油坑第二採樣點的菌全部屬於硫化葉菌目 (Sulfolobales)亦為本次研究其他採樣點未發現者。

捌、硫磺谷3、中山樓 2、馬槽 1、與庚子坪 2 之細菌種類差異很大

大油坑第二採樣點未得到 PCR 放大的 DNA,故未分析。其餘四個採樣點發現中山樓第二採樣點的細菌歧異度最大,除了 41%未能歸屬的細菌之外分別屬於 9 個門。馬槽第一採樣點的的細菌歧異度次大,分別屬於 4 個門。硫磺谷第三採樣點和庚子坪第二採樣點的細菌則分別屬於 2 個門。

玖、本研究各採樣點有許多目前尚未被發現的物種

大多數古菌或細菌的 16S rDNA 序列皆未與已知特定物種有足夠的相似度

陽明山國家公園酸性溫泉物種調查 及生存機制之研究

(大於97%),應為有待發現的新物種。

拾、溫泉水體內未發現無脊椎動物或原生動物

溫泉露頭附近並未挖掘到或發現任何蚯蚓的活動痕跡,蚯蚓皆發現於溫泉外 圍陸域。在溫泉露頭附近陸域共發現6種蜘蛛。在溫泉露頭附近發現5種昆蟲。 僅在溫泉露頭附近低溫水域中發現到水生昆蟲,在溫泉露頭高溫水體中則完全沒 有發現任何水生昆蟲。所有採集的酸性水樣中也皆未觀察到原生動物的蹤跡。

拾壹、硫氣噴發口附近黑色岩壁下方的岩隙棲地是藻類的良好棲息所

雖然酸性常溫水域如硫磺谷的綠波池(LHG1)(32 $^{\circ}$ C,pH 2.50)、馬槽溫泉附近淺水灘(29 $^{\circ}$ C,pH 2.46)、庚子坪溫泉附近小溪流(33 $^{\circ}$ C,pH 2.63)以及酸性溫泉如小油坑溫泉(50 $^{\circ}$ C,pH 3.39)、馬槽溫泉(MC1)(51 $^{\circ}$ C,pH 2.50)、八煙溫泉(62 $^{\circ}$ C,pH 2.26)露頭旁邊的石頭,皆可觀察到藻類。但小油坑和馬槽的石壁,尤其是黑色岩壁下方的岩隙棲地卻發現許多單細胞紅藻及較多種類的矽藻。

拾貳、極端的酸鹼度和溫度不利於古菌及/或細菌的生存

pH 2.5 到 6 之間的溫泉可發現較多古菌,pH 2 到 6.5 之間的溫泉可發現較多細菌。古菌和細菌的蹤跡主要在 40-60 °C 之間的溫泉被發現。各溫泉中的古菌及/或細菌最適合生長的酸鹼度絕大多數接近溫泉本身的酸鹼度。pH 值小於或等於 2 的強酸性溫泉內微生物最適生長 pH 為 5-7。顯然這些微生物不是利用快速生長來對應強酸性,或許產生休眠性的細胞(例如孢子)抵抗強酸是一種方法,只有當環境 pH 值不那麼酸時才開始生長。

第二節 建議

建議一、逐年持續委託學術機構從事陽明山國家公園內溫泉微生物的分離、分類、形態和生理特性研究

立即可行建議建議

主辦單位:陽明山國家公園管理處

協辦單位:東吳大學微生物學系李重義副教授研究室

本研究選定的各個溫泉中古菌及細菌種類差異很大,且從 DNA 資訊可知絕大多數屬於未曾被發現的新種甚至是新屬的微生物。由於大眾對於溫泉微生物所知有限,更不瞭解現代生物學有關細菌、古菌分類的進展,因此無論站在保育研究或將來為民眾解說之便,都應該積極進行溫泉古菌的分離與分類,並進一步探討其形態和生理特性。如此不但非常有助於生物多樣性與保育之研究,更能建立陽明山國家公園的特色。以多年期每年較小金額的經費長期持續委託學術機構進行台灣特有溫泉微生物的研究方為上策。研究可大至分為:(一)好氧異營性古菌及細菌之分離、分類與形態和生理特性研究;(二)厭氧異營性古菌及細菌之分離、分類與形態和生理特性研究;(三)化學自營性古菌及細菌之分離、分類與形態和生理特性研究。

建議二、研究陽明山國家公園內硫氣噴發口附近黑色岩壁下方岩隙棲地內的單細胞紅藻

中長期建議

主辦單位:陽明山國家公園管理處

協辦單位:東吳大學微生物學系李重義副教授研究室、台灣大學漁業科學研究所藻類研究室

針對陽明山國家公園內嗜熱、嗜酸單細胞紅藻的分離與分類研究,尤其是岩壁下方岩隙棲地與露頭旁邊石頭表面的比較,不但具有學術價值,更能為民眾提供一個認識生物與逆境關係的良好教材。

陽明山國家公園酸性溫泉物種調查 及生存機制之研究

建議三、在陽明山國家公園內針對蚯蚓進行較全面性的調查研究

中長期建議

主辦單位:陽明山國家公園管理處

協辦單位:台灣大學動物學研究所無脊椎動物研究室

溫泉露頭區域並不適合蚯蚓生存。以往曾局部調查陽明山地區發現 13 種蚯蚓,但這樣的調查結果仍不夠完整,不足以代表整個陽明山國家公園內的蚯蚓相。建議往後可針對蚯蚓進行較全面性的調查研究,尤其在非人工開發環境中,如保護區內的採集調查,才能確切瞭解國家公園內的蚯蚓種類與分布情形。

建議四、針對陽明山國家公園內溫泉露頭及噴氣孔附近的蜘蛛目進行較全面性的 調查研究

中長期建議

主辦單位:陽明山國家公園管理處

協辦單位:台灣大學動物學研究所無脊椎動物研究室

火山地形為陽明山國家公園的特色,而在火山地形中溫泉露頭及噴氣孔附近的惡劣地形中,僅有少數動物能生活在其間。在此間地表活動的動物當中以蜘蛛種類及數量最豐。因此,建議可對蜘蛛目動物對惡劣火山地形之適應及其演化進行研究及探討。

附錄一、酸性溫泉微生物調查之各採樣點照片

硫磺谷 (Liouhuanggu)

硫磺谷第二採樣點 (LHG2): 硫磺谷東 側高點地熱池。

X: 302048; Y: 2782030; H: 157m •

硫磺谷第三採樣點 (LHG3): 硫磺谷下 方人工地熱池。 X: 301935; Y: 2782034; H: 153m °

陽明山國家公園酸性溫泉物種調查 及生存機制之研究

陽明山國家公園酸性溫泉物種調查 及生存機制之研究

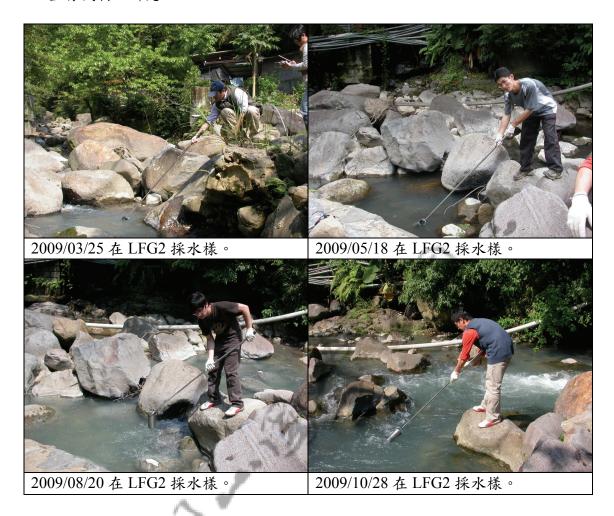
龍鳳谷 (Longfonggu)

龍鳳谷第一採樣點 (LFG1): 龍鳳谷公 共溫泉浴池集水池。

X: 302748; Y: 2782510; H: 229m °

龍鳳谷第二採樣點 (LFG2):公共溫泉 浴池旁南磺溪的溪水。

X: 302759; Y: 2782530; H: 234m •



2009/08/20 在 LFG1 刮取集水池石壁上 的附著物。

2009/10/28 在 LFG1 集水池採水樣。

中山樓 (Jhongshan Building)

中山樓西南側介壽堂前方大型地熱池。山溝水由池子的東北側注入,經地熱噴氣加熱,滿溢後由位於池子東南側的出水口流出。

中山樓溫泉第一採樣點 (JSB1): 出水口 附近。

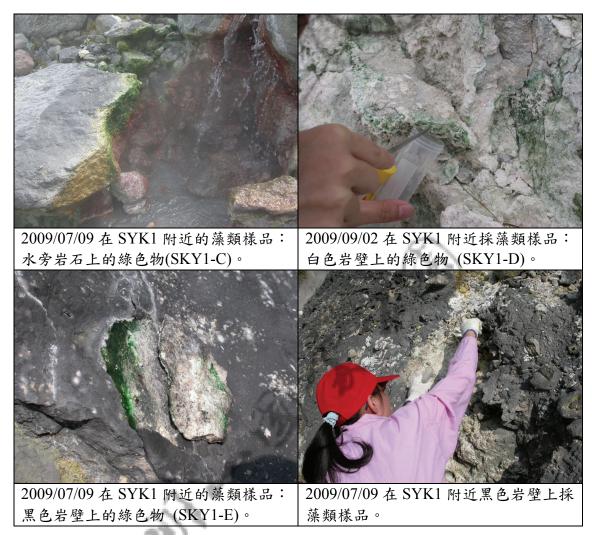
X: 304626; Y: 2783069; H: 441m °

中山樓溫泉第二採樣點 (JSB2): 出水口對面,接近入水口。

X: 304605; Y: 2783084; H: 440m °

小油坑(Siaoyoukeng)

小油坑第一採樣點 (SYK1): 崩塌區較上方的溫泉。有黑色沉積物。 X: 304369; Y: 2785512; H: 820m。


小油坑第二個採樣點 (SYK2): 崩塌區 較下方的溫泉。

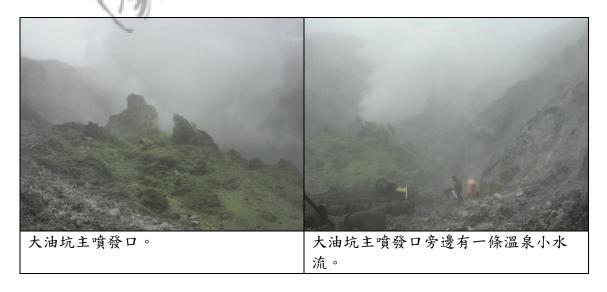
X: 304326; Y: 2785548; H: 811m •

馬槽 (Macao)

馬槽第三個採樣點 (MC3):比 MC2 南方的小溪流,水量不大。

X: 305798; Y: 2785723 •

MC3 小溪流沉積物表面佈滿紅蟲。



大油坑 (Dayoukeng)

八煙 (Bayan)

2009/08/23 在 BY3 採沉積物。

庚子坪 (Gengzihping)

2009/10/26 在 BY3 採水樣。

庚子坪溫泉區第二個採樣點(GZP2):三 金鑛業礦區道路東側的天然湧泉,有灰 白色沉積物。

X: 311062; Y: 2786957; H: 410m •

2009/08/23 在 GZP1 採沉積物。

庚子坪溫泉區第三個採樣點(GZP3): GZP1 南側小溪。水底細砂附著許多紅蟲。(2009/05/21) X: 311055; Y: 2786943; H: 411m。

2009/10/26 土石已掩沒 GZP1。

125

附錄二、		久採樣	乳水	啠	分析	始表
 17 3 	•	分1 木/氷	かハ	貝	77 171	一級不

樣點	溫度 (℃)	pН	導電度 (μs/cm)	TDS (mg/L)	SS (mg/L)	濁度 (NTU)	HCO ₃ - (mg/L)	Cl ⁻ (mg/L)	SO ₄ ²⁻ (mg/L)	SO ₃ ²⁻ (mg/L)	S ₂ O ₃ ²⁻ (mg/L)	S ²⁻ (mg/L)
LHG1-1	23	2.11	1003.0	604.5	7.2	3.7	BDL	20.07	88.85	18.6	ND	1.03
LHG1-2	28	2.59	954.0	569.5	6.3	1.4	BDL	38.19	143.88	1.8	ND	ND
LHG1-3	32	2.08	6140.0	3841.0	8.0	1.9	BDL	12.49	1473.86	2.1	ND	0.03
LHG1-4	31	2.57	20490.0	10992.0	3.4	3.7	BDL	38.57	522.33	2.3	0.13	0.07
平均	29	2.34	7146.8	4001.8	6.2	2.7	-	27.33	557.23	6.2	0.03	0.29
標準差	4	0.28	9222.3	4906.2	2.0	1.2	-	13.13	640.75	8.3	0.06	0.50
最大值	32	2.59	20490.0	10992.0	8.0	3.7	1	38.57	1473.86	18.6	0.13	1.03
最小值	23	2.08	954.0	569.5	3.4	1.4	-	12.49	88.85	1.8	-	ND

樣點	Fe ²⁺	NH_4^+	Fe	Mn	Pb	As	Cr	TN	TP	TOC
你和	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
LHG1-1	0.330	ND	16.002	0.145	ND	0.020	0.023	0.6	0.38	2.01
LHG1-2	7.23	1.09	9.175	0.237	ND	0.044	0.003	1.6	0.19	1.03
LHG1-3	63.40	1.64	255.723	0.683	ND	ND	0.048	2.5	0.12	3.06
LHG1-4	9.63	1.02	38.146	0.334	ND	0.014	0.052	1.2	0.41	0.66
平均	20.15	0.94	79.762	0.350	ř	0.021	0.032	1.5	0.28	1.69
標準差	29.10	0.68	117.958	0.235	7	0.017	0.023	0.8	0.14	1.08
最大值	63.40	1.64	255.723	0.683	ı	0.044	0.052	2.5	0.41	3.06
最小值	0.330	ND	9.175	0.145	1	ND	0.003	0.6	0.12	0.66

BDL:低於指示劑變色範圍(HCO_3 存在之pH值下限),以0代入計算;ND:低於偵測極限,以1/2偵測極限代入計算;NT:未檢測。

樣點	温度	pН	導電度 (μs/cm)	TDS (mg/L)	SS (mg/L)	濁度 (NITI)	HCO ₃ - (mg/L)	Cl ⁻ (mg/L)	SO ₄ ²⁻ (mg/L)	SO ₃ ² -	S ₂ O ₃ ²⁻	S ²⁻
	(℃)		(µs/cm)	(mg/L)	(IIIg/L)	(NTU)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(mg/L)	(mg/L)	(mg/L)
LHG2-1	64	2.15	3840.0	2325.7	320.5	665.0	BDL	45.24	337.38	5.3	0.13	3.13
LHG2-2	57	2.69	1680.0	876.0	45.5	115.0	BDL	106.75	268.05	30.9	1.13	10.71
LHG2-3	89	2.00	16520.0	6902.0	505.0	400.0	BDL	5.95	2601.70	3.0	ND	0.08
LHG2-4	87	2.43	7170.0	3257.0	22.0	393.5	BDL	18.38	1750.21	15.7	ND	0.49
平均	74	2.32	7302.50	3340.2	223.3	393.4	-	44.08	1239.34	13.7	0.32	3.60
標準差	16	0.31	6546.79	2568.7	231.6	224.6	-	44.88	1136.36	12.7	0.55	4.93
最大值	89	2.69	16520.0	6902.0	505.0	665.0	1	106.75	2601.70	30.9	1.13	10.71
最小值	57	2.00	1680.0	876.0	22.0	115.0	1	5.95	268.05	3.0	1	0.08

樣點	Fe ²⁺	NH ₄ ⁺	Fe	Mn	Pb	As	Cr	TN	TP	TOC
係點	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
LHG2-1	11.360	0.80	71.184	0.579	0.018	0.035	1.237	1.4	0.40	1.08
LHG2-2	5.60	1.46	5.882	0.713	ND	0.058	0.003	2.3	0.48	0.66
LHG2-3	98.40	1.25	101.510	0.529	ND	0.113	3.773	1.7	0.49	2.21
LHG2-4	30.90	4.07	227.333	0.995	ND	ND	4.037	0.7	2.35	2.17
平均	36.57	1.90	101.477	0.704	0.009	0.053	2.263	1.5	0.93	1.53
標準差	42.62	1.48	92.908	0.209	0.006	0.046	1.965	0.7	0.95	0.78
最大值	98.40	4.07	227.333	0.995	0.018	0.113	4.037	2.3	2.35	2.21
最小值	5.60	0.80	5.882	0.529	ND	ND	0.003	0.7	0.40	0.66

BDL:低於指示劑變色範圍(HCO₃存在之pH值下限),以0代入計算;ND:低於偵測極限,以1/2偵測極限代入計算;NT:未檢測。

陽明山國家公園酸性溫泉物種調查 及生存機制之研究

樣點	溫度 (℃)	рН	導電度 (μs/cm)	TDS (mg/L)	SS (mg/L)	濁度 (NTU)	HCO ₃ - (mg/L)	Cl ⁻ (mg/L)	SO ₄ ²⁻ (mg/L)	SO ₃ ²⁻ (mg/L)	S ₂ O ₃ ²⁻ (mg/L)	S ²⁻ (mg/L)
LHG3-1	60	2.84	727.0	703.3	9.5	159.0	BDL	73.48	83.95	2.1	0.34	2.77
LHG3-2	57	3.06	1142.0	814.2	11.0	160.0	BDL	105.03	193.84	21.1	0.53	6.04
LHG3-3	82	2.08	13850.0	6637.0	104.0	251.0	BDL	21.14	2785.94	3.8	0.46	2.54
LHG3-4	67	3.06	1514.0	498.0	91.0	182.5	BDL	42.02	302.93	3.2	ND	0.08
平均	67	2.76	4308.3	2163.1	53.9	188.1	1	60.42	841.67	7.6	0.33	2.86
標準差	11	0.47	6369.3	2985.5	50.7	43.3	1	36.71	1299.26	9.1	0.23	2.45
最大值	82	3.06	13850.0	6637.0	104.0	251.0	1	105.03	2785.94	21.1	0.53	6.04
最小值	57	2.08	727.0	498.0	9.5	159.0	-	21.14	83.95	2.1	-	0.08

樣點	Fe ²⁺	NH_4^+	Fe	Mn	Pb	As	Cr	TN	TP	TOC
休和	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
LHG3-1	1.920	0.73	11.852	0.552	ND	0.042	0.045	1.7	0.25	0.79
LHG3-2	5.96	1.49	5.432	0.737	ND	0.058	0.003	3.0	0.24	0.87
LHG3-3	232.00	1.12	288.500	1.384	ND	0.042	0.067	2.9	0.90	6.36
LHG3-4	17.50	0.32	18.992	0.255	ND	0.057	0.320	0.8	0.30	0.71
平均	64.35	0.92	81.194	0.732	-	0.050	0.109	2.1	0.42	2.18
標準差	111.96	0.50	138.315	0.478	X) -	0.009	0.143	1.0	0.32	2.79
最大值	232.00	1.49	288.500	1.384	j	0.058	0.320	3.0	0.90	6.36
最小值	1.920	0.32	5.432	0.255	49	0.042	0.003	0.8	0.24	0.71

BDL:低於指示劑變色範圍(HCO_3 存在之pH值下限),以0代入計算;ND:低於偵測極限,以1/2偵測極限代入計算;NT:未檢測。

樣點	溫度 (℃)	рН	導電度 (μs/cm)	TDS (mg/L)	SS (mg/L)	濁度 (NTU)	HCO ₃ - (mg/L)	Cl ⁻ (mg/L)	SO ₄ ²⁻ (mg/L)	SO ₃ ²⁻ (mg/L)	$S_2O_3^{2-}$ (mg/L)	S ²⁻ (mg/L)
LFG1-1	52	6.37	1234.0	1210.5	1.5	7.1	1099.2	138.86	38.92	1.4	ND	0.22
LFG1-2	53	6.41	1570.0	1201.8	7.5	6.2	683.3	145.46	85.22	1.8	ND	ND
LFG1-3	51	6.31	1359.0	1053.0	7.0	8.2	630.4	128.75	107.33	5.3	ND	0.02
LFG1-4	51	6.37	1093.0	1278.0	4.0	7.1	3216.3	140.56	126.43	2.0	ND	0.03
平均	52	6.37	1314.0	1185.8	5.0	7.2	1407.3	138.41	89.48	2.6	-	0.07
標準差	1	0.04	202.3	94.9	2.8	0.8	1224.1	7.02	37.68	1.8	-	0.10
最大值	53	6.41	1570.0	1278.0	7.5	8.2	3216.3	145.46	126.43	5.3	,	0.22
最小值	51	6.31	1093.0	1053.0	1.5	6.2	630.4	128.75	38.92	1.4	-	ND

樣點	Fe ²⁺ (mg/L)	NH ₄ ⁺ (mg/L)	Fe (mg/L)	Mn (mg/L)	Pb (mg/L)	As (mg/L)	Cr (mg/L)	TN (mg/L)	TP (mg/L)	TOC (mg/L)
LFG1-1	0.110	0.62	5.428	0.738	ND	0.062	0.048	3.1	0.34	1.98
LFG1-2	1.04	0.95	2.847	0.720	ND	0.077	ND	1.4	0.25	1.13
LFG1-3	0.91	1.11	0.957	0.685	0.013	0.062	0.002	1.1	0.36	1.42
LFG1-4	0.50	0.54	1.303	0.755	ND	0.057	0.005	1.9	0.89	1.38
平均	0.64	0.81	2.634	0.725	0.007	0.065	0.014	1.9	0.46	1.48
標準差	0.42	0.27	2.036	0.030	0.004	0.009	0.023	0.9	0.29	0.36
最大值	1.04	1.11	5.428	0.755	0.013	0.077	0.048	3.1	0.89	1.98
最小值	0.110	0.54	0.957	0.685	ND	0.057	ND	1.1	0.25	1.13

BDL:低於指示劑變色範圍(HCO_3 存在之 pH 值下限),以 0 代入計算;ND:低於偵測極限,以 1/2 偵測極限代入計算;NT:未檢測。

樣點	溫度 (℃)	рН	導電度 (μs/cm)	TDS (mg/L)	SS (mg/L)	濁度 (NTU)	HCO ₃ - (mg/L)	Cl ⁻ (mg/L)	SO ₄ ²⁻ (mg/L)	SO ₃ ²⁻ (mg/L)	S ₂ O ₃ ²⁻ (mg/L)	S ²⁻ (mg/L)
LFG2-1	19	7.90	297.0	655.5	18.5	8.3	115.5	35.29	28.53	2.5	ND	0.042
LFG2-2	25	7.28	549.5	434.7	46.5	5.8	92.6	45.52	84.46	2.2	ND	ND
LFG2-3	27	4.51	588.0	587.0	23.0	7.0	9.6	8.88	28.22	5.0	ND	0.03
LFG2-4	22	6.86	317.0	297.0	14.0	5.0	54.5	29.81	60.71	1.8	ND	0.05
平均	23	6.64	437.9	493.6	25.5	6.5	68.1	29.88	50.48	2.9	-	0.04
標準差	4	1.48	152.2	160.3	14.5	1.4	46.4	15.44	27.30	1.4	-	0.01
最大值	27	7.90	588.0	655.5	46.5	8.3	115.5	45.52	84.46	5.0	-	0.05
最小值	19	4.51	297.0	297.0	14.0	5.0	9.6	8.88	28.22	1.8	-	ND

樣點	Fe ²⁺	NH ₄ ⁺	Fe (ma/L)	Mn (ma/L)	Pb (ma/L)	As (ma/L)	Cr	TN (mg/L)	TP	TOC
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
LFG2-1	0.036	ND	1.670	0.152	ND	0.022	0.038	2.0	0.28	0.53
LFG2-2	0.10	ND	0.337	0.115	ND	0.038	ND	1.8	0.19	0.79
LFG2-3	0.78	1.12	1.297	0.517	0.018	0.042	0.005	2.6	0.20	0.38
LFG2-4	0.14	0.42	0.668	0.153	ND	0.013	0.002	0.8	0.29	0.29
平均	0.26	0.39	0.993	0.234	0.009	0.029	0.011	1.8	0.24	0.50
標準差	0.35	0.53	0.602	0.189	0.006	0.014	0.018	0.7	0.05	0.22
最大值	0.78	1.12	1.670	0.517	0.018	0.042	0.038	2.6	0.29	0.79
最小值	0.036	ND	0.337	0.115	ND	0.013	ND	0.8	0.19	0.29

BDL:低於指示劑變色範圍(HCO_3 存在之 pH 值下限),以 0 代入計算;ND:低於偵測極限,以 1/2 偵測極限代入計算;NT:未檢測。

樣點	溫度 (℃)	рН	導電度 (μs/cm)	TDS (mg/L)	SS (mg/L)	濁度 (NTU)	HCO ₃ - (mg/L)	Cl ⁻ (mg/L)	SO ₄ ² - (mg/L)	SO ₃ ²⁻ (mg/L)	S ₂ O ₃ ²⁻ (mg/L)	S ²⁻ (mg/L)
JSB1-1	41	5.65	128.1	187.2	4.2	247.0	30.4	20.07	11.95	7.2	1.17	7.13
JSB1-2	51	5.60	178.5	129.2	41.8	234.0	27.0	9.78	23.85	2.8	1.47	0.60
JSB1-3	54	5.39	162.0	163.0	80.0	222.5	25.9	8.88	28.22	3.4	ND	5.88
JSB1-4	43	5.49	173.0	161.0	14.0	183.0	149.9	13.51	35.64	3.6	0.53	7.53
平均	47	5.53	160.4	160.1	35.0	221.6	58.3	13.06	24.92	4.3	0.79	5.29
標準差	6	0.12	22.6	23.8	34.0	27.6	61.1	5.09	9.92	2.0	0.66	3.20
最大值	54	5.65	178.5	187.2	80.0	247.0	149.9	20.07	35.64	7.2	1.47	7.53
最小值	41	5.39	128.1	129.2	4.2	183.0	25.9	8.88	11.95	2.8	-	0.60

樣點	Fe ²⁺ (mg/L)	NH ₄ ⁺ (mg/L)	Fe (mg/L)	Mn (mg/L)	Pb (mg/L)	As (mg/L)	Cr (mg/L)	TN (mg/L)	TP (mg/L)	TOC (mg/L)
JSB1-1	0.084	ND	0.967	0.013	ND	0.017	0.028	0.7	0.81	2.40
JSB1-2	0.35	0.74	0.252	0.015	ND	0.008	ND	1.1	0.16	2.75
JSB1-3	0.19	0.30	0.162	0.018	0.022	0.018	0.002	0.5	0.13	2.52
JSB1-4	0.26	0.09	0.197	0.012	ND	ND	0.002	0.2	0.17	1.57
平均	0.22	0.28	0.395	0.015	0.010	0.012	0.008	0.6	0.32	2.31
標準差	0.11	0.33	0.383	0.003	0.008	0.006	0.013	0.4	0.33	0.51
最大值	0.35	0.74	0.967	0.018	0.022	0.018	0.028	1.1	0.81	2.75
最小值	0.084	ND	0.162	0.012	ND	ND	ND	0.2	0.13	1.57

樣點	溫度 (℃)	pН	導電度 (μs/cm)	TDS (mg/L)	SS (mg/L)	濁度 (NTU)	HCO ₃ - (mg/L)	Cl ⁻ (mg/L)	SO ₄ ²⁻ (mg/L)	SO ₃ ²⁻ (mg/L)	S ₂ O ₃ ²⁻ (mg/L)	S ²⁻ (mg/L)
JSB2-1	43	5.62	124.7	156.0	5.1	264.0	28.7	9.48	10.65	68.1	2.46	2.80
JSB2-2	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
JSB2-3	55	5.32	191.0	141.0	17.0	223.0	21.6	14.34	28.59	12.8	1.09	14.80
JSB2-4	44	5.30	184.1	163.0	6.4	162.0	149.9	10.86	32.27	38.7	0.83	39.15
平均	47	5.41	166.6	153.3	9.5	216.3	66.7	11.56	23.84	39.9	1.46	18.92
標準差	7	0.18	36.5	11.2	6.5	51.3	72.1	2.50	11.57	27.7	0.88	18.52
最大值	55	5.62	191.0	163.0	17.0	264.0	149.9	14.34	32.27	68.1	2.46	39.15
最小值	43	5.30	124.7	141.0	5.1	162.0	21.6	9.48	10.65	12.8	0.83	2.80

樣點	Fe ²⁺	NH_4^+	Fe	Mn	Pb	As	Cr	TN	TP	TOC
休和	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
JSB2-1	0.056	ND	0.283	0.012	ND	ND	ND	0.9	1.61	2.51
JSB2-2	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
JSB2-3	0.20	0.20	0.228	0.018	0.018	ND	0.003	1.0	0.14	2.79
JSB2-4	0.28	0.09	0.228	0.013	ND	ND	0.002	0.4	0.43	1.70
平均	0.18	0.10	0.246	0.014	0.010	4 37	0.003	0.8	0.73	2.33
標準差	0.11	0.10	0.032	0.003	0.007	-	0.001	0.3	0.78	0.57
最大值	0.28	0.20	0.283	0.018	0.018	3	0.003	1.0	1.61	2.79
最小值	0.056	ND	0.228	0.012	ND	ı	0.002	0.4	0.14	1.70

BDL:低於指示劑變色範圍(HCO_3)存在之pH值下限),以0代入計算;ND:低於偵測極限,以1/2 偵測極限代入計算;NT:未檢測。

樣點	溫度 (℃)	рН	導電度 (μs/cm)	TDS (mg/L)	SS (mg/L)	濁度 (NTU)	HCO ₃ - (mg/L)	Cl ⁻ (mg/L)	SO ₄ ² - (mg/L)	SO ₃ ²⁻ (mg/L)	$S_2O_3^{2-}$ (mg/L)	S ²⁻ (mg/L)
SYK1-1	94	4.61	1601.0	1448.0	556.8	49.0	BDL	188.76	166.37	4.9	0.72	0.13
SYK1-2	59	3.00	3410.0	2640.5	157.5	151.0	BDL	580.59	481.30	2.3	ND	0.19
SYK1-3	61	4.32	2310.0	2362.5	218.5	119.5	18.2	228.76	539.06	3.8	ND	2.13
SYK1-4	68	2.30	3660.0	2056.0	679.0	705.0	BDL	619.87	663.61	6.3	ND	1.05
平均	71	3.56	2745.3	2126.8	403.0	256.1	4.6	404.50	462.59	4.3	0.18	0.88
標準差	16	1.09	962.2	511.6	254.4	302.3	9.1	227.17	211.62	1.7	0.36	0.94
最大值	94	4.61	3660.0	2640.5	679.0	705.0	18.2	619.87	663.61	6.3	0.72	2.13
最小值	59	2.30	1601.0	1448.0	157.5	49.0	BDL	188.76	166.37	2.3	-	0.13

樣點	Fe ²⁺ (mg/L)	NH ₄ ⁺ (mg/L)	Fe (mg/L)	Mn (mg/L)	Pb (mg/L)	As (mg/L)	Cr (mg/L)	TN (mg/L)	TP (mg/L)	TOC (mg/L)
SYK1-1	0.074	1.28	0.828	2.325	0.023	0.032	0.020	8.8	1.97	9.15
SYK1-2	7.54	1.50	10.247	2.883	ND	0.083	ND	1.7	0.78	0.67
SYK1-3	0.81	1.55	0.828	2.495	0.023	0.045	0.007	2.0	0.27	0.92
SYK1-4	10.99	0.95	8.763	3.522	ND	0.027	0.022	0.3	1.48	0.61
平均	4.85	1.32	5.167	2.806	0.014	0.047	0.012	3.2	1.13	2.84
標準差	5.29	0.27	5.046	0.531	0.010	0.025	0.010	3.8	0.75	4.21
最大值	10.99	1.55	10.247	3.522	0.023	0.083	0.022	8.8	1.97	9.15
最小值	0.074	0.95	0.828	2.325	ND	0.027	ND	0.3	0.27	0.61

樣點	溫度 (℃)	pН	導電度 (μs/cm)	TDS (mg/L)	SS (mg/L)	濁度 (NTU)	HCO ₃ - (mg/L)	Cl ⁻ (mg/L)	SO ₄ ²⁻ (mg/L)	SO ₃ ²⁻ (mg/L)	S ₂ O ₃ ²⁻ (mg/L)	S ²⁻ (mg/L)
SYK2-1	65	2.20	6115.0	2392.0	136.1	2275.0	BDL	3.22	585.79	8.7	ND	0.04
SYK2-2	77	2.71	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
SYK2-3	70	5.69	17590.0	12211.0	2788.0	7052.0	BDL	6.08	4801.70	47.1	0.98	0.17
SYK2-4	64	1.42	7040.0	3471.0	5030.0	4100.0	BDL	6.44	2091.33	0.3	ND	2.62
平均	66	3.01	10248.3	6024.7	2651.4	4475.7	1	5.25	2492.94	18.7	0.33	0.94
標準差	3	1.87	6374.9	5384.6	2449.8	2410.6	-	1.76	2136.46	25.0	0.57	1.46
最大值	70	5.69	17590.0	12211.0	5030.0	7052.0	-	6.44	4801.70	47.1	0.98	2.62
最小值	64	1.42	6115.0	2392.0	136.1	2275.0	-	3.22	585.79	0.3	-	0.04

樣點	Fe ²⁺ (mg/L)	NH ₄ ⁺ (mg/L)	Fe (mg/L)	Mn (mg/L)	Pb (mg/L)	As (mg/L)	Cr (mg/L)	TN (mg/L)	TP (mg/L)	TOC (mg/L)
SYK2-1	13.200	ND	74.442	0.914	0.033	0.382	0.411	1.5	0.89	4.20
SYK2-2	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
SYK2-3	13.44	4.64	359.000	1.947	ND	0.593	0.994	4.8	0.51	6.32
SYK2-4	11.18	0.55	99.809	0.825	ND	0.240	0.045	0.4	2.47	2.72
平均	12.61	1.73	177.750	1.229	0.015	0.405	0.483	2.2	1.29	4.41
標準差	1.24	2.53	157.478	0.624	0.016	0.178	0.479	2.3	1.04	1.81
最大值	13.44	4.64	359.000	1.947	0.033	0.593	0.994	4.8	2.47	6.32
最小值	11.18	ND	74.442	0.825	ND	0.240	0.045	0.4	0.51	2.72

BDL:低於指示劑變色範圍(HCO3存在之pH值下限),以0代入計算;ND:低於偵測極限,以1/2偵測極限代入計算;NT:未檢測。

樣點	溫度 (℃)	pН	導電度 (μs/cm)	TDS (mg/L)	SS (mg/L)	濁度 (NTU)	HCO ₃ - (mg/L)	Cl ⁻ (mg/L)	SO ₄ ²⁻ (mg/L)	SO ₃ ²⁻ (mg/L)	S ₂ O ₃ ²⁻ (mg/L)	S ²⁻ (mg/L)
MC1-1	48	2.78	1615.0	1272.9	4.0	56.0	BDL	129.83	180.00	1.6	ND	0.11
MC1-2	48	2.87	1915.0	1399.0	138.5	70.0	BDL	157.25	425.15	2.1	ND	ND
MC1-3	51	2.94	2580.0	1557.0	10.0	126.5	BDL	137.39	486.40	3.3	ND	0.07
MC1-4	50	2.08	2170.0	1425.0	15.0	29.3	BDL	144.17	621.15	2.2	ND	0.03
平均	49	2.67	2070.0	1413.5	41.9	70.5		142.16	428.18	2.3	-	0.06
標準差	2	0.40	408.7	116.5	64.6	41.0	-	11.64	184.60	0.7	-	0.04
最大值	51	2.94	2580.0	1557.0	138.5	126.5	1	157.25	621.15	3.3	,	0.11
最小值	48	2.08	1615.0	1272.9	4.0	29.3	1	129.83	180.00	1.6	-	ND

樣點	Fe ²⁺ (mg/L)	NH ₄ ⁺ (mg/L)	Fe (mg/L)	Mn (mg/L)	Pb (mg/L)	As (mg/L)	Cr (mg/L)	TN (mg/L)	TP (mg/L)	TOC (mg/L)
MC1-1	2.320	ND	12.300	1.422	0.018	0.148	ND	0.6	2.03	0.67
MC1-2	4.85	0.50	9.137	1.292	ND	0.102	ND	0.8	0.56	0.97
MC1-3	12.23	0.49	11.530	1.612	ND	0.095	0.082	0.7	0.11	8.78
MC1-4	9.06	0.26	11.478	1.213	ND	0.062	0.003	0.5	0.98	0.71
平均	7.12	0.31	11.111	1.385	0.009	0.102	0.029	0.7	0.92	2.78
標準差	4.40	0.23	1.369	0.174	0.006	0.035	0.046	0.1	0.82	4.00
最大值	12.23	0.50	12.300	1.612	0.018	0.148	0.082	0.8	2.03	8.78
最小值	2.320	ND	9.137	1.213	ND	0.062	ND	0.5	0.11	0.67

樣點	溫度 (℃)	pН	導電度 (μs/cm)	TDS (mg/L)	SS (mg/L)	濁度 (NTU)	HCO ₃ - (mg/L)	Cl ⁻ (mg/L)	SO ₄ ²⁻ (mg/L)	SO ₃ ²⁻ (mg/L)	S ₂ O ₃ ²⁻ (mg/L)	S ²⁻ (mg/L)
MC2-1	64	6.10	370.0	305.7	131.3	160.0	163.9	8.51	33.87	19.3	0.57	0.33
MC2-2	63	5.72	485.0	467.5	142.0	466.0	74.0	15.32	98.87	5.3	3.85	ND
MC2-3	55	6.02	573.0	358.0	43.0	65.9	98.6	7.19	71.93	30.0	5.83	1.72
MC2-4	56	5.49	450.0	337.0	49.0	80.1	422.5	11.29	85.20	4.0	5.35	7.10
平均	60	5.83	469.5	367.1	91.3	193.0	189.8	10.58	72.47	14.7	3.90	2.29
標準差	5	0.28	84.1	70.3	52.6	186.7	159.7	3.59	27.98	12.4	2.37	3.29
最大值	64	6.10	573.0	467.5	142.0	466.0	422.5	15.32	98.87	30.0	5.83	7.10
最小值	55	5.49	370.0	305.7	43.0	65.9	74.0	7.19	33.87	4.0	0.57	ND

樣點	Fe ²⁺ (mg/L)	NH ₄ ⁺ (mg/L)	Fe (mg/L)	Mn (mg/L)	Pb (mg/L)	As (mg/L)	Cr (mg/L)	TN (mg/L)	TP (mg/L)	TOC (mg/L)
MC2-1	0.091	ND	2.148	0.713	0.018	0.037	0.022	0.2	0.71	0.52
MC2-2	1.76	ND	1.962	0.660	ND	0.045	ND	0.6	1.00	1.01
MC2-3	0.85	0.21	0.663	0.607	0.025	0.030	0.003	/ 1.1	0.20	9.74
MC2-4	0.88	0.03	0.487	0.532	0.002	0.008	0.003	1.6	0.81	0.52
平均	0.90	0.06	1.315	0.628	0.013	0.030	0.007	0.9	0.68	2.95
標準差	0.68	0.10	0.861	0.077	0.011	0.016	0.010	0.6	0.34	4.53
最大值	1.76	0.21	2.148	0.713	0.025	0.045	0.022	1.6	1.00	9.74
最小值	0.091	ND	0.487	0.532	0.002	0.008	ND	0.2	0.20	0.52

BDL:低於指示劑變色範圍(HCO₃存在之pH值下限),以0代入計算;ND:低於偵測極限,以1/2偵測極限代入計算;NT:未檢測。

樣點	温度	рН	導電度	TDS	SS	濁度	HCO ₃	Cl-	SO ₄ ² -	SO ₃ ² -	$S_2O_3^{2-}$	S ²⁻
	(℃)	•	$(\mu \text{ s/cm})$	(mg/L)	(mg/L)	(NTU)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MC3-1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
MC3-2	28	2.80	1377.0	1107.5	26.5	22.0	BDL	18.24	304.44	1.8	ND	0.88
MC3-3	29	2.91	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
MC3-4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
平均	29	2.86	-	-	-	-	-	-	-	-	-	-
標準差	1	0.08	-	-	-	-	-	-	-	-	-	-
最大值	29	2.91	-	-	-	-	-	-	-	-	-	-
最小值	28	2.80	-	-	-	-	-	-	-	-	-	-

樣點	Fe ²⁺ (mg/L)	NH ₄ ⁺ (mg/L)	Fe (mg/L)	Mn (mg/L)	Pb (mg/L)	As (mg/L)	Cr (mg/L)	TN (mg/L)	TP (mg/L)	TOC (mg/L)
MC3-1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
MC3-2	3.18	ND	4.787	0.750	ND	0.088	0.005	ND	0.29	1.05
MC3-3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
MC3-4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
平均	-	-	-	-	-	-	-	-	-	-
標準差	-	-	-	-	-	-	-	-	-	-
最大值	-	-	-	1	1	1	1	•	-	-
最小值	-	-	-	-	-	-	-	-	-	-

樣點	溫度 (℃)	pН	導電度 (μs/cm)	TDS (mg/L)	SS (mg/L)	濁度 (NTU)	HCO ₃ - (mg/L)	Cl ⁻ (mg/L)	SO ₄ ²⁻ (mg/L)	SO ₃ ²⁻ (mg/L)	S ₂ O ₃ ²⁻ (mg/L)	S ²⁻ (mg/L)
DYK1-1	85	1.60	23750.0	5785.7	72.8	522.0	BDL	1397.66	1346.54	10.2	ND	ND
DYK1-2	85	2.00	28100.0	8451.5	40.0	68.0	BDL	2021.32	3096.26	16.3	ND	0.16
DYK1-3	89	1.71	27200.0	7523.5	108.5	66.5	BDL	2714.45	3010.84	2.1	1.41	0.29
DYK1-4	78	1.83	25300.0	8269.0	6.1	2.7	BDL	1286.35	4985.62	13.3	0.33	0.35
平均	84	1.79	26087.5	7507.4	56.9	164.8	1	1854.95	3109.82	10.5	0.44	0.20
標準差	5	0.17	1947.0	1216.0	43.9	240.1	ı	657.99	1487.48	6.1	0.67	0.15
最大值	89	2.00	28100.0	8451.5	108.5	522.0	-	2714.45	4985.62	16.3	1.41	0.35
最小值	78	1.60	23750.0	5785.7	6.1	2.7	-	1286.35	1346.54	2.1	-	ND

樣點	Fe ²⁺ (mg/L)	NH ₄ ⁺ (mg/L)	Fe (mg/L)	Mn (mg/L)	Pb (mg/L)	As (mg/L)	Cr (mg/L)	TN (mg/L)	TP (mg/L)	TOC (mg/L)
DYK1-1	20.200	0.48	124.359	0.312	0.065	0.780	0.360	14.8	0.90	2.37
DYK1-2	107.00	ND	113.385	0.297	ND	0.792	0.008	0.7	ND	4.85
DYK1-3	135.20	1.71	152.150	1.017	ND	0.762	14.613	3.7	0.38	4.11
DYK1-4	31.15	0.37	210.084	0.515	ND	0.360	7.562	4.8	ND	1.83
平均	73.39	0.64	149.995	0.535	0.020	0.674	5.636	6.0	0.33	3.29
標準差	56.46	0.74	43.254	0.336	0.030	0.209	6.924	6.1	0.41	1.42
最大值	135.20	1.71	210.084	1.017	0.065	0.792	14.613	14.8	0.90	4.85
最小值	20.200	ND	113.385	0.297	ND	0.360	0.008	0.7	ND	1.83

BDL:低於指示劑變色範圍(HCO_3 存在之 pH 值下限),以 0 代入計算;ND:低於偵測極限,以 1/2 偵測極限代入計算;NT:未檢測。

樣點	温度 (℃)	pН	導電度 (μs/cm)	TDS (mg/L)	SS (mg/L)	濁度 (NTU)	HCO ₃ - (mg/L)	Cl ⁻ (mg/L)	SO ₄ ²⁻ (mg/L)	SO ₃ ²⁻ (mg/L)	$S_2O_3^{2-}$ (mg/L)	S ²⁻ (mg/L)
DYK2-1	67	1.44	22900.0	6887.5	2302.5	92.0	BDL	792.40	1493.42	8.1	ND	ND
DYK2-2	63	1.99	26150.0	7944.0	141.5	29.0	BDL	1475.87	3388.53	10.1	ND	0.12
DYK2-3	66	1.58	21600.0	7781.5	190.5	122.5	BDL	1691.43	3272.60	2.6	0.42	0.20
DYK2-4	69	1.71	23800.0	9778.0	40.0	18.0	BDL	563.29	5526.63	14.5	ND	0.11
平均	66	1.68	23612.5	8097.8	668.6	65.4	-	1130.75	3420.30	8.8	0.11	0.11
標準差	3	0.23	1917.6	1212.7	1091.1	50.1	-	538.50	1650.49	4.9	0.21	0.07
最大值	69	1.99	26150.0	9778.0	2302.5	122.5	-	1691.43	5526.63	14.5	0.42	0.20
最小值	62	1.44	21600.0	6887.5	40.0	18.0	-	563.29	1493.42	2.6	-	ND

樣點	Fe ²⁺ (mg/L)	NH ₄ ⁺ (mg/L)	Fe (mg/L)	Mn (mg/L)	Pb (mg/L)	As (mg/L)	Cr (mg/L)	TN (mg/L)	TP (mg/L)	TOC (mg/L)
DYK2-1	25.300	1.36	158.200	0.288	0.047	0.675	0.370	21.6	0.98	1.59
DYK2-2	128.00	ND	143.765	0.307	ND	0.793	0.062	1.9	ND	2.15
DYK2-3	188.00	2.56	166.650	0.232	ND	0.698	0.130	3.4	1.72	1.31
DYK2-4	35.25	1.62	225.667	0.603	ND	0.422	3.002	0.6	ND	1.56
平均	94.14	1.39	173.571	0.358	0.016	0.647	0.891	6.9	0.69	1.65
標準差	77.81	1.06	35.993	0.167	0.021	0.158	1.414	9.9	0.82	0.35
最大值	188.00	2.56	225.667	0.603	0.047	0.793	3.002	21.6	1.72	2.15
最小值	25.300	ND	143.765	0.232	ND	0.422	0.062	0.6	ND	1.31

樣點	溫度 (℃)	pН	導電度 (μs/cm)	TDS (mg/L)	SS (mg/L)	濁度 (NTU)	HCO ₃ - (mg/L)	Cl ⁻ (mg/L)	SO ₄ ²⁻ (mg/L)	SO ₃ ²⁻ (mg/L)	S ₂ O ₃ ²⁻ (mg/L)	S ²⁻ (mg/L)
BY1-1	68	2.63	1626.0	564.6	42.4	52.0	BDL	48.96	95.95	1.6	ND	ND
BY1-2	64	3.04	1855.0	681.0	180.5	133.0	BDL	92.44	171.02	3.1	ND	0.15
BY1-3	67	2.12	1750.0	610.0	79.5	71.8	BDL	84.80	225.58	2.5	ND	0.06
BY1-4	67	2.04	1900.0	761.0	48.0	36.1	BDL	50.04	301.21	1.0	ND	0.05
平均	66	2.46	1782.8	654.2	87.6	73.2	-	69.06	198.44	2.1	-	0.08
標準差	2	0.47	121.9	85.8	64.1	42.4	-	22.80	86.71	0.9	-	0.04
最大值	68	3.04	1900.0	761.0	180.5	133.0	-	92.44	301.21	3.1	-	0.15
最小值	63	2.04	1626.0	564.6	42.4	36.1	-	48.96	95.95	1.0	-	0.05

樣點	Fe ²⁺ (mg/L)	NH ₄ ⁺ (mg/L)	Fe (mg/L)	Mn (mg/L)	Pb (mg/L)	As (mg/L)	Cr (mg/L)	TN (mg/L)	TP (mg/L)	TOC (mg/L)
BY1-1	0.770	ND	5.647	0.292	ND	0.033	0.038	0.4	0.67	0.35
BY1-2	4.56	0.27	7.688	0.358	ND	0.067	0.583	0.7	0.47	0.49
BY1-3	6.13	0.51	10.195	0.505	0.023	0.042	0.188	2.4	0.26	0.50
BY1-4	0.86	1.60	0.452	0.313	ND	0.007	0.002	0.9	0.41	0.32
平均	3.08	0.60	5.996	0.367	0.010	0.037	0.203	1.1	0.45	0.42
標準差	2.69	0.70	4.137	0.096	0.009	0.025	0.266	0.9	0.17	0.09
最大值	6.13	1.60	10.195	0.505	0.023	0.067	0.583	2.4	0.67	0.50
最小值	0.770	ND	0.452	0.292	ND	0.007	0.002	0.4	0.26	0.32

BDL:低於指示劑變色範圍(HCO_3 存在之 pH 值下限),以 0 代入計算;ND:低於偵測極限,以 1/2 偵測極限代入計算;NT:未檢測。

樣點	温度	рН	導電度	TDS (ma/L)	SS (ma/L)	濁度	HCO ₃ ·	Cl.	SO ₄ ² -	SO ₃ ²⁻	$S_2O_3^{2-}$	S ²⁻
	(℃)		(μ s/cm)	(mg/L)	(mg/L)	(NTU)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
BY2-1	47	2.72	1154.0	431.1	32.9	41.0	BDL	34.87	65.84	1.4	ND	0.03
BY2-2	41	3.20	1101.5	1022.0	73.0	57.0	BDL	51.22	104.80	2.4	ND	ND
BY2-3	40	2.86	1351.0	438.5	40.0	40.6	BDL	53.32	140.81	2.6	ND	0.07
BY2-4	42	2.11	1784.0	558.0	29.0	27.1	BDL	31.64	174.29	1.4	ND	0.07
平均	43	2.72	1347.6	612.4	43.7	41.4	-	42.76	121.44	2.0	ı	0.05
標準差	3	0.46	310.1	279.2	20.0	12.2	-	11.09	46.68	0.6	ı	0.03
最大值	47	3.20	1784.0	1022.0	73.0	57.0	-	53.32	174.29	2.6	ı	0.07
最小值	40	2.11	1101.5	431.1	29.0	27.1	-	31.64	65.84	1.4	-	ND

樣點	Fe ²⁺ (mg/L)	NH ₄ ⁺ (mg/L)	Fe (mg/L)	Mn (mg/L)	Pb (mg/L)	As (mg/L)	Cr (mg/L)	TN (mg/L)	TP (mg/L)	TOC (mg/L)
BY2-1	0.50	ND	4.115	0.235	ND	0.025	ND	0.4	0.29	0.27
BY2-2	1.92	ND	4.382	0.240	ND	0.065	ND	0.5	0.67	0.40
BY2-3	2.77	0.34	4.828	0.253	0.023	0.035	0.010	1.8	0.32	0.29
BY2-4	5.19	ND	7.512	0.507	ND	ND	0.008	0.3	0.33	0.31
平均	2.60	0.12	5.209	0.309	0.010	0.033	0.005	0.8	0.40	0.32
標準差	1.97	0.19	1.563	0.132	0.009	0.025	0.005	0.7	0.18	0.06
最大值	5.19	0.34	7.512	0.507	0.023	0.065	0.010	1.8	0.67	0.40
最小值	0.50	ND	4.115	0.235	ND	ND	ND	0.3	0.29	0.27

樣點	溫度 (℃)	рН	導電度 (μs/cm)	TDS (mg/L)	SS (mg/L)	濁度 (NTU)	HCO ₃ - (mg/L)	Cl ⁻ (mg/L)	SO ₄ ²⁻ (mg/L)	SO ₃ ²⁻ (mg/L)	S ₂ O ₃ ²⁻ (mg/L)	S ²⁻ (mg/L)
BY3-1	44	2.68	1106.0	488.8	35.3	34.0	BDL	32.70	67.27	1.7	ND	0.02
BY3-2	43	3.10	1225.0	621.0	2.5	42.0	BDL	47.64	129.97	2.3	ND	ND
BY3-3	40	2.98	923.0	283.0	22.0	18.4	BDL	41.45	122.55	2.4	ND	0.05
BY3-4	44	2.10	1214.0	424.0	33.0	19.4	BDL	31.64	213.53	2.0	ND	0.06
平均	43	2.72	1117.0	454.2	23.2	28.5	-	38.36	133.33	2.1	-	0.04
標準差	2	0.45	140.0	140.5	15.0	11.5	-	7.59	60.34	0.3	-	0.02
最大值	44	3.10	1225.0	621.0	35.3	42.0	-	47.64	213.53	2.4	-	0.06
最小值	40	2.10	923.0	283.0	2.5	18.4	-	31.64	67.27	1.7	-	ND

樣點	Fe ²⁺ (mg/L)	NH ₄ ⁺ (mg/L)	Fe (mg/L)	Mn (mg/L)	Pb (mg/L)	As (mg/L)	Cr (mg/L)	TN (mg/L)	TP (mg/L)	TOC (mg/L)
BY3-1	0.40	ND	4.547	0.253	ND	0.032	ND	0.3	0.36	0.35
BY3-2	2.62	0.20	5.943	0.352	ND	0.060	ND	1.6	0.36	0.44
BY3-3	2.65	0.36	259.335	0.793	ND	0.017	0.063	2.3	0.25	0.30
BY3-4	4.37	0.13	5.542	0.380	ND	ND	0.003	0.2	0.74	0.41
平均	2.51	0.17	68.842	0.445	- 1	0.029	0.017	1.1	0.43	0.38
標準差	1.63	0.15	126.997	0.239	XI -	0.024	0.031	1.0	0.21	0.06
最大值	4.37	0.36	259.335	0.793	ř	0.060	0.063	2.3	0.74	0.44
最小值	0.40	ND	4.547	0.253	49	ND	ND	0.2	0.25	0.30

BDL:低於指示劑變色範圍(HCO_3)存在之pH值下限),以0代入計算;ND:低於偵測極限,以1/2 偵測極限代入計算;NT:未檢測。

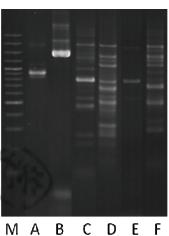
				100								
樣點	溫度 (℃)	pН	導電度 (μs/cm)	TDS (mg/L)	SS (mg/L)	濁度 (NTU)	HCO ₃ - (mg/L)	Cl ⁻ (mg/L)	SO ₄ ²⁻ (mg/L)	SO ₃ ²⁻ (mg/L)	$S_2O_3^{2-}$ (mg/L)	S ²⁻ (mg/L)
GZP1-1	88.5	2.59	4230.0	1600.0	316.4	2445.0	BDL	4.67	579.26	6.8	ND	7.00
GZP1-2	89	2.81	8835.0	8694.0	13773.0	16907.0	BDL	127.72	3009.78	45.9	ND	1.37
GZP1-3	84	2.63	5210.0	5213.0	229.0	5150.0	BDL	6.70	2739.10	5.8	0.61	1.40
GZP1-4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
平均	87	2.68	6091.7	5169.0	4772.8	8167.3	-	46.36	2109.38	19.5	0.20	3.26
標準差	2	0.12	2425.8	3547.2	7794.5	7688.7	-	70.46	1332.02	22.9	0.35	3.24
最大值	89	2.81	8835.0	8694.0	13773.0	16907.0	-	127.72	3009.78	45.9	0.61	7.00
最小值	84	2.59	4230.0	1600.0	229.0	2445.0	-	4.67	579.26	5.8	-	1.37

樣點	Fe ²⁺	NH ₄ ⁺	Fe (mg/L)	Mn (mg/L)	Pb (mg/L)	As (mg/L)	Cr (mg/L)	TN (mg/L)	TP (mg/L)	TOC (mg/L)
GZP1-1	(mg/L) 17.000	(mg/L) ND	(mg/L) 254.750	(mg/L) 2.721	(mg/L) 0.145	(mg/L) 0.312	(mg/L) 0.724	(mg/L) 2.8	(mg/L) 0.64	(mg/L) 8.40
GZP1-2	310.40	0.62	742.83	8.280	ND	0.672	0.397	2.9	4.64	10.90
GZP1-3	396.00	2.11	200.667	7.363	ND	0.337	0.380	1.9	0.17	6.68
GZP1-4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
平均	241.13	0.91	399.416	6.121	0.052	0.440	0.500	2.5	1.82	8.66
標準差	198.77	1.08	298.632	2.980	0.081	0.201	0.194	0.6	2.46	2.12
最大值	396.00	2.11	742.830	8.280	0.145	0.672	0.724	2.9	4.64	10.90
最小值	17.000	ND	200.667	2.721	ND	0.312	0.380	1.9	0.17	6.68

樣點	溫度 (℃)	pН	導電度 (μs/cm)	TDS (mg/L)	SS (mg/L)	濁度 (NTU)	HCO ₃ - (mg/L)	Cl ⁻ (mg/L)	SO ₄ ²⁻ (mg/L)	SO ₃ ²⁻ (mg/L)	S ₂ O ₃ ²⁻ (mg/L)	S ²⁻ (mg/L)
GZP2-1	59	2.57	2365.0	2411.3	121.8	587.0	BDL	7.25	297.33	2.0	ND	6.14
GZP2-2	58	2.80	5680.0	5145.5	53.4	409.0	BDL	84.68	1680.69	11.0	0.93	5.07
GZP2-3	58	2.41	7090.0	7177.0	10970.5	896.0	BDL	6.85	2678.57	6.6	0.59	4.30
GZP2-4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
平均	58	2.59	5045.0	4911.3	3715.2	630.7	-	32.93	1552.20	6.5	0.51	4.91
標準差	1	0.20	2425.7	2391.5	6283.3	246.4	-	44.82	1195.81	4.5	0.47	0.92
最大值	59	2.80	7090.0	7177.0	10970.5	896.0	-	84.68	2678.57	11.0	0.93	6.14
最小值	58	2.41	2365.0	2411.3	53.4	409.0	•	6.85	297.33	2.0	1	4.30

樣點	Fe ²⁺ (mg/L)	NH ₄ ⁺ (mg/L)	Fe (mg/L)	Mn (mg/L)	Pb (mg/L)	As (mg/L)	Cr (mg/L)	TN (mg/L)	TP (mg/L)	TOC (mg/L)
GZP2-1	3.960	0.19	20.233	2.962	0.023	0.210	0.022	0.8	0.45	3.82
GZP2-2	130.10	ND	108.165	6.732	ND	0.295	0.192	2.3	1.47	9.49
GZP2-3	153.20	5.62	191.734	12.648	ND	0.267	0.237	5.9	0.87	10.04
GZP2-4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
平均	95.75	1.94	106.711	7.447	0.011	0.257	0.150	3.0	0.93	7.78
標準差	80.33	3.19	85.760	4.882	0.010	0.043	0.113	2.6	0.51	3.44
最大值	153.20	5.62	191.734	12.648	0.023	0.295	0.237	5.9	1.47	10.04
最小值	3.960	ND	20.233	2.962	ND	0.210	0.022	0.8	0.45	3.82

附錄三、各採樣點第一季沉積物 PCR 反應後之電泳相片


硫磺谷 1 (LHG1)

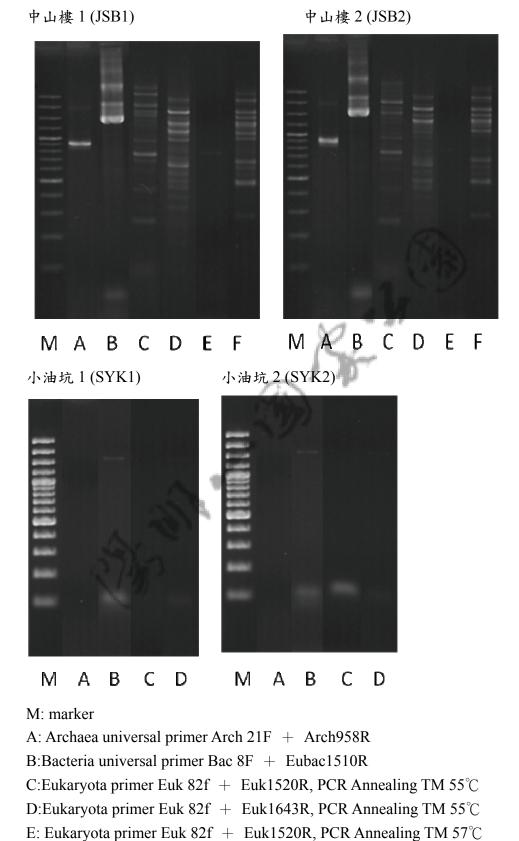
硫磺谷 2 (LHG2)

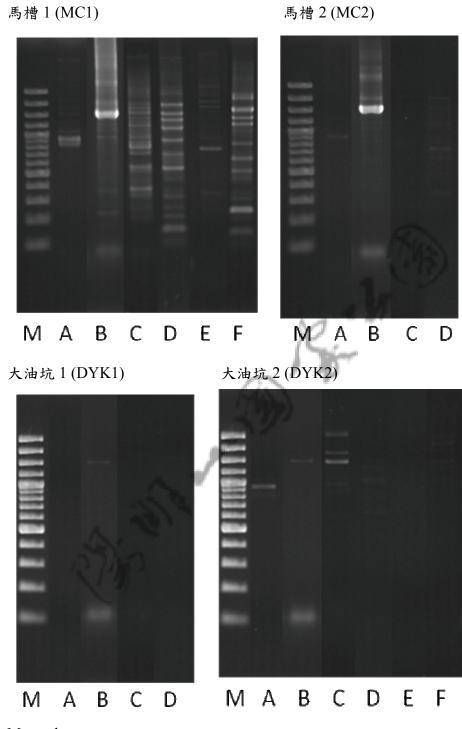
硫磺谷 3 (LHG3)

龍鳳谷1(LFG1)

ABCDEF

M: marker


A: Archaea universal primer Arch 21F + Arch958R

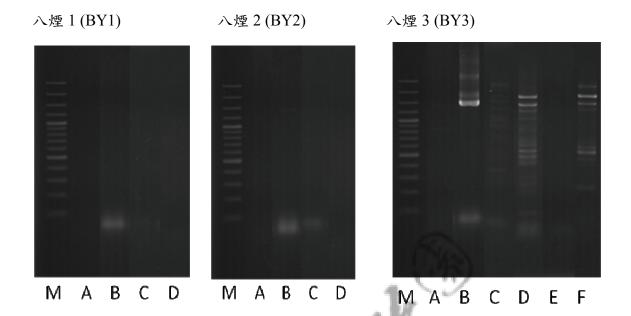

B:Bacteria universal primer Bac 8F + Eubac1510R

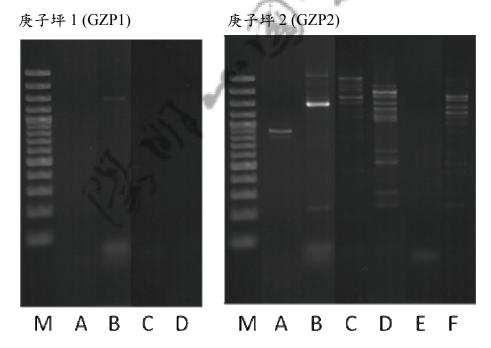
C:Eukaryota primer Euk 82f + Euk1520R, PCR Annealing TM 55°C

D:Eukaryota primer Euk 82f $\,+\,$ Euk1643R, PCR Annealing TM 55 $^{\circ}$ C

E: Eukaryota primer Euk 82f + Euk1520R, PCR Annealing TM 57°C

M: marker


A: Archaea universal primer Arch 21F + Arch 958R


B:Bacteria universal primer Bac 8F + Eubac1510R

C:Eukaryota primer Euk 82f + Euk1520R, PCR Annealing TM 55°C

D:Eukaryota primer Euk 82f + Euk1643R, PCR Annealing TM 55°C

E: Eukaryota primer Euk 82f + Euk1520R, PCR Annealing TM 57°C

M: marker

A: Archaea universal primer Arch 21F + Arch958R

B:Bacteria universal primer Bac 8F + Eubac1510R

C:Eukaryota primer Euk 82f + Euk1520R, PCR Annealing TM 55°C

D:Eukaryota primer Euk 82f + Euk1643R, PCR Annealing TM 55°C

E: Eukaryota primer Euk 82f + Euk1520R, PCR Annealing TM 57°C

附錄四、本研究各限制酶對 16S rDNA 切割的 RFLP 類型

Archae	eal 16S rDNA: Rsa I (Afa I)		
類型	片段種類 (bp)	類型	片段種類 (bp)
 -1	750, 340	IV-8	480, 220, 190, 120
Ⅱ-2	750, 220	IV-9	450, 390, 250, 200
Ⅱ -3	720, 450	IV-10	400, 220, 150, 120
∏ -4	710, 390	IV-11	420, 390, 250, 120
∏-5	700, 220	IV-12	450, 380, 370, 220
Ⅱ -6	380, 220	IV-13	380, 360, 240, 180
Ⅲ-1	800, 220, 200	IV-14	380, 370, 220, 210
Ⅲ-2	780, 220, 180	IV-15	400, 350, 210, 190
Ⅲ-3	590, 220, 200	IV-16	350, 220, 180, 120
Ⅲ-4	480, 270, 220	V-1	800, 420, 380, 250, 200
Ⅲ-5	480, 220, 200	VI-1	850, 750, 550, 400, 200, 180
Ⅲ-6	480, 220, 130	VII-1	750, 550, 450, 400, 350, 250, 200
Ⅲ-7	450, 370, 320		
Ⅲ-8	380, 250, 230		
∭-9	480, 220, 160		
Ⅲ-10	550, 220, 190		
Ⅲ-11	390, 380, 220		
Ⅲ-12	410, 380, 200		
Ⅲ-13	450, 210, 150		
Ⅲ-14	450, 220 ,180		
Ⅲ-15	350, 220, 180		
IV-1	490, 320, 220, 200		
IV-2	450, 350, 200, 180		
IV-3	450, 300, 220, 180		
IV-4	450, 300, 180, 120		
IV-5	400, 350, 180, 160		
IV-6	350, 220, 200, 180		
IV-7	480, 220, 150, 120		

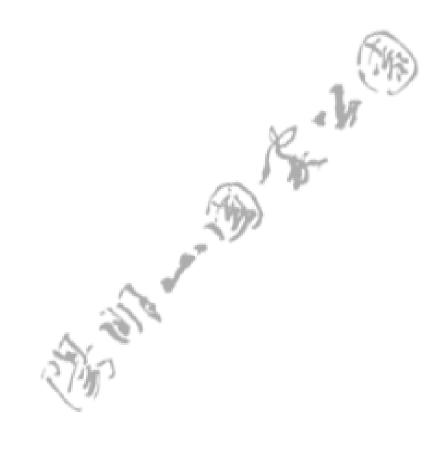
Archae	al 16S rDNA:Sau 3A I
類型	片段種類 (bp)
I-1	1200
II-1	1050, 120
II-2	1000, 150
II-3	950, 155
II-4	550, 500
II-5	450, 420
III-1	900, 170, 120
III-2	650, 390, 150
III-3	460, 380, 150
III-4	420, 230, 120
III-5	650, 450, 120
III-6	550, 480, 150
III-7	750, 200, 120
III-8	1050, 380, 180
IV-1	1050, 870, 170, 160
IV-2	700, 250, 180, 150
IV-3	500, 420, 160, 120
IV-4	420, 320, 250, 120
IV-5	390, 380, 250, 150
IV-5	390, 380, 250, 150
IV-5	390, 370, 250, 150
IV-5	390, 370, 250, 150
IV-6	390, 320, 250, 150
IV-7	450, 380, 250, 120
IV-8	450, 350, 150, 100
V-1	900, 450, 420, 200, 120

Archae	al 16S rDNA:Hha I		
類型	片段種類 (bp)	類型	片段種類 (bp)
II-1	390, 180	IV-15	500, 200, 150, 130
II-2	700, 450	IV-16	380, 250, 210, 160
III-1	690, 340, 150	IV-17	380, 310, 160, 140
III-2	510, 360, 200	IV-18	310, 280, 180, 150
III-3	500, 230, 180	IV-19	450, 380, 150, 100
III-4	490, 340, 180	IV-20	480, 310, 280, 110
III-5	480, 380, 180	V-1	500, 250, 180, 160, 140
III-6	450, 390, 180	V-2	480, 280, 180, 160, 140
III-7	400, 350, 180	V-3	480, 240, 180, 160, 120
III-8	400, 300, 180	V-4	450, 380, 180, 150, 120
III-9	380, 300, 250	V-5	450, 270, 180, 160, 120
III-10	340, 170, 150	V-6	380, 220, 190, 150, 120
III-11	340, 280, 240	V-7	360, 340, 220, 160, 150
III-12	700, 300, 150	V-8	340, 290, 220, 200, 160
III-13	720, 280, 200	V-9	400, 350, 200, 150, 120
III-14	450, 250, 200	V-10	390, 310, 180, 160, 140
III-15	500, 250, 200	V-11	390, 180, 160, 140, 120
IV-1	700, 180, 150, 120	V-12	490, 220, 210, 150, 120
IV-2	690, 230, 150, 130	V-13	550, 500, 350, 180, 160
IV-3	500, 340, 180, 160	VI-1	390, 240, 170, 160, 140, 120
IV-4	490, 280, 170, 150	VI-2	350, 220, 180, 150, 120, 100
IV-5	480, 390, 180, 170	VI-3	450, 250, 180, 160, 150, 120
IV-6	450, 360, 290, 120	VI-4	350, 220, 200, 150, 140, 100
IV-7	450, 270, 180, 120		
IV-8	400, 350, 290, 180		
IV-9	390, 350, 290, 200		
IV-10	380, 370, 280, 190		
IV-11	600, 250, 150, 120		
IV-12	350, 340, 280, 220		
IV-13	500, 200, 150, 120		
IV-14	650, 350, 220, 150		

Bacter	ial I 16S rDNA: Rsa I (Afa I)		
類型	片段種類 (bp)	類型	片段種類(bp)
 -1	750, 640	V-16	600, 340, 280, 240, 120
Ⅲ-1	790, 720, 240	V-17	600, 420, 380, 280, 180
Ⅲ-2	750, 590, 260	V-18	350, 250, 210, 180, 150
Ⅲ-3	950, 550, 280	V-19	850, 350, 250, 150, 130
IV-1	720, 620, 260, 140	V-20	550, 400, 250, 200, 160
IV-2	700, 410, 360, 270	VI-1	480, 380, 300, 280, 160, 150
IV-3	550, 500, 250, 150	VI-2	480, 380, 300, 220, 200, 150
IV-4	420, 380, 280, 260	VI-3	590, 280, 260, 180, 140, 100
IV-5	800, 600, 300, 150	VI-4	410, 390, 370, 250, 150, 100
IV-6	600, 550, 450, 250	VI-5	620, 220, 200, 180, 120, 100
IV-7	450, 380, 280, 180	VI-6	460, 400, 360, 220, 180, 150
IV-8	600, 550, 380, 280	VI-7	600, 280, 220, 200, 180, 160
IV-9	800, 600, 260, 120	VI-8	550, 350, 250, 230, 180, 160
IV-10	700, 450, 380, 200	VI-9	600, 380, 250, 240, 180, 160
IV-11	600, 260, 180, 120	VI-10	450, 360, 290, 220, 190, 150
IV-12	1000, 350, 250, 150	VI-11	410, 390, 370, 230, 210, 150
IV-13	1100, 350, 180, 150	VII-1	600, 250, 220, 210, 190, 140, 100
IV-14	550, 350, 250, 150		
V-1	800, 380, 250, 220, 150		
V-2	790, 370, 260, 250, 150		
V-3	590, 500, 260, 250, 170		
V-4	590, 400, 360, 260, 150		
V-5	590, 360, 270, 180, 160		
V-6	580, 480, 270, 220, 150		
V-7	580, 300, 220, 170, 150		
V-8	480, 410, 380, 280, 150		
V-9	440, 420, 360, 270, 160		
V-10	410, 360, 280, 220, 150		
V-11	360, 320, 260, 240, 170		
V-12	400, 350, 250, 220, 100		
V-13	480, 380, 320, 280, 150		
V-14	600, 320, 280, 180, 100		
V-15	650, 250, 220, 150, 120		

類型			
	片段種類(bp)	類型	片段種類 (bp)
I-1	1700	IV-11	900, 300, 200, 120
II-1	1500,160	IV-12	1000, 350, 300, 120
II-2	900,300	IV-13	900, 420, 280, 150
II-3	1600,120	IV-14	650, 280, 200, 180
II-4	1300,250	IV-15	650, 350, 280, 160
II-5	1400,300	IV-16	1100, 300, 250, 110
III-1	1200,320,160	V-1	800, 350, 280, 200, 120
III-2	1000, 280, 270	V-2	680, 320, 300, 200, 120
III-3	1050, 300, 120	V-3	800, 350, 300, 180, 120
III-4	1200, 300, 120	V-4	850, 300, 250, 170, 110
III-5	900, 800, 120	V-5	800, 390, 280, 150, 120
III-6	1200, 350, 120	V-6	650, 600, 300, 150, 120
III-7	800, 600, 300	VI-1	680, 340, 270, 200, 180, 140
III-8	1400, 250, 150	VI-2	650, 300, 250, 200, 150, 110
III-9	1100, 250, 160		
III-10	1000, 320, 280		
III-11	800, 350, 300		
IV-1	1200, 300, 200, 130		
IV-2	1200, 270, 200, 180		
IV-3	1200, 170, 160, 120		
IV-4	950, 320, 200, 165		
IV-5	900, 350, 170, 130		
IV-6	900, 320, 280, 180		
IV-7	900, 300, 190, 120		
IV-8	900, 280, 200, 160		
IV-9	1050, 300, 200, 120		
IV-10	1050, 270, 200, 160		

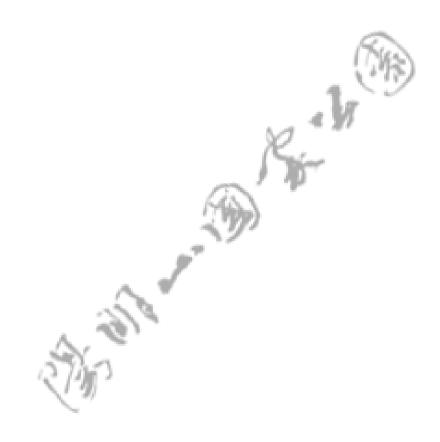
類型 月段種類(bp) 類型 月段種類(bp) III-1 1300, 420 V-1 750, 360, 320, 190, 170 III-2 1200, 520 V-2 580, 450, 380, 205, 200 III-3 700, 550 V-3 550, 520, 380, 220, 180 IIII-1 1200, 420, 140 V-4 550, 480, 470, 170, 150 III-1 1200, 400, 140 V-5 550, 450, 380, 250, 140 III-2 900, 550, 350 V-6 550, 400, 360, 220, 140 III-3 550, 520, 220 V-7 550, 380, 320, 300, 280 III-4 550, 490, 220 V-8 520, 450, 380, 250, 200 III-4 550, 490, 210 V-9 520, 200, 180, 160, 130 III-5 550, 240, 220 V-10 510, 355, 350, 290, 270 III-6 540, 480, 200 V-11 500, 360, 350, 290, 270 III-7 950, 550, 320 V-12 450, 370, 340, 240, 140 III-8 950, 500, 350 V-13 400, 380, 300, 280, 140 III-9 550, 340, 320 V-14 550, 480, 250, 190, 120 III-10 1200, 300, 260 V-15 900, 340, 240, 190, 120 III-11 500, 350, 150 V-16 560, 540, 340, 220, 150 III-12 550, 450, 350 V-17 550, 380, 370, 360, 150
II-3
1
III-1 1200, 400, 140 V-5 550, 450, 380, 250, 140 III-2 900, 550, 350 V-6 550, 400, 360, 220, 140 III-3 550, 520, 220 V-7 550, 380, 320, 300, 280 III-4 550, 490, 220 V-8 520, 450, 380, 250, 200 III-4 550, 490, 210 V-9 520, 200, 180, 160, 130 III-5 550, 240, 220 V-10 510, 355, 350, 290, 270 III-6 540, 480, 200 V-11 500, 360, 350, 290, 270 III-7 950, 550, 320 V-12 450, 370, 340, 240, 140 III-8 950, 500, 350 V-13 400, 380, 300, 280, 140 III-9 550, 340, 320 V-14 550, 480, 250, 190, 120 III-10 1200, 300, 260 V-15 900, 340, 240, 190, 120 III-11 500, 350, 150 V-16 560, 540, 340, 220, 150
III-2 900, 550, 350 V-6 550, 400, 360, 220, 140 III-3 550, 520, 220 V-7 550, 380, 320, 300, 280 III-4 550, 490, 220 V-8 520, 450, 380, 250, 200 III-4 550, 490, 210 V-9 520, 200, 180, 160, 130 III-5 550, 240, 220 V-10 510, 355, 350, 290, 270 III-6 540, 480, 200 V-11 500, 360, 350, 290, 270 III-7 950, 550, 320 V-12 450, 370, 340, 240, 140 III-8 950, 500, 350 V-13 400, 380, 300, 280, 140 III-9 550, 340, 320 V-14 550, 480, 250, 190, 120 III-10 1200, 300, 260 V-15 900, 340, 240, 190, 120 III-11 500, 350, 150 V-16 560, 540, 340, 220, 150 III-11 500, 350, 150 V-16 560, 540, 340, 220, 150 III-12 1200, 300, 250 V-16 560, 540, 340, 220, 150 III-14 500, 350, 150 V-16 560, 540, 340, 220, 150 III-15 150, 350, 150 V-16 560, 540, 340, 220, 150 III-16 540, 480, 250, 150 560, 540, 340, 220, 150 III-17 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-16 540, 480, 250, 150 560, 540, 340, 220, 150 III-17 500, 350, 150 V-16 560, 540, 340, 220, 150 III-17 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-19 550, 480, 250, 150 V-16 560, 540, 340, 220, 150 III-17 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-17 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 540, 540, 540, 540, 540, 540, 540,
III-3 550, 520, 220 V-7 550, 380, 320, 300, 280 III-4 550, 490, 220 V-8 520, 450, 380, 250, 200 III-4 550, 490, 210 V-9 520, 200, 180, 160, 130 III-5 550, 240, 220 V-10 510, 355, 350, 290, 270 III-6 540, 480, 200 V-11 500, 360, 350, 290, 270 III-7 950, 550, 320 V-12 450, 370, 340, 240, 140 III-8 950, 500, 350 V-13 400, 380, 300, 280, 140 III-9 550, 340, 320 V-14 550, 480, 250, 190, 120 III-10 1200, 300, 260 V-15 900, 340, 240, 190, 120 III-11 500, 350, 150 V-16 560, 540, 340, 220, 150 III-11 500, 350, 150 V-16 560, 540, 340, 220, 150 III-12 1200, 300, 250 V-16 560, 540, 340, 220, 150 III-13 500, 350, 150 V-16 560, 540, 340, 220, 150 III-14 500, 350, 150 V-16 560, 540, 340, 220, 150 III-15 550, 340, 320 V-16 560, 540, 340, 220, 150 III-16 540, 490, 210 550, 480, 250, 190, 120 III-17 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-16 540, 490, 220 560, 540, 340, 220, 150 III-17 500, 350, 150 V-16 560, 540, 340, 220, 150 III-17 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 150 V-16 560, 540, 340, 220, 150 III-18 500, 350, 350, 350, 350, 350, 350, 350,
III-4 550, 490, 220 V-8 520, 450, 380, 250, 200 III-4 550, 490, 210 V-9 520, 200, 180, 160, 130 III-5 550, 240, 220 V-10 510, 355, 350, 290, 270 III-6 540, 480, 200 V-11 500, 360, 350, 290, 270 III-7 950, 550, 320 V-12 450, 370, 340, 240, 140 III-8 950, 500, 350 V-13 400, 380, 300, 280, 140 III-9 550, 340, 320 V-14 550, 480, 250, 190, 120 III-10 1200, 300, 260 V-15 900, 340, 240, 190, 120 III-11 500, 350, 150 V-16 560, 540, 340, 220, 150
III-4 550, 490, 210 V-9 520, 200, 180, 160, 130 III-5 550, 240, 220 V-10 510, 355, 350, 290, 270 III-6 540, 480, 200 V-11 500, 360, 350, 290, 270 III-7 950, 550, 320 V-12 450, 370, 340, 240, 140 III-8 950, 500, 350 V-13 400, 380, 300, 280, 140 III-9 550, 340, 320 V-14 550, 480, 250, 190, 120 III-10 1200, 300, 260 V-15 900, 340, 240, 190, 120 III-11 500, 350, 150 V-16 560, 540, 340, 220, 150
III-5 550, 240, 220 V-10 510, 355, 350, 290, 270 III-6 540, 480, 200 V-11 500, 360, 350, 290, 270 III-7 950, 550, 320 V-12 450, 370, 340, 240, 140 III-8 950, 500, 350 V-13 400, 380, 300, 280, 140 III-9 550, 340, 320 V-14 550, 480, 250, 190, 120 III-10 1200, 300, 260 V-15 900, 340, 240, 190, 120 III-11 500, 350, 150 V-16 560, 540, 340, 220, 150
III-6 540, 480, 200 V-11 500, 360, 350, 290, 270 III-7 950, 550, 320 V-12 450, 370, 340, 240, 140 III-8 950, 500, 350 V-13 400, 380, 300, 280, 140 III-9 550, 340, 320 V-14 550, 480, 250, 190, 120 III-10 1200, 300, 260 V-15 900, 340, 240, 190, 120 III-11 500, 350, 150 V-16 560, 540, 340, 220, 150
III-7 950, 550, 320 V-12 450, 370, 340, 240, 140 III-8 950, 500, 350 V-13 400, 380, 300, 280, 140 III-9 550, 340, 320 V-14 550, 480, 250, 190, 120 III-10 1200, 300, 260 V-15 900, 340, 240, 190, 120 III-11 500, 350, 150 V-16 560, 540, 340, 220, 150
III-8 950, 500, 350 V-13 400, 380, 300, 280, 140 III-9 550, 340, 320 V-14 550, 480, 250, 190, 120 III-10 1200, 300, 260 V-15 900, 340, 240, 190, 120 III-11 500, 350, 150 V-16 560, 540, 340, 220, 150
III-9 550, 340, 320 V-14 550, 480, 250, 190, 120 III-10 1200, 300, 260 V-15 900, 340, 240, 190, 120 III-11 500, 350, 150 V-16 560, 540, 340, 220, 150
III-10 1200, 300, 260 V-15 900, 340, 240, 190, 120 III-11 500, 350, 150 V-16 560, 540, 340, 220, 150
III-11 500, 350, 150 V-16 560, 540, 340, 220, 150
117127
III-12 550, 450, 350 V-17 550, 380, 370, 360, 150
III-13 420, 380, 190 V-18 650, 350, 220, 180, 150
IV-1 1200, 250, 170, 140 V-19 550, 380, 370, 280, 120
IV-2 1150, 250, 200, 140 V-20 700, 320, 220, 180, 150
IV-3 800, 380, 310, 280 V-21 290, 220, 180, 160, 140
IV-4 750, 520, 370, 170 V-22 520, 420, 380, 190, 170
IV-5 700, 500, 280, 260 V-23 550, 380, 360, 220, 200
IV-6 650, 550, 290, 270 V-24 510, 480, 280, 240, 200
IV-7 550, 520, 370, 360 V-25 690, 540, 220, 190, 120
IV-8 550, 380, 320, 220 VI-1 550, 400, 360, 240, 170, 140
IV-9 1200, 240, 190, 120 VI-2 550, 380, 320, 290, 160, 140
IV-10 500, 240, 190, 120 VI-3 520, 370, 300, 280, 220, 180
IV-11 400, 350, 300, 200 VI-4 400, 320, 180, 160, 140, 120
IV-12 550, 450, 350, 180 VI-5 400, 250, 180, 160, 140, 120
IV-13 500, 480, 350, 200 VI-6 900, 550, 450, 350, 250, 150
IV-14 900, 300, 200, 120 VI-7 520, 390, 340, 220, 160, 120
IV-15 550, 300, 200, 150
IV-16 550, 500, 390, 300
IV-17 550, 380, 300, 150
IV-18 450, 420, 380, 200
IV-19 900, 550, 350, 280


附錄五、嗜熱古菌之分類

Kindom	Phylum	Class	Order	Family	Genus	Species
Crenarchaeota	Crenarchaeota	Thermoprotei	Caldis-	Caldis-	Caldis-	C. dracosis
		Thermoprotes	phaerales	phaeraceae	phaera	
			Desulfuro-	Desulfuro-		C. lagunensis
			coccales	coccaceae	Acidilobus	A. aceticus
						A. saccharovorans
					Acidococcus	A. sulfurreducens
					Aeropyrum	A. camini
				PG	1	A. pernix
				1.24	Desulfuro- coccus	D. amylolyticus
				4		D. fermentans
				4 W		D. mobilis
			1.7	- 41		D. mucosus
			150	and the same of th		D. saccharovorans
			/ 40		Ignicoccus	I. islandicus
		- /	12			I. pacificus
		17	Pitho)			I. hospitalis
			9		Staphylother- mus	S. hellenicus
		9				S. marinus
	^	10/			Stetteria	S. hydrogenophila
	14.	B			Sulfophobo- coccus	S. zilligii
	A . 3				Thermodiscus	T. maritimus
1	1300 m				Thermosphaera	T. aggregans
1,0	//Jim >			Pyrodictiaceae	Geogemma	G. barossii
,	(30			·		G. indica
	~					G. pacifica
					Hyperthermus	H. butylicus
					Pyrodictium	P. abyssi
			1		<i>y</i>	P. brockii
						P. occultum
					Pyrolobus	P. fumarii
			Sulfolobales	Sulfolobaceae	Acidianus	A. ambivalens
			~ anoionates	Zanorobaccac		A. brierleyi
						A. convivator
						A. convivator A. infernus
						A. injernus A. manzaensis
						A. pozzuoliensi: A.
D 1 1-11-		1. :1: .				tengchongenses

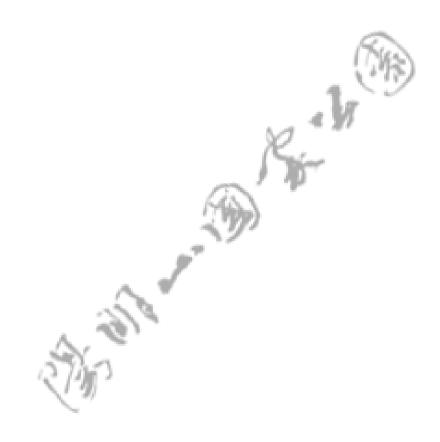
Kindom	Phylum	Class	Order	Family	Genus	Species
			Sulfolobales	Sulfolobaceae	Metallosphaera	
Crenarenacota	Степатепасоса	Thermoproter	Sundidates	Sundiddaceae	1910 and 1911 and 191	M. prunae
						M. sedula
					Stygiolobus	S. azoricus
						S.
					Sulfolobus	acidocaldarius
						S. islandicus
						S. metallicus
						S.
					Sulfolobus	neozealandicus
						S. shibatae
						S. solfataricus
						S.
						tengchongensis
				100	h	S. thuringiensis
				194	7	S. tokodaii
				11.3	2-7	S.
				1 4.	81	yangmingensis
				4 .	Sulfurisphaera	S. ohwakuensis
			Thermo-	Thermo-	•	<i>C</i> .
			proteales	proteaceae	Caldivirga	maquilingensis
			VI		Pyrobaculum	P. aerophilum
			74			P. arsenaticum
			1 10	ring ^a		P. calidifontis
			. 1 /10			P. islandicum
		/	1			P.
		[4	$(\Delta \lambda)$			neutrophilum
			(עעי			P. oguniense
		7	2			P.
		- 40				organotrophum
					Thermocladium	T. modestilus
		-			Thermoproteus	T. neutrophilus
	^					T. tenax
	14.5%	Öi.				T. uzoniensis
	-27/	4			Vulcanisaeta	V. distrbuta
	4 72					V. souniana
	200			Thermo-		
	77.7			filaceae	Thermofilum	T. librum
14.	/////					T. pendens
D 1	J 97		Archaeo-	Archaeo-		
Euryarchaeota	Euryarchaeota	Archaeoglobi	globales	globaceae	Archaeoglobus	A. fulgidus
						<i>A</i> .
						lithotrophicus
						A. infectus
						A. profundus
						A. veneficus
					Ferroglobus	F. placidus
					Geoglobus	G. ahangari
		Methano-	Methano-	Methano-	Methano-	
		bacteria	bacteriales	bacteriaceae	thermobacter	M. defluvii
					*****	М.
						marburgensis
						M. thermauto-
						trophicus
						М.
ı						thermoflexus
						<i>M</i> .
						M. thermophilus

Kindom	Phylum	Class	Order	Family	Genus	Species
Euryarchaeota	Euryarchaeota	Methano-	Methano-	Methano-	Methanotherm	M. fervidus
Euryarchaeota	Euryarchaeota	bacteria	bacteriales	thermaceae	us	
			N. 6. (1	3.5.4	16.4	M. sociabilis
		Methanococci	Methano- coccales	Methano- caldococcacea	Methano- caldococcus	M. jannaschii
				Methano- coccaceae	Methano- thermococcus	M. okinawensi
				coccaccac	inermococcus	М.
						thermolithotrop hicus
		Methano-	Methano-	Methano-	Methanosaeta	M. thermophile
		microbia	sarcinales	saetaceae		F
		Methanopyri	Methano- pyrales	Methano- pyraceae	Methanopyrus	M. kandleri
		Thermococci	Thermo- coccales	Thermo- coccaceae	Palaeococcus	P. ferrophilus
				1 / 3/	25/	P. helgesonii
				1 17	Pyrococcus	P. abyssi
				4	1	P. endeavori
				. 0.07		P. furiosus
				4 377		P. glycovorans
			80			P. horikoshii
			150			P. woesei
			/ III			T.
		,	~ P		Thermococcus	acidaminovoran
		f-	[22]			T. aegaeus
		- 5	(47 17)			T. aggregans
		3	7'			T. alcaliphilus
						T. atlanticus
		-				T. barophilus
						T. barossii
	100					T. celer
	1.7	T.				T. chitonophagi
	439	-				T. coalescens
	A					T. fumicolans
	Mary and					T. Turnicolaris
4	1/90					gammatolerans
	/ "					T. gorgonarius
						T. guaymasensi
						T.
						hydrothermalis
						T. kodakarensis
						T. litoralis
						T. marinus
						T. mexicalis
						T. pacificus
						T. peptonophilu
						T. profundus
						T. radiotolerans
	1					T. sibiricus
						T. siculi
		Thermo-	Thermo-	Ferro-		F. cyprexa-
		plasmata	plasmatales	plasmaceae	Ferroplasma	cervatum
				Picrophilaceae	Picrophilus	P. oshimae
		1. :1: .				P. torridus


Kindom	Phylum	Class	Order	Family	Genus	Species
Euryarchaeota	Euryarchaeota	Thermo- plasmata	Thermo- plasmatales	Thermo- plasmataceae	Thermoplasma	T. acidophilum
						T. volcanium
Euryarchaeota	Euryarchaeota	?	?	?	Candidatus Aciduliprofund um	Ca. A. boonei
Korarchaeota	Korarchaeota					
?	Nanoarchaeota				Nanoarchaeum	N. equitans
?	Thaum- archaeota					

附錄六、本研究所發現古菌之分類地位

Kindom	Phylum	Class	Order	Family	Genus	Species
Crenarchaeota	Crenarchaeota	Thermoprotei	Caldisphaerales	Caldi- sphaeraceae	Caldisphaera	C. draconis C. lagunensis
			Desulfuro- coccales	Desulfuro- coccaceae	Acidilobus	A. saccharo- vorans
			Sulfolobales	Sulfolobaceae	Acidianus	A. brierleyi A. infernus
					Metallosphaera	M. hakonensis
					Sulfolobus	S. metallicus S. tokodaii
			Thermo- proteales			
Euryarchaeota	Euryarchaeota			6	h.,	
		Thermo- plasmata	Thermo- plasmatales	[7]	(2)	
Euryarchaeota	Euryarchaeota	?	?	?	Candidatus Aciduli- profundum	Ca. A. boonei


粗體字:本研究發現者

附錄七、本研究所發現細菌之分類地位

Kindom	Phylum	Class	Order	Family	Genus	Species
Eubacteria	Acidobacteria	Acidobacteria	Acido-	Acido-	Acidobacterium	
	Actinobacteria	Actinobacteria	bacteriales Rubrobacterales	Rubro- bacteraceae		
	Aquificae	Aquificae	Aquificales	Aquificaceae	Hydrogeno- baculum	
	Chlorobi	Chlorobia	Chlorobiales	Chlorobiaceae (green sulfur bacterium)		
	Chloroflexi	Anaerolineae	Anaerolinaeles	Anaerolinaceae	Anaerolinea	Anaerolinea thermophila
	Firmicutes	Bacilli	Bacillales	Alicyclo- bacillaceae	Alicyclobacillus	
		Clostridia	Thermoanaero- bacterales	Thermoanaero- bacteriaceae	Thermoanaero bacter	
	Proteobacteria	α Proteobacteria	Sphingo- monadales	Sphingo- monadaceae	Sphingomonas	
		β Proteobacteria	Burkholderiales	Burkhol- deriaceae	Ralstonia	
			Burkholderiales	Comamona- daceae	Thiomonas	
		4	Hydrogeno- philales	Hydrogeno- philaceae	Thiobacillus	
		γ Proteobacteria	Acidithio- bacillales	Acidithio- bacillaceae	Acidithio- bacillus	
		- 9	Chromatiales	Chromatiaceae	Rheinheimera	
		δ Proteobacteria		Desulfurel- laceae	Desulfurella	Desulfurella kamchatkensi
		b. "	Desulfo- vibrionales	Desulfo- vibrionaceae	Desulfovibrio	
	1	,	Syntropho- bacterales	Syntrophaceae		
	Spirochaetes					
/	Thermotogae	Thermotogae	Thermotogales	Thermo- togaceae	Thermotoga	
	1 11	Fila	mentous bacter	ium		

粗體字:本研究發現者

附錄八、陽明山國家公園酸性溫泉無脊椎動物調查照片

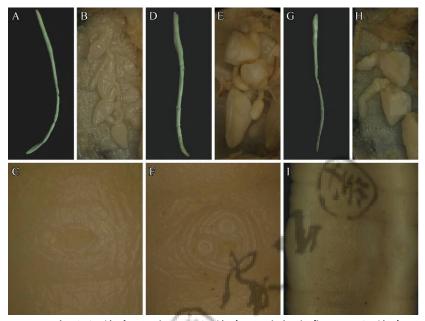


圖1:A-小油坑外圍皮質遠環蚓;B-皮質遠環蚓受精囊;C-皮質遠環蚓雄孔; D-小油坑外圍泰雅遠環蚓;E泰雅遠環蚓受精囊;F泰雅遠環蚓雄孔;G-八煙外 圍多腺遠環蚓;H-多腺遠環蚓受精囊;I-多腺遠環蚓雄孔與乳突。

圖 2: A-硫磺谷露頭附近狼蛛科 Sp.1; B-小油坑露頭附近狼蛛科 Sp.1; C-大油坑露頭附近狼蛛科 Sp.1; D-馬槽露頭附近狼蛛科 Sp.1; E-八煙露頭附近狼蛛科 Sp.1; F-庚子坪露頭附近狼蛛科 Sp.1。

圖 3:A-小油坑露頭附近跳蛛科 Sp.2;B-八煙露頭附近跳蛛科 Sp.2;C-庚子坪露頭附近跳蛛科 Sp.2;D-八煙露頭附近跳蛛科 Sp.3;E-八煙露頭附近鷲蛛科 Sp.4;F-硫磺谷露頭附近橫疣蛛科 Sp.5。

圖 4:A-小油坑露頭附近橫疣蛛科 Sp.5;B-庚子坪露頭附近橫疣蛛科 Sp.5;C-小油坑露頭附近未知蜘蛛 Sp.6;D-大油坑露頭附近未知蜘蛛 Sp.6;E-大油坑外圍金蛛科,F-大油坑外圍金蛛科鳥糞蛛屬。

圖 5: A-馬槽小溪流橫紋划椿; B-馬槽小溪流石蛉科幼蟲; C-馬槽小溪流搖蚊科幼蟲; D-庚子坪小溪流搖蚊科幼蟲; E-庚子坪小溪流搖蚊科成蟲; F-硫磺谷綠波池水黽科。

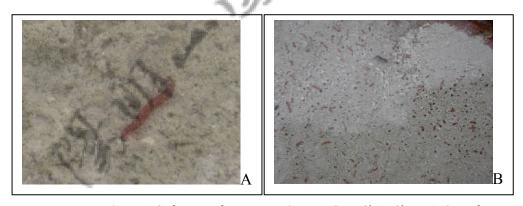


圖 6:A-馬槽小溪流中的紅蟲;B-馬槽小溪流泥質底質上滿佈紅蟲。

圖 7: A-小油坑露頭附近未知螞蟻; B-大油坑露頭附近未知螞蟻; C-八煙露頭附近未知螞蟻; D-庚子坪露頭附近未知螞蟻。

附錄九、陽明山國家公園酸性溫泉藻類調查照片

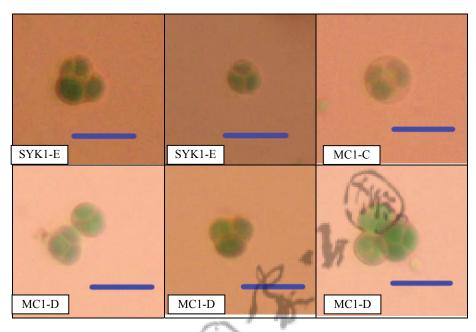


圖 1: 小油坑 (SYK) 與馬槽 (MC) 的未鑑別單細胞紅藻,屬於單細胞紅藻科 (Cyanidiaceae)。圖中橫線長度為 $10\,\mu\,\mathrm{m}$ 。

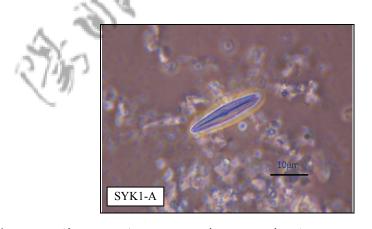


圖 2:未鑑別矽藻 1。採樣點小油坑 (SYK1-A)。殼面照片。推測屬於異極藻科 (Gomphonemaceae) 異極藻屬 (Gomphonema)。類似 Gomphonema angustatum Kützing 或 Gomphonema clevei Fricke。

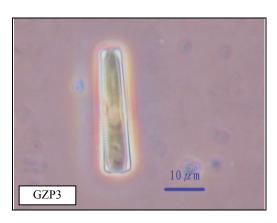


圖 3:未鑑別矽藻 2。採樣點庚子坪 (GZP3)。殼環面照片。推測屬於異極藻科 (Gomphonemaceae)。

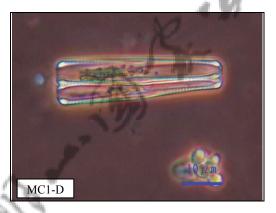


圖 4:未鑑別矽藻 3。採樣點馬槽 (MC1-D)。殼環面照片。推測屬於異極藻科 (Gomphonemaceae)。

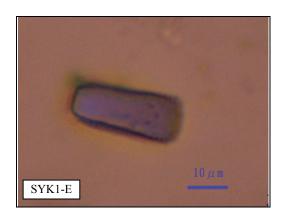


圖 5:未鑑別矽藻 4。採樣點小油坑 (SYK1-E)。殼環面照片。推測屬於異極藻 科 (Gomphonemaceae)。

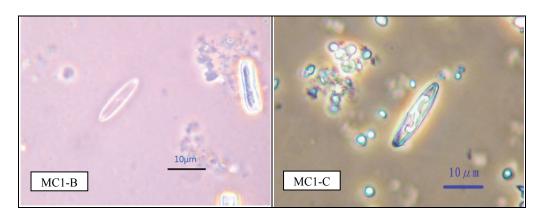


圖 6:未鑑別矽藻 5。採樣點馬槽 (MC1-B, MC1-C)。殼面照片。推測屬於舟形藻科 (Naviculaceae) 舟形藻屬 (Navicula)。

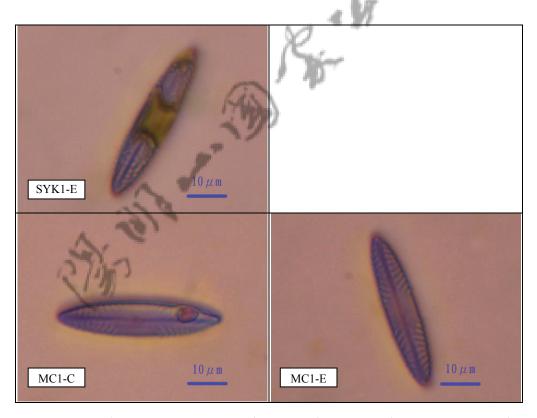


圖7:未鑑別矽藻6。採樣點小油坑 (SYK1-E) 與馬槽 (MC1-C, MC1-E)。殼面照片。推測屬於舟形藻科 (Naviculaceae) 舟形藻屬 (Navicula)。類似 Navicula radiosa 或 Navicula medisculus。

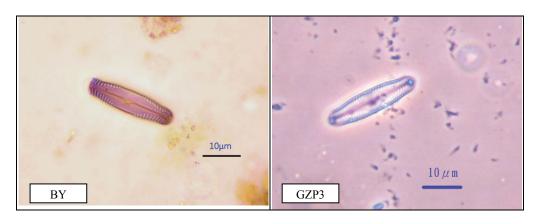


圖 8:未鑑別矽藻 7。採樣點八煙 (BY) 與庚子坪 (GZP3)。殼面照片。推測屬於舟形藻科 (Naviculaceae) 羽紋藻屬 (*Pinnularia*)。

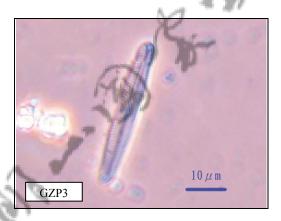


圖 9:未鑑別矽藻 8。採樣點庚子坪 (GZP3)。殼面照片。推測屬於舟形藻科 (Naviculaceae) 羽紋藻屬 (Pinnularia)。

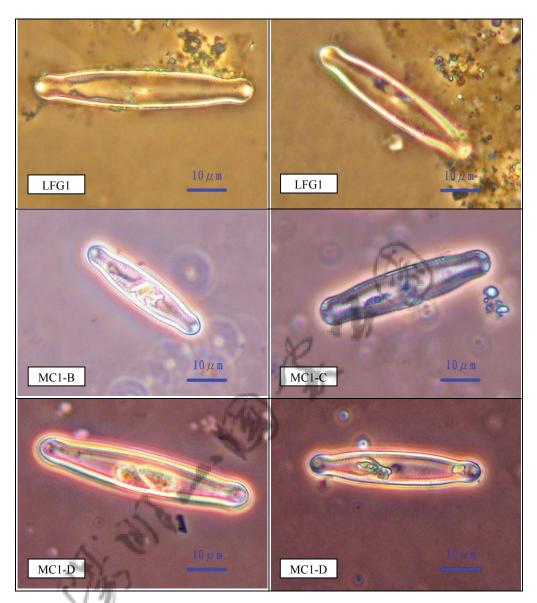


圖 10:未鑑別矽藻 9°採樣點硫磺谷(LFG1)和馬槽(MC1-B, MC1-C, MC1-D)° 殼面照片。推測屬於舟形藻科 (Naviculaceae) 羽紋藻屬 (*Pinnularia*)。

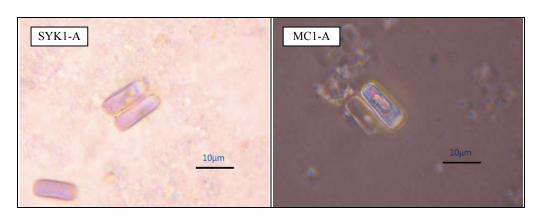


圖 11:未鑑別矽藻 10。採樣點小油坑 (SYK1-A) 與馬槽 (MC1-A)。殼環面照 片。推測屬於舟形藻科 (Naviculaceae)。

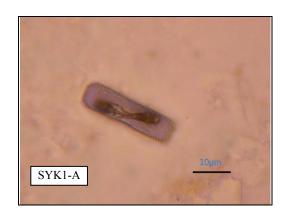


圖 12:未鑑別矽藻 11。採樣點小油坑 (SYK1-A)。殼環面照片。推測屬於舟形藻科 (Naviculaceae)。

圖 13:未鑑別矽藻 12。採樣點小油坑(SYK1-E)馬槽(MC1-C)。殼環面照片。 推測屬於舟形藻科(Naviculaceae)。

参考文獻

- 千國安之甫。1989。寫真日本蜘蛛類大圖鑑。偕成社。日本。
- 中華顧問工程司。2003。中部科學園區雲林基地水域動物現況調查成果。
- 王懿德。2004。台灣地區溫泉特性與其有害重金屬及陰離子濃度研究。國立陽明大學環境衛生研究所碩士論文。
- 毛義方,陳美蓮,李貞伶。2006。溫泉愛好者有害重金屬暴露之生物偵測研究。 行政院國家科學委員會專題研究計畫。
- 行政院勞工委員會。1997。職業性疾病案例。http://www.iosh.gov.tw/data/f6/mn.htm 行政院衛生署。2009。砷、有機砷與無機砷。藥物食品安全週報第200期。
 - http://www.doh.gov.tw/ufile/doc/%e8%97%a5%e7%89%a9%e9%a3%9f%e5%93%81%e7%ac%ac200%e6%9c%9f.pdf
- 江志文。1998。陽明山高溫紅藻 Cyanidium caldarium 熱休克蛋白質之研究。國立台灣大學植物學研究所碩士論文。
- 江漢全。2004。水質分析。三民書局股份有限公司。台北市。
- 阮雪芬。1994。陽明山高溫紅藻 Cyanidium caldarium 的化學鑑定耐熱生理之探討。國立台灣大學植物學研究所碩士論文。
- 李中光,許鼎居,蕭薀華譯。Clair N. Sawyer, Perry L. McCarty, Gene F. Parkin 著。2004。水質分析。美商麥格羅希爾國際股份有限公司。台北市。
- 李重義。2006。陽明山國家公園溫泉微生物多樣性與利用之研究。內政部營建 署陽明山國家公園管理處委託研究報告。
- 李健瑋。2001。高溫洋菜分解酵素生產菌株之菌種鑑定及洋菜分解酵素之純化。 東吳大學微生物學系碩士論文。
- 何佩楨。2004。台灣地區不同溫泉中細菌群落組成的研究。東吳大學微生物學 系碩士論文。
- 宋聖榮。2005。陽明山溫泉、地熱資源與利用調查。內政部營建署陽明山國家 公園管理處委託研究報告。
- 宋聖榮、劉佳玫。2003。台灣的溫泉。遠足文化事業股份有限公司。

- 河野裕子、熊田裕子、慶野昌民、愛澤重樹。2005。ICP 発光分光分析法を用いた温泉中の金属成分の調査 I。福島縣衛生研究所年報。第 23 期:54-61 頁
- 林基烈。1996。臺灣地區碳酸溫泉矽藻之研究。國立中興大學植物學研究所碩士論文。
- 卓逸民。2003。陽明山國家公園不同類型棲地蜘蛛多樣性及群聚結構之比較。內 政部營建署陽明山國家公園管理處。
- 邱耀興。2003。小球藻固碳培養條件。長庚大學化工與材料工程研究所碩士論 文。
- 柯舜文。1996。分離生產葡萄糖異構酵素之高溫嗜酸菌及酵素純化與定性。東吳大學微生物學系碩士論文。
- 陳文福。2007。台灣溫泉水之氧化還原電位研究。行政院國家科學委員會研究 報告。
- 陳明賢。2000。高溫長桿菌(Bacillus stearothermophilus 91)的分離及其所產高溫穩定澱粉酶純化及特性之研究。國立海洋大學水產養殖學系碩士論文。
- 陳建仁。2004。從台灣的砷經驗,展望世界未來。科學人雜誌第31期。
- 陳俊宏。2003。台灣北部地區生物資源調查及研究之十。行政院農業委員會。
- 陳俊雄。2006。陽明山國家公園溫泉昆蟲相分布與動態調查。陽明山國家公園管理處。
- 陳柏淳、蕭如瑾、趙彥婷。2007。大屯火山區溫泉水質特性及砷污染問題初步探討。2007台灣地球科學聯合學術研討會。
- 陳威智。2007。北投溫泉地區磺港溪底泥中重金屬砷鉛濃度分佈之探討。國立台灣大學生物環境系統工程學研究所碩士論文。
- 陳懋彦。2002。台灣地熱區嗜熱性細菌之研究。國立台灣大學植物學研究所博士論文。
- 陳耀麟。2002。大屯火山區溫泉水之化學成分及其對河水之影響。國立台灣大學地質科學研究所博士論文。
- 梁素雲。1990。硫磺噴氣孔植群生態與其指標植物個體生理生態之研究。國立台灣大學植物學研究所碩士論文。

惇敘工商。2003。陽明山龍鳳谷溫泉定位與再發現之研究。教育部e世代GIS人 才培育計畫種子學校期末成果。

http://www.gisedu.geog.ntu.edu.tw/egis/achieve/thvs/%E7%A7%81%E7%AB%8B%E6%83%87%E6%95%98%E5%B7%A5%E5%95%86GIS%E6%88%90%E6%9E%9C%E5%A0%B1%E5%91%8A.pdf

- 温泉百科フレーム。無日期。適応症と禁忌症。取自 http://www.spa.or.jp/hyakkka/frame.htm
- 程楓萍。1987。陽明山國家公園溫泉水資源調查與利用規劃及管理。內政部營建署陽明山國家公園管理處委託研究報告。
- 張蒼碧。1966。台灣溫泉藻類之研究。國立台灣大學植物學研究所碩士論文。 楊金臻(編著)。1992。《泉鄉》。內政部營建署陽明山國家公園管理處。
- 蔡呈奇、陳尊賢、黃政恆。2008。陽明山國家公園全區土壤分析調查。陽明山國 家公園管理處。
- 蔡國正。2000a。嗜酸嗜熱細菌之分離及其酯解酵素性質之研究。國立台灣師範 大學生物研究所碩士論文。
- 鄭婷文、林立虹。2007。酸性熱泉中底生性與懸浮性微生物族群結構之比較。2007 台灣地球科學聯合學術研討會。
- 鍾麗華。12/26/2005。部分溫泉含有害重金屬 飲憂。自由時報。取自 http://www.epochtimes.com/b5/5/12/26/n1166530.htm
- NIEA E701.20C。2004。海洋浮游動物檢測方法。中華民國行政院環境保護署。
- NIEA E504.41T。1993。湖河池泊水庫藻類採樣方法。中華民國行政院環境保護署。
- NIEA E505.50C。2003。水中浮游植物採樣方法-採水法。中華民國行政院環境保護署。
- NIEA E801.30T。1993。河川底棲水生昆蟲採樣方法。中華民國行政院環境保護署。
- NIEA W104.51C。2005。河川、湖泊及水庫水質採樣通則。中華民國行政院環境 保護署。
- NIEA W217.51A。1999。水溫檢測方法。中華民國行政院環境保護署。

- NIEA W424.52A。2008。水之氫離子濃度指數 (pH 值) 測定方法—電極法。中華民國行政院環境保護署。
- NIEA W203.51B。2000。水中導電度測定方法—導電度計法。中華民國行政院環境保護署。
- NIEA W210.57A。2006 水中總溶解固體及懸浮固體檢測方法—103 ℃ ~ 105 ℃ 乾燥。中華民國行政院環境保護署。
- NIEA W415.52B。2005。水中陰離子檢測方法-離子層析法。中華民國行政院環境保護署。
- NIEA W311.51B。2004。水中金屬及微量元素檢測方法—感應耦合電漿原子發射 光譜法。中華民國行政院環境保護署。
- NIEA W531.51C。2000。水中總有機碳檢測方法—過氧焦硫酸鹽紫外光氧化/紅外線測定法。
- Baker, G. C., S. Gaffar, D. A. Cowan, and A. R. Suharto. 2001. Bacterial community analysis of Indonesian hot springs. *FEMS Microbiol. Letters*, 200:103-109.
- Boomer, S. M., D. P. Lodge, B. E. Dutton, and B. Pierson. 2002. Molecular characterization of novel red green nonsulfur bacteria from five distinct hot spring communities in Yellowstone National Park. *Appl. Environ. Microbiol.* 68:346-355.
- Brock, T. D. 1978. *Thermophilic Microorganisms and Life at High Temperatures*. Springer Verlag, New York.
- Brock, T. D. 1985. Life at High Temperatures. Science 230:132-138.
- Brock, T. D. (ed.) 1986. *Thermophiles: General, Molecular, and Applied Microbiology*. John Wiley & Sons, New York.
- Brown, P. B. and G. V. Wolfe. 2006. Protist genetic diversity in the acidic hydrothermal environments of Lassen Volcanic National Park, USA. *J. Eukaryotic Microbiol.* 53:420-431.
- Cary, S. C., T. Shank and J. Stein. 1998. Worms bask in extreme temperatues. *Nature* 391:545-546.
- Chen, M. Y., Z. C. Chen, K. Y. Chen, and S. S. Tsay. 2000. Fungal flora of hot springs of Taiwan (1): Wu-Rai. *Taiwania*, 45:207-216.
- Chen, K. Y., D. J. Huang, and C. C. Liu. 2003. The mycoflora of hot spring soil in

- northern Taiwan. Taiwania, 48:203-211.
- Ciniglia, C., H. S. Yoon, A. Pollio, G. Pinto, and D. Bhattacharya. 2004. Hidden biodiversity of the extremophilic Cyanidiales red algae. *Molecular Ecology* 13:1827-38.
- Cowan, D. A. 1992a. Biochemistry and molecular biology of the extremely thermophilic archaebacteria. In *Molecular biology and biotechnology of extremophiles* (R. A. Herbert and R. J. Sharp, eds.), pp. 1-43. Blackie & Son, Glasgow and London.
- Doemel, W. N. and T. D. Brock. 1971. The Physiological Ecology of *Cyanidium caldarium*. *J. Gen. Microbiol.* **67**:17-32.
- Donahoe-Christiansen, J., S. D'Imperio, C. R. Jackson, W. P. Inskeep, and T. R. McDermott. 2004. Arsenite-oxidizing *Hydrogenobaculum* strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park. *Appl. Environ. Microbiol.* 70:1865-1868.
- Fredrick, J. F. 1976. *Cyanidium caldarium* as a bridge alga between Cyanophyceae and Rhodophyceae: Evidence from immunodiffusion studies. *Plant Cell Physiol*. 17:317-322.
- Ghosh, D., B. Bal, V. K. Kashyap, and S. Pal. 2003. Molecular phylogenetic exploration of bacterial diversity in a Bakreshwar (India) hot spring and culture of *Shewanella*-related thermophiles. *Appl. Environ. Microbiol.*, 69:4332-4336.
- Hjorleifsdottir, S., S. Skirnisdottir, G. O. Hreggvidsson, O. Holst, and J. K. Kristjansson. 2001. Species composition of cultivated and noncultivated bacteria from short filaments in an Icelandic hot spring at 88°C. *Microb. Ecol.* 42:117–125.
- Holloway, J. M., D. K. Nordstrom, R. L. Smith, R. B. McCleskey. 2001. Source and Fate of High Ammonium Concentrations in Thermal Waters of Yellowstone National Park, Wyoming, Montana and Idaho, USA. American Geophysical Union, Fall Meeting 2001, abstract #B22E-04 (http://adsabs.harvard.edu/abs/2001AGUFM.B22E..04H)
- Holloway, J. M., J. K. Bohlke, D. K. Nordstrom. 2003. Bedrock Nitrogen andHydrothermal Ammonium in Yellowstone National Park, WY, USA. AmericanGeophysical Union, Fall Meeting 2003, abstract #B21D-0740
- Hsiang, M. C., Y. H. Sung, and S. D. Huang. 2004. Direct and simultaneous

- determination of arsenic, manganese, cobalt and nickel in urine with a multielement graphite furnace atomic absorption spectrometer. *Talanta* ,62: 791-799.
- Hugenholtz, P., C. Pitulle, K. L. Hershberger, and N. R. Pace. 1998. Novel division level bacterial diversity in a Yellowstone hot spring. *J. Bacteriol.*, 180:366-376.
- IARC. 1980. Arsenic and arsenic compounds. *IARC Monogr Eval Carcinog Risk Chem Hum*. 23:39-141.
- Jan, R. L., J. Wu, S. M. Chaw, C. W. Tsai, and S. D. Tsen. 1999. A novel species of thermoacidophilic archaeon, *Sulfolobus yangmingensis* sp. nov. *Int. J. Syst. Bacteriol.*, 49:1809-1816.
- Jones, B., R. W. Renaut, and M. R. Rosen. 2000. Stromatolites forming in acidic hot-spring waters, North Island, New Zealand. *Palaios* 15:450-475.
- Kanokratana, P., S. Chanapan, K. Pootanakit, and L. Eurwilaichitr. 2004. Diversity and abundance of *Bacteria* and *Archaea* in the Bor Khlueng hot spring in Thailand. *J. Basic Microbiol.* 44:430–444.
- Kikawada, Y., H. Fuji, Y. Ohno, and T. Oi. 2008. Mobility of arsenic in hot spring water accompanying its penetration into the ground. *J. Radioanal. Nucl. Chem.* 278:323-326.
- Kvist, T., A. Mengewein, S. Manzei, B. K. Ahring, and P. Westermann. 2005. Diversity of thermophilic and non-thermophilic crenarchaeota at 80°C. *FEMS Microbiol. Letters* 244:61–68.
- Shieh, W. Y. and W. D. Jean. 1998. *Alterococcus agarolyticus*, gen. nov., sp. nov., a halophilic thermophilic bacterium capable of agar degradation. *Can. J. Microbiol.*, 44:637-645.
- Stetter, K. O. 1998. Hyperthermophiles: isolation, classification, and properties. In *Extremophiles: microbial life in extreme environments* (K. Horikoshi and W. D. Grant, eds.), pp. 1-24. Wiley-Liss, New York.
- Takai, K. and Y. Sako. 1999. A molecular view of archaeal diversity in marine and terrestrial hot water environments. *FEMS Microbiol. Ecol.* 28:177-188.
- Tanaka T. 1990. Arsenic in the natural environment. Part II. Arsenic concentrations in thermal waters from Japan. *Appl. Organometal. Chem.* 4: 197-203.
- USEPA 365.2. 1971. Phosphorous, All Forms (Colorimetric, Ascorbic Acid, Single Reagent). United States Environmental Protection Agency

- WHO. 1999. Concise international chemical assessment document 12: manganese and its compounds. *WHO*.
- Woese, C. R., O. Kandler, and M. L. Wheelis. 1990. Towards a natural system of organisms: Proposal for the domains of Archaea, Bacteria and Eucarya. *Proc. Natl. Acad. Sci.* 87:4576-4579.
- Yoon, H. S., C. Ciniglia, M. Wu, J. M. Comeron, G. Pinto, A. Pollio, and D. Bhattacharya. 2006. Establishment of endolithic populations of extremophilic Cyanidiales (Rhodophyta). BMC Evolutionary Biology 6: 78 | doi: 10.1186/1471-2148-6-78.
- Zettler, L. A. A., F. Gómez, E. Zettler, B. G. Keenan, R. Amils and M. L. Sogin. 2002. Microbiology: Eukaryotic diversity in Spain's River of Fire. *Nature* 417:137 (9 May 2002) | doi:10.1038/417137a.