代表性生態系經營管理之峽谷生態系 長期生態研究網計畫(二) 立霧溪泥砂與溪流水質監測

受委託者:中華民國國家公園學會
研究主持人:黃誌川台灣大學地理環境資源學系所協同主持人:高樹基中央研究院環境變遷研究中心
研究人員:李宗祐簡偉如黃昶斌何智明

許立志 史育瑋 江帆明 黃信諺

太魯閣國家公園管理處委託報告

中華民國九十九年十二月

表次
圖次V
中文摘要VII
英文摘要IX
第一章 緒論1
第二章 研究背景與方法
第一節 研究背景
第二節 研究區概況
第三節 研究方法4
第三章 結果與討論11
第一節 立霧溪降雨逕流特性11
第二節 立霧溪雷達降雨推估特性14
第三節 水質採樣分析15
第四節 立霧溪崩塌地特性16
第四章 結論與建議
附錄一 立霧溪流域水質採樣記錄
附錄二 期中會議記錄
附錄三 期末會議記錄
參考書目

表次

表 3-1	立霧溪 1998-2009 流量統計(綠水)	23
表 3-2	立霧溪 1998-2009 颱洪件事統計(綠水)	24
表 3-3	39 場雷達降兩事件之相關資訊	26
表 3-4	2009/10-2010/9 之陽離子月平均	
表 3-5	2009/10-2010/9 之陰離子月平均	31
表 3-6	NO3-N輸出比較	34
表 3-7	世界各地喀斯特地形區的水Ca ²⁺ 濃度比較	35
表 3-8	2004-2008 年立霧溪流域崩塌地個數及面積和地層交叉比較表	
表 3-9	2004-2008 年立霧溪流域崩塌面積之地層分布	
表 3-10	2004-2008 年立霧溪流域崩塌面積之高度分布	
表 3-11	2004-2008 年立霧溪流域崩塌面積之坡度分布	41
表 3-12	2004-2008 年立霧溪流域崩塌地個數與面積	43
表 3-13	2004-2008 年立霧溪流域崩塌地Power law關係之統計	43
附錄一	立霧溪流域水質採樣記錄表	69

圖次

圖	2-1	1 立霧溪流域地形圖	44
圖	2-2	2 立霧溪流域地質圖	44
圖	2-3	3SHALSTAB模式之邊坡概況示意圖	45
圖	2-4	4 基本TOPMODEL概念示意圖	45
圖	3-1	1 立霧溪流域之雨量站與流量站分佈圖	46
圖	3-2	2 綠水流域之兩量與流量組體圖。左圖為年兩量-流量;右圖為濕季	雨量-流量。紅色折線
	為	為逕流係數	46
圖	3-3	3 綠水流量站 1998-2003 的日流量時間序列	47
圖	3-4	4 綠水流量站颱洪事件之洪峰稽延時間頻率圖(左)與總降兩量-尖	峰流量散佈圖(右)
	•••		49
圖	3-5	5 綠水流量站河川斷面圖 (左);綠水流量站颱洪事件之兩量流量散	佈圖(右)49
圖	3-6	6 綠水流量站 1998-2003 的模擬日流量與信賴區間時間序列	50
圖	3-7	7 綠水流量站 2004-2009 的模擬日流量與信賴區間時間序列	51
圖	3-8	8 綠水流量站 2004-2009 的率定曲線	52
圖	3-9	9 綠水流量站 2004-2009 的年逕流量模擬結果	52
圖	3-10	10 降雨事件規模與其空間變異之關係圖	53
圖	3-1	1139 場降兩事件之降兩中心位置與集水區高程	54
圖	3-12	12 颱風侵台路徑示意圖	54
圖	3-1.	13 立霧溪水質採樣測點分佈圖	55
圖	3-14	14 DOC輸出與流量的關係	56
圖	3-1	15 世界各地喀斯特地形區的水Ca ²⁺ 濃度比較	56
圖	3-10	16 電導度在各測站間之變異圖	57
圖	3-1′	17 SO4 濃度在各測站間之變異圖	57
圖	3-18	18NO3濃度在各測站間之變異圖	58

圖	3-19	9DOC濃度在各測站間之變異圖	58
圖	3-20	0 立霧溪 2004 年崩塌地分佈圖;原始衛星影像(上)、崩塌地判釋結果(下)	59
圖	3-21	1 立霧溪 2005 年崩塌地分佈圖;原始衛星影像(上)、崩塌地判釋結果(下)	60
圖	3-22	2 立霧溪 2006 年崩塌地分佈圖;原始衛星影像(上)、崩塌地判釋結果(下)	61
圖	3-23	3 立霧溪 2007 年崩塌地分佈圖;原始衛星影像(上)、崩塌地判釋結果(下)	62
圖	3-24	4 立霧溪 2008 年崩塌地分佈圖;原始衛星影像(上)、崩塌地判釋結果(下)	63
圖	3-25	539 場降兩事件在空間上之分佈及其降兩中心位置與崩塌地位置	64
圖	3-26	62004 年暴雨事件在空間上之分佈及其降雨中心位置與崩塌地位置	64
圖	3-27	72005 年暴雨事件在空間上之分佈及其降雨中心位置與崩塌地位置	65
圖	3-28	82006 年暴雨事件在空間上之分佈及其降雨中心位置與崩塌地位置	65
圖	3-29	92007 年暴雨事件在空間上之分佈及其降雨中心位置與崩塌地位置	66
圖	3-30	02008 年暴雨事件在空間上之分佈及其降雨中心位置與崩塌地位置	66
圖	3-31	1 立霧溪流域中歷年來崩塌地海拔高度分佈圖	67
圖	3-32	2 立霧溪流域中歷年來崩塌地坡度分佈圖	67
圖	3-33	3 立霧溪流域中歷年來崩塌地累積個數與面積大小之關係圖	68

中文摘要

關鍵詞:崩塌潛勢、衛星影像、颱風

本報告為三年研究的第二年期末報告,主要延續第一年的基礎持續地累積立霧溪河川水流 的水質採樣資料,並在水文模式的模擬與崩塌地調查資料兩方面持續深入與精緻。作為未來研 究溪流生態系之物質傳輸作準備。

以近11年的綠水站雨量、流量資料作為立霧溪流域的流量之代表,發現:該流域平均年 雨量約2595mm,年流量約為1,921mm,逕流係數約0.75與台灣大部分地區(逕流係數約為 0.8)相當。若以季節來看,濕季雨量(濕季定義為5月至10月)約佔全年雨量的73%(濕季年 平均雨量為1899mm),而濕季流量約為全年流量66%(濕季年平均流量為1,275mm),濕季的 年平均逕流係數為0.68。平均每年4場颱風,颱風降雨約佔本區全年之30-45%左右。每場颱 風歷時約76小時,平均最大降雨強度為14.0mm/hr,總逕流量約為110mm,為平均降雨的一 半;平均尖峰逕流量為509cms,平均的洪峰稽延時間為4.8hr。就流量模擬結果,得知由模擬 流量與實際推估流量來看,大致上吻合,在暴雨事件中的反應也跟實際推估值相當,而且與之 前其他流域的模擬表現相當。其中,基流在率定年年中有明顯降低的趨勢,在2004年後逐漸 回復,與觀測流量的趨勢相符。

根據 2000~2009 年 39 場雷達降雨資料顯示,降雨之空間變異隨著降雨規模的增大而趨緩, 在降雨規模大於 300 mm 的事件,其空間變異維持在 0.4 附近震盪,而小於 300 mm 之降雨事 件則隨著規模的減小使其空間變異到達 0.6,且所有的降雨集中在高程 1000 m 與 2500 m 之地 形起伏處,地形對此區降雨的影響顯著,但降雨中心位置與崩坍地之位置並無顯著之關係。

就水質分析結果而言,水質在各測站間的變異有顯著差異,提供研究各子集水區地質、土 地利用對水質影響之良好條件,電導度、SO4、Na、Mg、K、Ca、Sr、Si越下游越低,而砂卡 礑溪站則顯著低於其他測站,但NO3及Cl則呈現相反的趨勢,砂卡礑溪所量測之資料居全流 域之冠,初步比較世界各地的結果以及台灣目前的NO3資料,可推斷立霧溪流域目前沒有非 常明顯的點源污染可以影響到整個河段,屬於貧養的乾淨河川。

VII

利用福衛二號衛星影像進行 2004-2008 年立霧溪流域的崩塌地判釋與基本分析,地質脆弱 之處主要分佈於廬山層、西村層和大南澳片岩層,而較普遍易有崩塌現象的產生,大南澳片岩 層則佔總崩塌地個數的 47%,總崩塌地面積部份則佔 40%左右,廬山層則佔有 17%的崩塌地 個數,並佔有 33%左右的崩塌面積。崩塌地所在高程分佈範圍介於 500-3,000 公尺間,其分佈 呈現雙峰分佈型態,較易發生崩塌的高度帶主要集中分佈於 1,000-2,000 公尺及 3,000-3,500 公 尺之間。崩塌地所在地之坡度分佈呈現單峰分佈型態,易發生崩塌之處的坡度在 20-50 度間, 以 40-50 度間最為明顯,50 度以上的區域發生崩塌的現象較少。由崩塌地面積和個數進行對數 分析,評估類似莫拉克颱風之極端降雨事件對立霧溪與大南澳片岩層的影響,就崩塌面積的增 加程度而言,大南澳片岩區增加幅度 (269%) 遠大於全區增加幅度 (180%),顯示該區域的崩 塌行為較易受暴雨所控制。

Abstract

Keywords: landslide risk assessment, satellite image analysis, typhoon effect

This is the 2nd annual report. In this year, we continuously collected the water samples every week in the 6 sites. Meanwhile, we elaborated the works on the rainfall, runoff, and landslide map to increase the understanding in National Taroko Park and Liwu River. The substantial findings are introduced below.

In Liwu watershed, the average annual rainfall and discharge are around 2,595 mm and 1,921 mm, respectively. The annual runoff coefficient is around 0.75 which is comparable with the others island wide. In wet season, the rainfall and runoff are about 0.73 and 0.66 compared to the annual results. Typhoon induced rainfall is the major contributor in wet season occupying around 35-40% of the annual total rainfall. We analyzed 40 rainstorm events since 1990 to determine the typhoon characteristics in this region. Results showed the average rainfall and duration are 243 mm and 76 hr. The average discharge and peak discharge are 110 mm and 509 cms, respectively. Interestingly, there are two types of lag time in the watershed, one is 2 hr and the other is 7 hr implying the distinct rainfall patterns which dominates the lag time in storm hydrographs.

The radar-based rainfall of the 40 events was also analyzed and the results showed that the rainfall heterogeneity decreases with the increase of total rainfall. In most cases, the coefficient of variation was around 0.4 indicating the rainfall variation during typhoon invasion was relatively small. Sakadang river is a distinct rainfall center, particularly for typhoon track II, III, and IV. Interestingly, there were not relatively more landslides in Sakadang watershed, which might indicate the occurrence of landslide in this region would not be enhanced by rainfall.

For stream water chemistry, the electronic conductivity, SO_4 , Na, Mg, K, Ca, Sr, and Si decreased downstream. And NO_3 and Cl increased downstream due to the sea breath. The NO_3 flux in Liwu is comparative to the other pristine streams in Taiwan. It means that this stream is clean and without distinct anthropogenic effect and point source pollution.

Analyzing Formosa Satellite (Formosat II) images of 2004-08 to obtain thelandslide cover over entire Liwu watershed, we found landslides appear mainly in Bilusan and Dananao formations, which comprises 80% of total landslide area. Bilusan formation holds more landslides in terms of number and total area while Bilusan always generates larger landslide in size. Average slopes of landslide for Bilusan and Dananao formations are 28-49 and 23-49 degree, respectively. The landslide occurrence tends to be controlled by lithology.

Basing on logarithmic distribution analysis we successfully predict rainfall-induced landslides. Historical landslide analysis and model output show a significant increase in landslide numbers (from 317 to 572) driven by typhoon Morakot. Total landslide area increases about 80% from 1267 ha to 2307 ha. In Dananao formation, landslide number surges from 128 to 315 (146% increase) and area surges from 405 up to 1158 ha (185% increase). Compared to other sub-watersheds, the exacerbated landslide in Dananao reflects its sensitive nature to rainfall intensity.

第一章 緒論

為因應全球暖化及環境變遷等趨勢,暨爭取太魯閣國家公園加入世界襲產,提升國家國 際地位等目的,藉由長期生態研究及群體整合型研究,調查釐清衝擊對象與程度,並協助建立 標準資料格式之資料庫平台,以連結國際保護區網路及強化國際研究伙伴關係,期共同保護台 灣珍貴稀有物種襲產等,爰辦理「高海拔生態系及焦點物種保育監測建置」及「代表性生態系 經營管理」等計畫。

太魯閣峽谷由於生態之特殊性,峽谷地質地形、土壤、植被、動物、溪流水域、生態變 遷等為獨特之研究主題。本類棲地主要以內太魯閣峽谷及立霧溪所構成,另有砂卡礑溪、大沙 溪、三棧溪等次系統。其地質為台灣最古老的大南澳片岩,年代是在二億年到三億年之間。由 於地質的特性及自然營力的長久作用,形成高達1,000餘公尺、寬僅30-40公尺、規模近15 公里的峽谷地形,其日照量、風剪效應、溪流切蝕、地質時間、地形作用及變質石灰岩的化學 特性等,構成獨一無二的生態環境。

本區也由於國家公園遊憩據點的規劃,遊客對生態環境造成了極大的壓力,本研究亦期 探討人類活動對生態系的衝擊;並尋求因應之道。本計畫預計研究調查立霧溪特殊的地貌特 徵、水文地形作用的特性以及生態系在此環境條件下的反應。具體而言,將會進行立霧溪流域 的地貌特徵描述、河川逕流的模擬、潛在崩塌地的評估以及估計立霧溪的營養鹽輸出,冀能藉 由系統性的調查來輔助太魯閣峽谷之生態系經營架構,研擬太魯閣峽谷之生態系經營策略,以 因應全球暖化問題與生物多樣性資源的危機,並建構完善之生態系經營管理機制,協助爭取太 魯閣國家公園加入世界遺產工作。

第二章 研究背景與方法

第一節 研究背景

立霧溪流域為太魯閣國家公園內的主要河川系統(圖2-1),流域面積達621平方公里, 約佔太魯閣國家公園的三分之二。其中游河段(天祥以下)流經變質石灰岩區(大理石)(圖 2-2),形成谷壁矗立高達千餘公尺聞名的太魯閣峽谷景觀。本流域西高東低,上游呈扇形,在 天祥附近匯流後,湍急奔流東下於新城附近注入太平洋。主流全長53公里,在這極短的距離 中,高程卻從河口的海平面急速拔升至3,000餘公尺的合歡山與奇萊北峰之間,河川坡度約為 5.7%,較西部河川陡峻為其特色。受東北季風及颱風影響,年降雨量超過2,000公釐以上,下 游略低而上游略高。其主要支流由下而上一次為砂卡礑溪、荖西溪、陶塞溪、休督溪、小瓦黑 爾溪、塔次基里溪、瓦黑爾溪等。

太魯閣國家成立以來已累積了不少的調查研究成果,如:溪流魚類調查(曾晴賢,1992)、 溪流蝦蟹調查(陳天任,1999),植物基礎調查(楊遠波、徐國士,2004、高瑞卿,1994),地 質方面則有陳宏宇(1993)、張石角等(1990),地形方面則有張瑞津(2000)、齊士崢等(1995), 石灰岩特性研究則有(吉村和久等,1997)等,水質監測則有許文昌(2004)。雖然各領域的基 礎調查很多,但較少觸及峽谷地區水文與泥砂輸送之過程、陸域與水域生態系之間的物質與能 量流動。

第二節 研究區概況

立霧溪流域內之原始森林和原生植被,尚維持相當完整,只有少數地區有果園或菜園的 開墾,因此,對河川水質的污染程度較低。該區(布洛灣遊憩區)為園區內遊客遊憩最為頻繁之 區域,同時也是人為活動對於環境負荷產生最大壓力之區域,分區使用上,天祥地區屬於遊憩 區,同時亦為立霧溪流域中最具規模的遊憩區域。砂卡礑溪流域在三間屋以上人為活動少,砂 卡礑步道入口處由於交通便利,為新興之親水景點,分區使用上屬於生態保護區與特別景觀區。

然而因為本區河川上游之地質環境極為特殊,有許多崩塌地和高落差的溪谷,容易造成 河水混濁和河床不穩的現象。河川中游地帶亦有頗多的高落差瀑布和峽谷。下游則因河水含砂 量較大且水流湍急,在峽谷內急速沖刷,下切速率在 3-12.5mm/yr 之間(劉瑩三、張有和,

2009),河底幾近平滑或含顆粒小卵石和砂,河床的變動隨水量而異。因此在立霧溪主流中並 沒有任何適合河水生動物棲息的環境(曾晴賢,1992)。

若簡單地以地質、水系為區分,來看立霧溪的河川系統,基本上立霧溪流經三個地質區 (圖 2-2),分別為:上游區(綠水以上)的板岩、片岩區、中游的變質石灰岩,也是太魯閣峽 谷所在;以及砂卡礑溪的片麻岩、混合岩區。立霧溪流域的主、支流水質亦反應出其區域間的 特色,如:砂卡礑溪由於流經的不同的地質區,因此在許多物理與化學參數上也與主流有非常 大的不同,水溫較主流高約1.0度C、導電度(200-300 µs/cm 之間)約為主流的一半、懸浮固體 濃度遠較主流為低,颱風所引起的變異也較主流為低。另外SO4²⁻, Ca²⁺, Mg²⁺, Na⁺等離子濃度, 也明顯較主流為低。而CI則較主流為高。依據中央地調所與Google earth 所提供的影像判釋, 多處集水區仍有顯著的自然地質崩塌,如:塔次基里溪流域、陶塞溪與峽谷內等地區。峽谷區 內谷壁矗立,落石、塌方的意外亦有所聞,造成遊客旅遊時不少的壓力。

第三節 研究方法

壹、崩塌地判釋

本研究利用 2006-2008 年福衛二號衛星影像作為判釋崩塌地的特性探討的依據,衛星影像由台大空間資訊研究中心購得之三期 level 4 衛星影像進行鑲嵌,製成一張完整立霧溪流域的衛星影像圖。崩塌地在影像光譜上的特性為高反射率,與植生高度吸收紅外光的反應大不相同,而 NDVI(Normalized Difference Vegetation Index) 常態化差值植生指標,這種植生指數通常可作為良好的評估準則之一 (Huang et al., 2006; 2007),其計算方式如下:

$$NDVI=(IR-R)/(IR+R)$$
(1)

IR=近紅外光波段反射值;R=紅外光波段反射值

因此,在進行判釋崩塌地前,先計算 NDVI 指數做為判釋的參考因素之一。並設定較合 理的門檻值,初步劃定為裸露區,但對於道路、河床、建物及其他裸露地仍無法區分,於是使 用假色衛星影像,並加入河系、DEM、坡度等相關圖資作為輔助資訊,因此可在螢幕上直接 判釋並數化崩塌地範圍,確定崩塌地範圍後再進行小幅修正,以完成確切的崩塌地分佈圖。

貳、崩塌地模式

台灣的上游集水區因為坡度陡峻、土壤淺薄,淺層崩塌是最普遍的型態(李民等,2000), 因此針對大型集水區邊坡相對穩定的研究,應該可以利用無限邊坡理論去進行評估。本研究利 用修正後的無線邊坡理論(Pack et al., 1998, 2001)配合數值地形、衛星影像資料與地質資料進行 邊坡穩定性的評估。無限邊坡模式已被廣泛地使用在崩塌地的評估上,其形式各類不一,可簡 化為安全係數(factor of safety, FS)的形式;分母為剪應力(shear stress)、分子為剪應強度(shear strength),若剪應強度低於剪應力,安全係數小於1,則邊坡會產生塊體運動向下崩移,如下 式表示(Hammond et al., 1992):

$$FS = \frac{C_r + C_s + \cos^2 \theta \cdot \left[\rho_s g(D - D_w) + (\rho_s g - \rho_w g) D_w\right] \tan \varphi}{D\rho_s g \sin \theta \cdot \cos \theta}$$
(2)

於上式中,Cr:為植物根系的內聚力[N/ m^2],Cs:為土壤本身的內聚力[N/ m^2], θ :為坡度, s:為土壤濕密度[kg/ m^3],w:水密度[kg/ m^3],g:重力加速度(9.81m/ s^2),D:土壤厚度[m], D_w 地下水面高度[m], φ :為岩體的內摩擦角(friction angle)。

為求簡化計算起見,使用垂直邊坡的土壤厚度h會比使用土壤的垂直厚度D來的簡便(圖 2.4)兩者轉換式為:

$$h = D \cdot \cos \theta \tag{3}$$

令 r 為水與土體的相對密度, 一般而言約在 0.35~0.7 左右, 如式(4):

$$r = \frac{\rho_w}{\rho_s} \tag{4}$$

W為水位高度與土壤厚度之比值,該值可代表土體的飽和程度或孔隙水壓。如式(5)所示:

$$w = \frac{D_w}{D} = \frac{h_w}{h} \tag{5}$$

C 為土體內聚力及植物根系內聚力的總和,以無因次的方式表示,如下式:

$$C = \frac{(C_r + C_s)}{h\rho_s g} \tag{6}$$

經過式(2)~(5)的適當轉換後,FS以式(6)來表示:

$$FS = \frac{C + \cos\theta \left[1 - wr\right] \tan\phi}{\sin\theta} \tag{7}$$

本研究將利用此模式進行立霧溪流域的潛在崩塌地分析,並討論其區域間的特色,希望能提供 相關單位在旅遊動線或安全防護措施的規劃上參考。

参、流量模式

本研究利用 3-layer 的分散型水文模式(TOPMODEL, Huang et al., 2007; 2009)來進行流量 模擬。TOPMODEL 主要的特色在於:此模式為一物理概念模式,特別適用於森林、山地之小 集水區。這類集水區的特色在於:植物根系發展旺盛,因此入滲容量(infiltration capacity)往往 遠超過降雨量,所以地表逕流多半是以飽和漫地流(saturated overland flow)為主。換言之,大部 分的河川流量都是由淺層土體內(shallow soil layer)或枯枝落葉層 (litter layer)內的水分所提 供。從 1979 年至今已經約有 300 篇左右的論文在探討此一模式的理論(Gunter, 1999)與在各種 氣候與地形區上的應用(Campling et al., 2002;)。近來許多地球化學的研究均指出:河川流量至 少可以區分為三個主要來源:地表逕流、中間水流與地下水流。所以在 TOPMODEL 的理論發 展上,也逐漸由兩層的概念模式發展為三層的概念模式(Hornberger et al., 2000; Scanlon et al., 2001; Walter et al., 2002)。其中,黃誌川等(2009)整合近來的修正方法並應用在橫溪集水區的飑 洪暴雨事件,顯示該模式在台灣的適用性(圖 2-4)。

此模式概念在垂直方面所考慮的水文作用為:蒸發散(採用 Hamon method, 1961)、入滲、 滲漏(地下水補注);在地表逕流採用分散擴散波模式(Molnar, 1998)配合曼寧公式推估(Liu et al., 2003)、在中間水流採用運動波模式配合達西定律推估、在地下水流則以指數遞減函數推估之。 模式中所考慮的水文作用與彼此的關連性如圖 2-4 所示。在水平方面三種逕流的演算方式分別

如下所示:地表逕流是採用擴散波模式配合數值地形去估計每一個格點的集流時間與變異程度。中間水流推估方式。該層之水分移動大致上可用達西定律(Darcy law)來估算其流通量, 而控制流通量的水力坡降,一般認為在淺層土體中,應可假設與地表坡降相同。因此, TOPMODEL 利用地形指數來推估集水區內任一點的含水量與流出量的關係,如下所示:

 $\overline{D_t} - D_{i,t} = -m(\lambda - k_i)$ $\overline{D_t}$:集水區平均含水量 $D_{i,t}$:各網格含水量 k_i :各網格地形指數 λ :集水區平均地形指數 m:水力傳導度遞減率

上式中的地形指數定義為: $k_i = \ln(a_i \tan \beta_i)$; ai 為各格點的比集水面積(specific contributing area, [L]。採用 Tarboton (1997)所提出的無限流向法; tan β i 是指該格點的坡度, 由數值地形模型採用 Zevenbergen and Throne method (1987)求取。式(8)主要觀念在各網格的上 體含水量狀態相對於平均狀況的差距可利用各格點地形指數與整集水區的平均地形指數配合 為水力傳度遞減率來推估。因此,若能決定集水區的流量與平均含水量的關係,則可反推各格 點的含水量。一般而言,指數形式的基流分離法(exponential recession curve function),可用來 求取不降雨時期的河川流量,因此利用下式,可建立平均含水量與流量的關係:

(8)

$$Q_{bt} = K_0 m \cdot \exp(-\lambda) \cdot \exp(\frac{-D_t}{m})$$

$$K_0: 飽和水力傳導度$$

$$Q_{bt}: 飽和帶出流量$$
(9)

地表下水流則採用指數遞減函數來表示(Lamb et al., 1997),雖然集水區全區的平均含水量與流量之間的關係可利用式(8)決定,然而這樣並無法決定初始條件的平均含水量,因此該 模式假設一開始的基流量可以決定 $\overline{D}_{t=0}$,則下式可用來決定初始條件:

$$\overline{D}_{t=0} = -m \cdot \ln(\frac{Q_{t=0}}{Q_{o}})$$

$$Q_{o} = A \cdot \exp(-\lambda)$$

$$A : \oplus \pi \overline{E} \overline{m} \overline{E}$$
(10)

最後利用單位時間內的系統平衡方程式(單位時間內的系統變化量等於入流量減去出流 量),可模擬每一個時間間隔的流量變化,如下式:

$$D_{t} = D_{t-1} + (Q_{b,t-1} - Q_{v,t-1}) / A$$
(11)

式中,Qb,t-1為上一個時間點得出流量;Qv,t-1則為上一個時間點的入流量及雨量。如此 則可完成一個時間序列流量的模擬,與土壤含水量在各時間點的空間分佈。在配合上地表逕流 與地下水流則可模擬河川流量。本流量模式希望能運用在流域內未測站的集水區,以利元素通 量的估計與相關應用。也可運用於河川水力、輸砂、物質流動與溪流生態因子之探討。

在本計畫中,由於許多物理參數並無法從實際量測中獲得,因此參數校準是必要的。利 用參數校正可以獲得該環境條件的代表性並增加模式模擬結果的可應用性。參數率定大致上都 需要利用一些評估指標並配合實際推估流量來跟模擬值做比較來獲取。然而,並沒有單一的一 個指標可以對模擬與實測的相似性提供最好的描述,因為,評估指標常因目的不同而有不同的 著重之處,這方面需取決於評估用途而定,如:歷線形狀,洪峰流量,峰值時間,排放量甚至 低流量(如 Krasue 等,2005)。採取不同的評估指標,來率定不同的參數組合,以求得滿意的 結果。在這裡,我們結合整體均方根誤差(ORMSE)和平均均方根誤差,峰值流量(ARMSE) 以同樣的重量(馬德森,2000年),作為衡量我們的結果(CRMSE)。下面的公式(12)定義 ORMSE,ARMSE和 CRMSE:

$$ORMSE = \begin{bmatrix} \sum_{i=1}^{N} W_{i}^{*} [Q_{0,i} - Q_{0,i}]^{*} \\ \sum_{i=1}^{N} W_{i}^{*} \end{bmatrix}_{1/2}$$

$$armsE = \sum_{j=1}^{N_{j}} \sum_{j=1}^{N_{j}} \begin{bmatrix} \sum_{i=1}^{n_{j}} W_{i}^{*} [Q_{0,i} - Q_{0,i}]^{*} \\ \sum_{i=1}^{n_{j}} W_{i}^{*} \end{bmatrix}_{1/2}$$

$$ARMSE = 1/2$$

$$(12)$$

$$CRMSE = \frac{\frac{1}{2}}{\frac{1}{2}} ORMSE + \frac{\frac{1}{2}}{\frac{1}{2}} ARMSE.$$

其中,Qo,i 是觀質測流量在時間 i,Qs,I 是模擬流量,N 是在個別事件中的總時間,MP 是洪峰流量有多少事件,nj 是時間在高峰流量時段,Wi 是加權函數。高峰流量時段的定義是 時期,觀測流量>100 立方米/秒,這個指標對於洪水警報最為重要。為了呈現模擬和觀察的差 異,我們進一步提供3指標,即:EC,EC_log,EC_pow,來描述模擬結果,所有指標通常用於 評估歷線模擬。該效率係數(EC)可以量化的總體偏差之間的模擬和觀測歷線。EC 的最高值 是 1.0。為了更好地量化在低流量條件下的相似性,EC_log 此效率是由於其應用於低流量的時 間演化,EC_pow 此指標是由於其應用於低流量的時間演化,計算方法與EC 相同,為一不同 的是:需先將(觀測與模擬)流量取2次方,再進行計算;換句話說,在尖峰流量的全中將會 以幾何倍增,來達到加權的效果。使用這些評估指標,可以模擬綜合評價。提取最適合的參數 組合。一般而言,20,000 隨機參數組是一般水文模式所需求的。所得到的20,000 模擬結果皆 可計算 CRMSE,選去其中5%最好的組合(其中最低 CRMSE 值)來組成信賴區間。以降低 參數估計的不確定性。

第三章 結果與討論

第一節 立霧溪降雨逕流特性

立霧溪流域面積 621 多平方公里,全流域中僅在綠水有一台電所維護的流量站,綠水流 量站以上的集水區面積約為 430 多平方公里,平均坡度約為 40 度。流域內現存有 11 個雨量站 (10 個為中央氣象局的自動觀測站、一個為台電雨量站),將太過鄰近的雨量站扣除後,則區 內約有 8 個雨量站。以本區而言:年平均雨量約為 2,595 mm (1998-2009 年),其中位於南湖 大山的 COU730 之平均年雨量 3,220mm 為最高、以合歡山區之 COT790 之平均年雨量為最低, 約為 2,416mm,總體而言,年雨量的分佈大致上是上游高於下游,北區高於南區 (見圖 3-1)。

就綠水流量近 11 年的資料看來,年流量約為 1921 mm,逕流係數約 0.75 與台灣大部分 地區 (逕流係數約為0.8) 相當, 見表 3-1。, 本區以 2005 年及 1998 年為顯著的豐水年, 其年 雨量為 3,782、3,552mm,較平均值高出 45%。以 2002, 2003 為明顯的乾旱年,年雨量僅 1,244 及 1,313mm, 為年平均雨量的一半。換言之, 近 11 年來年雨量的變動過程約在 50%~145% 之間。若以流量來看,1998年的年逕流深度為3,160mm,較年平均流量高出64%(2005年因 部分月份流量缺測,因此不納入討論),2002 年逕流量為966 mm,約為平均逕流量 50%。顯 示本區的年流量之年際變化量與年雨量相若。若以季節來看,濕季雨量(濕季定義為5月至10 月)約佔全年雨量的73%(濕季年平均雨量為1,899mm),而濕季流量約為全年流量66%(濕季 年平均流量為 1,275mm), 濕季的年平均逕流係數為 0.68。濕季的雨量與流量變動似乎較年平 均雨量、流量的變動為大。歷年的年平均、濕季平均之雨量-流量組體圖,如圖 3-2 所示。若 從逕流係數的趨勢來看,則本區呈現一遞減的方式,可能是因為近年來觀測資料有缺測的關 係。也增加了資料分析上的難度。而歷年來的日雨量與日流量圖,則如圖 3-3、3-4 所示。由 上圖可知,綠水流域大致上的平均流量為10-20cms之間,夏季的颱風為最主要的流量貢獻者, 其尖峰日流量可高達 1,500-2,000cms 左右,以 2000 年碧利斯、2004 年的南瑪都、2005 年的海 棠、泰瑞、丹瑞以及 2008 年的鳳凰為代表,另外 2005 年的龍王颱風在高水位時甚至出現無法 觀測的水位高,應為近年來最大的颱洪事件。

本研究另外針對綠水流量站近9年來的颱洪事件進行分析,颱洪資料如表 3-2 所示。從 整理的 40 場颱洪事件來看,每場颱洪事件約可帶來 243mm 的降雨約為年降雨的 10 分之1, 換言之,以每年4場颱風來看,則颱風降雨約佔本區30-45%左右。每場颱風歷時約76小時, 平均最大降雨強度為 14.0mm/hr,總逕流量約為 110mm,為平均降雨的一半; 而尖峰逕流量為 509cms,平均的洪峰稽延時間為4.8hr。其中2007 聖帕與2005 龍王可能因水位過高而無法觀 測。其中較為特殊的是:這40場颱洪事件似乎存在著兩種兩量分佈的型態,導致在洪峰稽延 時間上有明顯的不同,洪峰稽延時間頻率分佈如圖 3-4 (左),從此圖中可以明顯看出有兩種不 同的洪峰稽延反應,一種是快速到達的形式,約在1-3小時內;另一為6-8小時。顯見本流域 之流量反應受到降雨分佈的影響分常大,至於哪一種可以導致較大的尖峰流量則需進一步研 究。另,從此40場的降雨總量以及尖峰流量的散佈圖(圖3-4)中,可以發現:要出現高於 1600cms(水位可能高過14m)的尖峰流量,至少需要350mm的總降雨換言之,小於350mm 的總降雨應該是所能正常輸送水流的容許量。反之,隨著總雨量的增加,其尖峰流量並不會再 持續增加。若觀察近10年來的河川斷面(圖3-5),可以發現:綠水測站的河川斷面有逐漸加深 的趨勢,在水位高 0-4m 左右呈現高幅的震盪。但是,當水位高過 6m 之後的通水斷面卻影響 有限,因此,可以推論本流域在率定曲線的使用上,應分段進行;而在高水位的條件下,其流 量與水位高將不適合以冪級次的方式推估,應改以線性方式估計。此現象需進一步測量颱洪事 件的河川流速,始能更進一步下推論。本研究已在2010年8月利用國科會計畫購置一超音波 流速儀,可於橋面間接量測河溪之表面流速,希望明年的颱風季節可以進駐綠水流量站,進行 高頻的水質採樣與河川流速的測量工作,以利後續相關研究的進行。此外,我們也分析了這些 **颱洪事件在總雨量與總流量的關係,發現:在小雨量時,總流量是遠低雨量,隨著雨量的增加,** 流量增加的幅度會大於雨量增加的幅度,最後可以達到1:1的情況。換言之,在此情況下, 總雨量將會約略等於總流量。這種情況在防災上是一大警訊。如果氣候變遷朝向越來越極端的 方向發展,則以往利用規模頻率分析的結果可能完全無法適用於氣候變遷下的水文反應。亦 即:以往估計 100mm 降與會導致 30mm 流量。但,當總兩量為 1000mm 時,總流量可能達到 800mm。雨量增加了10倍,但流量卻增加了27倍。當氣候變遷中的雨量變異越來越朝向極端 方向改變時(意即大雨越大,容易發生洪泛、小雨消失以致容易發生旱災),這樣的變化所導

致的流量變異程度需要進一步釐清,且這樣的雨量、流量變異都將在防災或減災的設計上,是 一大挑戰。

本研究以8個雨量站1998-2003年的日雨量為模式的輸入。經過簡單的率定,其參數為: 最大植生蓄存量(SRmax) 13.5 + 5.46 mm、初始蓄存量(SR0) 16.0 + 5.62 mm、曼寧粗糙係數(n) 0.23+0.13、飽和水利傳導度(K) 3.67+3.95 m/day、中層水遞減係數(mi) 26.6+3.84、土壤厚度 (D) 1.69 + 0.77 m、基流遞減係數(mb) 11.92 + 3.35、地下水補注量(P) 8.28 + 1.05 mm/day、蒸發 散調整係數(ETscale) 2.35 + 1.22; 就平均模擬結果為:平均 EC 為 0.68 + 0.03、平均 EClog 為 0.93 + 0.02、平均 ECpow 為 0.55 + 0.31, 模擬結果如圖 3-6 所示在驗證階段的表現而言, 也跟 率定階段相當,其模擬結果如圖 3-7 所示。由模擬流量與實際推估流量來看,大致上吻合,在 暴雨事件中的反應也跟實際推估值相當,而且與之前其他流域的模擬表現相當。其中,基流在 率定年年中有明顯降低的趨勢,在2004年後逐漸回復,與觀測流量的趨勢相符。推估原因在 於率定曲線不穩定所導致,這部分跟上一節所陳述的問題一樣,需要進一步去釐清。就暴雨所 導致的流量而言,主要的逕流來自於中層水,部分來自地表水。地表水僅在全集水區接近飽和 時(累積雨量大時),才會在飽和區發生。此次的模擬結果,對照之前第一年的模擬結果而言, 流量模擬的表現大為提升。可能是因為: 1.率定有 2009 年的 1000 組增加至 6000 組,因此率 定過程較為完整,提升了模式的表現。然,仍需要將率定過程擴充至 20,000 左右的試誤才能 析取出較為可靠的參數。再者是,今年所使用的資料都經過檢核,在資料品質提高的前提下, 當然有助於模擬結果的提升。根據以往的經驗,在超過100平方公里以上的集水區,雨量站的 疏密便具有決定性的影響,此次模擬中,我們詳加檢視了8個雨量站的日降雨資料,並對各站 的結果進行過一致性的比較。因此,在雨量資料精度大幅提高的條件下,模擬結果也比第一年 為佳。基於次模擬流量,本計畫利用模擬流量進行綠水測站的降雨-逕流關係重構,如圖3-8 所示。從重構的年降雨-逕流關係中可以看出,在乾年的時候,年平均逕流係數約0.5,而在濕 年時,逕流係數約.67,以水平衡的角度來看,較為合理。

展望明年,在水文模擬的部分,我們希望能:1.建立合理的水位推估流量,這部分需要 實測流速來佐證。因此,將在颱風季節進行流速量測。2.增加率定過程的組數至 20,000 組,並 進行不確定性分析,瞭解參數的不確定性與模擬結果的可信賴區間。3.開始颱洪事件的模擬。

第二節 立霧溪雷達降雨推估特性

本計畫蒐集了從 2000 年開始至 2010 年 9 月共 39 場資料完整的雷達降雨資料,探討降雨 在立霧溪集水區之空間分佈,因降雨是驅使水文歷程的重要關鍵,瞭解降雨的分佈將助於瞭解 洪水發生時機及探究崩塌發生之原因。雷達降雨推估之時間解析度為 1 小時,空間解析度為 1km×1km,此 39 場降雨事件之相關特性列於表 3-3,降雨延時從 64~280 小時不等,每場事件 之平均降雨量從 53.1~841.7 mm,中心最大降雨則從 152~2123.9 mm,各場降雨在空間上的變 異程度,則分佈在 0.25~0.65 之間,其計算方式如公式(13)所示,其中 PBAS 表某降雨事件在 整個集水區之平均降雨,Pi 則為每個網格之總降雨量,N 為網格總數,αi 則為每個網格所佔 全區雨量推估之權重,研究中共有 45×34 個大小相同之網格,因此各網格權重相等為 1/(45×34),從圖 3-10 可以發現,降雨之空間變異隨著降雨規模的增大而有趨緩的趨勢,在降 雨規模大於 300 mm 的事件,其空間變異維持在 0.4 附近震盪,而小於 300 mm 之降雨事件則 隨著規模的減小使其空間變異到達 0.6,這樣的結果並不讓人意外,因為大規模的降雨其降雨 的範圍較有機會遍及全流域,反之,僅在局部範圍內下雨。

$$CV_{S} = \frac{\sqrt{\sum_{i=1}^{N} \alpha_{i}(P_{i} - PBAS)^{2}}}{PBAS}$$
(13)

若將39 場降雨事件將總起來並加以標準化至0~1 之間進行內插,其結果如圖3-11 所示, 可以發現降雨在立霧溪流域明顯的空間分佈,圖中所有點分別表示39 場降雨事件之降雨中 心,也就是最大降雨發生之位置,顏色越深則表示這10 年來有越多降雨集中於該區域,多為 侵臺路徑3和4的颱風事件集中降雨至此處所造成,颱風侵台路徑示意圖3-12 所示。可以發 現所有的降雨幾乎都集中在兩條東北—西南的降雨帶上,並與地形的分佈類似,透過與圖3-12 的對照,發現此兩條降雨帶分別落在高程1000 m 與2500 m 之地形起伏處,據推測大多數之鋒 面或是颱風受到了地形之影響,而在迎風面降下大部分的雨水,降雨位置與降雨型態或是颱風 路線是否有關係,則有待進一步研究。

第三節 水質採樣分析

日前已於 2009 年 4 月進行現場探勘,評估地形地質環境與採樣可行性,並進行第一次採 樣,各樣點由下至上游採樣站依序為LW-1~LW-6,分別為為錦文橋站、砂卡礑溪站、慈母橋(主) 站、寧安橋、流芳橋、普渡橋站、稚暉橋站共6站(圖 3-13),採樣站涵蓋範圍為五個集水區 域。就初步結果觀察,可以發現,砂卡噹溪的導電度相較於其他地區有明顯偏低的趨勢,與先 前研究相符(許文昌,2004)。就酸鹼值而言,則呈現逐漸酸化的趨勢,由上游的弱鹼逐漸轉 變為下游的中性水質。可看出變質石灰岩區對水質有中和緩衝作用。基於此採樣結果,本計畫 於 2009 年 7 月開始進行每週 1 次的採樣。測定內容為: 主要陽離子(Ca, Mg, Na, K, Sr, Ba, Si) 以及基本營養鹽(F, Cl, SO4, NO3, PO4, DOC),目前為止的採樣結果,在陽離子與陰離子部分, 分別如表 3-4、3-5 所示。大致上而言,所有的陽離子都呈現上游高於下游的趨勢,其中,砂 卡噹測站,大部分的陽離子約為主流的一半,K⁺跟 Ca²⁺離子約為主流的8成,Sr 則為主流的 1/3。陰離子部分,以砂卡噹的 SO4 為主流的 1/3 最為特別,其他陰離子則與主流相當。以 NO3 來看,如表 3-6 所示。我們初步比較了世界各地的結果以及台灣目前的資料(立霧溪流域的資 料目前的累積仍嫌不足),可以初步推斷,立霧溪流域目前沒有非常明顯的點源污染可以影響 到整個河段,以目前的資料推估來看,跟台灣的自然狀態相若,屬於貧養的乾淨河川。若以 DOC 來看,目前的資料初步審視來看有兩個特性可以進一步討論(圖 3-14):1.本區的 DOC 遠 低於全球平均值,與台灣其他自然地區相若,會否有季節性變化以及颱風的貢獻或颱風干擾的 影響則需要進一步討論; 2.DOC 的輸出似乎跟高程有點關係,因為砂卡噹測站的 DOC 都較 其他測站為高,待資料穩定且完整後,可與其他地區做比較。另,本計畫收集世界各地喀斯特 地形區的水 Ca²⁺濃度,與立霧溪河水 Ca²⁺濃度進行數據比較(如:圖 3-15 及表 3-7),可在相同 的地質年代下,所在地的氣溫和雨量越高,水體 Ca²⁺含量亦偏高,此則與氣候控制著碳酸鹽類 的岩石化學風化作用速率有關。將中國廣西省桂林及太魯閣進行比較,大略可知所在地之地質 年代越古老,水中含 Ca²⁺量較偏高,可能與長時間進行風化作用有關所導致。

若將各項水質參數以方盒圖展示,可以看出水質在不同集水區之平均特性及變異程度, 有趣的是幾乎所有的參數在各子集水區間皆呈現顯著的差異,而砂卡礑溪站(LW-2)因地質條件

與其他測站不同,成了其他測站明顯之對照組,顯著的水質差異將是未來瞭解各集水區內地 質、土地利用對水質影響之重要基礎。以電導度隨空間分佈的結果來看(圖 3-16),電導度越往 下游越低,而砂卡礑溪站則顯著低於其他測站,電導度代表的是水中離子的多寡程度,正因為 如幾乎水質濃度均呈現相同的分佈,包含 SO4(圖 3-17)、Na、Mg、K、Ca、Sr、Si,但 NO3(圖 3-18)及 CI 則呈現相反的趨勢,砂卡礑溪所量測之資料居全流域之冠,其他像是 DOC(圖 3-19)、 Ba、F 則無顯著趨勢。

第四節 立霧溪崩塌地特性

本研究應用衛星影像判釋出來的崩塌地分佈圖,如表 3-8 與圖 3-20 至圖 3-24 所示,立霧 溪流域在 2004 至 2008 年當中,西村層、新高層佔總崩塌地個數的 35%,總崩塌地面積部份 則佔 43%左右,大南澳片岩層則佔總崩塌地個數的 47%,總崩塌地面積部份則佔 40%左右, 廬山層則佔有 17%的崩塌地個數,並佔有 17%左右的崩塌面積,可知普遍易見崩塌現象的地 層主要分佈於西村層、新高層和大南澳片岩層。套疊崩塌地位置與各年度暴雨事件在空間上之 分佈及其降雨中心位置(圖 3-25 至圖 3-30),由此資訊可獲取雨項資訊:1.崩塌地的分佈並未與 降雨強度較強之處一致;2. 就工務段的養護紀錄,台8線公路在 24 小時累計雨量達 300mm 就會發生崩塌,降雨可能還是觸發著崩塌地的形成,但是並非一定是降雨越強,崩塌的現象越 明顯,降雨強度達到一定的門檻值後,崩塌現象出現的可能性便降低。仍需進行更進一步的研 究,以確定之。

就個別崩塌地面積而言,可知大南澳片岩(黑色片岩、綠色片岩、矽質片岩)較傾向小面 積的崩塌型態,其平均崩塌面積分別為3.72公頃;較大面積的崩塌型態則分佈於大南澳片岩 變質石灰岩層、西村層、新高層及廬山層,其平均崩塌面積分別為9.46、7.74及6.65公頃。 由套疊地質圖、流域分佈圖與崩塌分佈圖的結果,亦可知崩塌地大多分佈於大沙溪、瓦黑爾溪 一帶,和西村層及新高層、大南澳片岩層相關之區域。

為了解各年度的崩塌地變化,並且區分各時期的崩塌地分佈,將前後年度所造成的崩塌 區域,利用 ArcGIS 軟體進行疊圖分析,重疊之處即為舊有崩塌地再次活動,以復發率評估之, 舊有崩塌地於未與新年度之崩塌地重疊者,則視為崩塌活動停止,則以恢復率評估之,其餘新 發生的崩塌地則視為新生崩塌,以新成率評估之。崩塌地的復發率、恢復率及新成率的定義如下:

由崩塌地之新成率、復發率及恢復率之間的差異,約略可歸納各類地層崩塌型態之差異, 由此區分為兩類崩塌型態 (表 3-9):

(1)舊有崩塌地主導

廬山層所佔總崩塌地面積最低,佔地約在215.71至313.42公頃間,且各年度總崩塌地面 積逐漸減少,但其舊有崩塌地較不穩定,其復發率平均約70.92%,且有隨時間漸增的趨勢, 顯示廬山層的崩塌型態主要以舊有崩塌地為主,復發崩塌面積約在158.38至247.21公頃間, 新成率及恢復率平均分別為28.41%及29.08%,顯示發生其新成崩塌地的及崩塌地恢復為植被 覆蓋的可能性較低。

雖然西村層、新高層所佔總崩塌地面積最多,佔地約在473.48 至925.92 公頃間,且各年 度總崩塌地面積逐漸減少,但其舊有崩塌地最不穩定,其復發率平均約66.45%,且有隨時間 漸增的趨勢,顯示西村層、新高層的崩塌型態也主要以舊有崩塌地為主,復發崩塌面積約在 158.38 至 247.21 公頃間,新成率及恢復率平均分別為28.52%及33.55%,顯示發生其新成崩 塌地的及崩塌地恢復為植被覆蓋的可能性較低。

(2)新成崩塌地主導

雖然大南澳片岩層的崩塌地復發率大於其新成率,但是與上述兩種地層相比,其復發率 較低,即大南澳片岩層發生新成崩塌地的可能性偏高。同時,大南澳片岩層的崩塌地恢復率亦 較前兩者為高,平均約在32.41至43.74%間,顯示約有三至四成的崩塌地於新的年度當中, 停止崩塌活動,利於植被生長其上。就黑色、綠色、矽質片岩層而言,其崩塌地新成率平均約 為42.47%,各年新成崩塌地所占面積約在138.35至208.77公頃間,大致呈現先減後增的變化

趨勢;就變質石灰岩層而言,其崩塌地新成率平均約為48.44%,各年新成崩塌地所占面積約 在44.79 至155.93 公頃間,大致呈現漸增的變化趨勢;就混合岩層而言,其崩塌地新成率平均 約為46.59%,各年新成崩塌地所占面積約在1.86 至18.39 公頃間,大致呈現先減後增的變化 趨勢;就片麻岩層而言,其崩塌地新成率平均約為47.23%,各年新成崩塌地所占面積約在0 至5.94 公頃間,大致呈現漸增的變化趨勢。

由上述可知,立霧溪流域的崩塌地的新成、復發及恢復行為與所在地之地層息息相關。 **壹、崩塌地之高度與坡度特性**

針對立霧溪流域當中的崩塌地所在處的高度進行分析,由圖 3-31 可知 2004 至 2008 年間 崩塌地分佈的高程變遷概況,崩塌地所在高程分佈範圍介於 500-3600 公尺間,僅有 2006 年例 外,2006 年崩塌地海拔高程分佈範圍最低則可達 141 公尺。

各年度的崩塌地所在海拔高程分佈呈現雙峰分佈型態,較易發生崩塌的高度帶主要集中 分佈於 1000-2000 公尺及 3000-3500 公尺之間,是易發生崩塌現象海拔高度帶,其中 3000-3500 公尺之間的高度帶的崩塌地面積較多,顯示較易發生崩塌處於海拔高程較高處發生崩塌的可能 性傷高。就崩塌地發生的分佈面積變化而言,位於 3000-3500 公尺之間的高度帶,在 2004 至 2005 年發生的崩塌地面積遠多於 2006 至 2008 年的崩塌地面積約 300 公頃,即較高處發生崩 塌的現象有減緩的趨勢,其崩塌型態多為舊有崩塌地復發為主,平均復發率約為 74.64%,所 占面積約在 270.14 至 576.47 公頃間,相較而言,新成崩塌地出現的可能性較為有限,平均新 成率約為 17.78%,所占面積約在 46.35 至 96.45 公頃間,研究期間的前兩年的崩塌地面積較多, 可能與 2003 年臺灣曾發生三個規模六以上的大地震 (林欣儀,2004) 有關,因受地震波弱化 岩層,於颱風事件當中造成崩塌,此機械性之破壞有傷向海拔高程較高處發展的特性,原因在 於當地震波在山嶺之間傳導時,最容易在山坡頂處形成震波的擴大效應,在山腰上的震波效應 相對較小 (Geli et al., 1988)。由崩塌地的恢復率之時間序列變化,可知受地震效應的影響前兩 年較明顯,因此恢復率偏低,僅 8.94%而已,後三年的恢復率偏高,尤以 2006 年的 58.93%最 為明顯,顯示此高度帶的崩塌地活動停止而趨向穩定。上述現象亦可見於 2500-3000 公尺海拔 高度帶。

由崩塌地之新成率、復發率及恢復率之間的差異 (表 3-10),可發現最低 (0-500 公尺) 及

最高 (3500-4000 公尺) 的高度帶的崩塌類型為主要以新成崩塌為主,其平均新成率分別各為 75.56%及 56.11%,原因可能與此兩個高度帶的崩塌分布面積較狹小有限,分別僅佔 0.01 至 18.49 及 1.18 至 36.09 公頃間,因此較不易於舊有崩塌地復發崩塌行為,相較於其他高度帶, 其崩塌地之恢復率較為偏高,分別各為 76.73%及 59.45%。其餘高度帶的崩塌類型以舊有崩塌 地復發為主,所在高度帶越高,其崩塌地之復發率越高,這可能與上述的地震效應有關產生的 弱化現象有關,顯示地震造成了較高海拔地區的岩層弱化,因此一旦發生崩塌後,舊有崩塌仍 持續不穩定,越往高海拔此現象越為明顯。

針對立霧溪流域當中的崩塌地所在處的坡度進行分析得圖 3-32,可知 2004 至 2008 年間 崩塌地分佈坡度的概況,各年度的崩塌地所在地之坡度分佈呈現單峰分佈型態,易發生崩塌之 處的坡度在 20-50 度間,以 40-50 度間最為明顯,50 度以上的區域發生崩塌的現象較少。由崩 塌地之新成率、復發率及恢復率之間的差異(表 3-11),可知 30-40 度及 40-50 度之間的崩塌地, 共佔總崩塌地面積百分比為 83.31%,其崩塌類型主要是舊有崩塌地復發為主,此兩個坡度帶 的舊有崩塌地較不穩定,其平均復發率分別為 58.2%及 72.2%,其餘坡度帶的崩塌類型主要以 新成崩塌地為主,其新成崩塌地都有隨時間而漸增的趨勢,原因可能與其崩塌分布面積較狹小 有限,總共僅佔所有崩塌地面積的 16.69%,因此較不易於舊有崩塌地復發崩塌行為。

貳、颱風降雨和崩塌地個數-面積之關係

若颱風帶來的強降雨對立霧溪流域中崩塌地產生的影響,因此將 2004 至 2008 年期間各 年之最大 2 日累積降雨 (2004 年敏督利颱風、2005 年海棠颱風、2006 年凱米颱風、2007 年聖 帕颱風、2008 年鳳凰颱風) 與崩塌地個數-面積進行分析並整理成表 3-12,可得知在立霧溪流 域內的崩塌地個數由 191 個增加至 306 個,但面積則由 1790.51 公頃減少到 1615.19 公頃;大 南澳片岩層區內的崩塌地個數由 77 個增加到 111 個,面積則由 342.21 公頃增加到 421.35 公頃, 但在西村層、新高層則呈現崩塌地個數由 70 個增加到 105 個,面積則由 925.92 公頃減少至 629.85 公頃的情況,但因該區的雨量站設立不足,以致於無法確實了解該區降雨情形。針對立 霧溪流域全區和大南澳片岩層和崩塌地面積和個數做對數分析,評估類似莫拉克颱風之極端降 雨事件對立霧溪與大南澳片岩層的影響。全區崩塌地個數將從 191 個增加為 533 個,面積將從 %。而在大南澳片岩區,崩塌地個數將從77個增加為207個,面積將從392.25公頃增加至813.82 公頃,分別增加了269%與107%。因此,大南澳片岩區增加幅度遠大於全區,顯示該區域的 崩塌行為較易受暴雨所控制。

根據許多前人研究(Stark and Hovius, 2001)顯示,山崩的崩塌規模與累積次數關係符合乘 冪(碎形)定律 (Power-law),其關係式可用下式表示:

 $LogN = \alpha - \beta \cdot LogA$ (15)

其中, α、β為常數,A為山崩規模(面積),N為大於或等於A之山崩累加個數,這 裡的斜率β即表示碎形維度,經計算過後得研究區不同年份的α、β值和相關係數(表 3-13),研究區崩塌地之碎形維度值約在1.001至0.7743間,而相關係數約略在0.97至0.98之 間,顯示立霧溪流域的崩塌地之規模與以上累積個數之間的關係相當符合乘冪(碎形)定律,可 透過各年度所得的回歸方程式,代表當年度崩塌規模與以上累積個數之分布關係(圖3-33)。

接下來以資料分析所得之 $\alpha < \beta$ 值及相關係數進行討論,由 α 值的時間序列變化,可 知前四年總崩塌地個數不斷增加,於 2008 年個數減少,由前述文字可知,2003 年發生三場大 規模地震的影響,其觸發 2004 年及 2005 年當中崩塌地個數偏少,但是該兩年總崩塌面積卻是 歷年來最多。2006 年及 2007 的崩塌地分佈面積減少了約 600 公頃左右,但崩塌地個數卻是增 加了近乎 1.5 至 2 倍左右,2008 年的分佈面積增加,而個數卻是減少。從相關係數的變化,可 知雖然研究期間的崩塌地個數和面積呈現不錯的乘冪(碎形)定律 (Power-law)關係,但以 2006 年及 2007 年的結果表現最佳,由 β 值亦可得相同的結論, β 值碎形維度與該地區的地質、 地形、氣候、地震活動及植被覆蓋有關 (Brardinoni and Church, 2004),仍需要收集更多年份 的崩塌地分佈資料,才可進行更進一步的研究,以確定之。

第四章 結論與建議

壹、結論

本計畫企圖釐清峽谷地區水文與泥砂輸送之過程、陸域與水域生態系之間的物質與能量 流動。分析綠水站流量資料得知,年流量約為1921 mm,逕流係數約0.75 與台灣大部分地區 (逕流係數約為0.8)相當。若以季節來看,濕季雨量(濕季定義為5月至10月)約佔全年雨量 的73%(濕季年平均雨量為1899mm),而濕季流量約為全年流量66%(濕季年平均流量為 1275mm)。平均每年4場颱風,則颱風降雨約佔本區30-45%左右。每場颱風歷時約76小時, 平均最大降雨強度為14.0mm/hr,總逕流量約為110mm,為平均降雨的一半;而尖峰逕流量為 509cms,平均的洪峰稽延時間為4.8hr。由雷達觀測39場降雨事件,其降雨中心多為侵臺路徑 3和4(由東向西直接貫穿中央山脈)的颱風事件集中降雨至此處所造成,幾乎都集中在兩條 東北—西南的降雨帶上,並與地形的分佈類似,降雨帶分別落在高程1000 m與2500 m之地形 起伏處,據推測大多數之鋒面或是颱風受到了地形之影響,而在迎風面降下大部分的雨水。

就水質分析結果而言,所有的陽離子都呈現上游高於下游的趨勢,其他陰離子則與主流 相當,初步比較世界各地的結果以及台灣目前的 NO3 資料,可推斷立霧溪流域目前沒有非常 明顯的點源污染可以影響到整個河段,屬於貧養的乾淨河川。

利用福衛二號衛星影像進行 2004-2008 年立霧溪流域的崩塌地判釋與基本分析,地質脆弱之處主要分佈於廬山層和大南澳片岩層,而較普遍易有崩塌現象的產生,大南澳片岩層則佔 總崩塌地個數的 47%,總崩塌地面積部份則佔 40%左右,廬山層則佔有 17%的崩塌地個數, 並佔有 33%左右的崩塌面積。崩塌地所在高程分佈範圍呈現雙峰分佈型態,較易發生崩塌的 高度帶主要集中分佈於 1000-2000 公尺及 3000-3500 公尺之間。崩塌地所在地之坡度分佈呈現 單峰分佈型態,易發生崩塌之處的坡度在 20-50 度間,以 40-50 度間最為明顯。由崩塌地面積 和個數進行對數分析,評估類似莫拉克颱風之極端降雨事件對立霧溪與大南澳片岩層的影響, 就崩塌面積的增加程度而言,大南澳片岩區增加幅度 (269%) 遠大於全區增加幅度 (180%), 顯示該區域的崩塌行為較易受暴雨所控制。

貳、建議

短期建議:

1. 持續進行相關的環境監測計畫,以增進對太魯閣峽谷地區的認識。

如果颱風所引發的落石為管理處關心的重點,則建議:增設攝影機於九曲洞及燕子
 ロ,以加強對當地情況的掌握。

 如果颱風所引發的水位異常為管理處封閉步道的重要依據,則建議:至少增設雨量站 於砂卡噹溪中游及天祥並與管理處連線,以加強對當地情況的掌握。

中長期建議:

引入颱風路徑、規模對該區降雨應為有效且需參考的因素並能增進降雨預測模式的準度,在降雨預測可信的前提下,配合流量模擬與崩塌地潛勢區評估來建立預警規範應為可行之 經營策略。本計畫已初步說明颱風路徑與降雨分布的關連,未來能進一步闡述降雨分布對流量 的關連。因此,管理處如能有中央氣象局的颱風路徑預測、花蓮雷達站的即時資料,即可委託 研究該區降雨預測的可行性,如降雨預測的準確性可被接受,則可及時預測流量與水位。

Year	Annual	Annual	Runoff	Wet season	Wet season	Runoff	
	rainfall	runoff (mm)	coefficient	rainfall	runoff (mm)	coefficient	
	(mm)			(mm)			
1998	3552	3160	0.89	2422	1986	0.82	
1999	2120	2292	1.08	1565	1509	0.96	
2000	2928	1961*	0.67	1809	1287*	0.71	
2001	2858	2732	0.96	2197	1929	0.88	
2002	1244	966	0.78	915	515	0.56	
2003	1313	1167	0.89	872	744	0.85	
2004	2361	1752	0.74	1331	858	0.64	
2005	3782	2530*	0.67	2967	1922*	0.65	
2006	2919	2295	0.79	2046	2007	0.98	
2007	3120	1213*	0.39	2455	609*	0.25	
2008	2813	1882*	0.67	2326	1254*	0.54	
Average	2595	1921	0.75	1899	1275	0.68	

表 3-1 立霧溪 1998-2009 流量統計(綠水)

*表資料缺測

事件	起始日期	總降雨	降雨歷時	最大降度	總流量	尖峰流量	稽延
		(mm)	(hr)	(mm/hr)	(mm)	(cms)	(hr)
暴雨	2000/02/03	77.9	44	6.0	18.6	72.0	6
啟德	2000/07/08	128.6	56	15.6	29.8	124.7	2
碧利斯	2000/08/22	451.1	70	29.1	325.3	1955.0	6
西馬隆	2001/05/13	53.4	48	5.4	29.1	109.8	7
奇比	2001/06/23	47.6	37	6.7	14.6	64.5	7
尤特	2001/07/04	148.7	65	10.3	91.4	689.8	12
桃芝	2001/07/29	306.0	58	29.4	81.7	374.8	2
納莉	2001/09/16	195.8	138	9.4	120.2	318.5	6
利奇馬	2001/09/23	302.6	81	9.9	208.3	699.7	7
暴雨	2001/12/08	42.0	48	4.4	10.0	37.8	9
納克莉	2002/07/08	139.9	80	5.6	27.7	70.1	5
莫拉克	2003/08/04	41.4	72	7.6	11.1	38.1	5
杜鵑	2003/09/01	218.9	82	15.6	204.0	1020.3	7
敏督利	2004/07/01	702.8	144	12.1	232.6	545.3	1
艾利	2004/08/24	241.0	63	10.3	35.5	144.8	4
納坦	2004/10/24	97.9	47	12.9	30.3	237.8	2
南瑪都	2004/12/03	347.5	72	25.3	212.8	1789.4	2
0218	2005/02/18	148.7	85	6.6	13.2	42.3	8
0224	2005/02/24	71.4	46	5.8	10.4	50.42	2
0302	2005/03/03	84.8	70	4.8	41.9	87.7	2
0329	2005/03/29	113.8	97	7.6	25.5	41.5	3
0510	2005/05/10	326.8	143	12.4	58.8	128.7	2
海棠	2005/07/17	698.5	87	18.6	417.4	1840.6	2
馬莎	2005/08/04	287.2	96	13.8	89.0	168.9	8
珊瑚	2005/08/12	237.7	96	12.9	264.6	1558.2	2
泰利	2005/08/31	280.3	71	26.0	169.3	1555.1	1
丹瑞	2005/09/22	157.1	72	10.3	113.8	343.9	2
龍王	2005/10/01	282.8	54	30.4	-	-	-
珍珠	2006/05/17	118.6	72	12.3	85.5	689.0	3
0528	2006/05/28	207.3	120	4.3	117.8	315.5	7
0608	2006/06/08	507.9	111	17.8	387.8	492.9	9
碧利斯	2006/07/13	196.3	96	5.3	80.0	184.0	4

表 3-2 立霧溪 1998-2009 颱洪件事統計(綠水)

事件	起始日期	總降雨	降雨歷時	最大降度	總流量	尖峰流量	稽延
		(mm)	(hr)	(mm/hr)	(mm)	(cms)	(hr)
凱米	2006/07/24	150.7	54	18.6	64.8	495.5	4
桑美	2006/08/08	75.4	40	9.8	30.0	218.4	2
0607	2007/06/07	296.4	96	12.1	34.5	80.3	4
帕布	2007/08/07	233.6	61	15.6	47.6	253.6	5
聖帕	2007/08/17	472.2	61	26.9	-	-	-
卡玫基	2008/07/17	253.1	61	22.2	24.6	89.0	7
鳳凰	2008/07/27	433.3	81	34.3	272.9	1908.0	2
辛樂克	2008/09/13	542.1	65	17.2	133.1	514.0	13
Average	-	243.0	76	14.0	109.6	509	4.8

(續)表 3-2 立霧溪 1998-2009 颱洪件事統計(綠水)
事件日期	事件延時	最大網格降雨	平均網格降雨	降雨中心	降雨中心	雨量空間變異
	(hr)	(mm)	(mm)	У	Х	
2000-202	64	152.0	53.1	2696855	274557	0.61
2000-707	88	349.5	221.9	2688855	318557	0.31
2000-821	88	1713.3	809.0	2685855	314557	0.48
2001-622	64	238.4	119.8	2682855	308557	0.48
2001-704	62	559.2	290.0	2688855	308557	0.43
2001-728	87	561.5	372.0	2682855	308557	0.28
2001-915	280	2123.9	841.7	2696855	318557	0.44
2001-1207	64	346.0	125.4	2690855	317557	0.62
2002-707	112	369.1	219.8	2663855	304557	0.30
2003-802	112	254.0	132.0	2696855	318557	0.34
2003-831	112	664.6	350.7	2663855	290557	0.39
2004-630	160	1280.2	581.0	2673855	274557	0.31
2004-823	88	552.3	198.1	2696855	274557	0.50
2004-1023	64	374.7	155.6	2696855	309557	0.42
2004-1202	87	1127.6	554.8	2679855	306557	0.49
2005-217	104	310.0	140.9	2674855	276557	0.45
2005-302	88	291.5	135.4	2686855	280557	0.43
2005-328	136	283.1	111.8	2676855	276557	0.47
2005-509	160	794.3	234.4	2671855	274557	0.54
2005-716	112	1149.9	756.6	2693855	307557	0.27
2005-804	79	528.3	190.8	2672855	274557	0.57
2005-811	101	820.8	423.4	2672855	301557	0.47
2005-830	87	954.2	453.5	2684855	315557	0.41
2005-921	88	624.6	302.6	2663855	296557	0.48
2005-930	88	856.1	476.2	2667855	296557	0.46
2006-516	88	459.1	226.1	2666855	296557	0.43
2006-527	136	533.1	183.5	2672855	274557	0.47
2006-607	136	1176.4	450.0	2673855	275557	0.43
2006-712	112	480.9	257.0	2692855	296557	0.29
2006-723	88	655.9	313.7	2688855	309557	0.49
2006-807	64	391.4	206.0	2681855	309557	0.45
2007-606	112	689.8	248.0	2672855	275557	0.43
2007-806	88	556.5	335.3	2663855	295557	0.34
2007-816	88	1409.3	723.7	2684855	315557	0.42
2008-716	88	352.9	246.5	2672855	274557	0.25

表 3-3 39 場雷達降雨事件之相關資訊

(續)表 3-3 39 場雷達降雨事件之相關資訊

2008-726	112	963.6	556.3	2682855	308557	0.37
2008-912	88	1015.7	483.9	2672855	275557	0.39
2010-917	88	795.5	349.3	2688855	311557	0.46

LW-1	Ν	Na	Mg	Κ	Ca	Sr	Ba	Si
2009/10	1	3.12	8.43	2.07	46.25	0.32	0.10	3.32
2009/11	2	3.47	9.05	2.75	50.01	0.34	0.07	3.39
2009/12	3	3.75	10.40	2.03	57.39	0.40	0.08	3.44
2010/1	3	3.82	10.25	2.21	51.90	0.38	0.10	3.47
2010/2	2	3.77	10.10	2.15	51.57	0.36	0.05	3.24
2010/3	4	4.17	11.85	2.40	63.32	0.51	0.06	3.94
2010/4	1	4.64	13.04	2.50	63.98	0.59	0.05	4.10
2010/5	6	4.11	11.50	2.25	58.92	0.48	0.07	3.61
2010/6	3	4.71	13.75	2.60	62.55	0.50	0.13	4.91
2010/7	4	5.37	14.16	2.89	66.69	0.51	0.06	4.46
2010/8	4	3.93	10.54	2.33	54.47	0.41	0.03	3.67
2010/9	5	3.12	8.48	2.11	51.33	0.31	0.04	3.42
	(續)	表 3-4 20	009/10-20	10/9 之陽	離子月平	均(砂卡	當)	
LW-2	Ν	Na	Mg	Κ	Ca	Sr	Ba	Si
2009/10	1	1.79	4.47	1.76	36.64	0.14	0.02	2.35
2009/11	3	2.02	5.08	2.03	40.43	0.16	0.03	2.51
2009/12	3	2.23	5.22	2.14	43.01	0.17	0.03	2.78
2010/1	3	2.27	5.30	2.17	44.20	0.17	0.04	2.87
2010/2	2	2.30	5.30	2.18	43.77	0.17	0.04	2.86
2010/3	4	2.30	4.98	2.66	40.60	0.17	0.03	2.57
2010/4	1	2.03	5.20	2.56	42.49	0.19	0.03	2.63
2010/5	6	2.18	5.13	2.49	42.01	0.18	0.04	2.63
2010/6	3	2.20	5.15	2.50	43.23	0.17	0.08	3.11
2010/7	4	2.23	5.11	2.49	40.88	0.17	0.05	3.17
2010/8	5	3.07	7.07	2.35	45.49	0.25	0.06	3.00
2010/9	1.94	4.42	2.42	40.67	0.16	0.04	2.85	1.94
	(續)	表 3-4 20	009/10-20	10/9 之陽	離子月平	均(寧安	喬)	
LW-3	Ν	Na	Mg	K	Ca	Sr	Ba	Si
2009/10	2	3.69	9.54	2.42	49.43	0.39	0.14	3.80
2009/11	2	3.38	10.14	2.10	49.85	0.38	0.03	3.32
2009/12	3	4.20	11.25	1.97	56.37	0.45	0.12	3.44
2010/1	3	4.21	11.35	2.25	59.00	0.46	0.11	3.56
2010/2	2	3.98	11.02	2.13	58.00	0.43	0.03	3.42
2010/3	4	4.58	11.90	2.12	62.16	0.50	0.14	3.78
2010/4	1	5.63	13.11	2.19	64.40	0.59	0.29	4.23
2010/5	6	4.21	12.22	2.26	62.04	0.52	0.04	3.86

表 3-4 2009/10-2010/9 之陽離子月平均(錦文橋)

2010/6	3	4.13	12.32	2.32	57.08	0.47	0.05	4.52					
2010/7	4	5.30	14.53	2.79	65.30	0.58	0.05	4.89					
2010/8	5	3.42	9.38	1.73	46.63	0.41	0.03	3.41					
2010/9	5	3.63	9.99	2.25	55.10	0.38	0.03	3.73					
	(續))表 3-4 2(009/10-20	10/9 之陽	離子月平	·均(流芳	橋)						
LW-4	Ν	Na	Mg	K	Ca	Sr	Ba	Si					
2009/10	1	3.34	10.36	2.54	51.17	0.46	0.02	4.10					
2009/11	2	3.96	11.49	2.69	55.05	0.52	0.02	4.19					
2009/12	3	4.95	12.61	2.47	68.46	0.60	0.10	4.26					
2010/1	3	5.00	12.61	2.67	72.94	0.58	0.11	4.21					
2010/2	2	5.15	12.90	2.75	68.19	0.62	0.03	4.24					
2010/3	4	4.47	11.83	2.38	68.10	0.53	0.11	4.05					
2010/4	1	5.06	13.76	2.77	73.62	0.65	0.04	4.80					
2010/5	5	4.67	12.60	2.41	62.89	0.57	0.07	3.83					
2010/6	3	4.87	14.62	2.55	67.58	0.60	0.05	5.45					
2010/7	4	4.87	13.85	2.64	69.40	0.63	0.03	5.17					
2010/8	5	4.17	11.09	2.23	59.40	0.58	0.03	4.11					
2010/9	5	4.12	11.65	2.27	61.60	0.53	0.02	4.19					
	(續))表 3-4 20	009/10-20	(續)表 3-4 2009/10-2010/9 之陽離子月平均(普渡橋)									
	,	-											
LW-5	N	Na	Mg	K	Ca	Sr	Ba	Si					
LW-5 2009/10	N 1	Na 3.2	Mg 8.8	К 3.0	Ca 48.6	Sr 0.4	Ba 0.1	Si 4.1					
LW-5 2009/10 2009/11	N 1 2	Na 3.2 4.1	Mg 8.8 11.4	K 3.0 3.2	Ca 48.6 62.4	Sr 0.4 0.6	Ba 0.1 0.0	Si 4.1 4.4					
LW-5 2009/10 2009/11 2009/12	N 1 2 3	Na 3.2 4.1 4.8	Mg 8.8 11.4 12.9	K 3.0 3.2 3.2	Ca 48.6 62.4 78.2	Sr 0.4 0.6 0.7	Ba 0.1 0.0 0.0	Si 4.1 4.4 4.5					
LW-5 2009/10 2009/11 2009/12 2010/1	N 1 2 3 3	Na 3.2 4.1 4.8 5.2	Mg 8.8 11.4 12.9 12.3	K 3.0 3.2 3.2 3.3	Ca 48.6 62.4 78.2 72.7	Sr 0.4 0.6 0.7 0.7	Ba 0.1 0.0 0.0 0.1	Si 4.1 4.4 4.5 4.4					
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2	N 1 2 3 3 2	Na 3.2 4.1 4.8 5.2 5.3	Mg 8.8 11.4 12.9 12.3 12.8	K 3.0 3.2 3.2 3.3 3.0	Ca 48.6 62.4 78.2 72.7 76.2	Sr 0.4 0.6 0.7 0.7 0.7 0.7	Ba 0.1 0.0 0.0 0.1 0.0	Si 4.1 4.4 4.5 4.4 4.4					
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3	N 1 2 3 3 2 4	Na 3.2 4.1 4.8 5.2 5.3 4.3	Mg 8.8 11.4 12.9 12.3 12.8 11.7	K 3.0 3.2 3.2 3.3 3.0 3.0	Ca 48.6 62.4 78.2 72.7 76.2 76.9	Sr 0.4 0.6 0.7 0.7 0.7 0.7 0.6	Ba 0.1 0.0 0.0 0.1 0.0 0.0	Si 4.1 4.4 4.5 4.4 4.4 4.2					
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4	N 1 2 3 3 2 4 1	Na 3.2 4.1 4.8 5.2 5.3 4.3 5.75	Mg 8.8 11.4 12.9 12.3 12.8 11.7 13.75	K 3.0 3.2 3.2 3.3 3.0 3.0 3.22	Ca 48.6 62.4 78.2 72.7 76.2 76.9 82.89	Sr 0.4 0.6 0.7 0.7 0.7 0.6 0.74	Ba 0.1 0.0 0.0 0.1 0.0 0.0 0.03	Si 4.1 4.4 4.5 4.4 4.4 4.2 4.92					
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4 2010/5	N 1 2 3 3 2 4 1 6	Na 3.2 4.1 4.8 5.2 5.3 4.3 5.75 4.85	Mg 8.8 11.4 12.9 12.3 12.8 11.7 13.75 12.30	K 3.0 3.2 3.2 3.3 3.0 3.0 3.22 3.02	Ca 48.6 62.4 78.2 72.7 76.2 76.9 82.89 69.46	Sr 0.4 0.6 0.7 0.7 0.7 0.7 0.6 0.74 0.67	Ba 0.1 0.0 0.0 0.1 0.0 0.0 0.03 0.03	Si 4.1 4.4 4.5 4.4 4.4 4.2 4.92 4.41					
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4 2010/5 2010/6	N 1 2 3 3 2 4 1 6 2	Na 3.2 4.1 4.8 5.2 5.3 4.3 5.75 4.85 5.43	Mg 8.8 11.4 12.9 12.3 12.8 11.7 13.75 12.30 14.57	K 3.0 3.2 3.2 3.3 3.0 3.0 3.22 3.02 3.56	Ca 48.6 62.4 78.2 72.7 76.2 76.9 82.89 69.46 74.65	Sr 0.4 0.6 0.7 0.7 0.7 0.7 0.6 0.74 0.67 0.72	Ba 0.1 0.0 0.0 0.1 0.0 0.0 0.03 0.03 0.03	Si 4.1 4.4 4.5 4.4 4.4 4.2 4.92 4.41 4.60					
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4 2010/5 2010/6 2010/7	N 1 2 3 3 2 4 1 6 2 4	Na 3.2 4.1 4.8 5.2 5.3 4.3 5.75 4.85 5.43 6.12	Mg 8.8 11.4 12.9 12.3 12.8 11.7 13.75 12.30 14.57 15.33	K 3.0 3.2 3.2 3.3 3.0 3.0 3.00 3.22 3.02 3.56 4.04	Ca 48.6 62.4 78.2 72.7 76.2 76.9 82.89 69.46 74.65 94.73	Sr 0.4 0.6 0.7 0.7 0.7 0.6 0.74 0.67 0.72 0.91	Ba 0.1 0.0 0.0 0.1 0.0 0.0 0.03 0.03 0.03	Si 4.1 4.4 4.5 4.4 4.4 4.2 4.92 4.41 4.60 6.43					
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4 2010/5 2010/6 2010/7 2010/8	N 1 2 3 3 2 4 1 6 2 4 4 4	Na 3.2 4.1 4.8 5.2 5.3 4.3 5.75 4.85 5.43 6.12 4.79	Mg 8.8 11.4 12.9 12.3 12.8 11.7 13.75 12.30 14.57 15.33 11.93	K 3.0 3.2 3.2 3.3 3.0 3.0 3.00 3.22 3.02 3.56 4.04 2.78	Ca 48.6 62.4 78.2 72.7 76.2 76.9 82.89 69.46 74.65 94.73 71.09	Sr 0.4 0.6 0.7 0.7 0.7 0.6 0.74 0.67 0.72 0.91 0.66	Ba 0.1 0.0 0.0 0.1 0.0 0.0 0.03 0.03 0.03	Si 4.1 4.4 4.5 4.4 4.4 4.2 4.92 4.41 4.60 6.43 4.77					
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4 2010/5 2010/6 2010/7 2010/8 2010/9	N 1 2 3 3 2 4 1 6 2 4 4 4 5	Na 3.2 4.1 4.8 5.2 5.3 4.3 5.75 4.85 5.43 6.12 4.79 4.64	Mg 8.8 11.4 12.9 12.3 12.8 11.7 13.75 12.30 14.57 15.33 11.93 11.42	K 3.0 3.2 3.2 3.3 3.0 3.0 3.00 3.22 3.02 3.56 4.04 2.78 2.79	Ca 48.6 62.4 78.2 72.7 76.2 76.9 82.89 69.46 74.65 94.73 71.09 70.65	Sr 0.4 0.6 0.7 0.7 0.7 0.7 0.7 0.6 0.74 0.67 0.72 0.91 0.66 0.67	Ba 0.1 0.0 0.0 0.1 0.0 0.0 0.03 0.03 0.03	Si 4.1 4.4 4.5 4.4 4.4 4.2 4.92 4.41 4.60 6.43 4.77 4.42					
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4 2010/5 2010/6 2010/7 2010/8 2010/9	N 1 2 3 3 2 4 1 6 2 4 1 6 2 4 4 5 (續)	Na 3.2 4.1 4.8 5.2 5.3 4.3 5.75 4.85 5.43 6.12 4.79 4.64	Mg 8.8 11.4 12.9 12.3 12.8 11.7 13.75 12.30 14.57 15.33 11.93 11.42 009/10-20	K 3.0 3.2 3.2 3.3 3.0 3.0 3.00 3.22 3.02 3.56 4.04 2.78 2.79 10/9 之陽	Ca 48.6 62.4 78.2 72.7 76.2 76.9 82.89 69.46 74.65 94.73 71.09 70.65	Sr 0.4 0.6 0.7 0.7 0.7 0.7 0.6 0.74 0.67 0.72 0.91 0.66 0.67	Ba 0.1 0.0 0.0 0.1 0.0 0.0 0.03 0.03 0.03	Si 4.1 4.4 4.5 4.4 4.2 4.92 4.41 4.60 6.43 4.77 4.42					
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4 2010/5 2010/6 2010/7 2010/8 2010/9 LW-6	N 1 2 3 3 2 4 1 6 2 4 1 6 2 4 4 5 (績) N	Na 3.2 4.1 4.8 5.2 5.3 4.3 5.75 4.85 5.43 6.12 4.79 4.64)表 3-4 20 Na	Mg 8.8 11.4 12.9 12.3 12.8 11.7 13.75 12.30 14.57 15.33 11.93 11.42 009/10-20 Mg	K 3.0 3.2 3.2 3.3 3.0 3.0 3.0 3.02 3.56 4.04 2.78 2.79 10/9 之陽 K	Ca 48.6 62.4 78.2 72.7 76.2 76.9 82.89 69.46 74.65 94.73 71.09 70.65 示離子月平 Ca	Sr 0.4 0.6 0.7 0.7 0.7 0.6 0.74 0.67 0.72 0.91 0.66 0.67 Sr	Ba 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.03 0.03 0.03 0.05 0.05 0.04 Ba	Si 4.1 4.4 4.5 4.4 4.2 4.92 4.41 4.60 6.43 4.77 4.42 Si					
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4 2010/5 2010/6 2010/7 2010/8 2010/9	N 1 2 3 3 2 4 1 6 2 4 1 6 2 4 4 5 (續) N 2	Na 3.2 4.1 4.8 5.2 5.3 4.3 5.75 4.85 5.43 6.12 4.79 4.64 D表 3-4 20 Na 3.52	Mg 8.8 11.4 12.9 12.3 12.8 11.7 13.75 12.30 14.57 15.33 11.93 11.42 009/10-20 Mg 9.48	K 3.0 3.2 3.2 3.3 3.0 3.0 3.0 3.02 3.02 3.56 4.04 2.78 2.79 10/9 之陽 K 3.55	Ca 48.6 62.4 78.2 72.7 76.2 76.9 82.89 69.46 74.65 94.73 71.09 70.65 5 方離子月平 Ca 63.64	Sr 0.4 0.6 0.7 0.7 0.7 0.7 0.6 0.74 0.67 0.72 0.91 0.66 0.67 0.51	Ba 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.03 0.03 0.03 0.05 0.05 0.04 Ba 0.04	Si 4.1 4.4 4.5 4.4 4.5 4.4 4.2 4.92 4.41 4.60 6.43 4.77 4.42					
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4 2010/5 2010/6 2010/7 2010/8 2010/9	N 1 2 3 2 4 1 6 2 4 5 (續) N 2 2 2 2 2 2 2 2 2 2 2	Na 3.2 4.1 4.8 5.2 5.3 4.3 5.75 4.85 5.43 6.12 4.79 4.64 Na 3.52 4.24	Mg 8.8 11.4 12.9 12.3 12.8 11.7 13.75 12.30 14.57 15.33 11.93 11.42 009/10-20 Mg 9.48 11.52	K 3.0 3.2 3.2 3.3 3.0 3.0 3.02 3.02 3.56 4.04 2.78 2.79 $10/9 < \[mathscale=10]$ K 3.55 3.45	Ca 48.6 62.4 78.2 72.7 76.2 76.9 82.89 69.46 74.65 94.73 71.09 70.65 5 方離子月平 Ca 63.64 64.35	Sr 0.4 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.74 0.67 0.72 0.91 0.66 0.67 ·均(稚暉) Sr 0.51 0.66	Ba 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.03 0.03 0.03 0.05 0.05 0.04 Ba 0.04	Si 4.1 4.4 4.5 4.4 4.2 4.92 4.41 4.60 6.43 4.77 4.42 Si 4.38 4.58					
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/3 2010/4 2010/5 2010/6 2010/7 2010/8 2010/9 LW-6 2009/10 2009/11 2009/12	N 1 2 3 2 4 1 6 2 4 5 (續) N 2 3 3 2 4 5 (續) N 2 3	Na 3.2 4.1 4.8 5.2 5.3 4.3 5.75 4.85 5.43 6.12 4.79 4.64 >表 3-4 20 Na 3.52 4.83	Mg 8.8 11.4 12.9 12.3 12.8 11.7 13.75 12.30 14.57 15.33 11.93 11.42 009/10-20 Mg 9.48 11.52 12.69	K 3.0 3.2 3.2 3.2 3.3 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.02 3.56 4.04 2.78 2.79 $10/9 \angle \mathbb{R}$ K 3.55 3.45 3.42	Ca 48.6 62.4 78.2 72.7 76.2 76.9 82.89 69.46 74.65 94.73 71.09 70.65 5離子月平 Ca 63.64 64.35 75.68	Sr 0.4 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.74 0.67 0.72 0.91 0.66 0.67 步均(稚暉) Sr 0.51 0.66 0.74	Ba 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.03 0.03 0.03 0.03 0.05 0.05 0.04 (b) Ba 0.04 0.05 0.02	Si 4.1 4.4 4.5 4.4 4.5 4.4 4.2 4.92 4.41 4.60 6.43 4.77 4.42 Si 4.38 4.58 4.57					

_										
	2010/2	2	5.21	12.32	3.70	77.14	0.77	0.02	4.54	
	2010/3	4	4.58	11.27	3.64	82.68	0.72	0.02	4.37	
	2010/4	1	7.41	13.62	3.87	96.34	0.91	0.27	5.40	
	2010/5	6	7.07	14.82	4.84	82.90	0.87	0.06	5.27	
	2010/6	2	6.00	14.06	4.43	91.90	0.95	0.10	6.28	
	2010/7	4	4.91	11.30	3.42	80.79	0.81	0.02	5.31	
	2010/8	5	3.86	8.72	2.80	65.29	0.63	0.02	4.19	
	2010/9	5	4.91	11.17	3.38	77.08	0.80	0.02	4.73	
										1

表 3-5 2009/10-2010/9 之陰離子月平均(錦文橋)

LW-1	Ν	F(ppm)	Cl(ppm)	NO ₃ (ppm)	SO ₄ (ppm)	PO ₄ (µM)	DOC(µM)
2009/10	2	0.06	1.16	1.77	56.85	0.15	54.13
2009/11	4	0.08	2.10	1.57	56.31	0.07	121.57
2009/12	3	0.08	1.67	1.56	66.60	0.06	79.87
2010/1	3	0.07	1.66	1.47	58.46	0.12	72.20
2010/2	2	0.13	1.98	1.47	54.48	0.12	90.41
2010/3	4	0.08	0.90	1.17	86.10	0.12	84.18
2010/4	1	0.07	0.84	0.92	82.79	0.14	52.47
2010/5	5	0.09	1.38	1.26	75.28	0.13	48.52
2010/6	3	0.09	1.51	1.45	65.05	0.09	55.48
2010/7	4	0.07	1.38	1.25	62.48	0.12	55.35
2010/8	5	0.07	1.58	1.39	59.13	0.09	44.36
2010/9	3	0.08	1.60	2.29	53.01	0.05	59.92
	(續)表 3-5	2009/10-2	010/9之陰離	三子月平均(矿	少卡噹)	
LW-2	Ν	F(ppm)	Cl(ppm)	NO ₃ (ppm)	SO ₄ (ppm)	$PO_4(\mu M)$	DOC(µM)
2009/10	2	0.06	1.42	1.80	14.22	0.06	83.50
2009/11	4	0.04	1.93	2.01	20.17	0.04	77.59
2009/12	3	0.06	2.40	2.30	24.57	0.05	71.10
2010/1	3	0.06	2.14	1.94	20.57	0.15	93.74
2010/2	2	0.06	2.28	1.91	22.31	0.12	67.62
2010/3	4	0.08	1.34	1.45	26.16	0.13	85.11
2010/4	1	0.05	1.41	1.55	33.28	0.14	42.31
2010/5	5	0.05	1.52	1.41	28.64	0.11	49.03
2010/6	3	0.16	1.63	1.51	28.44	0.07	88.79
2010/7	3	0.04	1.32	1.29	21.10	0.12	64.01
2010/8	5	0.07	2.05	1.95	27.85	0.09	70.26
2010/9	2	0.06	0.89	2.78	23.21	0.05	123.87
		表 3-5 2(009/10-201	0/9之陰離子	一月平均(寧音	安橋)	
LW-3	Ν	F(ppm)	Cl(ppm)	NO ₃ (ppm)	SO ₄ (ppm)	$PO_4(\mu M)$	DOC(µM)
2009/10	2	0.07	1.05	1.63	68.04	0.07	71.42
2009/11	4	0.08	1.51	1.83	68.12	0.07	5409.22
2009/12	3	0.08	1.50	1.60	85.38	0.07	60.89
2010/1	3	0.08	1.29	1.34	76.49	0.14	67.90
2010/2	2	0.08	1.59	1.50	68.19	0.08	39.22
2010/3	4	0.09	1.10	1.22	86.57	0.17	76.60
2010/4	1	0.12	1.32	1.09	101.91	0.21	55.34
2010/5	6	0.08	1.00	1.25	87.07	0.13	36.10

2010/6	3	0.08	0.98	1.33	62.42	0.12	63.00
2010/7	4	0.08	1.08	1.21	69.10	0.12	44.37
2010/8	5	0.12	1.61	1.48	73.39	0.15	87.17
2010/9	3	0.07	1.24	1.65	55.54	0.11	51.06
	(#	續)表 3-5 2	2009/10-20	10/9 之陰離	子月平均(流	.芳橋))	
LW-4	Ν	F(ppm)	Cl(ppm)	NO ₃ (ppm)	SO ₄ (ppm)	$PO_4(\mu M)$	DOC(µM)
2009/10	2	0.08	0.50	1.51	88.70	0.07	86.18
2009/11	4	0.07	0.52	1.23	128.12	0.06	1249.43*
2009/12	3	0.09	0.70	1.02	139.00	0.10	81.00
2010/1	3	0.08	0.58	0.93	116.68	0.16	77.10
2010/2	2	0.08	0.54	0.78	117.63	0.08	59.51
2010/3	4	0.10	0.72	1.10	95.72	0.16	84.80
2010/4	1	0.08	0.59	0.96	113.51	0.17	42.48
2010/5	6	0.08	0.72	1.07	101.25	0.13	42.87
2010/6	3	0.07	0.45	1.07	82.22	0.12	47.17
2010/7	4	0.07	0.56	1.03	98.79	0.13	55.73
2010/8	5	0.07	0.47	0.77	81.35	0.13	70.98
2010/9	3	0.08	0.38	1.13	83.88	0.08	51.67
	((法) 士 つ 日	2000/10.20)10/9 ク 陰離	三日亚均(並	(注)	
	(領)衣 3-3	2009/10-20	10/ノ ~ 伝 卿	5万十5(百	1 风间)	
LW-5	(N	續)衣 3-5 F(ppm)	Cl(ppm)	NO ₃ (ppm)		PO ₄ (µM)	DOC(µM)
LW-5 2009/10	(N 2	續)表 3-5 F(ppm) 0.06	Cl(ppm) 0.43	NO ₃ (ppm) 1.48	SO ₄ (ppm) 111.76	PO ₄ (µM) 0.07	DOC(µM) 57.96
LW-5 2009/10 2009/11	(N 2 4	續) 表 3-5 F(ppm) 0.06 0.09	Cl(ppm) 0.43 0.57	<u>NO₃(ppm)</u> 1.48 1.10	SO ₄ (ppm) 111.76 165.10	PO ₄ (µM) 0.07 0.06	DOC(μM) 57.96 2596.10
LW-5 2009/10 2009/11 2009/12	N 2 4 3	續) 衣 3-5 F(ppm) 0.06 0.09 0.07	Cl(ppm) 0.43 0.57 0.46	NO ₃ (ppm) 1.48 1.10 0.84	SO ₄ (ppm) 111.76 165.10 163.08	PO ₄ (µM) 0.07 0.06 0.08	DOC(μM) 57.96 2596.10 68.89
LW-5 2009/10 2009/11 2009/12 2010/1	N 2 4 3 3	續) 衣 3-5 F(ppm) 0.06 0.09 0.07 0.07	Cl(ppm) 0.43 0.57 0.46 0.60	NO ₃ (ppm) 1.48 1.10 0.84 0.86	SO₄(ppm) 111.76 165.10 163.08 146.93	PO ₄ (µM) 0.07 0.06 0.08 0.17	DOC(μM) 57.96 2596.10 68.89 75.28
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2	N 2 4 3 3 2	續) 衣 3-5 F(ppm) 0.06 0.09 0.07 0.07 0.07	Cl(ppm) 0.43 0.57 0.46 0.60 0.50	NO ₃ (ppm) 1.48 1.10 0.84 0.86 0.71	SO ₄ (ppm) 111.76 165.10 163.08 146.93 132.14	PO ₄ (µM) 0.07 0.06 0.08 0.17 0.08	DOC(μM) 57.96 2596.10 68.89 75.28 39.50
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3	N 2 4 3 2 4 4	續) 衣 3-5 F(ppm) 0.06 0.09 0.07 0.07 0.07 0.06	Cl(ppm) 0.43 0.57 0.46 0.60 0.50 0.48	NO ₃ (ppm) 1.48 1.10 0.84 0.86 0.71 0.93	SO ₄ (ppm) 111.76 165.10 163.08 146.93 132.14 125.46	PO ₄ (µM) 0.07 0.06 0.08 0.17 0.08 0.12	DOC(μM) 57.96 2596.10 68.89 75.28 39.50 65.30
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4	N 2 4 3 2 4 1	續) 衣 3-3 F(ppm) 0.06 0.09 0.07 0.07 0.07 0.07 0.06 0.05	Cl(ppm) 0.43 0.57 0.46 0.60 0.50 0.48 0.45	NO ₃ (ppm) 1.48 1.10 0.84 0.86 0.71 0.93 0.60	SO ₄ (ppm) 111.76 165.10 163.08 146.93 132.14 125.46 96.22	PO ₄ (µM) 0.07 0.06 0.08 0.17 0.08 0.12 0.13	DOC(μM) 57.96 2596.10 68.89 75.28 39.50 65.30 35.10
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4 2010/5	N 2 4 3 3 2 4 1 5	續) 衣 3-5 F(ppm) 0.06 0.09 0.07 0.07 0.07 0.06 0.05 0.07	Cl(ppm) 0.43 0.57 0.46 0.60 0.50 0.48 0.45 0.62	NO ₃ (ppm) 1.48 1.10 0.84 0.86 0.71 0.93 0.60 0.88	SO ₄ (ppm) 111.76 165.10 163.08 146.93 132.14 125.46 96.22 110.88	PO ₄ (µM) 0.07 0.06 0.08 0.17 0.08 0.12 0.13 0.11	DOC(μM) 57.96 2596.10 68.89 75.28 39.50 65.30 35.10 35.28
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4 2010/5 2010/6	N 2 4 3 2 4 1 5 2	續) 衣 3-5 F(ppm) 0.06 0.09 0.07 0.07 0.07 0.06 0.05 0.07 0.07	Cl(ppm) 0.43 0.57 0.46 0.60 0.50 0.48 0.45 0.62 0.49	NO ₃ (ppm) 1.48 1.10 0.84 0.86 0.71 0.93 0.60 0.88 1.09	SO₄(ppm) 111.76 165.10 163.08 146.93 132.14 125.46 96.22 110.88 140.09	PO ₄ (µM) 0.07 0.06 0.08 0.17 0.08 0.12 0.13 0.11 0.11	DOC(µM) 57.96 2596.10 68.89 75.28 39.50 65.30 35.10 35.28 41.05
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4 2010/5 2010/6 2010/7	N 2 4 3 2 4 1 5 2 3	續) 衣 3-3 F(ppm) 0.06 0.09 0.07 0.07 0.07 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07	Cl(ppm) 0.43 0.57 0.46 0.60 0.50 0.48 0.45 0.62 0.49 0.56	NO ₃ (ppm) 1.48 1.10 0.84 0.86 0.71 0.93 0.60 0.88 1.09 0.78	SO ₄ (ppm) 111.76 165.10 163.08 146.93 132.14 125.46 96.22 110.88 140.09 112.20	PO ₄ (µM) 0.07 0.06 0.08 0.17 0.08 0.12 0.13 0.11 0.11 0.12	DOC(μM) 57.96 2596.10 68.89 75.28 39.50 65.30 35.10 35.28 41.05 44.28
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4 2010/5 2010/6 2010/7 2010/8	(N 2 4 3 2 4 1 5 2 3 5	續)衣 3-3 F(ppm) 0.06 0.09 0.07 0.07 0.07 0.06 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 	Cl(ppm) 0.43 0.57 0.46 0.60 0.50 0.48 0.45 0.62 0.49 0.56 0.36	NO ₃ (ppm) 1.48 1.10 0.84 0.86 0.71 0.93 0.60 0.88 1.09 0.78 0.68	SO ₄ (ppm) 111.76 165.10 163.08 146.93 132.14 125.46 96.22 110.88 140.09 112.20 103.06	PO ₄ (µM) 0.07 0.06 0.08 0.17 0.08 0.12 0.13 0.11 0.11 0.12 0.12 0.12	DOC(μM) 57.96 2596.10 68.89 75.28 39.50 65.30 35.10 35.28 41.05 44.28 45.41
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4 2010/5 2010/6 2010/7 2010/8 2010/9	N 2 4 3 2 4 1 5 2 3 5 3	續)衣 3-5 F(ppm) 0.06 0.09 0.07 0.07 0.07 0.06 0.07 0.07 0.06 0.06 0.06 0.10 	Cl(ppm) 0.43 0.57 0.46 0.60 0.50 0.48 0.45 0.62 0.49 0.56 0.36 0.42	NO ₃ (ppm) 1.48 1.10 0.84 0.86 0.71 0.93 0.60 0.88 1.09 0.78 0.68 1.04	SO ₄ (ppm) 111.76 165.10 163.08 146.93 132.14 125.46 96.22 110.88 140.09 112.20 103.06 107.44	PO ₄ (µM) 0.07 0.06 0.08 0.17 0.08 0.12 0.13 0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.10	DOC(μM) 57.96 2596.10 68.89 75.28 39.50 65.30 35.10 35.28 41.05 44.28 45.41 58.67
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4 2010/5 2010/6 2010/7 2010/8 2010/9	(N 2 4 3 2 4 1 5 2 3 5 3 (續)表 3-5 F(ppm) 0.06 0.09 0.07 0.07 0.07 0.06 0.07 0.07 0.06 0.06 0.06 0.10 續)表 3-5	Cl(ppm) 0.43 0.57 0.46 0.60 0.50 0.48 0.45 0.62 0.49 0.56 0.36 0.42 2009/10-20	NO ₃ (ppm) 1.48 1.10 0.84 0.86 0.71 0.93 0.60 0.88 1.09 0.78 0.68 1.04	SO ₄ (ppm) 111.76 165.10 163.08 146.93 132.14 125.46 96.22 110.88 140.09 112.20 103.06 107.44 至月平均(新	PO ₄ (µM) 0.07 0.06 0.08 0.17 0.08 0.12 0.13 0.11 0.11 0.12	DOC(µM) 57.96 2596.10 68.89 75.28 39.50 65.30 35.10 35.28 41.05 44.28 45.41 58.67
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4 2010/5 2010/6 2010/7 2010/8 2010/9 LW-6	(N 2 4 3 2 4 1 5 2 3 5 3 (N	續)表 3-5 F(ppm) 0.06 0.09 0.07 0.07 0.07 0.06 0.05 0.07 0.06 0.06 0.06 0.06 0.10 續)表 3-5 F(ppm) 	Cl(ppm) 0.43 0.57 0.46 0.60 0.50 0.48 0.45 0.62 0.49 0.56 0.36 0.42 2009/10-20 Cl(ppm)	NO ₃ (ppm) 1.48 1.10 0.84 0.86 0.71 0.93 0.60 0.88 1.09 0.78 0.68 1.04	SO ₄ (ppm) 111.76 165.10 163.08 146.93 132.14 125.46 96.22 110.88 140.09 112.20 103.06 107.44 至子月平均(利 SO ₄ (ppm)	PO ₄ (µM) PO ₄ (µM) 0.07 0.06 0.08 0.17 0.08 0.12 0.13 0.11 0.12 0.14 0.14 0.14 0.15 0.14 0.15 0.12 0.10 0.12 0.12 0.12 0.10 0.12 0.12 0.12 0.10 0.12 0.10 0.10 0.10 0.12 0.10	DOC(μM) 57.96 2596.10 68.89 75.28 39.50 65.30 35.10 35.28 41.05 44.28 45.41 58.67 DOC(μM)
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4 2010/5 2010/6 2010/7 2010/8 2010/9 LW-6 2009/10	(N 2 4 3 2 4 1 5 2 3 5 3 (N 2	續)表 3-5 F(ppm) 0.06 0.09 0.07 0.07 0.07 0.06 0.07 0.07 0.06 0.06 0.06 0.06 0.10 續)表 3-5 F(ppm) 0.07 	Cl(ppm) 0.43 0.57 0.46 0.60 0.50 0.48 0.45 0.62 0.49 0.56 0.36 0.42 2009/10-20 Cl(ppm) 0.42	NO ₃ (ppm) 1.48 1.10 0.84 0.86 0.71 0.93 0.60 0.88 1.09 0.78 0.68 1.04 010/9 之陰離 NO ₃ (ppm) 1.42	SO ₄ (ppm) 111.76 165.10 163.08 146.93 132.14 125.46 96.22 110.88 140.09 112.20 103.06 107.44 至子月平均(和 SO ₄ (ppm) 117.13	PO ₄ (µM) 0.07 0.06 0.08 0.17 0.08 0.12 0.13 0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.10 種暉橋) PO ₄ (µM) 0.09	DOC(μM) 57.96 2596.10 68.89 75.28 39.50 65.30 35.10 35.28 41.05 44.28 45.41 58.67 DOC(μM) 66.61
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4 2010/5 2010/6 2010/7 2010/8 2010/9 LW-6 2009/10 2009/11	N 2 4 3 2 4 3 2 4 1 5 3 5 3 (N 2 3 (N 2 3	續)表 3-5 F(ppm) 0.06 0.09 0.07 0.07 0.07 0.06 0.07 0.07 0.06 0.06 0.06 0.10 續)表 3-5 F(ppm) 0.07 0.10 	Cl(ppm) 0.43 0.57 0.46 0.60 0.50 0.48 0.45 0.62 0.49 0.56 0.36 0.42 2009/10-20 Cl(ppm) 0.42 0.64	NO ₃ (ppm) 1.48 1.10 0.84 0.86 0.71 0.93 0.60 0.88 1.09 0.78 0.68 1.04 010/9 之陰離 NO ₃ (ppm) 1.42 1.08	SO ₄ (ppm) 111.76 165.10 163.08 146.93 132.14 125.46 96.22 110.88 140.09 112.20 103.06 107.44 至月平均(和 SO ₄ (ppm) 117.13 166.94	PO ₄ (µM) 0.07 0.06 0.08 0.17 0.08 0.12 0.13 0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.10 筆暉橋) PO ₄ (µM) 0.09 0.08	DOC(μM) 57.96 2596.10 68.89 75.28 39.50 65.30 35.10 35.28 41.05 44.28 45.41 58.67 DOC(μM) 66.61 2123.30
LW-5 2009/10 2009/11 2009/12 2010/1 2010/2 2010/3 2010/4 2010/5 2010/6 2010/7 2010/8 2010/9 LW-6 2009/10 2009/11 2009/12	(N 2 4 3 2 4 1 5 2 4 1 5 2 3 5 3 (N 2 3 3 3	續)表 3-5 F(ppm) 0.06 0.09 0.07 0.07 0.07 0.06 0.07 0.06 0.07 0.06 0.06 0.10 續)表 3-5 F(ppm) 0.07 	Cl(ppm) 0.43 0.57 0.46 0.60 0.50 0.48 0.45 0.62 0.49 0.56 0.36 0.42 2009/10-20 Cl(ppm) 0.42 0.64 0.51	NO ₃ (ppm) 1.48 1.10 0.84 0.86 0.71 0.93 0.60 0.88 1.09 0.78 0.68 1.04 010/9 之陰離 NO ₃ (ppm) 1.42 1.08 0.87	SO ₄ (ppm) 111.76 165.10 163.08 146.93 132.14 125.46 96.22 110.88 140.09 112.20 103.06 107.44 E子月平均(和 SO ₄ (ppm) 117.13 166.94 190.05	PO ₄ (µM) 0.07 0.06 0.08 0.17 0.08 0.12 0.13 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.10 董暉橋) PO ₄ (µM) 0.09 0.08 0.10	DOC(μM) 57.96 2596.10 68.89 75.28 39.50 65.30 35.10 35.28 41.05 44.28 45.41 58.67 DOC(μM) 66.61 2123.30 81.06

2010/2	2	0.08	0.47	0.58	169.73	0.08	58.82
2010/3	4	0.08	0.47	0.77	152.73	0.13	76.77
2010/4	1	0.10	0.75	0.45	151.74	0.23	56.43
2010/5	6	0.07	0.57	0.64	142.16	0.12	44.69
2010/6	2	0.08	0.49	0.89	159.65	0.08	57.76
2010/7	4	0.06	0.48	0.83	145.26	0.12	42.34
2010/8	5	0.07	0.32	0.64	127.94	0.13	47.06
2010/9	3	0.07	0.34	0.95	148.01	0.05	39.08

*2009/11 的 DOC 樣本,因樣本保存不善,因此實驗結果僅供參考

				ARK	
區域	試驗區	逕流	人為開發	NO3-N 輸出	文獻
	個數	(mm/yr)	(%)	(kg/km²/yr)	
美國東北	8	591	9.81	132.9	Boyer et al.,2002
美國東北	8	500	32.85	582.8	Boyer et al.,2002
美國,加州	11	421	3.2	58.0	Sobota et al.,2009
美國,加州	12	235	24.4	170.9	Sobota et al.,2009
德國	3	117	66.2	1850-4120	Rode <i>etal</i> .,2009
德國	2	257-538	<1.0	336-493	Langusch etal.,2002
澳洲東北部	13	965	0.4	284	Hunter et al.,2008
澳洲東北部	3	1960	1.0	2304	Hunter et al.,2008
蘭陽溪	4	2100	< 0.1	660	Kao <i>et al.</i> ,2004
蘭陽溪	4	2100	>1.0	2550	Kao <i>et al.</i> ,2004
七家灣溪	3	3300	< 0.1	548.3	Huang et al., 2010
七家灣溪	13	3300	5.2	5947.2	Huang et al., 2010
立霧溪	6	2595	< 0.1	586.0	本計畫

表 3-6 NO3-N 輸出比較

區域	地質年代/距今大約年代 (百萬年)	岩石	氣溫(℃)	降雨量(mm)	濃度(mg/l)	水源	文獻
	質 m 47 (Today, 0.01)	丁丸山、ム雨山	1975	419	70.50 (60-76.3) n=5	泉水	Wang at al. 2006
山西省	界四%℃(10day0.01)	石灰石、日芸石	4.8-7.3	418	73.21 (61.3-94.4) n=5	井水	wang et al.,2006
太魯閣	古近紀(23.8-65.5)	大理岩	23.3	2595	60	河水	本計畫
美國 維吉尼亞州	第三紀(65.5-1.8)	石灰岩、白雲岩	16.5	1085	80.95 (53.4-115) n=13	泉水	Dorothy et al., 2009
美國田納西、肯得基州	第三紀(65.5-1.8)	石灰岩	12.5	1130	65.9 (45.1-91.4) n=25 64.3 (40.9-86.6) n=22	泉水	Dorothy and William, 2003
中國貴州省 Chenqi集水區	三疊紀(205-250)	石灰岩、白雲岩	15.1	1314.6	105.91 (84-140) n= 12	泉水	Zhao <i>et al.</i> ,2010
中國貴州省Dengzhanhe集水區	_ 、 ,	石膏、白雲岩			148.33 (74-210) n= 12	泉水	,
		石灰岩			126.52 (76.3-202)		
中國貴州省	三疊紀(205-250)	碎屑沈積岩	14 -22	850-1600	57.41 (6.2-122.3)	河水	Han et al., 2009
		白雲岩			82.33 (68.6-91.1)		
中國廣西省桂林	三疊紀(205-250)	石灰岩	8-37	1897.3	65.32 (57.22-72.44) n=6	地下水	劉金榮、周玲玲, 1996
中國廣西省柳州	三疊紀(205-250)	白雲岩	8-37	1483.8	46.38 (26.65-67.16) n=5	地下水	劉金榮、周玲玲,1996
		大理岩			50.27 (22.04-100.2) n=22	泉水	
土耳其Gevas-Gurpinar- Guzelsu 集水區	二疊紀(250-292)	石灰華	9	403	80.2 (40.1-148.3) n = 12	井水	Ozler, 2010
		石灰岩			34.27 (28.86-39.68) n = 2	河水	
保加利亞	侏儸紀(142-205)	石灰岩、白雲岩	4.8	658	46.85 (38.1- 63.04) n = 30	泉水	Eftimi and Benderev,2007
法國 Gardiole Mountain	侏儸紀(142-205)	石灰岩	17.18	500-800	129.87 (107-146.4) n=7	泉水	Aquilina et al., 2003
法國 Causse d' Aumelas			17.44	200 000	114.56 (57-143.3) n=8	2011	riquinia et al., 2005
瑞士汝拉	侏儸紀(142-205)	石灰岩	9.51-10.35	1000	124.66 (114.6-147.4) n=15	泉水	Perrin et al., 2003

表 3-7 世界各地喀斯特地形區的水 Ca²⁺濃度比較

地層	西才	村層	廬、	山層	大南江	奥片岩	大南	奥片岩	總	計	
	新	高層			變質石灰岩			片岩			
							綠色	片岩			
							矽質	片岩			
年份	個數	面積	個數	面積	個數	面積	個數	面積	個數	面積	
2004	70	479.33	32	746.97	12	171.97	77	392.25	191	1790.51	
2005	67	487.24	28	629.47	17	219.21	93	463.28	206	1801.25	
2006	127	318.88	54	391.98	21	115.01	100	342.76	307	1176.99	
2007	130	355.42	68	331.02	40	140.32	152	409.17	393	1245.01	
2008	105	461.56	60	439.44	28	239.16	111	462.02	306	1615.19	

表 3-8 2004-2008 年立霧溪流域崩塌地個數及面積和地層交叉比較表

山區	些树	年公	出招五珪(ba)	斩亡而转(ha)	省 孫 五 珪(ha)	佐須西珪(ba)	出归东(0%)	斩亡 杰(0%)	省 孫 宏 (0/)	 佐 宙 索(0/)	佔總崩塌面
地信	石庄	十切	朋·纳·西·积(IIIa)	形 成 国 很 (IIa)	′友资 凹 預 (IIa)	灰波 回 但(114)	朋羽干(/0)	利成十(/0)	收放十(/0)	恢復十(/0)	積百分比
	西百	2004	311.39				0.51				17.56
廬	使月	2005	313.42	66.21	247.21	64.18	0.52	21.13	79.39	20.61	17.40
山	石,奴	2006	228.43	54.48	173.95	139.47	0.38	23.85	55.50	44.50	19.41
層	石,丁	2007	215.71	57.33	158.38	70.05	0.36	26.58	69.33	30.67	17.33
	权石	2008	295.92	124.51	171.41	44.30	0.49	42.07	79.46	20.54	18.32
т.11		2004	925.92				1.53				52.21
四村	千枚岩	2005	806.36	197.54	608.82	317.10	1.33	24.50	65.75	34.25	44.77
雪	板岩	2006	484.54	139.57	344.96	461.40	0.80	28.81	42.78	57.22	41.18
利同	夾砂岩	2007	473.48	99.07	374.41	110.12	0.78	20.92	77.27	22.73	38.03
「百		2008	629.85	251.13	378.72	94.76	1.04	39.87	79.99	20.01	39.00
	黑色片	2004	342.21				0.56				19.30
	岩,綠	2005	421.97	208.77	213.20	129.02	0.70	49.48	62.30	37.70	23.43
,	色片	2006	327.39	138.35	189.05	232.92	0.54	42.26	44.80	55.20	27.82
大	岩,矽	2007	387.87	154.83	233.05	94.34	0.64	39.92	71.18	28.82	31.16
南	質片岩	2008	421.35	161.13	260.22	127.65	0.69	38.24	67.09	32.91	26.09
<i>决</i> ヒ		2004	184.12				0.30				10.38
力	織所工	2005	238.59	97.23	141.36	42.76	0.39	40.75	76.78	23.22	13.25
A	变贝石	2006	120.34	44.79	75.55	163.04	0.20	37.22	31.66	68.34	10.23
	火石	2007	148.75	74.67	74.08	46.26	0.25	50.20	61.56	38.44	11.95
		2008	237.78	155.93	81.85	66.90	0.39	65.58	55.03	44.97	14.72

表 3-9 2004-2008 年立霧溪流域崩塌面積之地層分布

代表性生態系經營管理之峽谷生態系長期生態研究網計畫(二)

地層	岩性	年份	崩塌面積(ha)	新成面積(ha)	復發面積(ha)	恢復面積(ha)	崩塌率(%)	新成率(%)	復發率(%)	恢復率(%)	佔總崩塌面積百分比
		2004	6.66				0.01				0.38
大	混	2005	20.90	18.39	2.51	4.15	0.03	87.99	37.68	62.32	1.16
	合	2006	10.63	1.86	8.77	12.13	0.02	17.48	41.96	58.04	0.90
入去	岩	2007	11.85	2.59	9.26	1.36	0.02	21.85	87.18	12.82	0.95
ì¥J 、))		2008	17.80	10.51	7.29	4.56	0.03	59.04	61.51	38.49	1.10
决 出		2004	3.01				0.00				0.17
岩	片	2005	0.00	0.00	0.00	3.01	0.00	0.00	0.00	100.00	0.00
	麻	2006	5.31	5.31	0.00	0.00	0.01	100.00	0.00	0.00	0.45
	岩	2007	7.23	2.99	4.24	1.07	0.01	41.33	79.92	20.08	0.58
		2008	12.49	5.94	6.54	0.69	0.02	47.60	90.43	9.57	0.77

(續)表 3-9 2004-2008 年立霧溪流域崩塌面積之地層分布

高度	年份	崩塌面積(ha)	新成面積(ha)	復發面積(ha)	恢復面積(ha)	崩塌率(%)	新成率(%)	復發率(%)	恢復率(%)	佔總崩塌面積百分比
	2004	0.01				0.00				0.00
0-500	2005	0.02	0.02	0.00	0.01	0.00	100.00	0.00	100.00	0.00
	2006	7.28	7.28	0.00	0.02	0.01	100.00	0.00	100.00	0.62
	2007	18.49	14.29	4.20	3.08	0.03	77.30	57.69	42.31	1.48
	2008	8.72	2.18	6.55	11.94	0.01	24.94	35.41	64.59	0.54
	2004	57.64				0.09				3.25
500	2005	79.22	54.97	24.26	33.39	0.13	69.38	42.08	57.92	4.40
500- 1000	2006	79.44	32.25	47.19	32.03	0.13	40.60	59.57	40.43	6.75
	2007	87.47	34.29	53.18	26.26	0.14	39.20	66.95	33.05	7.02
_	2008	96.14	48.05	48.09	39.39	0.16	49.98	54.97	45.03	5.95
	2004	210.03				0.35				11.84
1000	2005	260.17	108.77	151.41	58.62	0.43	41.81	72.09	27.91	14.44
1500-	2006	137.96	59.80	78.16	182.02	0.23	43.35	30.04	69.96	11.72
1500	2007	191.79	107.79	84.00	53.96	0.32	56.20	60.89	39.11	15.40
	2008	269.23	159.97	109.25	82.53	0.44	59.42	56.97	43.03	16.67
	2004	229.68				0.38				12.95
1500	2005	266.65	106.68	159.96	69.72	0.44	40.01	69.65	30.35	14.80
2000	2006	210.08	81.97	128.11	138.54	0.35	39.02	48.05	51.95	17.85
2000	2007	225.42	77.32	148.10	61.98	0.37	34.30	70.49	29.51	18.10
	2008	265.93	100.81	165.12	60.30	0.44	37.91	73.25	26.75	16.46

表 3-10 2004-2008 年立霧溪流域崩塌面積之高度分布

高度	年份	崩塌面積(ha)	新成面積(ha)	復發面積(ha)	恢復面積(ha)	崩塌率(%)	新成率(%)	復發率(%)	恢復率(%)	佔總崩塌面積百分比
	2004	113.41				0.19				6.40
2000- 2500	2005	140.69	82.03	58.65	54.76	0.23	58.31	51.72	48.28	7.81
	2006	144.19	74.65	69.53	71.16	0.24	51.78	49.42	50.58	12.25
	2007	156.75	54.06	102.69	41.50	0.26	34.49	71.22	28.78	12.59
	2008	226.73	116.39	110.34	46.41	0.37	51.33	70.39	29.61	14.04
	2004	528.30				0.87				29.79
2500	2005	380.62	138.33	242.29	286.02	0.63	36.34	45.86	54.14	21.13
3000	2006	235.12	70.13	164.99	215.63	0.39	29.83	43.35	56.65	19.98
	2007	242.28	55.26	187.02	48.10	0.40	22.81	79.54	20.46	19.46
	2008	373.40	179.02	194.37	47.91	0.62	47.94	80.23	19.77	23.12
	2004	633.05				1.04				35.70
2000	2005	672.92	96.45	576.47	56.58	1.11	14.33	91.06	8.94	37.36
2500	2006	333.33	56.96	276.37	396.56	0.55	17.09	41.07	58.93	28.33
5500	2007	317.03	46.35	270.68	62.64	0.52	14.62	81.21	18.79	25.46
	2008	360.50	90.36	270.14	46.89	0.59	25.07	85.21	14.79	22.32
	2004	1.18				0.00				0.07
2500	2005	36.09	36.02	0.07	1.11	0.06	99.81	5.72	94.28	1.97
4000	2006	29.35	1.43	27.93	8.17	0.05	4.86	77.38	22.62	2.49
4000	2007	6.04	2.13	3.91	10.69	0.01	35.22	13.33	36.41	0.49
	2008	14.62	12.36	2.26	5.10	0.02	84.55	37.38	84.49	0.90

(續)表 3-10 2004-2008 年立霧溪流域崩塌面積之高度分布

坡度	年份	崩塌面積(ha)	新成面積(ha)	復發面積(ha)	恢復面積(ha)	崩塌率(%)	新成率(%)	復發率(%)	恢復率(%)	佔總崩塌面積百分比
	2004	0.01				0.00				0.00
	2005	0.02	0.02	0.00	0.01	0.00	100.0	0.0	100.0	0.00
0-10	2006	0.37	0.16	0.02	0.00	0.00	43.4	100.0	0.0	0.03
	2007	1.35	0.99	0.37	0.00	0.00	73.0	100.0	0.0	0.11
	2008	5.35	4.63	0.73	0.63	0.01	86.5	53.5	46.5	0.33
	2004	0.08				0.00				0.00
	2005	2.35	2.34	0.01	0.07	0.00	99.7	8.4	91.6	0.13
10-20	2006	5.09	4.42	0.68	1.67	0.01	86.7	28.8	71.2	0.43
	2007	8.24	7.53	0.71	4.39	0.01	91.4	13.8	86.2	0.67
	2008	26.21	24.18	2.02	6.21	0.04	92.3	24.6	75.4	1.63
	2004	144.39				0.24				8.14
	2005	122.75	10.65	112.10	32.29	0.20	8.7	77.6	22.4	6.81
20-30	2006	37.61	12.25	25.37	97.39	0.06	32.6	20.7	79.3	3.21
	2007	28.76	22.02	6.74	30.87	0.05	76.6	17.9	82.1	2.33
	2008	38.95	26.54	12.41	16.34	0.06	68.1	43.2	56.8	2.42
	2004	457.92				0.75				25.82
	2005	430.09	146.27	283.82	174.10	0.71	34.0	62.0	38.0	23.88
30-40	2006	248.33	122.01	126.32	303.77	0.41	49.1	29.4	70.6	21.20
	2007	291.97	112.37	179.60	68.73	0.48	38.5	72.3	27.7	23.69
	2008	376.04	173.71	202.34	89.64	0.62	46.2	69.3	30.7	23.40

表 3-11 2004-2008 年立霧溪流域崩塌面積之坡度分布

高度	年份	崩塌面積(ha)	新成面積(ha)	復發面積(ha)	恢復面積(ha)	崩塌率(%)	新成率(%)	復發率(%)	恢復率(%)	佔總崩塌面積百分比
	2004	940.96				1.55				53.06
	2005	1000.95	326.30	674.66	266.31	1.65	32.6	71.7	28.3	55.57
40-50	2006	748.92	185.06	563.86	437.09	1.23	24.7	56.3	43.7	63.92
	2007	783.23	185.22	598.02	150.90	1.29	23.6	79.9	20.1	63.54
	2008	1003.90	369.69	634.21	149.02	1.65	36.8	81.0	19.0	62.47
	2004	213.52				0.35				12.04
	2005	242.11	99.59	142.51	71.00	0.40	41.1	66.7	33.3	13.44
50-60	2006	120.46	52.75	67.71	174.39	0.20	43.8	28.0	72.0	10.28
	2007	119.16	54.64	64.51	55.95	0.20	45.9	53.6	46.4	9.67
	2008	156.57	108.25	48.32	70.84	0.26	69.1	40.6	59.4	9.74
	2004	16.43				0.03				0.93
	2005	2.99	2.98	0.01	16.42	0.00	99.7	0.1	99.9	0.17
60-70	2006	10.81	7.82	2.99	0.00	0.02	72.4	100.0	0.0	0.92
	2007	12.55	8.72	3.83	6.98	0.02	69.5	35.4	64.6	1.02
	2008	8.05	1.97	6.09	6.46	0.01	24.4	48.5	51.5	0.50
	2004	0.00				0.00				0.00
	2005	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.00
70-80	2006	0.01	0.01	0.00	0.00	0.00	100.0	0.0	0.0	0.00
	2007	0.02	0.01	0.00	0.00	0.00	83.6	39.7	60.3	0.00
	2008	0.18	0.18	0.00	0.01	0.00	98.5	16.4	83.6	0.01

(續)表 3-11 2004-2008 年立霧溪流域崩塌面積之坡度分布

ケ い	2001 5	2005 5	2005 5	2007 5	2000 5
年份	2004 年	2005年	2006年	2007年	2008年
颱風名稱	敏督利	海棠	凯米	聖帕	鳳凰
日期	07/02-07/03	07/18-07/19	07/24-07/25	08/17-08/18	07/27-07/28
2日累積降雨 (mm)	913.5	679.5	306	799	572
全區崩塌地個數	191	206	307	393	306
崩塌地面積 (ha)	1790.51	1801.25	1176.99	1245.01	1615.19
西村層新高層崩塌地個數	70	67	127	130	105
崩塌地面積 (ha)	925.92	806.36	484.54	473.48	629.85
大南澳片岩崩塌地個數	77	93	100	152	111
崩塌地面積 (ha)	342.21	421.97	327.39	387.87	421.35

表 3-12 2004-2008 年立霧溪流域崩塌地個數與面積

表 3-13 2004-2008 年立霧溪流域崩塌地 Power law 關係之統計

年份	2004 年	2005 年	2006 年	2007 年	2008 年
全區崩塌地個數	191	206	307	393	306
崩塌地面積 (ha)	1790.51	1801.25	1176.99	1245.01	1615.19
α	5.3604	5.6655	6.0821	6.3626	5.785
β	0.7743	0.8242	0.943	1.001	0.8513
相關係數	0.983056	0.973191	0.984835	0.989747	0.97719

圖 2-1 立霧溪流域地形圖

圖 2-2 立霧溪流域地質圖

圖 2-3 SHALSTAB 模式之邊坡概況示意圖

圖 2-4 基本 TOPMODEL 概念示意圖

圖 3-1 立霧溪流域之雨量站與流量站分佈圖

圖 3-2 綠水流域之雨量與流量組體圖。左圖為年雨量-流量;右圖為濕季雨量-流量。紅色折線為逕流係數

圖 3-3 綠水流量站 1998-2003 的日流量時間序列

(續)圖 3-3 綠水流量站 2004-2009 的日流量時間序列

圖 3-4 綠水流量站颱洪事件之洪峰稽延時間頻率圖 (左)與總降雨量-尖峰流量散佈圖 (右)

圖 3-5 綠水流量站河川斷面圖 (左);綠水流量站颱洪事件之雨量流量散佈圖 (右)

圖 3-6 綠水流量站 1998-2003 的模擬日流量與信賴區間時間序列

圖 3-7 綠水流量站 2004-2009 的模擬日流量與信賴區間時間序列

圖 3-9 綠水流量站 2004-2009 的年逕流量模擬結果

圖 3-10 降雨事件規模與其空間變異之關係圖

圖 3-11 39 場降雨事件之降雨中心位置與集水區高程

圖 3-12 颱風侵台路徑示意圖

圖 3-13 立霧溪水質採樣測點分佈圖

圖 3-14 DOC 輸出與流量的關係

圖 3-15 世界各地喀斯特地形區的水 Ca²⁺濃度比較

圖 3-17 SO4 濃度在各測站間之變異圖

圖 3-20 立霧溪 2004 年崩塌地分佈圖;原始衛星影像(上)、崩塌地判釋結果(下)

圖 3-21 立霧溪 2005 年崩塌地分佈圖;原始衛星影像(上)、崩塌地判釋結果(下)

圖 3-22 立霧溪 2006 年崩塌地分佈圖;原始衛星影像(上)、崩塌地判釋結果(下)

圖 3-23 立霧溪 2007 年崩塌地分佈圖;原始衛星影像(上)、崩塌地判釋結果(下)

圖 3-24 立霧溪 2008 年崩塌地分佈圖;原始衛星影像(上)、崩塌地判釋結果(下)

圖 3-25 39 場降雨事件在空間上之分佈及其降雨中心位置與崩塌地位置

圖 3-26 2004 年暴雨事件在空間上之分佈及其降雨中心位置與崩塌地位置

圖 3-27 2005 年暴雨事件在空間上之分佈及其降雨中心位置與崩塌地位置

圖 3-28 2006 年暴雨事件在空間上之分佈及其降雨中心位置與崩塌地位置

圖 3-29 2007 年暴雨事件在空間上之分佈及其降雨中心位置與崩塌地位置

圖 3-30 2008 年暴雨事件在空間上之分佈及其降雨中心位置與崩塌地位置

圖 3-32 立霧溪流域中歷年來崩塌地坡度分佈圖

圖 3-33 立霧溪流域中歷年來崩塌地累積個數與面積大小之關係圖

附錄一

自 2010 年開始的水質採樣記錄

測站名稱	編號	採樣日期	時間	pH 值	水溫	電導度			
					(°C)	(µs)			
錦文橋	LW1	2010/1/6	09:15	7.52	18.2	823			
砂卡礑	LW2	2010/1/6	09:35	7.22	18.6	580			
寧安橋	LW3	2010/1/6	09:55	7.45	17.0	918			
流芳橋	LW4	2010/1/6	10:20	7.58	14.6	1018			
普渡橋	LW5	2010/1/6	10:45	7.61	13.9	1224			
稚暉橋	LW6	2010/1/6	10:45	7.91	14.3	1170			
立霧溪流域水質採樣記錄表(2)									
測站名稱	編號	採樣日期	時間	pH 值	水溫	電導度			
				-	(°C)	(µs)			
錦文橋	LW1	2010/1/13	09:05	7.33	16.8	803			
砂卡礑	LW2	2010/1/13	09:20	7.04	17.2	587			
寧安橋	LW3	2010/1/13	09:35	7.19	16.5	854			
流芳橋	LW4	2010/1/13	10:00	7.33	11.8	1059			
普渡橋	LW5	2010/1/13	10:20	7.50	12.1	1121			
稚暉橋	LW6	2010/1/13	10:20	7.78	12.2	1170			
立霧溪流域水質採樣記錄表(3)									
测站名稱	編號	採樣日期	時間	pH 值	水溫	電導度			
			•	1	(°C)	(µs)			
錦文橋	LW1	2010/1/23	09:10	7.19	18.8	804			
砂卡礑	LW2	2010/1/23	09:35	7.19	19.0	588			
寧安橋	LW3	2010/1/23	09:50	7.26	18.4	850			
流芳橋	LW4	2010/1/23	10:15	7.52	15.3	1017			
普渡橋	LW5	2010/1/23	10:40	7.87	15.4	1066			
稚暉橋	LW6	2010/1/23	10:40	7.55	15.3	1169			
立霧溪流域水質採樣記錄表(4)									
測站名稱	編號	採樣日期	時間	pH 值	水溫	電導度			
					(°C)	(µs)			
錦文橋	LW1	2010/2/3	09:05	7.19	19.5	792			
砂卡礑	LW2	2010/2/3	09:35	7.00	19.7	583			
寧安橋	LW3	2010/2/3	09:45	7.09	19.6	835			
流芳橋	LW4	2010/2/3	10:10	7.15	16.5	1005			
普渡橋	LW5	2010/2/3	10:40	7.15	16.6	1099			

立霧溪流域水質採樣記錄表(1)

稚暉橋	LW6	2010/2/3	10:40	7.67	17.3	1221		
*2010/2 之前	的電導度	僅供參考,儀	器有明顯的	的漂移現象				
立務溪流域水質採樣記錄表(5)								
测站名稱	编號	採樣日期	時間	pH 值	水溫	雷導度		
		• 1 • 1/4 • • • > > 4		1	(°C)	(µs)		
錦文橋	LW1	2010/3/4	09:20	7.97	19.9	395		
砂卡礑	LW2	2010/3/4	09:45	7.88	21.0	281		
寧安橋	LW3	2010/3/4	10:00	8.06	19.6	419		
流芳橋	LW4	2010/3/4	10:25	8.20	18.2	407		
普渡橋	LW5	2010/3/4	10:50	8.23	19.4	481		
稚暉橋	LW6	2010/3/4	10:50	8.27	20.4	461		
		立霧溪流域	水質採樣	記錄表(6)				
测站名稱	编號	採樣日期	時間	pH 值	水溫	雷導度		
0.4. [.] [14		41-144 11 794	1.1.1	F 177	(°C)	(µs)		
錦文橋	LW1	2010/3/12	09:15	8.09	19.6	394		
砂卡礑	LW2	2010/3/12	09:45	8.19	18.6	231		
寧安橋	LW3	2010/3/12	10:05	8.21	16.8	387		
流芳橋	LW4	2010/3/12	10:35	8.26	14.8	407		
普渡橋	LW5	2010/3/12	10:55	8.21	15.9	455		
 稚暉橋	LW6	2010/3/12	10:55	8.31	16.9	476		
	立霧溪流域水質採樣記錄表(7)							
測站名稱	編號	採樣日期	時間	pH 值	水溫	電導度		
			•	1	(°C)	(µs)		
錦文橋	LW1	2010/3/19	09:15	7.88	19.8	384		
砂卡礑	LW2	2010/3/19	09:30	7.83	20.3	230		
寧安橋	LW3	2010/3/19	09:45	7.70	21.1	357		
流芳橋	LW4	2010/3/19	10:20	8.16	17.3	406		
普渡橋	LW5	2010/3/19	10:50	8.15	19.4	441		
稚暉橋	LW6	2010/3/19	10:50	8.23	20.6	465		
		上雨位十二	上所以送	table = (0)				
		卫務溪流域	水質採樣	記録表(8)				
測站名稱	編號	採樣日期	時間	pH 值	水溫	電導度		
					(°C)	(µs)		
錦文橋	LW1	2010/3/29	09:30	7.94	18.1	377		
砂卡礑	LW2	2010/3/29	09:50	7.93	19.0	230		
寧安橋	LW3	2010/3/29	10:10	7.98	17.2	387		
流芳橋	LW4	2010/3/29	10:35	8.03	15.8	408		
普渡橋	LW5	2010/3/29	11:00	8.13	15.6	440		
稚暉橋	LW6	2010/3/29	11:00	8.25	16.1	470		

測站名稱	編號	採樣日期	時間	pH 值	水溫	電導度
					(°C)	(µs)
錦文橋	LW1	2010/4/22	09:45	7.95	23.7	375
砂卡礑	LW2	2010/4/22	10:05	7.87	23.1	234
寧安橋	LW3	2010/4/22	10:30	7.88	22.7	385
流芳橋	LW4	2010/4/22	11:00	8.13	22.4	403
普渡橋	LW5	2010/4/22	11:25	8.09	22.6	427
稚暉橋	LW6	2010/4/22	11:25	8.25	23.8	461

立霧溪流域水質採樣記錄表(9)

立霧溪流域水質採樣記錄表(10)

測站名稱	編號	採樣日期	時間	pH 值	水温	電導度
					(°C)	(µs)
錦文橋	LW1	2010/5/3	09:30	8.09	21.4	361
砂卡礑	LW2	2010/5/3	09:45	8.13	21.8	229
寧安橋	LW3	2010/5/3	10:05	8.19	20.6	365
流芳橋	LW4	2010/5/3	10:30	8.32	19.6	386
普渡橋	LW5	2010/5/3	10:50	8.32	20.2	413
稚暉橋	LW6	2010/5/3	10:50	8.31	21.1	462

立霧溪流域水質採樣記錄表(11)

測站名稱	編號	採樣日期	時間	pH 值	水溫	電導度
					(°C)	(µs)
錦文橋	LW1	2010/7/8	09:30	8.16	25.8	343
砂卡礑	LW2	2010/7/8	10:00	8.11	26.0	251
寧安橋	LW3	2010/7/8	10:15	7.99	25.0	367
流芳橋	LW4	2010/7/8	10:50	8.12	24.2	401
普渡橋	LW5	2010/7/8	11:20	8.20	25.3	438
稚暉橋	LW6	2010/7/8	11:20	8.24	25.4	435

立霧溪流域水質採樣記錄表(12)

測站名稱	編號	採樣日期	時間	pH 值	水溫	電導度
					(°C)	(µs)
錦文橋	LW1	2010/7/21	09:00	8.12	24.5	356
砂卡礑	LW2	2010/7/21	09:20	8.11	25.7	251
寧安橋	LW3	2010/7/21	09:40	8.08	24.2	378
流芳橋	LW4	2010/7/21	10:15	8.29	23.8	402
普渡橋	LW5	2010/7/21	10:45	8.20	24.7	446
稚暉橋	LW6	2010/7/21	10:45	8.29	24.7	453

測站名稱	編號	採樣日期	時間	pH 值	水溫	電導度
					(°C)	(µs)
錦文橋	LW1	2010/8/4	09:00	7.73	25.0	336
砂卡礑	LW2	2010/8/4	09:20	7.60	25.9	249
寧安橋	LW3	2010/8/4	09:40	7.74	24.5	348
流芳橋	LW4	2010/8/4	10:10	8.17	23.2	373
普渡橋	LW5	2010/8/4	10:50	8.16	25.1	416
稚暉橋	LW6	2010/8/4	10:50	8.24	25.3	433

立霧溪流域水質採樣記錄表(13)

立霧溪流域水質採樣記錄表(14)

測站名稱	編號	採樣日期	時間	pH 值	水温	電導度
					(°C)	(µs)
錦文橋	LW1	2010/8/10	09:00	8.30	24.7	882
砂卡礑	LW2	2010/8/10	09:20	8.29	25.1	594
寧安橋	LW3	2010/8/10	09:40	8.10	24.2	869
流芳橋	LW4	2010/8/10	10:05	8.35	23.2	992
普渡橋	LW5	2010/8/10	10:40	8.37	24.8	1125
稚暉橋	LW6	2010/8/10	10:40	8.49	25.1	1173

立霧溪流域水質採樣記錄表(15)

編號	採樣日期	時間	pH 值	水溫	電導度
				(°C)	(µs)
LW1	2010/8/18	09:00	8.18	23.5	801
LW2	2010/8/18	09:20	8.35	24.8	589
LW3	2010/8/18	09:35	8.24	23.1	921
LW4	2010/8/18	10:05	8.48	23.0	899
LW5	2010/8/18	10:40	8.34	24.2	1020
LW6	2010/8/18	10:40	8.50	24.0	1106
	編號 LW1 LW2 LW3 LW4 LW5 LW6	編號 採樣日期 LW1 2010/8/18 LW2 2010/8/18 LW3 2010/8/18 LW4 2010/8/18 LW5 2010/8/18 LW6 2010/8/18	編號 採樣日期 時間 LW1 2010/8/18 09:00 LW2 2010/8/18 09:20 LW3 2010/8/18 09:35 LW4 2010/8/18 10:05 LW5 2010/8/18 10:40 LW6 2010/8/18 10:40	編號 採樣日期 時間 pH值 LW1 2010/8/18 09:00 8.18 LW2 2010/8/18 09:20 8.35 LW3 2010/8/18 09:35 8.24 LW4 2010/8/18 10:05 8.48 LW5 2010/8/18 10:40 8.34 LW6 2010/8/18 10:40 8.50	編號 採樣日期 時間 pH 值 水溫 (°C) LW1 2010/8/18 09:00 8.18 23.5 LW2 2010/8/18 09:20 8.35 24.8 LW3 2010/8/18 09:35 8.24 23.1 LW4 2010/8/18 10:05 8.48 23.0 LW5 2010/8/18 10:40 8.34 24.2 LW6 2010/8/18 10:40 8.50 24.0

立霧溪流域水質採樣記錄表(16)

測站名稱	編號	採樣日期	時間	pH 值	水溫	電導度
					(°C)	(µs)
錦文橋	LW1	2010/8/25	09:05	8.15	22.9	942
砂卡礑	LW2	2010/8/25	09:20	8.05	24.9	599
寧安橋	LW3	2010/8/25	09:40	8.08	23.4	984
流芳橋	LW4	2010/8/25	10:05	8.31	23.1	944
普渡橋	LW5	2010/8/25	10:35	8.44	24.5	1216
稚暉橋	LW6	2010/8/25	10:35	8.56	24.6	1127

			-			
测站名稱	編號	採樣日期	時間	pH 值	水溫	電導度
					(°C)	(µs)
錦文橋	LW1	2010/9/2	09:00	8.13	23.6	830
砂卡礑	LW2	2010/9/2	09:22	8.31	23.3	574
寧安橋	LW3	2010/9/2	09:45	8.25	22.9	822
流芳橋	LW4	2010/9/2	10:15	8.54	22.0	880
普渡橋	LW5	2010/9/2	11:00	8.46	22.7	1102
稚暉橋	LW6	2010/9/2	11:00	8.52	23.2	1090

立霧溪流域水質採樣記錄表(17)

立霧溪流域水質採樣記錄表(18)

測站名稱	編號	採樣日期	時間	pH 值	水溫	電導度
					(°C)	(µs)
錦文橋	LW1	2010/9/10	09:05	8.24	24.0	538
砂卡礑	LW2	2010/9/10	09:25	8.23	22.9	402
寧安橋	LW3	2010/9/10	09:45	8.06	23.5	727
流芳橋	LW4	2010/9/10	10:10	8.48	21.7	814
普渡橋	LW5	2010/9/10	10:55	8.46	22.4	1024
稚暉橋	LW6	2010/9/10	10:55	8.48	23.2	1241

立霧溪流域水質採樣記錄表(19)

測站名稱	編號	採樣日期	時間	pH 值	水溫	電導度
					(°C)	(µs)
錦文橋	LW1	2010/9/16	09:05	8.04	23.8	848
砂卡礑	LW2	2010/9/16	09:28	8.03	24.4	694
寧安橋	LW3	2010/9/16	09:45	7.93	23.1	800
流芳橋	LW4	2010/9/16	10:10	8.38	22.0	967
普渡橋	LW5	2010/9/16	11:00	8.32	23.8	1049
稚暉橋	LW6	2010/9/16	11:00	8.48	24.0	1102

附錄二 期中會議紀錄

入 省」	制图 豕公图官理题 99 平度安託研充計量
代表性生	E愿系經宮官理之峽合生態系衣期生態研充網訂量 (一)——立靈選混砂崩選流水質貯測,
	(一) 亚猕侯紀少侯侯佩尔貞並內」 期中簡報會議記錄
-、時間:99	年6月10日上午11時00分
二、地點:本	處會議室
三、主持人;	游處長登良 記錄:朱何宗
四、報告人:	黄誌川教授
五、出席人員	
張副處長登文	
許祕書英文	译英文
企劃經理課	晟-L-V-2
解說教育課	黄志强
遊憩服務課	\$\$ \$\$ \$
環境維護課	
保育研究課	理後山、果何果 華州南美
天祥管理站	
布洛灣管理站	
合歡山管理站	
蘇花管理站	

六、結論:

- (一)本計劃由近11年綠水站流量資料分析,估計立霧溪年流量 約為1921mm,逕流係數約為0.75與台灣大部份地區(逕流 係數約為0.8)相當。說明:本研究成果
- (二)以目前立霧溪的水質的監測數據而言,推斷立霧溪流域目前 沒有明顯的點源污染可以影響到整個河段,屬於貧養的乾淨 河川。說明:本研究成果
- (三)本區的DOC 遠低於全球平均值,但與台灣其他地區相若, 是否有季節性變化、颱風的貢獻或颱風干擾的影響則需進一 步調查。另DOC 的輸出似乎跟高程有關,因為砂卡礑測站 的DOC 都較其他測站為高,待資料穩定且完整後,可與其 他地區做比較。說明:本研究成果
- (四) 颱風路徑會影響降雨型態與分佈,且會影響潛勢崩塌地判 釋,建議可於期末報告時一併呈現。<u>說明:期末報告增加雷</u> <u>達降雨資料並釐清颱風路徑與降雨分布的關係</u>
- (五)統計自40場颱洪事件的洪峰稽延反應模式、不對稱性增揚現象,是否可以提供步道經營管理之科學依據。<u>說明:理論上有機會可以實現,但仍須其他客觀條件的配合,已於中長期建議中闡明。</u>
- (六)可用中央氣象局提供之降雨量數據,建立模型分析降雨對立 霧溪流域之衝擊。<u>說明:理論上有機會可以實現,但仍須其</u> 他客觀條件的配合,已於中長期建議中闡明。
- (七) 與會人員相關意見請受託單位納入參考。
- (八)本期中簡報審查通過,准予備查。請受託單位依合約規定備 妥相關資料請領第二期款。

附錄三 期末會議紀錄

畫(二)」	工霧溪泥砂與溪流	水質監測」	期末简報會議記錄	
一、時間:91 一、抽野:*)年 11 月 19 日 下· 虐 会議 宏	午 15 時 30 分		
二、 ¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹¹ ¹¹	游處長登良为了入	♪」、 記録	: 朱何宗	
四、報告人:	黄誌川教授	V		
五、出席人員				
張副處長登文				
許祕書英文				
企劃經理課	云碧吉			
解說教育課	各意意			
遊憩服務課	开衷们			
環境維護課	422RX			
保育研究課	建爱山	柳泉	李佩素	
天祥管理站				
布洛灣管理站				
合歡山管理站				
蘇花管理站				
	本意うた			
	<u> </u>			

. 8

六、討論:

- (一)受託單位已於會議前提送期末報告書面資料15份,內容進 度符合合約規定。
- (二)本研究由模式推估的模擬流量與實際推估流量大致吻合,顯示本推估模式作為流量預警示有潛力的。未來只要有颱風路徑預測圖及雨量預估值,則可藉由本模式推估流量及洪峰時間。說明:本研究成果
- (三)由雷達觀測的 39 場降雨事件,其降雨中心多為颱風路徑由 東向西直接貫穿中央山脈的事件造成,降雨多集中在東北西 南帶上,並與地形分佈類似,降雨分別落在海拔 1000 至 2500 公尺間,可提供防災預警參考。說明:本研究成果

七、結論:

- (一) 與會人員相關意見,請受託單位納入參考。
- (二) 期末報告撰寫格式請依內政部委託研究作業規定辦理。
- (三)本期末簡報審查通過,准予備查。請受託單位依會議結論 修正書面報告,俟完成驗收後,依合約規定備妥相關資料 請領第三期款。

參考書目

- 吕光洋等(1983)太魯閣國家公園動物生態景觀資源之調查報告,內政部營建署,45頁
- 顏清連等(1984) 立霧溪水力發電價畫環境影響評估研究,台大土木工程研究所,水力 7305;
 - 277 頁
- 張瑞津(2000) 立霧溪流域人工壩堤對地形、地質及地理景觀之影響,內政部營建署太魯閣國 家公園管理處,110頁
- 朱書麟(1950) 立霧溪水力發電工程經緯,台灣工程界,4(2):22-28
- 謝敬義(1980) 立霧溪流域之地形與地質特性在工程上之意義,台電工程月刊,380:27-35
- 張石角(1985) 立霧溪水力發電計畫環境影響評估研究之評述,內政部營建署
- 夏禹九、黃正良、王立志(1989) 太魯閣國家公園氣候調查及移動試測站規劃,內政部營建署 太魯閣國家公園管理處
- 張石角 (1990) 太魯閣峽谷地形發育過程的研究,內政部營建署太魯閣國家公園管理處
- 陳宏宇、謝順隆 (1993) 太魯閣國家公園崩塌地之調查及處理之研究,內政部營建署太魯閣國 家公園管理處
- 游保杉、楊道昌、陳嘉榮 (1993) 立霧溪流域年平均流量與地文因子關係之研究,台灣水利, 41(3):68-76
- 曾彥學 (2003) 台灣特有植物之分佈與保育。國立台灣大學森林學研究所博士論文。141 頁

曾晴賢 (1992) 太魯閣國家公園區域內溪流動物之研究,內政部營建署太魯閣國家公園管理處

曾晴賢 (1992) 太魯閣國家公園砂卡礑溪魚道規劃之研究,內政部營建署太魯閣國家公園管理

處

齊士崢 (1995) 立霧溪流域的地形演育,國立台灣大學地理學研究所博士論文。

David Petley (1996) 太魯閣峽谷地形學之研究,內政部營建署太魯閣國家公園管理處

吉村和久等 (1997) 太魯閣峽谷石灰岩區域之喀斯特地形發育及伴隨進行 CO2 通量研究(一),

內政部營建署太魯閣國家公園管理處。

陳天任、游祥平 (1999) 太魯閣國家公園立霧溪流域淡水蝦蟹調查計畫,內政部營建署太魯閣

79

國家公園管理處

- 許文昌 (2004) 太魯閣國家公園非生物環境監測: 立霧溪水質監測計畫,內政部營建署太魯閣 國家公園管理處
- 李培芬 (2004) 太魯閣國家公園影像資料庫建立及環境變遷之研究,內政部營建署太魯閣國家 公園管理處
- 彭宗仁、范家華 (2005) 梨山農作區水體中 NO3-之來源與轉化。土壤與環境 8(3/4):43-58。 陳樹群、彭思顯 (2002) 臺灣河川型態五層分類法研究,中華民國水土保持學報,33(3):175-190。 陳樹群 (2005) 臺灣地區河川型態分類技術手冊,經濟部水利署水利規劃試驗所。
- 彭宗仁、詹婉君、林毓雯、劉黔蘭 (2004) 由氮同位素評估南投地區河水中 NO3-之來源及轉 化。土壤與環境 7(3/4):167-182。
- 章樂民 楊遠波 林則桐 呂勝由 (1988) 太魯閣國家公園峽谷石灰岩壁植物群落生態之調查 內政部營建署太魯閣國家公園管理處出版。
- 楊智凱 (2009) 錐麓古道的明珠-大斷崖山地區之稀有植物資源 自然保育季刊 65(3):45-51。
- Brierley, G. J. and Fryirs, K. A. (2005) Geomorphology and River Management: Applications of the River Styles Framework. Blackwell Publishing, Oxford, UK.
- Christensen, N.L., A.M. Bartuska, J.H. Brown, S. Carpenter, C. D'Antonio, R. Francis, J.F. Franklin, J.A. MacMahon, R.F. Noss, D.J. Parsons, C.H. Peterson, M.G. Turner, and R.G. Woodmansee. (1996) The report of the Ecological Society of America committee on the scientific basis for ecosystem management. Ecological Applications, 6: 665-691.
- FEMAT. (1993) Forest Ecosystem Management: An Ecological, Economic, and Social Assessment. Report of the Forest Ecosystem Management Assessment Team. USDA Forest Service, USDC National Marine Fisheries Service, USDI Bureau of Land Management, USDI Fish and Wildlife Service, USDI National Park Service, Environmental Protection Agency, Washington, D.C.
- Huang, J.C., Kao, S.J., Hsu, M.L., Lin, J.C. (2006) Stochastic procedure to extract optimal input parameter combinations and to construct integrated landslide occurrence map: An example of mountainous watershed in Taiwan, *Natural Hazards and Earth*

System Sciences, vol. 6(5): 803-815

- Huang, J.C., Kao, S.J., Hsu, M.L., Liou, Y.A. (2007) Influence of the specific contributing area on terrain controlled subsurface flow and landslide Modelling [Natural Hazards and Earth System Sciences, vol. 7: 781-792.
- Leopold, L. B. and Wolman, M.G. (1957) River Channel Patterns: Braided, Meandering, and Straight, USGS Professional Paper 282-B, 45-62.
- Levin, S.A. (1998) Ecosystems and the biosphere as complex adaptive systems. Ecosystems, 1: 431-436.
- Ludwig, D.,R. Hilborn and C. Walters. (1993) Uncertainty, resources exploitation, and conservation: Lessons from history. Science, 260:17-36.
- Rosgen, D. L. 1994. A classification of natural rivers, Catena, 22:169-199.
- Su, H. J. 1984. Studies on the climate and vegetation types of the natural forests in Taiwan(Ⅱ) Altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Forestry, 17(4): 57-73.

代表性生態系經營管理之峽谷生態系 長期生態研究網計畫(二) 期末報告

立霧溪泥砂與溪流水質監測

黄誌川、高樹基

中華民國國家公園學會 臺灣大學 地理環境資源學系 中央研究院 環境變遷研究中心 2010.11.19

前言

- 為爭取太魯閣國家公園加入世界襲產,提 升國家國際地位,執行「代表性生態系經 營管理」計畫,本計畫希望釐清:
 - 峽谷地區水文與泥砂輸送之過程
 - 陸域與水域生態系之間的物質輸送
 - 提供管理處堅實的科學基礎以利經營

研究背景

- • 立霧溪流經三個地質區,為上游(綠水以上)的 板岩、片岩區,中游的變質石灰岩(太魯閣峽谷所 在),下游砂卡礑溪的片麻岩、混合岩區。
 - · 立霧溪流域內之原始森林和原生植被維持完整, 唯少數地區有果園或菜園的開墾,對河川水質的 污染程度較低。
 - 布洛灣遊憩區為遊客遊憩最為頻繁之區域,人為
 活動產生較大的環境負荷。

研究區

材料與方法

雨量-年雨量

綠水站 年降雨逕流基本資料

Year	Annual	Annual	Runoff	Wet season	Wet season	Runoff
	rainfall	runoff (mm)	coefficient	rainfall	runoff (mm)	coefficient
	(mm)			(mm)		
1998	3552	3160	0.89	2422	1986	0.82
1999	2120	2292	1.08	1565	1509	0.96
2000	2928	1961*	0.67	1809	1287*	0.71
2001	2858	2732	0.96	2197	1929	0.88
2002	1244	966	0.78	915	515	0.56
2003	1313	1167	0.89	872	744	0.85
2004	2361	1752	0.74	1331	858	0.64
2005	3782	2530*	0.67	2967	1922*	0.65
2006	2919	2295	0.79	2046	2007	0.98
2007	3120	1213*	0.39	2455	609*	0.25
2008	2813	1882*	0.67	2326	1254*	0.54
Average	2595	1921	0.75	1899	1275	0.68

年降雨逕流模擬

 就流量模擬結果,得知 由模擬流量與實際推估 流量來看,大致上吻合 ,在暴雨事件中的反應 也跟實際推估值相當

重構 降雨-逕流

模擬結果

水位推估

雨量-颱風事件

綠水流量站近9年的颱洪事件分析

- 每場颱風歷時約76小時,平均最大 降雨強度為14.0mm/hr,總逕流量 約為110mm,為平均降雨的一半; 而尖峰逕流量為509cms,平均的洪 峰稽延時間為4.8hr。
- 兩種兩量分佈的型態,導致在洪峰 稽延時間上有明顯的不同,洪峰稽 延時間頻率分佈,明顯看出有兩種 不同的洪峰稽延反應
 - 一種是快速到達的形式,約在1-3 小時內
 - 另一為6-8小時。
- 顯見本流域之流量反應受到降兩分 佈的影響非常大,至於哪一種可以 導致較大的尖峰流量則需進一步研究。

颱風時期逕流特性

立霧溪雷達降雨推估特性

- 雷達降雨推估之時間 解析度為1小時,空間 解析度為1km×1km
- 降雨之空間變異隨著
 降雨規模的增大而有
 趨緩的趨勢
 - 300 mm 為門檻
 - 大規模的降雨其降
 雨的範圍較有機會
 遍及全流域

文化大學 大氣系 游政谷老師

水質測站

平日採樣

颱風採樣-2010凡那筆

廣西桂林灕江山水

降雨與崩塌

- 由各類地層崩塌地之新成率、復發率及恢復率之差異,可由此區分兩 類崩塌型態:
 - 舊有崩塌地主導
 - 新成崩塌地主導

地層	岩性	年份	崩塌面積(ha)	新成面積(ha)	復發面積(ha)	恢復面積(ha)	崩塌率(%)	新成率(%)	復發率(%)	恢復率(%)	佔總崩塌面積百分比
.0	硬 頁 岩,板	2004	311.39				0.51				17.56
廬		2005	313.42	66.21	247.21	64.18	0.52	21.13	79.39	20.61	17.40
Ц		2006	228.43	54.48	173.95	139.47	0.38	23.85	55.50	44.50	19.41
層	払 半	2007	215.71	57.33	158.38	70.05	0.36	26.58	69.33	30.67	17.33
	仪石	2008	295.92	124.51	171.41	44.30	0.49	42.07	79.46	20.54	18.32
西村 層 新 層		2004	925.92				1.53				52.21
	千枚岩	2005	806.36	197.54	608.82	317.10	1.33	24.50	65.75	34.25	44.77
	板岩	2006	484.54	139.57	344.96	461.40	0.80	28.81	42.78	57.22	41.18
	夹砂岩	2007	473.48	99.07	374.41	110.12	0.78	20.92	77.27	22,13	38.03
		2008	629.85	251.13	378.72	94.76	1.04	39.87	79.99	20.01	39.00
大南澳片岩	黑色片	2004	342.21				0.56				19.30
	岩,綠	2005	421.97	208.77	213.20	129.02	0.70	19.48	62.30	37.70	23.43
	色片	2006	327.39	138.35	189.05	232.92	0.54	42.26	44.80	55.20	27.82
	岩、矽	2007	387.87	154.83	233.05	94.34	0.64	39.92	71.18	28.82	31.16
	質片岩	2008	421.35	161.13	260.22	127.65	0.69	38.24	67.09	32.91	26.09
	雙質石 灰岩	2004	184.12				0.30				10.38
		2005	238.59	97.23	141.36	42.76	0.39	40.75	76.78	23.22	13.25
		2006	120.34	44.79	75.55	163.04	0.20	37.22	31.66	68.34	10.23
		2007	148.75	74.67	74.08	46.26	0.25	50.20	61.56	38.44	11.95
		2008	237.78	155.93	81.85	66.90	0.39	65.58	55.03	44.97	14.72

- 崩塌地所在高程分佈範 圍介於500-3600公尺間
 - 其分佈呈現雙峰分佈型 態
 - 較易發生崩塌的高度帶 主要集中分佈於1000-2000公尺及3000-3500公 尺之間,是易發生崩塌 現象海拔高度帶,
- 崩塌地所在地之坡度分 佈呈現單峰分佈型態, 易發生崩塌之處的坡度 在20-50度間
 - 以40-50度間最為明顯
 - 50度以上的區域發生崩 塌的現象較少。

颱風與崩塌地

評估類似莫拉克颱風之極端降兩事件對立霧溪與大 南澳片岩層的影響,就崩塌面積的增加程度而言, 大南澳片岩區增加幅度(269%)遠大於全區增加幅度 (180%),顯示該區域的崩塌行為較易受暴兩所控制

年份	2004年	2005年	2006年	2007年	2008年
颱風名稱	敏督利	海棠	凱米	聖帕	鳳凰
日期	07/02-07/03	07/18-07/19	07/24-07/25	08/17-08/18	07/27-07/28
2日累積降雨 (mm)	913.5	679.5	306	799	572
全區崩塌地個數	191	206	307	393	306
崩塌地面積 (ha)	1790.51	1801.25	1176.99	1245.01	1615.19
西村層新高層崩 塌地個數	70	67	127	130	105
崩塌地面積 (ha)	925.92	806.36	484.54	473.48	629.85
大南澳片岩崩塌 地個數	77	93	100	152	111
崩塌地面積 (ha)	342.21	421.97	327.39	387.87	421.35

0

LogA (area)

$LogN = \alpha -$	$-\beta \cdot I$	LogA
-------------------	------------------	------

年份	2004年	2005年	2006年	2007年	2008年
全區崩塌地個數	191	206	307	393	306
崩塌地面積 (ha)	1790.51	1801.25	1176.99	1245.01	1615.19
α	5.3604	5.6655	6.0821	6.3626	5.785
β	0.7743	0.8242	0.943	1.001	0.8513
相關係數	0.983056	0.973191	0.984835	0.989747	0.97719

總結

• 侵臺路徑3和4的颱風事件對本區威脅最大

• 立霧溪流域目前沒有非常明顯的點源污染,

• 崩塌地好發在坡度20-50度,以40-50度間為最

地質脆弱之處主要分佈於西村層、新高層和
大南澳片岩層

未來

• 完成颱洪事件的模擬

• 完成元素通量的計算

• 完成立霧溪崩塌特性的研究

Thank for your listening

