測量技師簽證報告

契約編號或案號:LSB-96-25

案名:96年度以空載光達技術建立數值地形模型工作

簽證技師:徐明鎰

技師執業執照號碼: 技執字第 002509 號

執業測繪業名稱:亞新國土科技(股)公司

測量專業資格證明書字號:技證字第 001046 號

法令依據:依據國土測繪法第四十一條第二項及經營或受聘於測繪業之測量技師 簽證規則等相關規定。

委託者姓名或名稱:內政部國土測繪中心

地址:臺中市南屯區黎明路二段497號

- 委託事項:以空載光達技術建立河川及洪氾溢淹地區及中高海拔山區之數值地形 模型工作(DEM 與 DSM 製作)與測製數值地形向量資料之精度評估。
- 簽約日期:96年11月01日
- 受託測繪業名稱:亞新國土科技(股)公司

地址:臺中市南屯區大業路241號3F之1

簽證意見:(請詳予說明:如所有簽證項目均符合合約工作規範說明書之各項要 求;或計畫或報告書之內容已完成檢查,並未有任何限制者;或各 項測繪成果措施已遵照與測繪有關規範或技術原理或常規辦理等。)

是否有其他影響測繪成果之事由者:如無則免填

簽證日期: 97年12月16日

受託測繪業簽章	測量技師簽章

i

摘要

全球氣候變化是本世紀人類所面對的最大威脅和挑戰。尤其是許 多臨海大城市,將面臨海平面上升,降雨變化,颱風加劇或是熱浪侵 襲等危機,而氣溫上升的威脅,也會使許多城市現存的空氣汙染問題 更為惡化。 特別是台灣山坡地土地開發過度且水土保持不良,導致 近年來台灣接連遭受氣候異常所引起之風災、水災或震災之經濟損失 以數億或數十億計,並名列世界銀行受災面積及人口評比國家中第一 名(詳見圖 1-1);加上水利防洪系統未能及時因應,河川、渠溝泥沙 淤積嚴重,若遇颱風、豪雨等天災影響,常造成水災或發生土石崩塌, 更危及人民生命財產安全;有鑑於此,建置高精度及高解析度的高程 數值地形模型(Digital Elevation Model,簡稱 DEM)以為工程規劃及設 計之基礎資料,將是政府施政迫切需要且必要的手段。

本計畫乃沿續 93 年「辦理 LIDAR 測區之高精度及高解析度數值 地形測繪、資料庫建置與應用推廣工作」計畫及 95 年「以空載光達 (LIDAR)技術辦理河川洪氾溢淹區及中高海拔山區數值地形模型計 畫」,並藉由本年度計畫之執行,逐步建立全省高精度及高解析度數 值地形模型基本資料庫,做為全國各界土地利用、河川整治、水土保 持、海岸地形、集水區、山坡地監測,防救災、正射影像糾正、都市 規劃、生態旅遊、礦業、林業等方面數值化,資訊化、自動化應用之 標準基礎資料來源,以加強國家基礎建設工程作業品質及節省各機關 重覆建置經費、人力及時間成本,並進一步促進國內相關產業之升 級、提升國家競爭力。

由於本案之作業區域位於為彰化縣西半部河川洪氾溢淹區及觀 霧至五峰山區,作業範圍合計 114 幅 1/5000 圖幅;彰化測區屬於低 海拔平坦地形,高低落差小,天候容易掌握,光達掃描規劃設計上, 需考量航帶重疊率≥40%及點雲密度≥1pts/m² 是否足夠問題及海域潮 汐時間差配合問題;觀霧至五峰中高海拔山區則由於地勢起伏大(248 公尺~2908 公尺),最好進行光達掃描前以先前 40 公尺間隔 DTM 進 行每條航線涵蓋範圍規劃,以避免點雲密度不足或重疊率不足等問

ii

題,另外山區氣候變化快,為掌握山區現況,本公司並與當地民宿業 者合作設置 24 小時觀測 GPS 基站兩處(清泉及觀霧),建立良好合作 關係,使得本案掃描作業出奇順利,天候及 GPS 觀測都能達到計畫 預期效益。

本計畫成果共完成彰化縣西半部河川洪氾溢淹區計 82 幅,554 平方公里及觀霧至五峰山區中高海拔地區計 32 幅,216 平方公里,1 公尺間隔 DEM 及 DSM 成果,並以 VRS-RTK 搭配傳統經緯儀進行不 同土地類型的現地實測高程(橢球高)DEM 精度檢核,彰化測區計檢核 617 點:(1)裸露地檢核 68 點,均方根誤差量為 0.0776 公尺;(2)矮植 被區檢核 64 點,均方根誤差量為 0.1611 公尺;(3)植生地檢核 66 點, 均方根誤差量為 0.1941 公尺;(4)林地檢核 69 點,均方根誤差量為 0.1436 公尺;(5)都會區檢核 71 點,均方根誤差量為 0.0752 公尺;(6) 溼地檢核 71 點,均方根誤差量為 0.1889 公尺;(7)橫斷面檢核 208 點, 均方根誤差量為 0.0775 公尺;另中高海拔山區計檢核 623 點:(1)裸 露地檢核 40 點,均方根誤差量為 0.1828 公尺;(2)矮植被區檢核 41 點,均方根誤差量為 0.1253 公尺;(3)植生地檢核 42 點,均方根誤差 量為 0.1856 公尺;(4)林地檢核 40 點,均方根誤差量為 0.9420 公尺; (5)密林地檢核 40 點,均方根誤差量為 0.9197 公尺;(6)橫斷面檢核 420 點,均方根誤差量為 0.1537 公尺。

本計畫除以上成果外,另提出二篇光達論文投稿於第27 屆測量 學術研討會:「ALS50與 OPTECH 兩種光達系統之精度探討」及「高 密度光達點雲成果與大比例尺航測數值地形向量資料測製成果之精 度比較分析」(詳附件二)。

基本上本案計畫執行上非常順利,皆在合約指定時間內完成相關 成果交付,在此感謝合作夥伴中興測量有限公司的鼎力協助及工研院 能環所的技術支援。

iii

😡 內政部國土測繪中心

技師簽證報·	告	i
摘要		ii
目錄		iv
圖目錄		vii
表目錄		XV
第壹章 前言		1
第一節	計畫概述	1
第二節	計畫目標	2
第三節	計畫範圍	2
第四節	計畫期程及交付成果	6
第貳章 前置	規劃作業	8
第一節	規劃作業流程	8
第二節	飛航申請	9
第三節	航線規劃	9
第四節	地面控制規劃	21
第參章 資彩	接取	
第一節	光達系統率定	
第二節	實際飛航掃描	65
第肆章 資彩	後處理	109
第一節	航帶重疊數據精度評估與平差原理	109
第二節	航帶重疊數據誤差分析	114
第三節	航带平差飛航數據誤差分析	117
第四節	交叉飛航數據誤差分析	
第五節	資料整合成果分析	
第伍章 DSN	1/DEM製作及精度評估	126
第一節	製作程序	126
第二節	分類後地面測點與非地面測點數據統計分析	131

	第三節	DEM精度評估	132
	第四節	點雲過濾成果檢核	159
	第五節	ALS50 與ALTM 30/70 重疊區域之數據比較	161
	第六節	DEM正高成果與水準點比較	169
第陸	章 測製	數值地形向量資料之精度評估	180
	第一節	說明	180
	第二節	作業區域	180
	第三節	光達掃描及數值航測作業內容	180
	第四節	地面控制测量作業	182
	第五節	系統整合率定分析	183
	第六節	光達掃描作業	185
	第七節	數值航測作業	191
	第八節	光達與航測數值地形數據之精度比較評估	198
第柒	章 教育	〕訓練	202
	第一節	緣起	202
	第二節	訓練時間與地點	202
	第三節	課程規劃	202
	第四節	課程內容介紹	203
第捌	章 工作	檢討與建議	213
第玖	章 結論	ī	215
第壹	拾章 參	考文獻	218

MISC) 内政部國土測繪中心

- 附件一 歷次飛航申請書
- 附件二 論文文稿
- 附件三 歷次會議意見及回覆
- 附件四 第一期驗收成果
- 附件五 第二期驗收成果
- 附件六 執行實況照片
- 附件七 教育訓練簽到記錄及講習照片
- 附件八 合約計畫工作項目及內容
- 附件九 鹿港高精度光達掃描-航測後測控制點水準測量檢算報表
- 附件十 ROLLEI AIC 相機率定參數及 POSAV510 原廠精度值

圖目錄

圖 1-1	世界銀行及哥倫比亞大學 2005 年調查受災國家評比表	2
圖 1-2	河川及洪氾溢淹測製地區(合計 82 幅)	3
圖 1-3	中高海拔山區測製地區(合計 32 幅)	4
圖 2-1	整體作業流程圖(修改自LiDAR標準作業程序)	8
圖 2-2	彰化測區使用地面站與e-GPS基站分佈	10
圖 2-3	彰化測區控制點分佈圖(含鹿港地區)	11
圖 2-4	彰化測區航線規劃圖(ALS50),R56,R57,R58 為交叉航線.	12
圖 2-5	彰化測區航線規劃圖(ALTM 30/70)	13
圖 2-6	鹿港高精度光達掃描航線規劃圖(ALS50)	13
圖 2-7	中高海拔山區使用地面站與e-GPS基站分佈	14
圖 2-8	中高海拔山區控制點分佈圖	14
圖 2-9	中高海拔山區航線規劃圖	15
圖 2-10	彰化測區掃描參數(ALS50)	17
圖 2-11	中高海拔山區掃描參數(ALS50)	18
圖 2-12	鹿港地區高精度光達掃描參數(ALS50)	19
圖 2-13	掃描相關設定參數及時間(ALTM 30/70)	21
圖 2-14	彰化測區GPS基站現場照片_1	22
圖 2-15	彰化測區GPS基站現場照片_2	23
圖 2-16	中高海拔山區地面GPS基站現場照片	24
圖 2-17	彰化測區平面控制點分佈圖	25
圖 2-18	彰化測區檢測網形平差圖	26
圖 2-19	彰化測區高程控制點分佈圖	29
圖 2-20	水利署彰化地區 96 年度水準網圖	30
圖 2-21	中高海拔山區GPS基站控制測量點位圖	35
圖 2-22	GPS檢測網形圖	36
圖 3-1	LEICA ALS50 設備圖	39
圖 3-2	LEICAALS50率定場及率定結果	40

圖 3-3	率定飛航規劃圖(ALS50)	41
圖 3-4	台中港區率定場實際飛航航跡圖(ALS50)	42
圖 3-5	LEICA ATTUNE 率定參數解算畫面(近空三觀念解算).	42
圖 3-6	96年11月23日飛航軌跡及GPS解算成果(ALS50)	44
圖 3-7	96年12月31日飛航軌跡及GPS解算成果(ALS50)	45
圖 3-8	97年3月4日飛航軌跡及GPS解算成果(ALS50)	46
圖 3-9	97年4月8日飛航軌跡及GPS解算成果(ALS50)	47
圖 3-10	97年5月3日飛航軌跡及GPS解算成果(ALS50)	48
圖 3-11	97年3月4日率定參數解算校正值(ALS50)	49
圖 3-12	率定場控制點位分佈圖(ALS50)	50
圖 3-13	96年11月23日率定場精度評估	50
圖 3-14	96年12月31日率定場精度評估	51
圖 3-15	97年3月4日率定場精度評估	51
圖 3-16	97年4月8日率定場精度評估	51
圖 3-17	97年5月3日率定場精度評估	52
圖 3-18	建築物率定場現況	54
圖 3-19	跑道率定場點位分佈圖	54
圖 3-20	ALTM 30/70 系統之雷射掃描感應箱示意圖	55
圖 3-21	ALTM 30/70 掃描器與GPS天線間之相對位置關係	56
圖 3-22	GPS Lever Arms 在X、Y、Z各方向之差值	58
圖 3-23	PITCH偏差量(a)與PITCH率定方式(b)示意圖	59
圖 3-24	ROLL偏差量(a)與率定方式(b)示意圖	60
圖 3-25	雷射點之足跡分佈圖	60
圖 3-26	系統率定水平誤差分析統計表(ALTM 30/70)	63
圖 3-27	光達點雲資料與高程控制點比對圖(ALTM 30/70)	63
圖 3-28	控制點與雷射點比對圖(ALTM 30/70)	64
圖 3-29	彰化測區(左)及中高海拔山區(右)點雲涵蓋圖	68
圖 3-30	鹿港鎮高精度光達掃描作業點雲分佈圖	68
圖 3-31	彰化測區 96 年 11 月 22 日航線圖	69

圖 3-32	彰化測區 96 年 11 月 29 日航線圖	.70
圖 3-33	彰化測區 96 年 12 月 4、5 日(藍色)及 97 年 4 月 8 日(綠	色)
	航線圖	.70
圖 3-34	彰化測區 96 年 12 月 29 日航線圖	.71
圖 3-35	彰化測區 96 年 12 月 30 日航線圖	.71
圖 3-36	彰化測區 96 年 12 月 31 日航線圖	.72
圖 3-37	彰化測區 97 年 4 月 5 日航線圖	.72
圖 3-38	鹿港鎮公所高精度光達掃描 97 年 3 月 4 日PM航線圖	.73
圖 3-39	中高海拔山區 97 年 3 月 5 日航線圖	.73
圖 3-40	中高海拔山區 97 年 3 月 6 日航線圖	.74
圖 3-41	中高海拔山區 97 年 3 月 7 日航線圖	.74
圖 3-42	中高海拔山區 97 年 4 月 26 日航線圖	.75
圖 3-43	中高海拔山區 97 年 5 月 12 日航線圖	.75
圖 3-44	中高海拔山區 97 年 5 月 13 日AM航線圖	.76
圖 3-45	中高海拔山區 97 年 5 月 13 日PM航線圖	.76
圖 3-46	96 年 11 月 22 日飛航任務PDOP值<4 示意圖	.85
圖 3-47	96 年 11 月 29 日飛航任務PDOP值<4 示意圖	.85
圖 3-48	96年12月4日飛航任務PDOP值<4示意圖	.86
圖 3-49	96年12月5日飛航任務PDOP值<4示意圖	.86
圖 3-50	96 年 12 月 29 日飛航任務PDOP值<4 示意圖	.87
圖 3-51	96 年 12 月 30 日飛航任務PDOP值<4 示意圖	.87
圖 3-52	96 年 12 月 31 日飛航任務PDOP值<4 示意圖	.88
圖 3-53	97 年 3 月 4 日飛航任務PDOP值<4 示意圖	.88
圖 3-54	97 年 3 月 5 日飛航任務PDOP值<4 示意圖	.89
圖 3-55	97 年 3 月 6 日飛航任務PDOP值<4 示意圖	.89
圖 3-56	97 年 3 月 7 日飛航任務PDOP值<4 示意圖	.90
圖 3- 57	97 年 4 月 5 日飛航任務PDOP值<4 示意圖	.90
圖 3-58	97年4月8日飛航任務PDOP值<4示意圖	.91
圖 3-59	97 年 4 月 26 日飛航任務PDOP值<4 示意圖	.91

圖 3-60	97 年 5 月 12 日飛航任務PDOP值<4 示意圖	92
圖 3-61	97 年 5 月 13 日AM飛航任務PDOP值<4 示意圖	92
圖 3-62	97 年 5 月 13 日PM飛航任務PDOP值<4 示意圖	93
圖 3-63	96年11月22日GPS正反算之差異值<20公分	93
圖 3-64	96年11月29日GPS正反算之差異值<20公分	94
圖 3-65	96年12月4日PM GPS正反算之差異值<20公分.	94
圖 3-66	96年12月5日PM GPS正反算之差異值<20公分.	95
圖 3-67	96年12月29日GPS正反算之差異值<20公分	95
圖 3-68	96年12月30日GPS正反算之差異值<20公分	96
圖 3-69	96年12月31日GPS正反算之差異值<20公分	96
圖 3-70	97 年 3 月 4 日GPS正反算之差異值<20 公分	97
圖 3-71	97 年 3 月 5 日GPS正反算之差異值<20 公分	97
圖 3-72	97 年 3 月 6 日GPS正反算之差異值<20 公分	98
圖 3-73	97 年 3 月 7 日GPS正反算之差異值<20 公分	98
圖 3-74	97年4月5日GPS正反算之差異值<20公分	99
圖 3-75	97年4月8日PM GPS正反算之差異值<20公分	99
圖 3-76	97年4月26日GPS正反算之差異值<20公分	100
圖 3-77	97年5月12日GPS正反算之差異值<20公分	100
圖 3-78	97年5月13日AM GPS正反算之差異值<20公分。	101
圖 3-79	97 年 5 月 13 日PM GPS正反算之差異值<20 公分.	101
圖 3-80	ALS50 Post Processor軟體原始點雲產出示意圖	102
圖 3-81	REALM軟體中顯示示意圖	103
圖 3-82	彰化測區光達點雲涵蓋圖(ALTM 30/70)	104
圖 3-83	彰化測區光達點雲高程上彩涵蓋圖(ALTM 30/70)	104
圖 3-84	航帶重疊比例分析示意圖	105
圖 4-1	航帶重疊處數據不吻合所產生之系統偏移量	109
圖 4-2	系統誤差影響案例	109
圖 4-3	資料後處理流程	112
圖 4-4	推求兩航帶內某共軛點的相對高程差示意圖	113

圖 4-5	點雲數據品管流程圖11	3
圖 4-6	Measure Match參數設定11	4
圖 4-7	彰化測區航帶重疊區數據分析情形(航線R01與R02)11	5
圖 4-8	Measure Match參數設定11	7
圖 4-9	彰化測區航線R01與R02求得之修正參數11	8
圖 4-10	彰化測區航線R01與R02修正後之平差結果11	8
圖 4-11	交叉航線分佈圖12	2
圖 4-12	彰化測區重疊航帶數據平差前後分析比較結果(ALS50)12	4
圖 4-13	彰化測區重疊航帶數據平差前後分析比較結果(ALTM	
	30/70)12	4
圖 4-14	中高海拔山區重疊航帶數據平差前後分析比較結果12	5
圖 5-1	過濾演算法示意圖(Axelsson, 2000)12	6
圖 5-2	部分樹未濾除的瑕疵(圖左)山頭、山脊特徵點過度濾除的銷	븝
	誤(圖右)12	7
圖 5-3	高度過濾值導致地形紋理特徵粗化之示意圖12	7
圖 5-4	山頭未過濾出地面之情形12	8
圖 5-5	人工檢視編修介面12	8
圖 5-6	濾點作業示意圖12	9
圖 5-7	彰化測區DEM(左)與DSM(右)成果圖13	0
圖 5-8	中高海拔山區DEM(左)與DSM(右)成果圖13	0
圖 5-9	Output Control Report功能之參數設定13	6
圖 5-10	彰化測區不同土地分類檢核點分佈圖13	7
圖 5-11	中高海拔山區不同土地分類檢核點分佈圖13	8
圖 5-12	彰化測區裸露地檢核之較差成果(左)與直方圖(右)14	0
圖 5-13	彰化測區裸露地檢核現場照片14	0
圖 5-14	中高海拔山區裸露地檢核之較差成果(左)與直方圖(右).14	-1
圖 5-15	中高海拔山區裸露地檢核現場照片14	.1
圖 5-16	彰化測區矮植被檢核之較差成果(左)與直方圖(右)14	.3
圖 5-17	彰化測區矮植被檢核現場照片14	.3

(内政部國土測繪中心

圖 5-18	中高海拔山區矮植被檢核之較差成果(左)與直方圖(右).144
圖 5-19	中高海拔山區矮植被檢核現場照片144
圖 5-20	彰化測區植生地檢核之較差成果(左)與直方圖(右)146
圖 5-21	彰化測區植生地檢核現場照片146
圖 5-22	中高海拔山區植生地檢核之較差成果(左)與直方圖(右).147
圖 5-23	中高海拔山區植生地檢核現場照片147
圖 5-24	彰化測區林地檢核之較差成果(左)與直方圖(右)149
圖 5-25	彰化測區林地檢核現場照片149
圖 5-26	中高海拔山區林地檢核之較差成果(左)與直方圖(右)150
圖 5-27	中高海拔山區林地檢核現場照片150
圖 5-28	彰化測區都會區檢核之較差成果(左)與直方圖(右)151
圖 5-29	彰化測區都會區檢核現場照片152
圖 5-30	彰化測區溼地檢核之較差成果(左)與直方圖(右)153
圖 5-31	彰化測區溼地檢核現場照片154
圖 5-32	中高海拔山區密林地檢核之較差成果(左)與直方圖(右).155
圖 5-33	中高海拔山區密林地檢核現場照片155
圖 5-34	彰化測區橫斷面檢核之較差成果(左)與直方圖(右)157
圖 5-35	彰化測區橫斷面檢核現場照片157
圖 5-36	中高海拔山區橫斷面檢核之較差成果(左)與直方圖(右).158
圖 5-37	中高海拔山區橫斷面檢核現場照片158
圖 5-38	點雲過濾成果檢核之Type I Error情形159
圖 5-39	點雲過濾成果檢核之Type II Error情形160
圖 5-40	ALS50 與ALTM 30/70 作業掃描重疊區域161
圖 5-41	ALTM 30/70 率定場位置161
圖 5-42	ALTM 30/70 率定場(綠框為率定建築物,紅框為跑道率定
	場)162
圖 5-43	ALS 50 於彰濱地區實測點比較高程較差量散佈圖163
圖 5-44	ALS 50 於彰濱地區實測點比較高程較差量直方圖164
圖 5-45	彰濱地區實測點位置圖及ALS50 雷射點航線圖164

圖 5-46	ALS 50 於彰濱地區實測點(前 370 點)比較高程較	泛差量散佈
	圈	165
圖 5-47	ALS 50 於彰濱地區實測點(後 630 點)比較高程較	差量散佈
	圖	165
圖 5-48	ALTM 30/70 於彰濱地區實測點比較高程較差量	散佈圖166
圖 5-49	ALTM 30/70 於彰濱地區實測點比較高程較差量	直方圖.166
圖 5-50	水準點位分佈圖	169
圖 5-51	正高高程比較之Output Control Report參數設定	170
圖 5-52	DEM正高成果採平均法計算之範例	170
圖 5-53	Output Control Report之評估成果	171
圖 5-54	高低位差處之點位現場照片1	173
圖 5-55	高低位差處之點位現場照片 2	174
圖 5-56	人工結構物處之點位現場照片1	174
圖 5- 57	人工結構物處之點位現場照片 2	175
圖 5-58	樁位處之點位現場照片1	176
圖 5- 59	樁位處之點位現場照片2	177
圖 5-60	採平均法後高程較差大於 30 公分之點位	179
圖 6-1	鹿港高精度掃描作業區範圍	
圖 6-2	航線規劃圖	181
圖 6-3	鹿港高精度光達掃描軌跡圖	
圖 6-4	鹿港測區地面控制點分佈圖	
圖 6-5	97.03.04 率定場掃描精度分析(ALS50)	184
圖 6-6	相機率定場解算及精度分析	
圖 6-7	鹿港測區光達點雲分佈圖	
圖 6-8	鹿港測區重疊航帶數據平差前後分析比較結果	
圖 6-9	光達點雲與已知地面檢核點高程精度比較分析	
圖 6-10	光達點雲精度檢核設定值	189
圖 6-11	選擇交叉路口兩處為評估區	190
圖 6-12	與原掃描數據高程之比較分析(路口1)	190

圖 6- 〔	13 與原掃描數據高程之比較分析	f(路口 2)191
圖 6- 1	14 GSD 10 公分數位影像(鹿港鎮	立運動場附近)192
圖 6- 1	15 利用POSPAC/POSEO軟體轉置	置外方位參數示意圖193
圖 6- 1	16 約制控制點及投影中心空三成	、果及檢核點誤差向量圖(by
	ISAT)	
圖 6- 〔	17 只約制投影中心空三成果及核	ኛ核點誤差向量圖(by ISAT)
圖 6- 1	18 只約制控制點空三成果及檢核	§點誤差向量圖(by ISAT)196
圖 6- 1	19 1/1000 地形圖航測測製成果(約	約800公尺×600公尺)197
圖 6-2	20 光達點雲地面點與航測高程測]製成果精度比較分析(橢球
	声)	
圖 6-2	21 光達點雲地面點與航測高程測]製成果精度比較分析(正高)
圖 6-2	22 剖面線(0.1公尺帶寬)截取光達	點雲與航測3D地形圖建物邊
	緣線進行比對	
圖 6-2	23 剖面線取樣位置分佈圖	
圖 6-2	24 光達點雲與地形圖套合圖	
圖 7- 〔	1 空載光達作業示意圖	
圖 7-2	2 產製數值地形模型之作業流程	(修改自LiDAR標準作業程序)
圖 7- 3	3 飛航規劃流程圖	
圖 7-4	4 空載光達掃描作業示意圖	
圖 7- (5 Optech ALTM30/70 資料處理流	.程209
圖 7- (6 點雲資料品管流程	
圖 7- 2	7 河川與洪氾溢淹區DEM(左圖);	與DSM(右圖)212

表目錄

表 1-1	各作業區 1/5000 圖幅號及分工數量統計表	5
表 1-2	各階段工作成果交付辦理情形	6
表 2-1	各架次飛航任務表	9
表 2-2	掃描參數規劃表(ALTM 30/70)	20
表 2-3	彰化測區GPS實際觀測時段表	27
表 2-4	彰化測區水準測線	30
表 2-5	控制點坐標成果比較表(單位:公尺)	31
表 2-6	已知控制點精度檢核表(單位:公尺)	32
表 2-7	彰化測區平差後新測點坐標值(單位:公尺)	33
表 2-8	彰化測區已知點高程重新平差之成果(單位:公尺)	33
表 2-9	彰化測區高程檢測成果精度	34
表 2-10	中高海拔山區GPS實際觀測時段表	35
表 2-11	中高山區GPS控制測量檢算成果(單位:公尺)	37
表 2-12	中高山區第一次已知控制點精度檢核表(單位:公尺)	37
表 3-1	ALS50 性能諸元表	39
表 3-2	Boresight Calibration 飛航參數表(ALS50)	41
表 3-3	率定場GPS基站觀測時段表(ALS50)	43
表 3-4	ALTM 30/70 空載雷射掃描儀儀器規格	53
表 3-5	偏心常數值計算表(ALTM 30/70)	57
表 3-6	GPS 處理成果(ALTM 30/70)	62
表 3-7	96/12/3 GPS 基站資訊(ALTM 30/70)	62
表 3-8	率定過程中PITCH值變化表(ALTM 30/70)	62
表 3-9	率定過程中ROLL值變化表(ALTM 30/70)	62
表 3-10	系統率定高程誤差分析統計表(單位:公尺)	64
表 3-11	率定後之新參數(ALTM30/70)	64
表 3-12	飛航任務前之器材清點表	65
表 3-13	裝機檢查表	66

96年度以空載光達技術建立數值地形模型工作總報告書 彰化測區各航線掃描參數(ALS50)......77 表 3-14 表 3-15 表 3-16 測製數值地形向量資料精度評估(鹿港地區)航線掃描參數 表 3-17 彰化測區航帶間重疊比例分析表(ALS50)......105 表 3-18 彰化測區航帶間重疊比例分析表(ALTM 30/70)......106 表 3-19 表 3-20 中高海拔山區航帶間重疊比例分析表......106 表 3-21 彰化測區航帶點雲密度分析表(ALS50)......107 表 3-22 彰化測區航帶點雲密度分析表(ALTM 30/70)......108 表 3-23 中高海拔山區航帶點雲密度分析表......108 彰化測區航帶重疊區數據之分析結果(ALS50)(單位:公尺) 表 4-1 彰化測區航帶重疊區數據之分析結果(ALTM 30/70)(單位: 表 4-2 表 4-3 中高海拔山區航帶重疊區數據之分析結果(單位:公尺)..116 表 4-4 彰化測區航帶平差分析結果(ALS50)(單位:公尺)......119 表 4-5 彰化測區航帶平差分析結果(ALTM 30/70)(單位:公尺).120 表 4-6 中高海拔山區航帶平差分析結果(單位:公尺)......121 表 4-7 彰化測區交叉航帶平差分析結果(ALS50)(單位:公尺)....123 表 4-8 彰化測區交叉航帶平差分析結果(ALTM 30/70)(單位:公尺) 表 4-9 中高海拔山區交叉航帶平差分析結果(單位:公尺)......123 表 5-1 表 5-2 中高海拔山區分類過濾後 1/5,000 圖幅點雲分類表......132 表 5-3 地形類別及其調整參數對照表......132 地表植被覆蓋類別及其調整參數對照表......133 表 5-4 彰化測區土地覆蓋分區......134 表 5-5 表 5-6 中高海拔山區土地覆蓋分區......135

(MISO) 内政部國土測繪中心

表 5-7	彰化測區土地分類檢核點數量及圖例參照表	136
表 5-8	中高海拔山區土地分類檢核點數量及圖例參照表	138
表 5-9	裸露地之檢核成果統計表(單位:公尺)	139
表 5-10	矮植被之檢核成果統計表(單位:公尺)	142
表 5-11	植生地之檢核成果統計表(單位:公尺)	145
表 5-12	林地之檢核成果統計表	148
表 5-13	都會區之檢核成果統計表(單位:公尺)	151
表 5-14	溼地之檢核成果統計表	153
表 5-15	密林地之檢核成果統計表	154
表 5-16	橫斷面之檢核成果統計表	156
表 5-17	點雲過濾成果檢核表	160
表 5-18	ALS 50 於彰濱地區實測點比較成果(單位:公尺)	163
表 5-19	ALS 50 於彰濱地區分區實測點比較成果	165
表 5-20	ALTM 30/70於彰濱地區分區實測點比較成果	166
表 5-21	ALTM 30/70 與ALS 50 於重疊區塊 10 公尺比較結果	果(單位:
	公尺)	167
表 5-22	ALTM 30/70 與ALS 50 於重疊區塊 100 公尺比較結	果 (單
	位:公尺)	167
表 5-23	正高點位比較成果(內插法)	172
表 5-24	正高點位比較成果(平均法)	178
表 6-1	鹿港地區高精度光達掃描參數(ALS50)	181
表 6-2	鹿港測區光達點雲密度分析表	186
表 6-3	鹿港測區航線重疊率分析表	187
表 6-4	鹿港測區航带平差分析結果	187
表 6-5	光達點雲與建物邊線相對距離差值統計表(單位:公	尺)201
表 7-1	教育訓練課程表	202

第壹章 前言

第一節 計畫概述

近年來臺灣西半部土地開發及使用過度,尤其受全球大氣環境變遷影響,氣候變化異常,加上溫室效應所產生暖化現象,使得海平面上升,風災水災不斷,導致近年來台灣接連遭受之經濟損失以十億或佰億計,並名列世界銀行受災面積及人口評比國家中第一名如圖1-1[http://www.ldeo.columbia.edu/chrr/pdf/hotspots/maps/table1.pdf];加上水利防洪系統未能及時因應,而河川、渠溝泥沙淤積嚴重等情況,若遇颱風、豪雨等天災影響,常造成水災或發生土石崩塌,更危及人民生命財產安全,有鑑於此,建置高精度高解析度的高程數值地形模型(Digital Elevation Model, 簡稱 DEM)以為規劃及建設之基礎資料將是政府施政迫切需要且必要的資料庫。

早期國內完整的數值地形模型網格間距為40公尺,即在台灣地區的 地表面上,每隔40公尺才有一筆高程資料;而其精確度及可信度均不明 確,故無法滿足各界使用之需求。內政部為避免各需求單位重複投入人 力、物力、時間測製局部區域內的DEM,因此,經行政院91年10月23 日院臺內字第0910050634號函核定,由內政部統籌資源測製全 台灣高精度及高解析度之DEM,提供國家整體建設規劃及各單位使用。 內政部爰於93年「辦理LIDAR 測區之高精度及高解析度數值地形測繪、 資料庫建置與應用推廣工作」計880幅基本圖範圍;並成功引進LEICA ALS50光達掃描系統建置了1公尺解析度公寸等級精度的DEM 資料庫。

本計畫乃沿續93年計畫及95年以空載光達(LIDAR)技術測繪數值地 形模型計畫,並藉由本計畫之執行,逐步建立全省高精度及高解析度數值 地形模型基本資料庫,做為全國各界土地利用、河川整治、水土保持、海 岸地形、集水區、山坡地監測,防救災、正射影像糾正、都市規劃、生態 旅遊、礦業、林業等方面數值化,資訊化、自動化應用之標準基礎資料來 源,以加強國家基礎建設工程作業品質及節省各機關重覆建置經費、人力

1

及時間成本,並進一步促進國內相關產業之升級、提升國家競爭力。

Table 1.1. Countries Most Exposed to Multiple Hazards a) Three or more hazards (top 15 based on land area)

Country	Percent of Total Area Exposed	Percent of Population Exposed	Max. Number of Hazards	Country	Percent of Total Area Exposed	Percent of Population Exposed	Max. Number of Hazards
Taiwan, China	73.1	73.1	4	Vietnam	8.2	5.1	3
Costa Rica	36.8	41.1	4	Solomon Islands	7.0	4.9	3
Vanuatu	28.8	20.5	3	Nepal	5.3	2.6	3
Philippines	22.3	36.4	5	El Salvador	5.1	5.2	3
Guatemala	21.3	40.8	5	Tajikistan	5.0	1.0	3
Ecuador	13.9	23.9	5	Panama	4.4	2.9	3
Chile	12.9	54.0	4	Nicaragua	3.0	22.2	3
Japan	10.5	15.3	4	_			

圖 1-1 世界銀行及哥倫比亞大學 2005 年調查受災國家評比表

第二節 計畫目標

本計畫之目標為參考內政部研訂之「應用空載光達生產數值地形模型 之製作規範及標準作業程序」及服務建議徵求書所訂規範,利用空載雷射 掃描技術建立彰化縣西半部河川洪氾溢淹區及五峰至觀霧中高海拔地區 等二個測區共 114 幅 1/5000 圖幅的高精度、高解析度數值地形模型資料 庫。

第三節 計畫範圍

本計畫作業區域分別位於河川及洪氾溢淹測製地區(彰化縣西半部地區)及中高海拔山區測製地區(新竹縣五峰至觀霧山區),總計114幅圖,詳述如下:

1、河川及洪氾溢淹測製地區(以下簡稱彰化測區,如圖 1-2):彰化縣
 西半部地區,以現行 1/5000 像片基本圖分幅為依據,圖幅涵蓋範

2

圍共 82 幅。

2、中高海拔山區測製地區(以下簡稱中高海拔山區,如圖 1-3):新竹 縣五峰至觀霧山區,以現行 1/5000 像片基本圖分幅為依據,圖幅 涵蓋範圍共 32 幅。

圖 1-2 河川及洪氾溢淹測製地區(合計 82 幅)

圖 1-3 中高海拔山區測製地區(合計 32 幅)

3. 作業分工模式

本計畫為亞新國土科技股份有限公司(以下簡稱亞新)及中興測量有限公司(以下簡稱中興)共同承攬,其分工施測範圍分別為彰化

測區,由南往北起算共26幅為中興負責範圍,其餘以北為亞新負 責範圍共56幅(包含鹿港地區高精度光達掃描);中高海拔山區則 全部由亞新負責。(分工作業區1/5000圖幅號如表1-1)。

表 1-1 各作業區 1/5000 圖幅號及分工數量統計表

作業地區	縣市	作業 單位	1/5000 圖幅號	數量 (幅)
河 洪 測 製 地 區	彰化縣	亞國科股有公中	9421-II-037 \$9421-II-038 \$9421-II-039 \$9421-II-047 \$ 9421-II-048 \$9421-II-049 \$9421-II-057 \$9421-II-058 \$ 9421-II-059 \$9421-II-067 \$9421-II-068 \$9421-II-069 \$ 9421-II-076 \$9421-II-077 \$9421-II-078 \$9421-II-079 \$ 9421-II-085 \$9421-II-086 \$9421-II-078 \$9421-II-079 \$ 9421-II-089 \$9421-II-094 \$9421-II-095 \$9421-II-096 \$ 9421-II-097 \$9421-II-098 \$9421-II-095 \$9421-II-096 \$ 9420-I-004 \$9420-I-005 \$9420-I-006 \$9420-I-003 \$ 9420-I-008 \$9420-I-009 \$9420-I-013 \$9420-I-007 \$ 9420-I-015 \$9420-I-009 \$9420-I-017 \$9420-I-018 \$ 9420-I-019 \$9420-I-023 \$9420-I-024 \$9420-I-025 \$ 9420-I-026 \$9420-I-027 \$9420-I-028 \$9420-I-029 \$ 9420-I-032 \$9420-I-033 \$9420-I-034 \$9420-I-035 \$ 9420-I-036 \$9420-I-037 \$9420-I-038 \$9420-I-039 \$ 9420-I-042 \$9420-I-043 \$9420-I-044 \$9420-I-045 \$ 9420-I-046 \$9420-I-047 \$9420-I-048 \$9420-I-049 \$	56
		平 測 有 公 引 引	9420-I-040 × 9420-I-047 × 9420-I-048 × 9420-I-049 × 9420-I-051 × 9420-I-052 × 9420-I-053 × 9420-I-054 × 9420-I-055 × 9420-I-056 × 9420-I-057 × 9420-I-058 × 9420-I-059 × 9420-I-061 × 9420-I-062 × 9420-I-063 × 9420-I-064 × 9420-I-065 × 9420-I-066 × 9420-I-067 × 9420-I-068 × 9420-I-069	26
中高海拔 山區 測製 地區	新竹縣 苗栗縣	亞國科股有公新土技份限司	9622-III-045 \$\sigma 9622-III-046 \$\sigma 9622-III-047 \$\sigma 9622-III-048 \$\sigma 9622-III-055 \$\sigma 9622-III-056 \$\sigma 9622-III-057 \$\sigma 9622-III-058 \$\sigma 9622-III-066 \$\sigma 9622-III-067 \$\sigma 9622-III-068 \$\sigma 9622-III-075 \$\sigma 9622-III-076 \$\sigma 9622-III-077 \$\sigma 9622-III-078 \$\sigma 9622-III-086 \$\sigma 9622-III-087 \$\sigma 9622-III-088 \$\sigma 9622-III-095 \$\sigma 9622-III-096 \$\sigma 9622-III-097 \$\sigma 9622-III-098 \$\sigma 9621-IV-005 \$\sigma 9621-IV-006 \$\sigma 9621-IV-007 \$\sigma 9621-IV-016 \$\sigma 9621-IV-018 \$\sigma 9621	32

第四節 計畫期程及交付成果

本案自96年11月1日完成簽約,於各階段需完成之工作項目及成果 交付情形如下表1-2。

期 別	成果繳交項目及數量	成果 繳交日期	辦理情形
<u>別</u> 第一期	 (一)地面控制測量原始觀測資料1份。 (二)空載光達原始數據及相關電子檔 1份。 	繳交日期 簽約起210 個內(97年5 月29日前) 繳交。	 1. 已於 97 年 5 月 28 日 交付(一)與(二)項資 料,發文字號為(97) 亞國字第 0025 號。 2. 外業控制驗收已於 97.6.30 驗收合格; 內業光達資料查核 驗收已於 97.7.7 驗 收合格,詳見附件 四。
第二期	 (一)期中報告20份及電子檔1份,內容至少應含: 1.飛航計畫。 2.空載光達系統率定報告。 3.平面及高程地面控制點分佈圖及說明、平差後成果、檢測成果精度報告。 4.掃描成果分析。 5.交叉飛航數據(Cross Flight)誤差分析報告。 6.應用航帶重疊數據進行誤差分析報告。 6.應用航帶重疊數據進行誤差分析報告。 7.航帶平差及資料整合成果。 8.分類後地面測點與非地面測點數據統計分析。 9.DEM與DSM各項精度評估。 10.與數值地形向量資料之比較。 (二)分類後地面測點與非地面測點數據。 	簽約日次 日本 300 個日曆(97年8 月27日前) 繳交。	 四。 1. 已於 97 年 8 月 26 日 交付 20 份期中報告 書及(一)、(二)、 (三)、(四)與(五)等 項之資料,發文字號 為 (97) 亞 國 字 第 0040 號。 2. DEM 成果驗收已於 97.9.24 及 97.9.25 驗 收合格; 鹿港數值地形成果 驗收已於 97.9.24 驗 收合格,驗收成果內 容詳見附件五。

表 1-2 各階段工作成果交付辦理情形

	期 別	成果繳交項目及數量	成果 繳交日期		辦理情形
Ī		(三)不規則離散測點純文字檔:資料			
		欄位包括 x,y,z 三維坐標(WGS 坐			
		標系統)、測點雷射反應值			
		(intensity)。具多重回波數據之雷			
		射掃描需包含 2 個回波測點資料			
		(第1及最後回波)。			
		(四)數值地表模型(DSM)、數值高程模			
		型(DEM)成果(均含橢球高及正			
		高、電子檔及詮釋資料檔)。			
		(五)數值地形向量資料成果(電子			
		檔),其內容應含地面所設之空制			
		點資料。			
Ī		(一)工作總報告書初稿 20 份及電子檔	簽約日次	1.	已於 97 年 10 月 24
		1份。	日起 360		日交付20份工作總
		(二)數值地表模型(DSM)、數值高程模	個日曆天		報告書初稿及
		型(DEM)成果(依期中報告審查意	內(97年10		(-),(=),(=),
		見修正後之最終成果,均含橢球	月26日前)		(四)及(五)等項之
		高及正高、電子檔及詮釋資料檔)	繳交。		資料、電子檔及軟
		各兩份。			體,發文字號為(97)
		(三)教育訓練教材 10 份及電子檔 1			亞國字第 0059 號。
		份。		2.	教育訓練於97年8
		(四)論文文稿2篇。			月27日辦理完成,
	第	(五)數值地形模型資料管理軟體 2			其課程內容如第柒
	Ξ	套。 需具備下列功能:			章。
	期	1.可在 Window XP/2000 下執行。		3.	論文文稿 2 篇詳見
		2. 地形資料儲存、管理及建檔。			附件二。
		3.地理編碼。		4.	工作總報告書初稿
		4.可進行地圖投影、坐標轉換及大地			已於 97 年 11 月 18
		基準轉換。			日審查合格;工作
		5.DTM 資料選定與輸出、DTM 資料			總報告書定稿及電
		合併、萃取及重新取樣。			子檔於 97 年 12 月
		6.能與 ORACLE 資料庫連線。			16日交付,發文字
		(六)工作總報告書(定稿)50 份及電子			號為(97)亞國字第
		檔1份(應於本中心審查初稿合格			0084 號。
		後30日曆天內繳交)。			

第貳章 前置規劃作業

第一節 規劃作業流程

本計畫擬定之整體作業流程為修改自「應用空載光達技術產製數值地 形模型」之標準作業流程,主要可分為五個階段;分別為飛航掃描規劃、 空中資料掃描、原始點雲解算、點雲分類與編修及成果產出。其中新增部 份為增加<u>Scale</u>項目(以符合ALTM機型特性,在光達點雲產製之軸角率定 資料項目)及增加<u>光達掃描時同步進行正射影像的拍攝(</u>點雲分類與編修 之輔助資料項目),以利人工點雲過濾之判釋作業,各相關作業流程如圖 2-1 所示。

圖 2-1 整體作業流程圖(修改自 LiDAR 標準作業程序)

第二節 飛航申請

根據本計畫作業需求及以往的航拍作業經驗顯示,作業區的地形變化 及天候狀況為影響作業成本與飛航品質關鍵的因素;加上彰化地區海岸 (北約自伸港鄉大肚溪出海口至南端濁水溪出海口)需進行低潮位(可根據 中央氣象局王功及梧棲潮位站預測資料獲得)掃描作業,可作業時間更受 局限。本團隊依民航局相關規定提出飛航計畫書,並獲得核准後再依天候 及潮汐時間進行飛航作業,各架次飛航任務如表 2-1 所示,其歷次飛航申 請書如附件一。

巨坫	作業」	供計	
Xat an	亞新	中興	佣社
彰化測製地區	96.11.22 \circ 96.11.29 \circ 96.12.29 \circ 96.12.30 \circ 96.12.31 \circ 97.04.05	96.12.04 × 96.12.05 × 97.04.08	
中高海拔山區測製 地區	97.03.05 \cdot 97.03.06 \cdot 97.03.07 \cdot 97.04.26 \cdot 97.05.12 \cdot 97.05.13		
鹿港高精度 光達掃描	97.03.04		

表 2-1 各架次飛航任務表

第三節 航線規劃

一、航線設計

在彰化測區以分工方式施測,故使用之光達儀器設備亦不同,亞 新採用 Leica ALS50 系統,中興採用 Optech ALTM 30/70 系統;中高 海拔山區則全為亞新負責施測,採用 Leica ALS50 系統。在航線設計 部分,依彰化測區及中高海拔山區進行以下說明:

(一)彰化測區

飛航規劃共計有航線 98 條,其皆使用定翼機進行飛航任務。
在亞新負責測區航線規劃為 59 條,其中包括南北向 56 條(航線編)

號:R01~R56,R59)及 3 條交叉航線(航線編號:R56~R58);中興負責 測區航線規劃為 31 條,其中包括東西向陸域 17 條(航線編號:1~16 及 20)、3 條交叉航線(航線編號:17~19) 及潮間 11 條(航線編 號:21~31);另在鹿港高精度掃描地區規劃 8 條航線;並於測區內 規劃 8 個地面站(X105、M809,G018、G018N、G025、G025N、 NY91 及 SJN277)及輔以 VR01、VR02、VR03、TACH 及 FCU1 等 e-GPS 基站如圖 2-2,每次飛行採用至少兩個 GPS 基站,其控制點 分佈圖如圖 2-3;航線分佈圖如圖 2-4 至圖 2-6。

圖 2-2 彰化測區使用地面站與 e-GPS 基站分佈

圖 2-3 彰化測區控制點分佈圖(含鹿港地區)

🚾 內政部國土測繪中心

圖 2-4 彰化測區航線規劃圖(ALS50),R56,R57,R58 為交叉航線

》 内政部國土測繪中心

圖 2-5 彰化測區航線規劃圖(ALTM 30/70)

圖 2-6 鹿港高精度光達掃描航線規劃圖(ALS50)

(二)中高海拔山區

在新竹苗栗中高海拔測製區部分,因地勢高低起伏甚大,在航線規劃的考量上也較為綿密,也增加此區域的飛航成本及難度,航線規劃 67條,其中包括南北向 63 條及4條交叉航線(Cross Line),

使用定翼機進行飛航任務;並於兩測區規劃 3 個地面站(AGG1、 AGG2 及 AGG3)及輔以 TIAN、WULI 及 JUNA 等 e-GPS 基站(圖 2-7),每次飛行採用至少兩個 GPS 基站,其控制點分佈圖如圖 2-8; 另圖 2-9 為規劃飛行航線示意圖。

圖 2-7 中高海拔山區使用地面站與 e-GPS 基站分佈

圖 2-8 中高海拔山區控制點分佈圖

圖 2-9 中高海拔山區航線規劃圖

二、掃描參數規劃

本案採用兩套不同光達儀器(Leica ALS50 與 Optech ALTM 30/70 系統)進行掃描作業,以下為此兩系統掃描參數設定之說明:

(-)Leica ALS50

為符合各航線原始測點之平均密度應高於每平方公尺一點及 航帶左右至少需40%重疊的規定,本次飛航規劃高度採用 彰化測 區 1200 公尺及中高海拔山區 2650~3600 公尺; 雷射脈衝率的設定 與反射強度大小有關,因此在彰化測區部分,其雷射脈衝率的設定 約為 68KHz~84khz; 但在中高海拔山區部分,地處陡峭山區,地 形高差甚大,因考慮飛航離地高度太高將導致雷射強度不足而無法 收到反射資料,因此雷射脈衝率設定在 47KHz~67KHz; 而航速、 掃描頻率、掃描角度與點雲的分佈及密度有較大的關係,為達每平 方公尺一個點的要求並且使點雲平均分佈,以 ALS50 MISSION PLANNING 軟體規劃參數(如圖 2-10、圖 2-11 及圖 2-12 所示),由 圖上顯示出在此飛航參數的作業下,彰化測區平均每 0.73 平方公 尺(即 1.37pt/m²)及中高海拔山區平均每 0.8 平方公尺(即 1.25pt/m²) 及鹿港地區平均每 0.12 平方公尺(即 8.33pt/m²)的面積內就會有一 個光達點位,故以此兩組參數進行飛航作業可獲得較經濟且符合要 求的結果。

|--|

Scanner Setup		
Scan EOV (full angle)	degrees	40.00
Terrain Elevation AMSL (minimum in survey area)	meters	20.00
Terrain Elevation AMSL (maximum in survey area)	meters	25.00
Nominal Elving Height Above Minimum Terrain Elevation	meters	1200.00
Nominal Flying Altitude AMSI	meters	1220.00
áirenned	knote	110.00
Pange/Intensity Mode (1, 2, 2, 4)	KIIO(3	4.00
Max Lacor Pulso Pato		69000
Laser Pulse Rate Llead		00.00888
System Controller Firmware (<v2.07. td="" v2.07+)<=""><td></td><td>V2 07+</td></v2.07.>		V2 07+
Lacer Power Clace (2-2W A=AW)	Watte	4.00
Paceiver Aperture Stop (45, 60, 65, 75, LM, ALSSO)	degrees	4.00
Scan Rate	uegrees	25.00
Max Scan Pate (ALSA0/ALSE0, 45-degree/2000 m mirror, gen 1c driver)		25.00
Max Scan Rate (ALS40/ALS50, 45-degree/3000 m mirror, gen 16 driver)	HZ	27.59
Max Scan Rate (ALS40, 43-degree/6100 m mirror, all drivers)	12	12.00
Max Scan Rate (ALS40, 07-degree/6100 m mirror, all drivers)	HZ	12.05
max scan Rate (ALS40, 75-degree/0100 In minor, an unvers)	EL C	12.00
Resulting Scan Pattern		
Total Swath Width (nominal, at lowest terrain elev/n)	meters	873.53
Max Cross Track Spacing (occurs @ nadir)	meters	1.03
Max Along Track Spacing (occurs @ FOV edge)	meters	2.26
Illuminated Footprint Diameter (@ 1.e^2 energy)	meters	0.43
Point Density (average)	pts/meter^2	1.38
Area / Point (average)	meters^2	0.73
(alongo)	inclus 2	0.70
Required Attenuator		
Attenuator Type (1=OD 0.7/1.5, 2=OD 0.5/1.0, 3=OD 0.3/0.7)		3.00
Minimum Attenuation Required for ANSI Z136.1 (binoculars)	OD	0.00
Minimum Attenuation Required for ANSI Z136.1 (naked eye)	OD	0.00
Recommended Attenuator Selection (binoculars)	OD	0.00
Recommended Attenuator Selection (naked eye)	OD_	0.00
Attenuator Selection Used	OD	0.00
Range Gate Settings		
Nominal Maximum Slant Range	meters	1356.83
Recommended Range Gate "MIN" Setting (incl. roll. nav allow.)	meters	1104.00
Minimum Value for Range Gate "MAX" Setting	meters	960.000
Recommended Range Gate "MAX" Setting (incl. roll, nav allow.)	meters	1368.00

圖 2-10 彰化測區掃描參數(ALS50)

Scanner Setup

<u>Scanner Setup</u>		
Scan FOV (full angle)	degrees	20.00
Terrain Elevation AMSL (minimum in survey area)	meters	1200.00
Terrain Elevation AMSL (maximum in survey area)	meters	2300.00
Nominal Flying Height Above Minimum Terrain Elevation	meters	2000.00
Nominal Flying Altitude AMSL	meters	3200.00
Airspeed	knots	110.00
Range/Intensity Mode (1, 2, 3, 4)		4.00
Max Laser Pulse Rate	Hz	50900.00
Laser Pulse Rate Used	Hz	50000.00
System Controller Firmware (<v2.07, td="" v2.07+)<=""><td>L</td><td>V2.07+</td></v2.07,>	L	V2.07+
Laser Power Class (3=3W, 4=4W)	Watts	4.00
Receiver Aperture Stop (45, 60, 65, 75, LM, ALS50)	degrees	ALS50
Scan Rate	Hz	26.00
Max Scan Rate (ALS40/ALS50, 45-degree/3000 m mirror, gen 1c driver)	Hz	57.99
Max Scan Rate (ALS40, 45-degree/3000 m mirror, gen 1b driver)	Hz	39.00
Max Scan Rate (ALS40, 67-degree/6100 m mirror, all drivers)	Hz	19.50
Max Scan Rate (ALS40, 75-degree/6100 m mirror, all drivers)	Hz	17.04
Resulting Scan Pattern		
Total Swath Width (nominal, at lowest terrain elev/n)	meters	705.31
Max Cross Track Spacing (occurs @ nadir)	meters	1.18
Max Along Track Spacing (occurs @ FOV edge)	meters	2.18
Illuminated Footprint Diameter (@ 1.e^2 energy)	meters	0.70
Point Density (average)	pts/meter^2	1.25
Area / Point (average)	meters^2	0.80
Required Attenuator		
		2.00
Altenualor Type (1=0D 0.7/1.5, 2=0D 0.5/1.0, 3=0D 0.3/0.7)		3.00
Minimum Attenuation Required for ANSI 2136.1 (billoculars)	00	0.20
Minimum Allenuation Required for ANSIZ 130.1 (naked eye) Recommended Attenuator Selection (binoculare)	00	0.00
Recommended Attenuator Selection (biroculars)	00	0.00
Attenuator Selection Lised	00	0.00
	00	0.00
Range Gate Settings		
Nominal Maximum Slant Range	meters	2107.01
Recommended Range Gate "MIN" Setting (incl. roll, nav allow.)	meters	816.00
Minimum Value for Range Gate "MAX" Setting	meters	960.00
Recommended Range Gate "MAX" Setting (incl. roll, nav allow.)	meters	2136.00

圖 2-11 中高海拔山區掃描參數(ALS50)

S	са	nr	le	r	S	e	U	٥
_	_	_	_	_	_	_	_	-

Scan FOV (full angle)	degrees	20.00
Terrain Elevation AMSL (minimum in survey area)	meters	20.00
Terrain Elevation AMSL (maximum in survey area)	meters	25.00
Nominal Flying Height Above Minimum Terrain Elevation	meters	600.00
Nominal Flying Altitude AMSL	meters	620.00
Airspeed	knots	90.00
Range/Intensity Mode (1, 2, 3, 4)		4.00
Max Laser Pulse Rate	Hz	84900.00
Laser Pulse Rate Used	Hz	84000.00
System Controller Firmware (<v2.07, td="" v2.07+)<=""><td></td><td>V2.07+</td></v2.07,>		V2.07+
Laser Power Class (3=3W, 4=4W)	Watts	4.00
Receiver Aperture Stop (45, 60, 65, 75, LM, ALS50)	degrees	ALS50
Scan Rate	Hz	52.00
Max Scan Rate (ALS40/ALS50, 45-degree/3000 m mirror, gen 1c driver)	Hz	57.99
Max Scan Rate (ALS40, 45-degree/3000 m mirror, gen 1b driver)	Hz	39.00
Max Scan Rate (ALS40, 67-degree/6100 m mirror, all drivers)	Hz	19.50
Max Scan Rate (ALS40, 75-degree/6100 m mirror, all drivers)	Hz	17.04
······································		
Resulting Scan Pattern		
Total Swath Width (nominal, at lowest terrain elevin)	meters	211.59
Max Cross Track Spacing (occurs @ nadir)	meters	0.46
Max Along Track Spacing (occurs @ FOV edge)	meters	0.89
Illuminated Footprint Diameter (@ 1 e^2 energy)	meters	0.23
Point Density (average)	pts/meter^2	8.57
Area / Point (average)	meters^2	0.12
nearr enk(arenage)		0.112
Required Attenuator		
Attenuator Type (1-0D 0 7/1 5 2-0D 0 5/1 0 3-0D 0 3/0 7)		3.00
Minimum Attenuation Required for ANSI 7136 1 (binoculare)		0.44
Minimum Attenuation Required for ANSIZ 130.1 (birlocalars)	00	0.44
Recommended Attenuator Selection (binoculars)	00	0.00
Recommended Attenuator Selection (pilloculars)	00	0.70
Attenuator Selection Lload		0.00
Alteridator Selection Osed		0.00
Range Gate Settings		
Nominal Maximum Slant Range	meters	685.41
Recommended Range Gate "MIN" Setting (incl. roll. nav allow.)	meters	504.00
Minimum Value for Range Gate "MAX" Setting	metere	00.000
Recommended Range Gate "MAX" Setting (incl. roll. nav allow.)	meters	960.00
reserved and a solution of the second and the second and the second seco		000.00

圖 2-12 鹿港地區高精度光達掃描參數(ALS50)

(ニ)Optech ALTM 30/70

為符合各航線原始測點之平均密度應高於每平方公尺一點及 航帶左右至少需40%重疊的規定,於飛航規劃的相關參數如表2-2 所示;由於本次計畫之目的在於製作數值高程模型,僅需光達點雲 資料,故不考慮到相片比例尺與航高間的問題,因考慮適當飛航成 本及要求之點雲密度,較高的飛航高度可獲得較大的掃描帶寬相對 的可節省成本,再加上於率定飛行時所設定高度為4000 英呎(約
內政部國土測繪中心

1200 公尺),因此,本次飛航規劃之飛航高度採用 4600 英呎;雷 射脈衝率的設定與反射強度大小有關,僅在離地高大於 1700 公尺 時,因考慮距離太遠導致強度不足而無法收到反射資料時需將雷射 脈衝率設定在 50KHz,因本計畫的飛航高度在 1400 公尺,為獲得 較多的點雲數量故使用較高的雷射脈衝率 71KHz;而航速、掃描 頻率、掃描角度與點雲的分佈及密度有較大的關係,為達每平方公 尺一個點的要求並且使點雲平均分佈,以 Altm planner 軟體調整參 數(如圖 2-13 所示),由圖上顯示出在此飛航參數的作業下,平均每 0.932 平方公尺(即 1.07pt/m²)面積內會有一個光達點位,並且航帶 重疊在 40%,故以此組參數進行飛航作業可獲得較經濟且符合要 求的結果。

飛航	航線數	最低 高度 (m)	最高 高度 (m)	離地 高 (m)	航高 (m)	航速 (km/h)	掃描 角度 (deg.)	雷射脈 衝率 (KHz)	掃描 頻率 (Hz)	備註		
A-陸域	17	16	50	1400	1400	222.2	40	71	33			
A-海域	11	16	50	1400	1400	222.2	40	71	33			
Cross1	1	10	50	1400	1400	222.2	40	71	33			
Cross2	1	10	50	1400	1400	222.2	40	71	33			
Cross3	1	10	50	1400	1400	222.2	40	71	33			
Total	31											

表 2-2 掃描參數規劃表(ALTM 30/70)

) 內政部國土測繪中心

7 Plan Survey Grid											_ 🗆 ×
🔲 Lock First Pass to	Edge?										
Add New	Area		Create Areas from DXF					Remove Area			
				Active A	Area						
*	Ar	rea		4		of		4 ≫			•
Draw Area	Draw Area E				Gene	rate Bo	x		Load f	rom Fi	le
Pass Orientation											
Optimize 0	30	60 9	90 120	150	180	210	240	270	300	330	360
Flight I	Flight Profile LIDAR Settings							Can	nera Se	ettings	
Altitude (ft AG Pass Heading (d Overlap (%) Speed (kts) Turn Time (mi Passes Pass Spacing (Altitude (ft AGL)4500Pass Heading (deg)270Overlap (%)40Speed (kts)120Turn Time (min)5Passes14Pass Spacing (m)599.07		System I Scan F Scan A Scan Desired Cross T Down T Swat	PRF (kHz req (Hz) Offset I Res (m) rack Res rack Res th (m)) 71 2 0. 0. 99	.00 33 20 932 932 935 8.44	Pho Li Lin Pix Pix Trig Trig	'hoto Overlap (%)70Line Spacing1Line Overlap (%)34.53Pixel Size X (m)0.224Pixel Size Y (m)0.224Frigger Dist (nmi)0.15rigger Time (sec)4.24		70 1 .53 224 224 .15 246	
				Survey T	otals						
Total Passes	Total Passes17Total Length (km)339.859Swath Area (km^2)203.6Total Frames1231Total Flight Time02:41:21AOI Area (km^2)183.981Total Laser Time01:31:45										
	_			Cost	s						
O Use Swath A	rea	Cost p	oer Acre	0		Area	a Cost \$0				
Use AOI Area	3	Cost p	er Hour	5500Q		Time	Cost		\$1478	98	
Арр	ly			Help)				Close	e	

圖 2-13 掃描相關設定參數及時間(ALTM 30/70)

第四節 地面控制規劃

一、地面GPS基站規劃

在彰化測區,共規劃 8 個地面站分別為 X105、M809、G018、G018N、G025、G025N、NY91 及 SJN277 位置如圖 2-2 及 2-3,現場照片如圖 2-14 與圖 2-15。

另中高海拔山區規劃3個地面站分別為AGG1、AGG2、AGG3, 其中AGG1、AGG2規劃為常駐之衛星觀測站,採24小時連續觀測, 以因應山區天氣多變及移動不易,分別位於清泉民宅及桃山加草農 園,位置如圖2-7、圖2-8及現場照片如圖2-16。每次飛行時,於掃描 區域20公里範圍內,至少採用2個以上之地面GPS基站,以利進行

LiDAR 資料之解算。

圖 2-14 彰化測區 GPS 基站現場照片_1

<u>мыр</u> 內政部國土測繪中心

96年度以空載光達技術建立數值地形模型工作總報告書

圖 2-15 彰化測區 GPS 基站現場照片_2

內政部國土測繪中心

(c)AGG3 現場照片(清泉)

圖 2-16 中高海拔山區地面 GPS 基站現場照片

二、已知點檢測及基站控制測量

(一)彰化測區已知點檢測及地面GPS基站點控制測量

1、平面控制點分佈圖

採用內政部已知點 G018 與 G025(一等水準點)、NY91(三 等控制點)與新設點 G018N、G025N 及 SJN277,並與 NY90、 NY92、NZ15、P007(三等控制點)及 NY12、NY42、NY51、 NY69(三等控制點)等已知點進行檢測及 e-GPS 追蹤站 TACH、 FCU1、VR01、VR02、VR03、PKGM(北港)之資料至少三個小 時(1秒1筆)同步觀測網形平差解算,各觀測時段表如表 2-3; 其控制點分佈如圖 2-17,檢測網形平差如圖 2-18。

些 內政部國土測繪中心

圖 2-17 彰化測區平面控制點分佈圖

圖 2-18 彰化測區檢測網形平差圖

表 2-3	彰化测區	GPS	實際觀測時段表
n = J	书记仍世	OI D	貝尔西小小小1人小

時段	961129A	日期	96.11.29	觀測時間	06:46~1	2:30
組別	點名	點號	接收儀型式	天線盤型式	斜距	垂距
1	福龍宮	G018	Ashtech Zxtreme	GeodeticIV	1.331	
2	福海宮	G025	Ashtech Zxtreme	GeodeticIV	1.516	
3	和美	VR01	Trimble	Zephyr Geodetic	0.000	
4	二林	VR02	Trimble	Zephyr Geodetic	0.000	
5	台中港	TACH	Trimble	Zephyr Geodetic	0.000	
6	逢甲	FCU1	LeiaSR530	Aero element L1/L2	0.000	
7	北港	PKGM	TPSCR_GDD	Choke Dring	0.000	
時段	961213A	日期	96.12.13 觀測時間		0100~0	4:20
組別	點名	點號	接收儀型式	天線盤型式	斜距	垂距
1	埤頭四	NY42	Trimble 4000SSI	Zephyr Geodetic	1.608	1.608
2	面前崙	NY12	Trimble 5700	Zephyr Geodetic	1.627	1.627
3	白廟子	NY51	Trimble 5700	Zephyr Geodetic	1.780	1.781
4	大灣	NY69	Trimble 5700	Zephyr Geodetic	1.790	1.791
5	能源	SJN277	Trimble 5700	Zephyr Geodetic	1.622	1.622
6	和美	VR01	Trimble	Zephyr Geodetic	0.000	
7	二林	VR02	Trimble	Zephyr Geodetic	0.000	
8	田中	VR03	Trimble	Zephyr Geodetic	0.000	
時段	961213B	日期	96.12.13	觀測時間	05:20~0	08:30
組別	點名	點號	接收儀型式	天線盤型式	斜距	垂距
1	下海墘	NY92	Trimble 4000SSI	Zephyr Geodetic	1.107	1.103
2	四股尾	NY90	Trimble 5700	Zephyr Geodetic	1.701	1.701
3	下莊	NZ15	Trimble 5700	Zephyr Geodetic	1.749	1.750
4	新西濱	P007	Trimble 5700	Zephyr Geodetic	1.784	1.785
5	下海墘南	NY91	Trimble 5700	Zephyr Geodetic	0.888	0.881
6	和美	VR01	Trimble	Zephyr Geodetic	0.000	
7	二林	VR02	Trimble	Zephyr Geodetic	0.000	
8	田中	VR03	Trimble	Zephyr Geodetic	0.000	
時段	961228A	日期	96.12.28	觀測時間	04:13~0	08:32
組別	點名	點號	接收儀型式	天線盤型式	斜距	垂距
1	-	G018N	Ashtech Zxtreme	GeodeticIV	1.400	
2	-	G025N	Ashtech Zxtreme	GeodeticIV	1.166	
3	和美	VR01	Trimble	Zephyr Geodetic	0.000	
4	二林	VR02	Trimble	Zephyr Geodetic	0.000	
5	田中	VR03	Trimble	Zephyr Geodetic	0.000	
6	台中港	TACH	Trimble	Zephyr Geodetic	0.000	
7	逢甲	FCU1	LeiaSR530	Aero element L1/L2	0.000	

96 年度以空載光達技術建立數值地形模型工作總報告書

時段	961229A	日期	96.12.29	觀測時間	06:46~1	1:36
組別	點名	點號	接收儀型式	天線盤型式	斜距	垂距
1	-	G018N	Ashtech Zxtreme	GeodeticIV	1.347	
2	-	G025N	Ashtech Zxtreme	GeodeticIV	1.145	
3	和美	VR01	Trimble	Zephyr Geodetic	0.000	
4	二林	VR02	Trimble	Zephyr Geodetic	0.000	
5	田中	VR03	Trimble	Zephyr Geodetic	0.000	
6	台中港	ТАСН	Trimble	Zephyr Geodetic	0.000	
7	逢甲	FCU1	LeiaSR530	Aero element L1/L2	0.000	
8	北港	PKGM	TPSCR_GDD	Choke Ring	0.000	
時段	961230A	日期	96.12.30	觀測時間	08:11~1	3:44
組別	點名	點號	接收儀型式	天線盤型式	斜距	垂距
1	福龍宮	G018	Ashtech Zxtreme	GeodeticIV	1.378	
2	-	G025N	Ashtech Zxtreme	GeodeticIV	1.056	
3	和美	VR01	Trimble	Zephyr Geodetic	0.000	
4	二林	VR02	Trimble	Zephyr Geodetic	0.000	
5	田中	VR03	Trimble	Zephyr Geodetic	0.000	
6	逢甲	FCU1	LeiaSR530	Aero element L1/L2	0.000	
7	北港	PKGM	TPSCR_GDD	Choke Ring	0.000	
8	台中港	TACH	Trimble	Zephyr Geodetic	0.000	

2、高程控制點分佈

因本計畫彰化地區位於地層下陷區,90 年之最大年平均下 陷速率為 17.6 公分;92 年之最大年平均下陷速率為 10.4 公 分。明顯下陷區域為大城、芳苑、二林及竹塘等鄉鎮,其中大 城鄉為近年全台年平均下陷速率最大之地區,最大累積下陷總 量約為 220 公分,發生在西港國小測點[詳彰化雲林地區地層 下陷防治計畫·經濟部水利署(94~97)]。為避免下陷量造成控 制成果不符計畫需求,因此高控部份採用測區外的台中港區 X105 一等水準點為本計畫 TWVD2001 高程系統引測起點依 據,串聯水利署 96 年水準線(如圖 2-20)進行網形平差解算(由 國土測繪中心解算後提供 G017/G018/G019/G025/G026/G030/ G031/I013/I014 最新的高程值)以做為測區內高程引測依據。

本計畫彰化測區共檢測 G018(測線經過已知點 G017、G019 及新設點 G018N)、G025(測線經過已知點 X111、G026 及新設 點 G025N)、G030<->G031、I013<->I014 四個測段,其控制點 分佈如圖 2-19 及表 2-4。

圖 2-19 彰化測區高程控制點分佈圖

內政部國土測繪中心

圖 2-20 水利署彰化地區 96 年度水準網圖

表 2-4 彰化測區水準測線

3、平差後成果精度分析

(1)平面控制平差成果精度分析

GPS 網形平差計算採用 Novatel/Waypoint 公司的 GrafNet 軟體進行靜態 GPS 觀測資料差分後處理解算,由於軟體可多 基線不同時段同時解算,同時為增加網形幾何強度及重複基 線,加入 e-GPS 基站網形如圖 2-18,固定一個已知點先求解 各已知點之基線分量與已知基線分量做比較如表 2-6,僅 NY91->P007 未達規範要求,各已知點坐標分量比較如表 2-6, 均符合規範 30mm+6ppm√k 之要求,因此,確認已知點無誤後, 重新固定各已知點坐標平差求取 SJN277,G018N,G025N 坐標 如表 2-7。

찌나 만는	原始	坐標	平差	後坐標	差值		
點號	Е	Ν	Е	Ν	Е	Ν	
G018	190877.500	2661418.813	190877.449	2661418.800	0.051	0.013	
G025	182236.533	2650070.492	182236.475	2650070.461	0.058	0.031	
NY12	192399.446	2644652.970	192399.372	2644652.975	0.074	-0.005	
NY42	195009.238	2641825.196	195009.197	2641825.189	0.041	0.007	
NY51	190557.319	2641665.871	190557.271	2641665.820	0.048	0.051	
NY69	192749.840	2638887.526	192749.818	2638887.534	0.022	-0.008	
NY90	178953.934	2637454.136	178953.913	2637454.122	0.021	0.014	
NY91	177649.698	2636963.974	177649.658	2636963.989	0.04	-0.015	
NY92	176081.478	2637978.001	176081.435	2637977.978	0.043	0.023	
NZ15	180513.230	2636531.664	180513.205	2636531.657	0.025	0.007	
P007	177003.311	2634494.958	177003.285	2634494.917	0.026	0.041	
X105	201811.540	2683485.670	201811.486	2683485.658	0.054	0.012	
M809	192592.744	2661464.688	192592.701	2661464.673	0.043	0.015	

表 2-5 控制點坐標成果比較表(單位:公尺)

基線名稱	實測基線長	坐標反算基線長	長度較差	規範標準	合格
G018>G025	14263.633	14263.615	0.018	0.116	V
G018>NY91	27803.098	27803.127	-0.029	0.197	V
G018>M809	1715.865	1715.857	0.008	0.040	\checkmark
G018>X105	24627.208	24627.209	-0.001	0.178	\checkmark
G025>M809	15397.386	15397.364	0.022	0.122	\checkmark
G025>X105	38726.689	38726.671	0.018	0.262	$\mathbf{\nabla}$
G025>NY91	13885.910	13885.959	-0.049	0.113	\checkmark
M809>X105	23872.783	23872.785	-0.002	0.173	\checkmark
M809 → NY91	28698.050	28698.077	-0.027	0.202	$\mathbf{\nabla}$
X105 → NY91	52421.938	52421.969	-0.031	0.345	\checkmark
NY12> NY42	3848.060	3848.028	0.032	0.053	\checkmark
NY12> NY51	3509.474	3509.443	0.031	0.051	$\mathbf{\overline{A}}$
NY12> NY69	5776.078	5776.082	-0.004	0.065	\checkmark
NY42> NY51	4454.783	4454.769	0.014	0.057	\checkmark
NY42> NY69	3706.023	3706.047	-0.024	0.052	\checkmark
NY51> NY692	3539.232	3539.258	-0.026	0.051	\checkmark
NY90> NY91	1393.313	1393.330	-0.017	0.038	\checkmark
NY90> NY92	2919.860	2919.835	0.025	0.048	V
NY90> NZ15	1811.722	1811.728	-0.006	0.041	V
NY90> P007	3544.269	3544.244	0.025	0.051	\checkmark
NY91> NY92	1867.486	1867.486	0.000	0.041	V
NY91> NZ15	2896.002	2896.006	-0.004	0.047	\checkmark
NY91> P007	2552.274	2552.210	0.064	0.045	×
NY92> NZ15	4661.812	4661.793	0.019	0.058	\checkmark
NY92> P007	3602.988	3602.966	0.022	0.052	V
NZ15> P007	4058.060	4058.042	0.018	0.054	\checkmark

表 2-6 已知控制點精度檢核表(單位:公尺)

职步	平差後坐標						
赤山 幼亡	Е	Ν					
SJN277	193740.169	2641329.930					
G018N	191114.141	2660199.042					
G025N	182184.099	2649874.635					

表 2-7 彰化測區平差後新測點坐標值(單位:公尺)

(2)高程控制平差成果精度分析

引用水利署96年水準網與G009至X105一等水準點水準 線平差後成果如表 2-8(由國土測繪中心解算)。直接水準觀測 後水準測線,套用表 2-8 平差後已知點成果進行檢核其檢核後 成果皆符合規範要求之±7mm√K (k 為水準測線之公里數),其 中高差平均值為往返高差之平均值;觀測誤差為高差平均值與 平差成果的高差之較差,如表 2-9 所示。

點號	平差後成果 之高程值	點號	平差後成果 之高程值	
G017	3.0536	G031	6.0483	
G018	3.3081	I014	22.7222	
G019	4.6588	I012	25.1118	
G025	3.1106	X105	4.3965	
G025N	3.5260	G005	5.0686	
G018N	3.5103	G006	4.5648	
G026	5.8221	G007	6.3627	
X111	5.2202	G008	5.9288	
G030	3.9559	G009	5.1197	

表 2-8 彰化測區已知點高程重新平差之成果(單位:公尺)

起點點名	終點 點名	往程 距離 (km)	往程 觀 高 (m)	返程 距離 (km)	返程 觀測 高差 (m)	高差 平均值 (m)	距離 平均值 (km)	往返 閉合差 (mm)	閉合差 精度 標準 (mm)	觀測 誤差 (mm)	觀測 精度	合格
X105	G005	1.677	-0.6718	1.630	0.6721	-0.67195	1.654	0.30	9.00	0.15	0.12√K	\checkmark
G005	G006	2.033	0.5039	2.092	-0.5036	0.50375	2.063	0.30	10.05	-0.05	0.03√K	\checkmark
G006	G007	2.066	-1.7978	2.017	1.7979	-1.79785	2.042	0.10	10.00	0.05	0.03√K	\checkmark
G007	G008	1.918	0.4343	1.953	-0.4334	0.43385	1.936	0.90	9.74	-0.05	0.04√K	\checkmark
G008	G009	2.843	0.8097	2.829	-0.8085	0.80910	2.836	1.20	11.79	0.00	0.00√K	$\mathbf{\overline{\mathbf{A}}}$
G018	G018N	1.326	-0.2024	1.226	0.2019	-0.20215	1.276	-0.50	7.91	0.05	0.04√K	\checkmark
G025	G025N	0.243	-0.4153	0.203	0.4155	-0.41540	0.223	0.20	3.31	0.00	0.00√K	\checkmark
G017	G018	2.468	-0.2547	2.148	0.2579	-0.25630	2.308	3.20	10.63	-1.80	1.18√K	\checkmark
G019	G018	2.102	1.3497	2.102	-1.3464	1.34805	2.102	3.30	10.15	-2.65	1.83√K	\checkmark
G025	G026	2.625	-2.7123	2.626	2.7103	-2.71130	2.626	-2.00	11.34	0.20	0.12√K	V
X111	G025	1.989	2.1066	1.988	-2.1124	2.10950	1.989	-5.80	9.87	-0.10	0.07√K	V
G031	NY91	2.633	5.8098	2.633	-5.8072	5.80850	2.633	2.60	11.36	2.61	1.61√K	\checkmark
NY91	I012	0.531	-3.7126	0.532	3.7147	-3.71363	0.532	2.10	5.11	2.15	2.95√K	$\mathbf{\overline{\mathbf{A}}}$
I012	I013	2.675	-1.0266	2.675	1.0306	-1.02861	2.675	4.00	12.47	4.01	2.45√K	\checkmark
I013	SJN277	1.331	-2.5383	1.333	2.5378	-2.53806	1.332	-0.50	8.08	-0.53	0.46√K	\checkmark
SJN277	I014	0.205	1.1758	0.206	-1.1765	1.17613	0.205	-0.70	3.17	-0.67	1.48√K	\checkmark

表 2-9 彰化測區高程檢測成果精度

(二)中高海拔山區已知點檢測及地面GPS基站點控制測量

1、平面控制點分佈圖

於中高海拔山區規劃檢測 N032、M311、N911、M325 四 點一、二等衛星控制點並同步檢算 AGG1、AGG2、AGG3 等本 團隊於中高海拔所規劃的常駐地面主站及備用站,點位分佈如 圖 2-21,GPS 觀測時段表如表 2-10。

圖 2-21 中高海拔山區 GPS 基站控制測量點位圖

時段	970303A 日期		97.03.03	觀測時間	04:40~09:04		
組別	點號		接收儀型式	天線盤型式	斜距	垂距	
1	AGG3		Ashtech Z-MAX	Z-MAX	1.804		
2	NC	N032 Ashtech Z-MAX Z-MAX		1.465			
3	M311		M311 Ashtech Zxtreme GeodeticIV		1.170		
4	N9	N911 Ashtech Zxtreme GeodeticIV		GeodeticIV	1.465		
5	M325		Ashtech Zxtreme	shtech Zxtreme GeodeticIV			
6	AGG1		Ashtech Zxtreme	GeodeticIV	0		
7	AG	G2	Ashtech Zxtreme	GeodeticIV	0		

表 2-10 中高海拔山區 GPS 實際觀測時段表

2、高程控制點分佈圖

本計畫中高海拔山區依合約規範已知點高程檢測山區得採 三角高程或衛星定位測量施測。因此本案山區採用衛星定位測

量施測,並將橢球高以內政部公告之大地起伏模式化算為正高 高程值,高程控制點分佈圖如圖 2-21。

3、平差後成果精度分析

於 97 年 3 月 3 日 12:50~17:00(觀測時間超過 4 小時)進行 第一次 GPS 控制測量檢測,由四點已知點 N032、M311、N911、 M325,圖 2-22(a)為檢測之 GPS 網形圖,經固定 N911 檢算後 成果其中 N032 之 N、E 值分量過大不予採用,其餘已知點檢 算成果與公告數值坐標分量較差值低於內政部三等衛星控制點 規範之 9.8 公分(如表 2-11 及表 2-12)。

為證明點位 N032 公告之 N、E 值可能有誤,於 97 年 9 月 27 日再次進行第二次檢測,利用 N911、N032、AGG3 及 S272 四個點位,將其與第一次基線聯合平差,固定 N911 檢算後成 果與第一次平差成果近乎相同如表 2-11,GPS 網形如圖 2-22(b),故可證明 N032 公告坐標 N、E 與平差後 N、E 差值 過大,而不列入已知點加權項目。

(a)第一次

(b)第二次

圖 2-22 GPS 檢測網形圖

1111 년	公告	公告	公告	檢測	檢測	檢測	較差	較差	較差			
點號	(N)	(E)	(H)	(N)	(E)	(H)	(N)	(E)	(H)			
	第一次(97.03.03)											
N032	2711124.257	261550.912	2130.150	2711124.375	261550.695	2130.155	0.118	-0.217	0.005			
M311	2706817.631	240488.048	772.031	2706817.573	240488.006	771.943	-0.058	-0.042	-0.088			
N911	2732118.291	262979.065	724.985	2732118.291	262979.065	724.985	0	0	0			
M325	2726372.287	250656.888	511.972	2726372.262	250656.904	511.944	-0.025	0.016	-0.028			
AGG1	-	-	-	2718929.519	260580.636	573.783	-	-	-			
AGG2	-	-	-	2713816.561	262829.781	1566.012	-	-	-			
AGG3	-	-	-	2718710.698	260559.137	554.152	-	-	-			
				第二次(97.09.1	27)							
N032	2711124.257	261550.912	2130.150	2711124.396	261550.678	2130.167	0.139	-0.234	0.017			
M311	2706817.631	240488.048	772.031	2706817.593	240487.989	771.955	-0.038	-0.059	-0.076			
N911	2732118.291	262979.065	724.985	2732118.291	262979.065	724.985	0	0	0			
AGG1	-	-	-	2718929.550	260580.623	573.819	-	-	-			
AGG2	-	-	-	2713816.583	262829.765	1566.021	-	-	-			
AGG3	-	-	-	2718710.729	260559.124	554.190	-	-	-			

表 2-11 中高山區 GPS 控制测量檢算成果(單位:公尺)

表 2-12 中高山區第一次已知控制點精度檢核表(單位:公尺)

基線名稱	實測基線長	坐標反算基線長	長度較差	參考標準	合格
N032>M311	21498.498	21498.634	-0.136	0.159	\checkmark
N032>M325	18739.604	18739.855	-0.252	0.142	×
N032>N911	21042.451	21042.554	-0.103	0.156	\checkmark
M311>N911	33852.239	33852.167	0.071	0.233	\checkmark
M311>M325	22040.698	22040.642	0.056	0.162	\checkmark
N911>M325	13596.047	13596.051	-0.004	0.112	\checkmark

第參章 資料獲取

第一節 光達系統率定

雷射掃描器坐標系與機身坐標系之間,常因安置上或時間上的影響, 造成不平行之偏差量,因此在作業過程或每次經過儀器拆裝過程後應適時 進行儀器系統率定以修正各偏差量方可得到正確雷射掃描成果。本計畫於 測區作業前後進行率定作業,以下將依 LEICA ALS50(亞新)及 Optech ALTM 30/70 (中興)兩者不同機型說明其系統率定方式。

- \ LEICA ALS50

(一)設備說明

本案採用之 LIDAR 設備為亞新國土科技公司於 2004 年 10 月 引進德國 LEICA 公司最新的空載雷射掃描系統 ALS50(諸元如表 3-1),本系統整合雙頻衛星定位(Global Position System, GPS)、慣 性導航儀(Inertial Measurement Unit, IMU)、雷射掃描儀及機上電腦 系統(computer rack)、4k×5k 彩色數位量測相機(Rollei AIC)等五部 份(如圖 3-1),以即時同步獲取大量的地形高程點空間資料及 RGB 可見光影像。系統除了有高脈衝率(83khz)、高掃描角度(75 度)、 飛行滾轉角度自動補償(Automatic adaptive roll compensation)及最 大海平面飛行高度(AGL 4000 公尺)等特色外,亦融合精心設計的 機載平台及率定程序,以提昇設備整體耐用性、操作方便性及掃描 精度。

38

表 3-1	ALS50	性能諸元表
1 2 1	110000	

項目	數據/工作方式
掃描型式	Oscillating, Mirror, Z-shaped
雷射脈衝率	83khz
雷射波長	1064nm
掃描頻率	70Hz
最大掃描角度(FOV)	75 度
操作高度(AGL)	200 公尺~4000 公尺
飛行滾轉角度補償	自動
回測次數	4
	Novatel(2Hz)/Applanix POS AV
GPS/IMU	510(200Hz)
DOLLEIAIC # 4 +1 +4	4080x5440 pixels, 9µm/pixel
KULLEI AIC <u></u> 教祉相機	50mm metric lens
掃描儀尺寸/重量	37W*56L*24Hcm/30kg
控制電腦尺寸/重量	48W*52L*64Hcm/64kg
最大工作電力需求	28V/35Amps
設備擁有者	AG&G 亞新國土科技

圖 3-1 LEICA ALS50 設備圖

(二)光達系統率定

系統之率定校正分為:出廠前之 Scanner Correction 及安裝後 之 Boresight Calibration,並須配合率定場之地面控制資料以完成系 統之率定。

1、率定場設置

本團隊於台中港港務大樓附近重劃區設立中部率定場(如圖 3-2),以直接水準測量引測附近一等二級水準點至測區,建 立 254 點含正高資料及使用 GPS RTK 建立其橢球高資料,每 一點間距約 10 公尺。

Use	Number	Easting	Northing	Known Z	Laser Z	Dz
	19	200881.74	2681651.00	23.577	23.600	+0.023
	20	200872.51	2681654.63	23.562	23.660	+0.098
	21	200863.25	2681658.29	23.570	23.630	+0.050
	22	200853.95	2681661.98	23.580	23.700	+0.120
	23	200844.61	2681665.64	23.637	23.780	+0.143
	24	200835.39	2681669.53	23.767	23.810	+0.043
	25	200826.41	2681673.80	23.858	23.920	+0.062
	26	200817.28	2681677.98	24.058	24.140	+0.082
	27	200808.07	2681681.63	24.172	24.270	+0.098
	0.51.1	1212022123	909.000900403	6726768	2.10.000	1000
Average	magnitude	0.0458		Average	dz	+0.0330
Std devi	ation	0.0506		Minimun	n dz	-0.1140
Boot me	an source	0.0604		Maximu	m dz	+0.2620

圖 3-2 LEICA ALS50 率定場及率定結果

2、掃描器常數校正(Scanner Correction)

掃描儀在出廠前已先進行率定工作,主要包含掃描中心與 IMU之偏心量、IMU之率定、反射鏡旋轉角之率定等,並提供 相關參數值,便於後續 Boresight calibration 及 raw data 解算使 用。

3、率定場率定(Boresight Calibration)

Boresight Calibration 是以不同之航向、角度與高度之 LIDAR 掃描資料,利用共軛點之 intensity image、laser point 與

率定場之真實坐標進行計算,以求取 IMU 偏移值之系統誤差值。

率定時先以表 3-2 之飛航參數(航高 750 公尺/1250 公尺)對 率定場進行往返掃描,再以垂直前次飛行之航向同樣進行往返 之掃描(如圖 3-3 與圖 3-4);其中並配合 Leica Attune 軟體進行 地面共軛點的選取與量測分析,求得 IMU 偏移之系統誤差值 (如圖 3-5)。

表 3-2 Boresight Calibration 飛航參數表(ALS50)

Scanner Setup		Cross1	Cross2
Scan FOV (full angle)	degrees	45.00	45.00
Terrain Elevation AMSL (minimum in survey area)	meters	20.00	20.00
Terrain Elevation AMSL (maximum in survey area)	meters	23.00	23.00
Nominal Flying Altitude AMSL(實際飛航高度)	meters	750.00	1250.00
Airspeed	knots	120.00	120.00
Laser Pulse Rate Used	Hz	80000.00	66000.00
Scan Rate	Hz	34.00	34.00
Resulting Scan Pattern			
Total Swath Width (nominal, at lowest terrain elev'n)	meters	621.32	1035.53
Point Density (average)	pts/meter^2	2.09	1.03
Point resolution (average)	meters	0.48	0.97

圖 3-3 率定飛航規劃圖(ALS50)

🚾 內政部國土測繪中心

圖 3-4 台中港區率定場實際飛航航跡圖(ALS50)

Tome 0.13 dt 19900 /f 19730 Dome 0.13 dt 2900 /f 174 00 Tome 0.13 dt 2900 /f 174 00 Tome 0.13 dt 2900 /f 174 00 Image: Control at 1900 /f 19730 Image: Control at 1900 /f 19730 Image: Control at 1900 /f 19730 Image: Control at 1900 /f 19730 Image: Control at 1900 /f 19730 Image: Control at 1900 /f 19730 Image: Control at 1900 /f 19730 Image: Control at 1900 /f 19730 Image: Control at 1900 /f 19730 Image: Control at 1900 /f 19730 Image: Control at 1900 /f 19730 Image: Control at 1900 /f 19730 Image: Control at 1900 /f 19730 Image: Control at 1900 /f 19730 Image: Control at 1900 /f 19730 Image: Control at 1900 /f 197300 Image: Control at 1900 /f 19730 Image: Control at 1900 /f 197300 Image: Control at 1900 /f 197300 Image: Control at 1900 /f 19700 Image: Control at 1900 /f 197300 Image: Control at 1900 /f 19730 Image: Control at 1900 /f 197300 Image: Control at 1900 /f 197300 Image: Control at 1900 /f 197300 Image					Ï		1		
Las Attace Laborative Solution Rest of the second solu	ac 0.13 df: 1909.00 d7: 1547.00	Zoom 0 13 dl 221 00 dl 2022 00	Zoom: 0.13 dl: 95.00 in	7:1478.00	Zoon	6.13 at -329.00 At	1734.00	-	
Joseph 10 (1/40100 /1/-31960) Joseph 10 (1/167500) Joseph 10 (1/1600 /1/-31960) Joseph 10 (1/16760) Joseph 10 (1/1600 /1/-31960) Joseph 10 (1/1600 /1/-31960) Joseph 10 (1/1600 /1/-31960) Joseph 10 (1/1600	(m) 🖬 🖬 🕅	Stor.).	Attene Interactio	e Solution					চা
Image: Second 0.13 dX M01 00 rT 1075 00 The food Resistant Image: Second 0.13 dX M01 00 rT 1075 00 Image: Second 0.13 rX M01 00 rT 1075 00 Image: Second 0.13 rX M01 00 rT 1075 00 Image: Second 0.13 rX M01 00 rT 1075 rX M01 00 rT 1075 00 Image: Second 0.13 rX M01 00 rT 1075 rX M01 00 rT 1		A STATE	Solution Roll: [-0.04423 Pitch: [0.010274 Heading: [-0.00122 Torsion: [-15500.0	832 +4 (0 541 +4 (0 554 +6 (0 1 +4 (4)	00002949 rad 00004369 rad 00016979 rad 8 tra	inne Number of inne Aport inne Num to	deretican: (7 micai inference: (0.8 ber of obs wed: (148 (* Rediana (* 1	ReCale 291 Degrees	-
Zone: 0.13 Zone: 0.110 Zone:	The Market		Tie Point Residuals		M.		1000	1.7 0.12	
Zom: 0.13 & 0.100 (7.1790) Zom: 0.13 & 000 (7.17700) Line: 10		art	hID	Nun Obs	ResX (m)	Reil' (n)	ResZ (m)	Um	-
Josen 0.13 0C 140 00 /7 - J19.00 Josen 0.13 0C 140 00 /7 - J175 00 Low J Low JD Low JD Low J Low JD Low JD Low JD Low JD Low JD	11 44		2	6	0.321	0.649	0.110	-	
Ater. 3 Line. 3 <thline. 3<="" th=""> <th< td=""><td>om 0.13 dl 1401 00.77 -319.00</td><td>Zoom 0.13 dl 881.00 dl 1875.00</td><td>3</td><td>6</td><td>0.835</td><td>0.648</td><td>0.129</td><td></td><td></td></th<></thline.>	om 0.13 dl 1401 00.77 -319.00	Zoom 0.13 dl 881.00 dl 1875.00	3	6	0.835	0.648	0.129		
Source Constraint Constraint<	Contraction of the second s	The same second s	4	6	0.448	0.514	0.027	1	
7 4 0.003 0.867 0.072 • 8 6 0.725 0.629 0.045 • 9 6 0.725 0.629 0.045 • 10 4 0.635 0.668 0.071 • 10 4 0.635 0.668 0.071 • 10 4 0.635 0.668 0.071 • 13 6 0.386 0.390 0.085 • 13 6 0.217 0.551 0.075 •		Stat. 10 💽 🖸 🔀	6	6	0.461	0.490	0.016	4	
8 6 0.725 0.669 0.045 • 9 6 0.471 0.410 0.100 • 10 4 0.055 0.668 0.071 • 10 4 0.055 0.668 0.071 • 11 6 0.493 0.312 0.038 • 12 6 0.366 0.390 0.085 • 12 6 0.217 0.551 0.075 •			7	4	0.303	0.867	0.072	1	
9 6 0.471 0.430 0.100 • 10 4 0.035 0.668 0.071 • 11 6 0.493 0.392 0.036 • 12 5 0.366 0.390 0.085 • 13 6 0.217 0.551 0.075 •			8	6	0.725	0.629	0.045		
10 4 0.635 0.668 0.071 11 6 0.489 0.332 0.038 12 6 0.366 0.390 0.085 13 6 0.217 0.531 0.075 Average Resited Values X. [0.493 Y. [0.514 Z. [0.055		A LOP TON	9	6	0.471	0.430	0.100	1	
11 6 0.493 0.332 0.038 12 6 0.366 0.390 0.085 > 13 6 0.217 0.551 0.075 > Average Residual Values x. 0.493 Y. 0.514 Z. 0.055	110		10	4	0.635	0.688	0.071	4	
12 6 0.366 0.390 0.065 13 6 0.217 0.551 0.075 Average Resulted Values X: [0.495 Y: [0.514 2: [0.055	State and State		н	6	0.493	0.332	0.038	4	
1.3 6 0.217 0.551 0.075 Average Readual Values X: 0.495 Y: 0.514 Z: 0.055		1 state	12	6	0.366	0.390	0.065	1	
Average Resultad Values X: [0.495 Y: [0.514 Z: [0.055	10 61		u u	6	0.217	0.551	0.075	1	-
X 0.495 Y 0.514 Z 0.055			Average Rendual V	duri					
				X: 0.495	Y: 0.514	z.)	0.055		
Dose Dose		1 to 111	Save Solution					C	Done

圖 3-5 LEICA ATTUNE 率定參數解算畫面(近空三觀念解算)

(三)作業流程與內容

1、飛航規劃及光達掃描

本計畫在飛航規劃部分,分別在96年11月23日、12月 31日、97年3月4日、4月8日及5月3日於台中港區率定場 執行率定作業,共飛行750公尺及1250公尺航高各四條對向來 回航線,以進行掃描儀器率定校正,其系統掃描參數如表3-2。

2、GPS基準站設置及觀測

GPS 基準站選用內政部一等一、二級水準點 X105、 X106,G002 及清泉崗機場本點 G、e-GPS 追蹤站 TACH,FCU1 為本率定場 GPS 基準參考站並於飛航當天同步觀測接收每秒 一筆資料。GPS 觀測時段表如下表 3-3。

日期	點號	儀器型號	天線	觀測	觀測	觀測	天線高
				開始	結束	間隔	(m)
	X105	ASHTECH Z-X	GEODETIC IV	09:48	13:47	1sec	1.777
96.11.23	X106	ASHTECH Z-X	GEODETIC IV	08:45	13:47	1sec	1.381
	G	LeicaSR530	Aeroelement L1/L2	00:58	08:19	1sec	0
	G	LeicaSR530	Aeroelement L1/L2	02:17	06:20	1sec	0
96.12.31							
	TACH	ASHTECH Z-X	GEODETIC IV	00:00	2359	1sec	0
	TACH	TRIMBLE	Zephyr Geodetic	00:00	23:59	1sec	0
97.03.04	FCU1	TRIMBLE	Zephyr Geodetic	00:00	23:59	1 sec	0
	G	LeicaSR530	Aeroelement L1/L2	00:00	09:42	1sec	0
	X105	ASHTECH Z-X	GEODETIC IV	14:09	18:21	1sec	1.275
97.04.08							
	G002	ASHTECH Z-X	GEODETIC IV	16:05	18:22	1sec	1.479
	TACH	TRIMBLE	Zephyr Geodetic	00:00	23:59	1sec	0
97.05.03							
	FCU1	TRIMBLE	Zephyr Geodetic	00:00	23:59	1sec	0

表 3-3 率定場 GPS 基站觀測時段表(ALS50)

3、GPS/IMU解算及精度評估

利用飛機動態觀測量(0.5sec/epoch)及 GPS 基站靜態觀測量 (1sec/epoch) 同步進行空中基線解算,解算軟體採用 Novatel/Waypoint GrafNav 8.1 計算。茲將歷次率定飛航軌跡及 GPS 計算成果如圖 3-6 至圖 3-10,其中 GPS PDOP 值<4,GPS 正反算精度評估<20 公分,符合合約要求。

圖 3-6 96 年 11 月 23 日飛航軌跡及 GPS 解算成果(ALS50)

圖 3-7 96 年 12 月 31 日飛航軌跡及 GPS 解算成果(ALS50)

圖 3-8 97 年 3 月 4 日飛航軌跡及 GPS 解算成果(ALS50)

圖 3-9 97 年 4 月 8 日飛航軌跡及 GPS 解算成果(ALS50)

些 內政部國土測繪中心

圖 3-10 97 年 5 月 3 日飛航軌跡及 GPS 解算成果(ALS50)

4、Pospac Pospro解算求解軌跡檔(sbet)

(1)GPS Level arm輸入,誤差不得大於 10 公分。

(2)解算後GPS level arm 誤差值應趨近於 0。

(3)解算取得sbet檔進行後續率定參數解算。

5、率定參數解算(空三解算概念)

利用 Leica 公司 Attune 軟體針對各不同對向來回航線,量 測共約 30 點以上之共軛雷射反射強度點(每個點最好有四重點 分布於不同航帶),以進行掃描儀器率定參數解算校正值如下圖 3-11。

Roll:	0.00000397	4	H-	0.00002760	radians	Number of	ReCalculate		
Pitch:	-0.00033540	+	H-	0.00003165	radians	radians Aposteriori reference: 0.6719			
leading:	0.00002846	4	++-	0.00016167	radians	Num	ber of obs used: 173	t.	
Torsion:	-10000.0	- +	++-	0.0	units		🖲 Radians 🔿 I	Degrees	
ie Point F	Residuals								
Pt ID	N	um Obs		ResX (m)	Re	sY (m)	ResZ (m)	Use	•
	1	4		0.267		0.442	0.038	1	
1	2	8		0.227		0.170	0.046	v	
	3	6		0.490		0.361	0.066	1	
8	4	8		0.359		0.529	0.076		
8	5	6		0.954		0.417	0.039	-	_
-	7	7		0.604		0.533	0.034	1	
l.	8	8		0.324		0.379	0.081	1	
1	9	8		0.416		0.545	0.071		
8	10	8		0.498		0.691	0.032	-	
	11	8		0.231		0.677	0.033	-	
3	12	8		0.651		0.623	0.026	-	
-	13	8		0.199		0.417	0.053		
verage R	esidual Values	;		20 ¹			20 -	All and a second second	
7	Х	0.435		¥: 0.4.	34	Z:	0.049		

圖 3-11 97 年 3 月 4 日率定參數解算校正值(ALS50)

6、率定精度評估

(1)率定場地面檢核點施測

於地面施測 520 個 GPS RTK 地面檢核點,正高高程引測 自 X105,達到平面<5 公分,高程符合±7mm√k 標準,如圖 3-12 為率定場控制點位分佈圖。

圖 3-12 率定場控制點位分佈圖(ALS50) (2)重解所有航線las檔並與地面已知 520 個控制點做比較

利用 520 個已知控制點與雷射掃描點比較後精度評估如 圖 3-13 至 3-17。高程精度皆可達到標準偏差(std deviation)小 於合約要求 10 公分,故可確認率定結果符合預期。

Cont <u>F</u> ile	rol report - G:\I <u>S</u> ort	BORESIGHT_DA	TA\台中港率定	Ξ場\台中港率	定場高程.txt	<u> </u>
Use	Number	Easting	Northing	Known Z	Laser Z	Dz
	1	201042.45	2681572.92	23.151	23.150	-0.001 📥
	2	201034.47	2681578.78	23.374	23.380	+0.006 💻
	3	201026.43	2681584.81	23.589	23.610	+0.021
	4	201018.45	2681590.76	23.792	23.800	+0.008
	5	201010.20	2681596.50	23.949	23.960	+0.011
	6	201001.98	2681602.14	23.933	23.930	-0.003
	7	200993.27	2681607.00	23.757	23.750	-0.007
	8	200984.01	2681610.66	23.669	23.680	+0.011
	9	200974.63	2681614.36	23.632	23.640	+0.008
						•
Average	e magnitude	0.0225		Average	: dz	+0.0026
Std dev	riation	0.0287		Minimum	n dz	-0.1220
Root m	ean square	0.0288		Maximur	n dz	+0.1220
<u>S</u> ho	ow location					<u>I</u> dentify

圖 3-13 96 年 11 月 23 日率定場精度評估

內政部國土測繪中心

File 50	re						
Use	Number	Easting	Northing	Known Z	Laser Z	Dz	
	234	200647.02	2681717.94	23.630	23.650	+0.020	-
\boxtimes	235	200637.64	2681721.64	23.647	23.690	+0.043	
\boxtimes	236	200628.35	2681725.33	23.642	23.630	-0.012	
\square	237	200619.95	2681728.65	23.625	23.610	-0.015	
\square	238	200609.72	2681732.70	23.623	23.610	-0.013	1
	239	200600.48	2681736.36	23.659	23.580	-0.079 🕇	-
\square	240	200591.14	2681740.04	23.688	23.700	+0.012	
\square	241	200581.83	2681743.72	23.674	23.660	-0.014	
\square	242	200572.57	2681747.38	23.642	23.650	+0.008	
	243	200563.21	2681751.07	23.650	23.640	-0.010	
Averag	je magnitude	0.0458		Average	e dz	+0.0127	
Std dev	/iation	0.0559		Minimun	n dz	-0.1570	
Rootm	ean square	0.0572		Maximu	m dz	+0.1580	
Sh	ow location				<u></u>	Identify	

圖 3-14 96 年 12 月 31 日率定場精度評估

<u>Fi</u> le <u>S</u> o	rt					
Use	Number	Easting	Northing	Known Z	Laser Z	Dz
	130	200591.55	2681964.65	23.817	23.850	+0.033 🔺
	131	200595.28	2681973.89	23.829	23.930	+0.101
\square	132	200598.98	2681983.14	23.826	23.890	+0.064
	133	200602.71	2681992.38	23.798	23.840	+0.042
	134	200606.43	2682001.61	23.792	23.810	+0.018
	135	200610.17	2682010.87	23.783	23.790	+0.007
	136	200613.89	2682020.14	23.772	23.870	+0.098
	137	200617.65	2682029.48	23.781	23.820	+0.039
	138	200621.38	2682038.73	23.719	23.740	+0.021
	139	200625.07	2682047.89	23.703	23.690	-0.013
Averag	je magnitude	0.0392		Average	e dz	+0.0246
Std dev	viation	0.0423		Minimun	n dz	-0.1250
Rootm	ean square	0.0489		Maximu	m dz	+0.1410
She	owlocation					Identify

圖 3-15 97 年 3 月 4 日率定場精度評估

	1 2 3 4 5	201042.45 201034.47 201026.43 201018.45 201010.20	2681572.92 2681578.78 2681584.81 2681590.76	23.151 23.374 23.589	23.130 23.380 23.550	-0.021 +0.006
	2 3 4 5	201034.47 201026.43 201018.45 201010.20	2681578.78 2681584.81 2681590.76	23.374 23.589	23.380 23.550	+0.006
	3 4 5	201026.43 201018.45 201010.20	2681584.81 2681590.76	23.589	23.550	0 0 20
	4 5	201018.45	2681590.76			-0.039
	5	201010.20		23.792	23.790	-0.002
	C	201010.20	2681596.50	23.949	23.910	-0.039
	ъ	201001.98	2681602.14	23.933	23.900	-0.033
X	7	200993.27	2681607.00	23.757	23.710	-0.047
\boxtimes	8	200984.01	2681610.66	23.669	23.640	-0.029
\times	9	200974.63	2681614.36	23.632	23.630	-0.002
\boxtimes	10	200965.39	2681617.98	23.647	23.640	-0.007
verage ma	agnitude	0.0440		Average	e dz	-0.0399
td deviatio	in	0.0395		Minimun	n dz	-0.2540
oot mean	square	0.0561		Maximur	n dz	+0.0570

圖 3-16 97 年 4 月 8 日率定場精度評估

NLSC

內政部國土測繪中心

Use	Number	Easting	Northing	Known Z	Laser Z	Dz
	509	200369.14	2681841.14	23.955	23.910	-0.045
\square	510	200750.48	2682368.67	23.498	23.440	-0.058
\boxtimes	511	200581.64	2681949.51	23.904	23.880	-0.024
\boxtimes	512	200645.57	2682108.36	23.670	23.600	-0.070
\boxtimes	513	200223.68	2681898.63	23.957	23.940	-0.017
\boxtimes	514	200514.83	2681783.60	24.021	23.900	-0.121
\boxtimes	515	200451.40	2681626.03	24.227	24.190	-0.037
\boxtimes	516	200369.20	2681421.99	24.454	24.380	-0.074
\boxtimes	517	200313.67	2681284.09	24.533	24.510	-0.023
\square	518	200255.35	2681139.25	24.144	24.090	-0.054
Average magnitude		0.0495		Average	e dz	-0.0411
Std deviation		0.0458		Minimur	n dz	-0.1610
Root mean square		0.0615		Maximu	m dz	+0.1020
	wlocation				P	dentify

圖 3-17 97 年 5 月 3 日率定場精度評估

二、Optech ALTM 30/70

(一)設備說明

中興之空載雷射掃描整體系統包括雷射掃描系統硬體元件、飛 行載台(固定翼飛機或直昇機)、GPS 與 IMU 元件及數據處理軟體 等整合構成作業系統。本計畫所用空載雷射掃描儀為加拿大 Optech 公司生產型號 ALTM 30/70 雷射掃描儀,其規格如表 3-4 所 列。雷射掃描系統結合雷射測距、GPS 及 IMU 等技術,能快速獲 得掃描點三維坐標及反射強度。空載雷射掃描作業在飛行前應進行 詳細的飛行計畫安排,包括飛行航線、航帶重疊度、飛行高度等之 規劃及確定,此外須針對目的需求設計掃描參數,掃描後之數據需 進行後續資料處理及相關應用,目前大多以生產數值高程模型為主 要目的。

(二)光達系統率定

1、率定場地點

完整 ALTM 30/70 系統之率定需要兩個分別的控制場,分別為 率定建築物及控制場。建築物須至少一直且無遮蔽邊大於 80 公尺 長,高度需高於 5 公尺且屋頂應儘量平坦;須於屋頂邊緣及角落測 設控制點,用於率定 ROLL 及 PITCH。另一理想之率定控制場需 包含大量、已知精確坐標且方格狀排列於一大且平坦之區域,至少 如跑道般 1000 公尺長及 20~50 公尺寬,方格點之分佈趨於 5~10 公尺,用於率定全掃描時之相對及絕對高程雷射點資料。此次擇定 之率定場地位於彰濱工業區內,率定建築物及點位分佈如圖 3-18; 而擇定之控制場地及施測後之概略點位分佈詳如圖 3-19。

System Type	ALTM 30/70			
Serial numbers	Sensor Head 04SEN152			
	Control Rack 04CON149			
Operating altitude	80 – 3000 m nominal			
Horizontal accuracy	$1/2000 \text{ x altitude; } 1 \sigma$			
Elevation accuracy	< 15 cm @ 1200 m; 1 σ			
	< 25 cm @ 2000 m; 1 σ			
	< 35 cm @ 3000 m; 1 σ			
Range capture	4 range measurements for each pulse including last			
Intensity capture	12 bit dynamic range for each measurement			
Scan frequency	Variable; maximum 70 Hz			
Scan angle	Variable from 0 to $\pm 25^{\circ}$, in increments of $\pm 1^{\circ}$			
Scanner Product	Scan Angle x Scan Frequency ≤ 1000			
Roll compensation	Nominal \pm 5°, depending on scan setting (e.g. \pm 20°			
	allows $\pm 5^{\circ}$ compensation; $\pm 15^{\circ}$ allows $\pm 10^{\circ}$			
	compensation)			
Swath width	Variable; 0 to 0.93 x altitude m			
Position Orientation	Applanix – Optech custom POS including internal 12			
System	channel dual frequency 2 Hz GPS receiver			
Laser repetition rate	33 kHz (maximum AGL 3 km)			
	50 kHz (maximum AGL 2 km)			
	70 kHz (maximum AGL 1.5 km)			
Data storage hard drive	Ruggedized removable hard drive			
Beam divergence	Dual 0.31 mrad (1/e) or 0.83mrad (1/e)			
Eye safe range	80 - wide, unaided			
	400 - wide, aided and narrow unaided			
	500 - narrow profiling unaided			
	1300 - narrow aided.			
Laser classification	Class IV (FDA CFR 21)			
Power requirements	28 V, 35 A			
Operating temperature	Control rack: 10 – 35° C			
	Sensor head: -20 – 35° C			
Humidity	1 – 95% non-condensing			

表 3-4 ALTM 30/70 空載雷射掃描儀儀器規格

圖 3-18 建築物率定場現況

圖 3-19 跑道率定場點位分佈圖

2、定翼機率定作業

於96年12月3日及97年3月16日執行率定作業,於率 定場進行率定作業修正偏差量,以確保光達點雲的精確度。此 率定報告中,乃針對本次率定計畫中的相關過程與統計結果, 作詳盡的紀錄與說明。

(1)Lever Arm率定

感測器率定分為兩部分,第一部份乃感測器與 GPS 天線的偏心量率定,以經緯儀測量而求定;第二部分是實際以飛行 掃描率定場,以求定感測器與 IMU 及 GPS 的偏心量。

為獲取穩定及可靠之 LIDAR 掃描成果,首先須求得 ALTM 30/70 雷射掃描儀之儀器偏心常數(即 ALTM 掃描器與 GPS 天線間之偏心常數)及飛機姿態角(IMU 紀錄之 PITCH、 ROLL 及 HEADING)與儀器本身之 OFFSET(掃描鏡轉動角度 之誤差,亦即儀器紀錄之掃描鏡角度與實際獲得之資料有角度 誤差存在)、SCALE(掃描獲得之雷射點資料與實際地面獲得之 資料間有比例問題存在)與 ELEVATION(掃描獲得之雷射點資 料與實際地面獲得之資料間有固定高程差之問題存在)之率定 常數。

(2)儀器偏心常數之求得

偏心常數係介於 GPS 接收天線之中心與 ALTM 30/70 系統之雷射掃描感應箱上參考位置之偏心常數(如圖 3-20(a))。

圖 3-20 ALTM 30/70 系統之雷射掃描感應箱示意圖

施測方式係以經緯儀分別測得機鼻、機尾、雷射掃描感應 頭之參考位置、GPS 天線中心點及雷射掃描感應箱上之4個 邊角(如圖 3-20(b)),此 OFFSET 值係為相對位置關係(如圖 3-21);因此,測機鼻及機尾以獲得X軸,並依右手定則決定 相對應之Y及Z軸,藉以計算偏心常數值(如表 3-5)。

圖 3-21 ALTM 30/70 掃描器與 GPS 天線間之相對位置關係

以此表之偏心常數值代入 PosProc 進行雷射點軌跡與 GPS 資料結合,復以 PosProc 軟體內之 GPS Lever Arms 在 X、Y、 Z 三方向之差值反覆迭代計算至最後使其在 X、Y、Z 方向之 差值小於 5 公分以獲得定翼機之偏心常數值,如圖 3-22。

表 3-5 偏心常數值計算表(ALTM 30/70)

LEVERARM SURVEY		Air	craft Type :		BN2	(Call No.:	B-68802		Survey Date: 4-Dec-07
		AL	ТМ Туре:		30/70	ç	Serial No.:	04SEN149		
SURVEY ASSUMPTIONS & I	<u>METHODS:</u>									
 Aircraft is supported in typic Drizm height is constant for 	al inflight attitu	ide				r)ran and dra	GPS A	ntenna & Sei	nsor Head Location
2) All observables can be obta	all UDSEIVADIE	ilo occupied ei	ito			L	Jiag and dio	p icons to illus	andle antenna	position relative to sensor
 All UDServables call be upla Anith angle must be 0 deg 	rees (i.e. horiz	on is 90 or 27	() ()				Г			∧ GPS antenna
 5) Instrument azimuth is set to 	increase cloc	kwise	0)					Ω		Sensor Head
 Total horizontal travel of 36 	0 dearees (not	: 400!)						والمحموم	Co	mments:
 Sensor angle can be record 	led from pitch	reading when	sensor turne	ed on and	POS aligned		l	∆		
, 0		Ū			Ũ					Sensor to under of the
								U	a	antenna.
GPS ANTENNA PHASE CEN	ITER (m):	X = 0		Y = 0		Z = -	0.004			
(righthand rule)										
	/ \	N/			_					
OCCUPIED SITE COORDINA	ATE (m):	X = 0	-	Y = 0	_	Z = ()		L	
		ONTAL ANGLE			VEDTIC			SLOPE	DISTANCE	
OBSERVABLES	Degrees	Minutes S	econds		Degrees	Minutes	Seconds	(meters)	DISTANCE	
NOSE	75	50	23.5	1.32	89	42	29 1	57 17.056		
TAIL	113	23	19.5	1.98	87	48	3 1	.53 14.018		
SENSOR R.P.	88	55	27.5	1.55	90	31	3 1	.58 15.085		
GPS ANTENNA	88	15	23	1.54	86	39	42 1	51 15.163		
SENSOR CORNER 1	88	14	54.5	1.54	90	46	18 1	58 15.021		
SENSOR CORNER 2	88	36	24	1.55	90	45	22 1	.58 15.251		
SENSOR CORNER 3	89	34	26	1.56	90	45	9.5 1	58 15.142		
SENSOR CORNER 4	89	14	2.5	1.56	90	46	16 1	.58 14.912		
A - include of Alignment Disconting		00 7457								
Azimuth of Aircraft Direction :		20./15/ deg	rees						Samaar O	iontation
Length of Allchait (hose to tail)		10.400 me	iers		v		v	(Elight Di	Sensor UI	her arrow on concor head)
OFFSET TO ELIGHT LINE		///C	meters)	(Fag	n ting: meters)	(I Northina: meter	(Filght Di	1	2
SENSOR		20.5220	4.153	(E0.	-0.014	(4.153	5)		
GPS ANTENNA		20.7636	3.970		0.003		3.970			•
SENSOR CORNER 1		22.3262	4.014		0.113		4.013			
SENSOR CORNER 2		18.7760	4.015		-0.136		4.013			
SENSOR CORNER 3		18.9921	4.294		-0.129		4.292		4	3
SENSOR CORNER 4		22.2847	4.294		0.118		4.292			
	V (In Flight)	V (C*	non Flight)	-	lovetion/7	0:-		A!4h	Ditab Anala	Dell Annie
SENSOR R P TO-	(motors)	1 (0/0	notore)	-	(motors)	DIII	(motors)	(dogroop)		dogroos clock wise)
GPS ANTENNA	0 183	י) -	0.017		-1 015	(corners)	(incleis)	(uegiees)	(uegrees) (uegrees clock-wise
SENSOR CORNER 1	0.140		0.127		0.066	1 - 2 =	0.249			-0.2402
SENSOR CORNER 2	0.140	(0.122		0.065	2 - 3 =	0.279	22.1078	0.2143	
SENSOR CORNER 3	-0.139	(0.115		0.063	3 - 4 =	0.247			0.4148
SENSOR CORNER 4	-0.139	-	0.132		0.064	4 - 1 =	0.280	21.6880	-0.3305	
									based on corner	measurements
SENSOR ANGLE (pitched fo	orward +)		0 deg	rees	0					
CORRECTED OFFSET	X (In Flight)	Y (Cr	oss Flight)	F	levation/7					
	(meters)	1 (0/(neters)		(meters)					
R.P. to GPS:	0.183	-	0.017		-1.015					
Ref to R.P.	-0.051	-	0.030		-0.488					
Ref to GPS:	0.132	-	0.047		-1.503					

圖 3-22 GPS Lever Arms 在 X、Y、Z 各方向之差值

(三)作業流程與內容

1、率定飛行作業程序

(1)PITCH值修正

在雷射掃描坐標系第一軸(X^S)與載體坐標系第一軸(X^b)之間的偏差量,也就是兩個坐標系之間第二軸的旋轉角,便是俯仰安置角,如圖 3-23(a)所示。

利用飛行高度為離地高 800 公尺,ALTM 系統之設定掃描 頻率為 70KHz,掃描鏡面之擺動頻率為 0Hz,掃描視角之角 度為 0 度。飛行之方式為垂直於率定建築物測定屋線之方向, 由於儀器本身之設定值為 0 度、0Hz,故如存在此 PITCH 值, 掃得之雷射點之足跡分佈圖如圖 3-23(b)所示,利用固有建物 坐標比對雷射點資料,將不符合者(即將過偏右或偏左者矯正 回來)重複修正下,直到兩者偏差量降為最小,而達到率定結 果。由於雷射點(圖 3-23(b)中,紅色點處)計算得之高程已相當 於屋頂實測得之屋頂平面高程,是故求出平均誤差值 X,則 PITCH 常數為 TAN-1(X/H),其中 H 為飛航高度。

圖 3-23 PITCH 偏差量(a)與 PITCH 率定方式(b)示意圖 (2)ROLL值修正

所謂的側向傾斜安置角是指雷射掃描坐標系第二軸(Y^s) 與載體坐標系第二軸(Y^b)之間的偏差量,也就是兩個坐標系之 間第一軸的旋轉角,如圖 3-24(a)所示。

飛行高度為離地高 800 公尺,ALTM 30/70 系統之設定掃 描頻率為 70KHz,掃描鏡面之擺動頻率為 20Hz,掃描視角之 角度為25度。飛行之方式為平行於率定建築物測定屋線之方向,由於儀器本身之設定值為25度、20Hz,故如存在此ROLL 值,掃得之雷射點之足跡分佈圖如圖 3-23(b)所示。利用 Scan 方式掃描建物,在相對其建物邊緣呈現出偏移的現象,作 ROLL 的修正。由於雷射點(圖 3-24(b)中,紅色點處)計算得之 高程已相當於屋頂實測得之屋頂平面高程,是故求出平均誤差 值 X,則 ROLL 常數為 TAN-1(X/H),其中 H 為飛航高度。

圖 3-24 ROLL 偏差量(a)與率定方式(b)示意圖 (3)SCALE值修正

將飛行高度設為離地高 800 公尺,ALTM 系統之設定掃描 頻率為 70KHz,掃描鏡面之擺動頻率均為 50Hz,掃描視角均 為 25 度。飛行之方式為垂直於率定跑道之方向,故如存在此 SCALE 值,掃得之雷射點之足跡分佈圖如圖 3-25 所示。利用 實測現地之剖面線與掃描獲取之雷射點所構成之剖面線進行 比較,以獲得 SCALE 常數值,並以此常數輸入計算改正之。

2、精度評估

(1)GPS精度評估

獲取好的光達點雲資料,首先必須接收到的 GPS 資料為 品質良好的。大致而言,影響 GPS 資料的因子諸如下列所示:

A、每次接收的衛星數至少4顆以上。

B、接收的衛星高度需高於地面 15°。

C、衛星的幾何分佈需是良好的(如:PDOP < 4)。

D、地面站與飛機飛行軌道距離不能超過30公里。

而上述諸因子中,若有一個或更多的因子不符合條件時, 便會影響所接收的 GPS 精度,繼而影響到 ALTM 拍攝的結果。 (2)水平精度

光達點雲比對地面的水平精度,在率定過程中是利用掃描 建物的邊緣獲得建物邊緣座標,再將之比對真實建物座標,其 中 PITCH 值可偵測 x 方向精度,故反覆測試 PITCH 值變化 量達收斂理論精度約為 0.004°範圍內時,即代表完成率定的工 作。而 ROLL 值可偵測 y 方向精度,故利用掃描過一條平坦 和堅硬的地表(如:馬路),將光達點雲資料座標比對馬路的真 實座標,反覆測試至 ROLL 值變化量可收斂到理論精度約為 0.004°範圍內時,即代表高程偏差量已修正完成達率定工作。

(3)高程精度

光達點雲的高程精度,是將率定後的 PITCH、ROLL 新值 帶入計算出新的成果,比對一條平坦和堅硬的地表(如馬路), 將雷射點分佈軌跡比對此對馬路,作高程精度分析。

3、率定成果與報告

(1)GPS成果

將處理 GPS 過程結果與相關資料表列於下表 3-6 及表 3-7 所示。

Flight	Average Baseline Length (km)	Maximum Baseline Length (km)	Avg. PDOP	Max. PDOP	Processing Mask Angle (degrees)	Ambiguities Fixed both directions	GPS Jam-ming	L2 used for Ion. Correction
96.12.03	5.6	13	1.46	1.46	0	Yes*	no	Yes
97.03.16	6	19	1.1	2.40	0	Yes*	no	Yes

表 3-6 GPS 處理成果(ALTM 30/70)

表 3-7 96/12/3 GPS 基站資訊(ALTM 30/70)

	Monument Description:											
GPS Receive	r Ty	pe:	Tri	mble 5700	Ep	Epoch Interval: 1 Hz						
Antenna Typ	e:	Trim	ble	Geodetic Zephyr	El	evation	Masl	k: 0 degrees				
					Ob	Observation Type: Static						
Station1:												
R003	Ν	24	4	35.50462	Е	120	23	34.19405	h	22.943		
R002	Ν	24	4	35.51666	Е	120	23	34.87590	h	22.954		

(2)水平精度成果

利用 PITCH、ROLL 值變化量達收斂理論精度約為 0.01° 範圍內時,即代表完成率定的,故下方針對 PITCH、ROLL 變化作統計與列表(如表 3-8 及表 3-9),且將新的率定值結果 針對真實地面坐標作水平上的分析(如圖 3-26)。成果顯示收斂 精度皆已符合 0.01°內。

表 3-8 率定過程中 PITCH 值變化表(ALTM 30/70)

日期	率定計算次數	1	2	3(FINAL)
96.12.03	PITCH	0	-0.0650	-0.0638
97.03.16	PITCH	-0.0660	-0.0606	-0.0608

表 3-9 率定過程中 ROLL 值變化表(ALTM 30/70)

日期	率定計算次數	1	2	3(FINAL)
96.12.03	ROLL	0	-0.0230	-0.0239
97.03.16	ROLL	0.0206	0.0209	0.0209

(a)96.12.03

(b)97.03.16

圖 3-26 系統率定水平誤差分析統計表(ALTM 30/70)

(3)高程精度成果

光達點雲的高程精度,是將率定後的 PITCH、ROLL 新值 带入軟體重新計算出新的雷射點三維坐標成果後,再比對道路 率定場控制點高程資料,而比較之方式為將落於道路率定場範 圍內之光達點雲資料與高程控制點進行比對如圖 3-27 及圖 3-28,再分析任一斷面之高程變化情形如表 3-10。

圖 3-27 光達點雲資料與高程控制點比對圖(ALTM 30/70)

(a)96.12.03

(b)97.03.16

圖 3-28 控制點與雷射點比對圖(ALTM 30/70)

				,	
日期	光達點雲資料與 高程控制點比對成果	最大差異量	最小差異量	平均 差異量	標準偏差
96.12.03	高程較差值	0.12	-0.11	-0.013	0.048
97.03.16	高程較差值	0.09	-0.11	-0.013	0.023

表 3-10 系統率定高程誤差分析統計表(單位:公尺)

(4)最後率定參數

利用上述的處理程序,計算出新的一組率定參數,將偏差 量修正完成,表 3-11 為率定後之新參數。

表 3-11 率定後之新參數(ALTM30/70)

Parameter	Final Field Cal	ibration Values								
date	96.12.03	97.03.16								
	TIM									
Pulse Offset (meters)	- 2.602	-2.550								
Elevation Block Adjustment										
Cross-flight Scanner										
Offset (degrees)	- 0.0124	- 0.0124								
Scale (no units)	1.0171	1.0008								
Lag (seconds) –	0.0001765	0.000010								
IMU	Corrections									
Pitch (degrees)	-0.0638	- 0.0608								
Roll (degrees)	-0.0239	0.0209								
Heading (degrees)	0.250	0.250								

第二節 實際飛航掃描

一、執行前準備作業

- (一)飛航任務前一天準備工作
 - 1、於飛航任務執行前一天再次由中央氣象局網站了解任務執 行當天的天氣,是否有鋒面接近或颱風等不良因素確認。
 - 2、進行清點器材,如下表 3-12 說明。

表 3-12 飛航任務前之器材清點表

項目	名稱	說明	數量	確認
		(1)主電源線。*大鵬跟群鷹翔電源線不同	2	
		(2)機架固定螺絲。*注意是否有螺帽跟 墊片	6	
		(3) PCMCIA 卡。*注意剩餘空間容量	1	
		(4) 資料硬碟。*注意剩餘空間容量	1	
1	Lidar 系統	(5)Lidar 控制電腦。 *Panasonic Tough Book	1	
		(6) 航高掃描規劃參數表	1	
		(7) 飛行記錄表跟筆	2	
		(8)一字起子,鉗子,活動板手,膠帶。(9)嘔吐袋,口香糖與水		
		(10)lidar 主機系統	1	
		(11) 螺絲包	1	
		 Tough 螢幕(含電源線) 	1	
		(2) Xpc 準系統電腦主機(含電源線)	1	
		(3) 鍵盤	1	
2	Rollei 相機	(4)Rollei 相機主機	1	
		(5) 鏡頭(含備份鏡頭)	2	
		(6) 像機電源資料連接線	2	
		(7) 厚紙板	1	
		(8)直流轉交流電變壓器(含電源線)	1	

3、進行裝機檢查,如下表 3-13 說明。

表 3-13 裝機檢查表

項目	名稱	內容	確認
1	檢查機架	雷射鏡頭保護蓋板關閉	
2	檢查固定螺絲	六只,需全部鎖緊	
3	檢查電源	連上機上電源座,確定接線無鬆動	
4	Gps 訊號線	將飛機上 Gps 訊號線接至 Lidar(ANT1)位置	
5	ALS50 掃描儀	將調制紐關閉 (⊕)	
6	PCMCIA 卡檢查	將 PCMCIA 卡定位 (與退出鈕) 平行	
7	資料硬碟檢查	將資料硬碟定位且用硬碟上鑰匙,右轉鑰匙 鎖緊	
8	相機檢查	機身固定需3顆螺絲以上	
9	自動光圈	自動光圈器需用厚紙版加螺絲固定	
10	鏡頭蓋	***鏡頭蓋需打開***	
11	相機傳輸線	將 EVENT 線插在 Lidar 的 DIO 阜米固定螺 絲需鎖緊	
12	Lidar 控制電腦	網路線,電源線,及傳輸線。需全部插緊 ***電源線部分需看到電腦右下角有顯 示外接電源圖例 ***傳輸線上2顆小螺絲需鎖緊,以防起 飛震動過大而接觸不良	
備註	:		
清點	人:	計畫名稱:	

(二)飛航任務當天準備工作

1、聯繫地面主站人員,確認儀器架設及接收正常。

2、詢問地面主站人員,確認當地天氣狀況。

3、飛航前開機測試確認。

4、執行飛航任務。

5、資料獲取。

當飛機升空後,空載光達資料掃描儀操作人員應依 LiDAR 儀 器標準作業程序操作設備逐條獲取原始光達掃描資料,並逐條航線 記錄原始光達掃描相關資料。

(三)安全須知

空載光達雷射掃描是具有危險性的,操作人員應確實按照各類 型掃描儀之安全操作步驟進行資料獲取;緊急時應先關閉雷射儀, 以確保人身安全。

二、飛航掃描數據處理

(一)航線圖展繪

本案分別於96年11月22、29日、96年12月4、5、29、30、 31日及97年4月5、8日,陸續完成彰化測區飛航掃描成果(如圖 3-29)及完成鹿港鎮公所附近進行高精度光達掃描作業成果(如圖 3-30);於97年3月5、6、7日、4月26日、5月12、13日陸續 完成中高海拔山區飛航掃描成果(如圖 3-29),共計12架次;依不 同測區任務及日期掃描之航線圖(如圖 3-31 至圖 3-45)。

圖 3-29 彰化測區(左)及中高海拔山區(右)點雲涵蓋圖

圖 3-30 鹿港鎮高精度光達掃描作業點雲分佈圖

····· 內政部國土測繪中心

圖 3-31 彰化測區 96 年 11 月 22 日航線圖

·····> 內政部國土測繪中心

圖 3-32 彰化測區 96 年 11 月 29 日航線圖

圖 3-33 彰化測區 96 年 12 月 4、5 日(藍色)及 97 年 4 月 8 日(綠色)航線圖

的政部國土測繪中心

圖 3-34 彰化測區 96 年 12 月 29 日航線圖

圖 3-35 彰化測區 96 年 12 月 30 日航線圖

····) 内政部國土測繪中心

圖 3-36 彰化測區 96 年 12 月 31 日航線圖

圖 3-37 彰化測區 97 年 4 月 5 日航線圖

圖 3-38 鹿港鎮公所高精度光達掃描 97 年 3 月 4 日 PM 航線圖

圖 3-39 中高海拔山區 97 年 3 月 5 日航線圖

🖤 內政部國土測繪中心

圖 3-40 中高海拔山區 97 年 3 月 6 日航線圖

圖 3-41 中高海拔山區 97 年 3 月 7 日航線圖

內政部國土測繪中心

圖 3-42 中高海拔山區 97 年 4 月 26 日航線圖

圖 3-43 中高海拔山區 97 年 5 月 12 日航線圖

內政部國土測繪中心

圖 3-44 中高海拔山區 97 年 5 月 13 日 AM 航線圖

圖 3-45 中高海拔山區 97 年 5 月 13 日 PM 航線圖

(二)實際飛航參數及掃描參數

各飛航任務每一條航線之日期、航高、航速、航向、掃描角度 (FOV)、掃描頻率、雷射脈衝頻率、每條航線計算 GPS 所使用之 地面控制點、使用儀器之規格等有關掃描參數與飛航參數,如下表 3-14 至表 3-17 說明。

		100	1. 47				x(: ====	(0)		
日期	航線 編號	掃描 角度 (deg.)	實際 FOV (deg.)	掃描 頻率 (Hz)	雷射脈 衝頻率 (Hz)	航高 (m)	航向 (deg.)	航速 (Knots)	GPS 地面 控制點	使用
96.12.29	R01	40	40.538	25	68000	1217.065	358.93	107.025		
96.12.29	R02	40	39.497	25	68000	1214.307	182.044	111.129	G018N、	
96.12.29	R03	40	39.044	25	68000	1219.235	3.57	105.352	G025N、	
96.12.29	R04	40	40.548	25	68000	1229.829	187.974	110.738	TACH VR01 V	ALS50
96.12.29	R05	40	39.933	25	68000	1216.837	177.304	106.481	VR01 VR02 V	
96.12.29	R06	40	40.494	25	68000	1225.077	176.684	111.51	VR03	
96.12.29	R07	40	40.15	25	68000	1227.767	2.429	96.59		
96.12.29	R08	40	39.863	25	68000	1224.551	181.385	111.067	G018、 G025N、 VR01、	
96.12.29	R09	40	43.155	25	68000	1232.614	1.163	104.274	VR02 、 VR03 、 TACH	AL\$50
96.12.29	R10	40	39.272	25	68000	1242.372	180.275	109.774		
96.12.29	R11	40	39.638	25	68000	1239.287	0.367	103.547	G018N、	
96.12.29	R12	40	39.358	25	68000	1223.596	179.597	111.057	G025N、	
96.12.29	R13	40	39.569	25	68000	1232.355	0.079	109.204	VR01 V	ALS50
96.12.29	R14	40	41.182	25	68000	1233.91	2.653	105.37	VR02 v	
96.12.29	R15	40	39.994	25	68000	1231.901	3.986	102.382	VR03	
96.12.29	R16	40	39.33	25	68000	1224.283	179.393	109.817		
96.12.30	R17	40	41.464	25	68000	1214.264	352.713	112.933	G018 \	ALS50
96.12.30	R18	40	40.096	25	68000	1227.928	180.439	104.656	G025N \ VR01 \	
96.12.30	R19	40	42.509	25	68000	1247.828	183.27	110.292	VR02 v	
96.12.30	R20	40	39.227	25	68000	1244.197	178.824	104.477	VR03 、	
96.12.30	R21	40	41.874	25	68000	1228.213	180.101	105.611	ТАСН	
96.12.30	R22	40	42.456	25	68000	1249.893	178.826	102.285		
96.12.30	R23	40	40.404	25	68000	1224.451	1.414	101.196		
96.12.30	R24	40	40.882	25	68000	1215.762	356.86	103.772		
96.12.30	R25	40	41.062	25	68000	1232.063	340.705	95.708		

表 3-14 彰化測區各航線掃描參數(ALS50)

日期	航線 編號	掃描 角度 (deg)	實際 FOV (deg.)	掃描 頻率 (Hz)	雷射脈衝頻率(Hz)	航高 (m)	航向 (deg.)	航速 (Knots)	GPS 地面 控制點	使用 儀器
96.12.30	R26	40	40.861	25	68000	1235.298	356.09	99.367		
96.12.30	R27	40	39.652	25	68000	1233.225	358.364	102.891		
96.12.30	R28	40	40.94	25	68000	1227.943	181.4	103.676		
96.12.30	R29	40	40.324	25	68000	1231.823	359.297	104.583		
96.12.30	R30	40	40.632	25	68000	1238.304	178.061	98.45		
96.12.31	R31	40	41.598	25	68000	1230.824	358.809	104.802		
96.12.31	R32	40	39.277	25	68000	1196.825	185.615	107.07		
96.12.31	R33	40	40.833	25	68000	1230.759	1.401	102.225		
96.12.31	R34	40	41.53	25	68000	1212.149	175.739	102.392	G018、	
96.12.31	R35a	40	39.749	25	68000	1236.427	5.64	97.521	G025N、	
96.12.31	R35b	40	42.621	25	68000	1228.45	352.961	102.346	VR01 v VR02 v	ALS50
96.12.31	R36	40	41.443	25	68000	1222.608	169.492	105.614	VR02 VR03 V	
96.12.31	R37	40	42.36	25	68000	1217.029	2.003	104.073	ТАСН	
96.12.31	R38	40	44.092	25	68000	1236.556	176.146	106.285		
96.12.31	R39	40	40.447	25	68000	1220.533	2.854	100.205		
96.12.31	R40	40	40.931	25	68000	1225.135	178.361	95.645		
97.04.05	R41	40	40.028	25	67500	1223.84	223.032	105.039	G018 × G025 × G002 × TACH × VR01 × VR02	ALS50
96.11.29	R42a	40	41.126	33	61000	1426.761	26.484	107.013	G018 \ G025 \ VR01 \	ALS50
96.11.29	R42b	40	40.57	33	61000	1436.1	210.092	101.098	VR02 \ TACH	
97.04.05	R43	40	39.571	25	67500	1218.771	31.527	101.774	G018 × G025 × G002 × TACH × VR01 × VR02	ALS50
96.11.29	R44a	40	41.567	33	61000	1431.504	24.503	105.548	G018 × G025 × VR01 ×	ALS50
96.11.29	R44b	40	40.896	33	61000	1436.178	30.383	103.321	VR02 \ TACH	
97.04.05	R45	40	39.523	25	67500	1235.824	27.499	103.728	G018 \ G025 \ G002 \ TACH \ VR01 \ VR02	ALS50

日期	航線 編號	掃描 角度 (deg.)	實際 FOV (deg.)	掃描 頻率 (Hz)	雷射脈 衝頻率 (Hz)	航高 (m)	航向 (deg.)	航速 (Knots)	GPS 地面 控制點	使用 儀器
96.11.29	R46	40	45.105	33	61000	1436.69	213.305	111.036	G018、 G025、	
96.11.29	R46	40	39.883	33	61000	1433.939	212.503	93.158	VR01 、 VR02 、 TACH	ALS50
97.04.05	R47	40	39.327	25	68000	1238.782	208.759	104.11	G018 \ G025 \ G002 \ TACH \ VR01 \ VR02	ALS50
96.11.29	R48a	40	44.639	33	61000	1430.345	214.207	103.112	G018 × G025 ×	A L G 50
96.11.29	R48b	40	39.89	33	61000	1415.534	28.944	107.775	VR01 VR02 VR02 VR02 VR02 VR02 VR02 VR02 VR02	ALS50
97.04.05	R49	40	39.379	25	68000	1252.795	24.165	88.271	G018 \ G025 \ G002 \ TACH \ VR01 \ VR02	ALS50
96.11.29	R50	40	42.385	33	61000	1387.982	27.119	124.543	G018 × G025 × VR01 × VR02 × TACH	ALS50
97.04.05	R51	40	40.511	25	67500	1205.509	218.883	120.715	G018、 G025、	
97.04.05	R52	40	39.853	25	67500	1234.198	21.36	93.593	G002、 TACH、	ALS50
97.04.05	R53	40	39.977	25	67500	1215.161	208.416	101.601	VR01 VR02	
96.12.29	R54	40	39.236	25	68000	1223.491	211.997	107.561	G018N G025N VB01	AT \$50
96.12.29	R55	40	41.497	25	68900	1216.746	28.201	108.451	VR02 VR02 VR03	ALSSU
96.12.30	R56	40	40.722	25	68000	1215.799	89.72	106.772	G018、 G025N、 VR01、 VR02、 VR03、 TACH	ALS50
96.11.22	R57	40	41.166	33	61000	1435.485	89.673	102.102	M809 、 G025 、	ALS50

🔤 內政部國土測繪中心

96年度以空載光達技術建立數值地形模型工作總報告書

日期	航線 編號	掃描 角度 (deg.)	實際 FOV (deg.)	掃描 頻率 (Hz)	雷射脈 衝頻率 (Hz)	航高 (m)	航向 (deg.)	航速 (Knots)	GPS 地面 控制點	使用
96.11.22	R58	40	42.194	33	61000	1446.388	269.744	100.381	VR01 × VR02 ×	
96.11.22	R59	40	39.879	33	61000	1434.942	181.524	109.973	VR03 \ TACH	

表 3-15 彰化測區各航線掃描參數(ALTM 30/70)

日期	航線編號	掃描 角度 (deg.)	實際 FOV (deg.)	掃描 頻率 (Hz)	雷射脈 衝頻率 (Hz)	航高 (m)	航向 (deg.)	航速 (Knots)	GPS 地面 控制點	使用
96.12.05	1	40	40	33	70	1451	179.75	114	NY911	ALTM
96.12.05	2	40	40	33	70	1462	179.6	112	SIN277	30/70
96.12.05	3	40	40	33	70	1448	359.7	114	5511277	
96.12.04	4	40	40	33	70	1462	270	120		
96.12.04	5	40	40	33	70	1461	90	119		
96.12.04	6	40	40	33	70	1453	270	109		
96.12.04	7	40	40	33	70	1453	90	121		
96.12.05	7	40	40	33	70	1456	90	117		
96.12.04	8	40	40	33	70	1455	270	116		
96.12.04	9	40	40	33	70	1441	90	118		
96.12.04	10	40	40	33	70	1449	270	117		
96.12.04	11	40	40	33	70	1461	90	116		
96.12.04	12	40	40	33	70	1467	270	117		
96.12.05	12	40	40	33	70	1465	270	120		
96.12.04	13	40	40	33	70	1473	90	117		
96.12.04	14	40	40	33	70	1452	270	111		
96.12.04	15	40	40	33	70	1455	90	116		
96.12.04	16	40	40	33	70	1468	270	113		
96.12.04	17	40	40	33	70	1456	90	117		
96.12.05	18	40	40	33	70	1462	90	115		
96.12.04	19	40	40	33	70	1455	90	116		
96.12.05	20	40	40	33	70	794	199.21	101		
97.04.08	21	40	40	33	70	1488	208	112		
97.04.08	22	40	40	33	70	1424	208	107		
97.04.08	23	40	40	33	70	1460	28	120		
97.04.08	24	40	40	33	70	1447	208	109		
97.04.08	25	40	40	33	70	1477	28	123		
97.04.08	26	40	40	33	70	1465	208	107		

·····> 內政部國土測繪中心

日期	航線 編號	掃描 角度 (deg.)	實際 FOV (deg.)	掃描 頻率 (Hz)	雷射脈 衝頻率 (Hz)	航高 (m)	航向 (deg.)	航速 (Knots)	GPS 地面 控制點	使用
97.04.08	27	40	40	33	70	1456	28	124		
97.04.08	28	40	40	33	70	1459	208	110		
97.04.08	29	40	40	33	70	1466	28	120		
97.04.08	30	40	40	33	70	1456	208	109		
97.04.08	31	40	40	33	70	1459	28	121		

表 3-16 測製數值地形向量資料精度評估(鹿港地區)航線掃描參數

日期	<i>航</i> 線 編號	掃描 角度 (deg.)	實際 FOV (deg.)	掃描 頻率 (Hz)	雷射脈 衝頻率 (Hz)	航高 (m)	航向 (deg.)	航速 (Knots)	GPS 地面 控制點	使用 儀器
97.03.04	1	20	20.4	22	84200	626	259	89		
97.03.04	2	20	20.4	22	84200	624	110	85	VR01	
97.03.04	3	20	20.4	22	84200	630	106	88		
97.03.04	4	20	20.4	22	84200	643	107	86	VR02	ALS50
97.03.04	5	20	20.4	22	84200	645	259	89	VR03	
97.03.04	6	20	20.4	22	84200	641	257	88	×105	
97.03.04	7	20	20.4	22	84200	636	259	86	TACH	
97.03.04	8	20	20.4	22	84200	620	255	85		

表 3-17 中高海拔山區各航線掃描參數

日期	航線 編號	掃描 角度 (deg.)	實際 FOV (deg.)	掃描 頻率 (Hz)	雷射脈 衝頻率 (Hz)	航高 (m)	航向 (deg.)	航速 (Knots)	GPS 地面 控制點	使用
97.05.13	M01a	25	25.043	24	48000	3087.524	173.276	123.988		
97.05.13	M01b	25	29.215	24	48000	3069.691	163.818	111.986		
97.05.13	M02	25	24.604	24	48000	2409.477	7.103	114.405	AGG1	
97.05.13	M03	25	24.343	24	48000	2376.978	59.243	111.15	TACH >	
97.05.13	M04a	25	24.681	24	48000	2433.596	18.158	116.723	JUNA V	ALS50
97.05.13	M04b	25	25.856	24	47000	2393.121	319.966	106.741	WULI	
97.05.13	M05	25	26.042	24	48000	3121.04	200.442	117.296		
97.05.13	M06	25	24.187	24	48000	2418.997	16.852	111.107		

日期	航線 編號	掃描 角度 (deg.)	實際 FOV (deg.)	掃描 頻率 (Hz)	雷射脈 衝頻率 (Hz)	航高 (m)	航向 (deg.)	航速 (Knots)	GPS 地面 控制點	使用
97.04.26	M07	25	26.004	24	48000	3111.43	184.912	112.001	AGG1 × AGG2 × TACH × FCU1 × JUNA × WULI • TIAN	ALS50
97.05.13	M08	25	24.442	24	48000	2407.018	356.331	116.649		
97.05.13	M09	25	25.441	24	48000	3134.533	268.026	116.369	AGG1、	
97.05.13	M10	25	25.679	24	48000	3100.703	190.99	134.517	AGG2、 TACH、	ALS50
97.05.13	M11	25	24.946	24	48000	3098.697	184.005	107.683	FCU1、 JUNA、	
97.05.13	M12	25	24.203	24	48000	3099.777	194.562	104.315	WULI	
97.05.12	M13	25	25.038	24	48000	2420.364	349.291	100.257		
97.04.26	M14	25	26.654	24	48000	2604.053	353.992	93.923	AGG1 、 AGG2 、 TACH 、	
97.04.26	M15	25	24.423	24	48000	3093.826	168.691	110.438	FCU1、 JUNA、 WULI 、TIAN	ALS50
97.05.12	M16	25	25.395	24	48000	3112.044	178.596	104.31	AGG1 × AGG2 × TACH × FCU1 × JUNA × WULI	ALS50
97.04.26	M17	20	21.488	24	48000	3143.55	7.768	97.13	AGG1 × AGG2 × TACH × FCU1 × JUNA × WULI × TIAN	ALS50
97.05.12	M18	20	19.769	24	48000	3128.779	173.689	111.656	AGG1、	
97.05.12	M19	20	19.874	24	48000	326.927	358.07	106.662	AGG2、 TACH、	
97.05.12	M20	20	19.564	24	48000	3285.216	177.782	102.969	FCU1、 JUNA、	
97.05.12	M21	20	19.755	24	48000	3117.54	15.697	101.26	WULI	ALS50
97.05.12	M22	20	19.504	24	48000	3306.631	185.174	92.066		

日期	航線 編號	掃描 角度 (deg.)	實際 FOV (deg.)	掃描 頻率 (Hz)	雷射脈 衝頻率 (Hz)	航高 (m)	航向 (deg.)	航速 (Knots)	GPS 地面 控制點	使用
97.05.12	M23	20	19.262	24	48000	3216.995	0.591	122.768		
97.05.12	M24	20	20.064	24	48000	3597.755	178.704	107.952		
97.05.12	M25	20	19.552	24	48000	3306.43	186.465	104.04		
97.04.26	M26	20	20.103	24	48000	3299.987	346.573	105.137		
97.05.12	M27	20	19.249	24	47000	3105.958	355.169	112.82		
97.05.12	M28	20	20.893	24	46000	2982.534	23.335	103.167		
97.05.12	M29a	20	19.128	24	46000	2994.359	350.99	99.373		
97.04.26	M29b	20	19.714	24	48000	3291.838	5.656	112.938		
97.04.26	M30	30	29.807	26	57500	3593.694	171.457	115.851		
97.04.26	M31	45	45.88	28	67000	3596.179	269.363	107.352		
97.04.26	M32	30	29.771	26	57500	3595.381	18.696	101.38		
97.04.26	M33	25	24.605	24	49000	3417.492	224.667	106.199	AGG1 、 AGG2 、	
97.04.26	M34	25	25.385	24	51000	3302.443	50.804	115.114	TACH >	
97.04.26	M35	25	24.511	24	51000	3218.373	222.478	103.781	JUNA V	
97.04.26	M36	25	24.941	24	50000	3181.111	48.18	116.284	v TIAN	ALS50
97.04.26	M37	25	25.217	24	50000	3203.856	219.246	106.387		
97.04.26	M38	25	24.21	24	50000	3417.313	227.765	106.245		
97.04.26	M39	25	24.059	24	49000	3420.633	47.197	111.123		
97.04.26	M40	25	24.019	24	50000	3414.631	324.748	119.838		
97.05.13	M41	30	29.821	24	52000	2216.709	70.096	93.93		ALS50
97.04.26	M42	45	45.114	28	67000	3602.551	280.658	109.169	AGG1 × AGG2 × TACH × FCU1 × JUNA × WULI × TIAN	ALS50
97.03.06	M43	30	31.304	22	54000	3460.402	8.444	97.277	AGG1、	ALS50

日期	航線 編號	掃描 角度 (deg.)	實際 FOV (deg.)	掃描 頻率 (Hz)	雷射脈 衝頻率 (Hz)	航高 (m)	航向 (deg.)	航速 (Knots)	GPS 地面 控制點	使用
97.03.07	M43	30	29.814	22	54000	3482.52	12.496	105.209	AGG2、 TACH、	
97.03.05	M44	30	29.589	25	56000	3541.872	176.288	96.751	FCU1、 JUNA、	
97.03.05	M45	30	30.918	25	56000	3553.577	174.222	96.521	WULI	
97.03.05	M46	30	29.359	25	56000	3522.674	171.995	99.755		
97.03.05	M47	30	29.799	25	56000	3568.241	170.95	94.299		
97.03.05	M48	30	30.816	25	56000	3544.467	176.444	99.439		
97.03.05	M49	30	30.895	25	56000	3549.199	173.244	100.452		
97.03.05	M50	30	32.556	25	56000	3520.336	168.713	93.073		
97.03.05	M51	30	29.803	25	56000	3530.519	13.136	104.45		
97.03.05	M52	30	30.464	25	56000	3508.296	5.07	103.65		
97.03.05	M53	30	29.236	25	56000	3509.193	13.393	103.843		
97.03.05	M54	30	29.718	25	56000	3506.927	13.755	103.262		
97.03.05	M55	30	33.354	25	56000	3517.041	5.763	115.318		
97.03.05	M56	30	30.824	25	56000	3527.654	9.634	104.415		
97.03.05	M57	30	31.19	25	56000	3537.686	11.179	113.883		
97.03.07	M58	30	30.049	22	54000	3459.683	174.132	101.417		
97.03.07	M59	30	32.144	22	54000	3420.253	177.343	107.883	1.001	
97.03.07	M60	30	29.201	22	54000	3469.228	176.903	107.226	AGG1 \ AGG2 \	
97.03.07	M61	30	29.551	22	54000	3432.514	175.438	116.443	TACH、 FCU1、	ALS50
97.03.07	M62	30	29.298	22	54000	3456.443	7.397	103.958	JUNA 、 WULI	
97.03.07	M63	30	29.388	22	54000	3459.338	5.814	95.414		
97.03.07	M64	30	30.32	22	54000	3444.285	7.952	98.205		
97.03.07	M65	30	30.422	22	54000	3451.266	7.646	92.676		
97.03.06	M66	30	29.708	22	54000	3566.281	272.191	98.262		

(三)掃描GPS數據PDOP圖形分析

各飛航任務完成後,即進行掃描後原始光達資料前處理作業, 彙整地面 GPS 固定基站資料及載體 POS (GPS、IMU)資料,利用 POSPAC 軟體進行 POS 解算及精度分析,其 GPS 數據 PDOP 圖形 精度分析皆小於4,如下圖 3-46 至圖 3-62 說明。

圖 3-46 96 年 11 月 22 日飛航任務 PDOP 值 <4 示意圖

圖 3-47 96 年 11 月 29 日飛航任務 PDOP 值 <4 示意圖

₩₩ 內政部國土測繪中心

圖 3-48 96 年 12 月 4 日飛航任務 PDOP 值<4 示意圖

圖 3-49 96 年 12 月 5 日飛航任務 PDOP 值<4 示意圖

圖 3-50 96 年 12 月 29 日飛航任務 PDOP 值<4 示意圖

圖 3-51 96 年 12 月 30 日飛航任務 PDOP 值<4 示意圖

圖 3-53 97 年 3 月 4 日飛航任務 PDOP 值 <4 示意圖

圖 3-54 97 年 3 月 5 日飛航任務 PDOP 值 <4 示意圖

圖 3-55 97 年 3 月 6 日飛航任務 PDOP 值 <4 示意圖

圖 3-56 97 年 3 月 7 日飛航任務 PDOP 值 <4 示意圖

圖 3-57 97 年 4 月 5 日飛航任務 PDOP 值 <4 示意圖

圖 3-58 97 年 4 月 8 日飛航任務 PDOP 值 <4 示意圖

圖 3-59 97 年 4 月 26 日飛航任務 PDOP 值<4 示意圖

圖 3-60 97 年 5 月 12 日飛航任務 PDOP 值<4 示意圖

圖 3-61 97 年 5 月 13 日 AM 飛航任務 PDOP 值<4 示意圖

圖 3-62 97 年 5 月 13 日 PM 飛航任務 PDOP 值 <4 示意圖

(四)掃描GPS數據正反算精度分析

除了上述 PDOP 精度分析外,需進一步做 GPS 數據正反算精 度分析,其正向解與反向解差異應在 20 公分以內,以確保精度品 質,其 GPS 正向解與反向解差異圖形精度分析皆小於 20 公分,如 下圖 3-63 至圖 3-79 說明。

圖 3-63 96 年 11 月 22 日 GPS 正反算之差異值<20 公分

圖 3-64 96 年 11 月 29 日 GPS 正反算之差異值<20 公分

圖 3-65 96 年 12 月 4 日 PM GPS 正反算之差異值<20 公分

圖 3-67 96 年 12 月 29 日 GPS 正反算之差異值<20 公分

圖 3-69 96 年 12 月 31 日 GPS 正反算之差異值<20 公分

圖 3-71 97 年 3 月 5 日 GPS 正反算之差異值<20 公分

圖 3-72 97 年 3 月 6 日 GPS 正反算之差異值<20 公分

圖 3-73 97 年 3 月 7 日 GPS 正反算之差異值<20 公分

圖 3-74 97 年 4 月 5 日 GPS 正反算之差異值<20 公分

圖 3-75 97 年 4 月 8 日 PM GPS 正反算之差異值<20 公分

圖 3-76 97 年 4 月 26 日 GPS 正反算之差異值<20 公分

圖 3-77 97 年 5 月 12 日 GPS 正反算之差異值<20 公分

圖 3-78 97 年 5 月 13 日 AM GPS 正反算之差異值<20 公分

圖 3-79 97 年 5 月 13 日 PM GPS 正反算之差異值<20 公分

(五)掃描數據LAS檔解算

1 \ LEICA ALS50

經由上述之 GPS 各項精度分析後將載體 IMU 資料內插到 GPS 三維航跡上,求解出 LiDAR 掃描時掃描儀之瞬間位置與 姿態資訊 (POS),一般稱為 Sbet 航跡資料。

結合 LiDAR 之 POS Sbet 軌跡資料與雷射掃描測距資料(掃 插角與距離),加入各項系統誤差率定參數、坐標投影參數, 利用 ALS Post Processor 軟體逐條航線求解產出原始點雲資料 (如圖 3-80)。資料格式以國際標準 LiDAR 資料格式(.LAS)儲 存,內容包含 E,N,H,I 及 Time Stamp。

00298:00909 SM: Normal Interpolate State														
Laser	R., Base		F	L	Mult	PR	FOV	Sca	Sca	AG	W	Start 🔗		<u>A</u> dd
Data 🛛	\ LDR08040	8_084630_	1	14	4+3	84200	45.2	-2382	34.0	732	450	20438		Domovo
[8_085141_ 8_085836	1	10	4+3 4+3	84200 67000	45.2 39.4	247	34.0 25.0	729 1204	450	20470	1	Tennove
	\ LDR08040	8_090754_	1	48	4+3	67000	39.4	645	25.0	1210	450	20567		Rese <u>t</u>
ļ	\ LDR08040	8_091755_	1	28	4+3	67000	39.4	-13	25.0	1201	450	20627	9	Select All
L	1\ LDR08040;	8_092746_ 8 093320	1	12	4+3 4+3	65700 65700	44.4 44.4	-15 220	20.0 20.0	1210	450 450	20686		,0100kt m
												Ð	D	eselect A
POS Filename	G:\lidar\9	70408PM\Pr	oc\sb	et_01.	out									<u>B</u> rowse
Output folder:	G:\lidar\													<u>S</u> elect
													Г	Explore
Altitude:		200.00 m			Rol	ll Error			-	-0.04446	1530 r	ad		
Temperatur	e:	300.00 K			Pito	h Error			[0.009492	224 re	ad		
Pressure:		101.00 kP	Pro	cessi	ng Data	***	_	_	_	_	-	_	-	
Temperatur	e Gradient:	-0.006497	Ba	itch Pi	roaress									
Range 1 Co	rrection	2.260 / 0.0												
Range 2 Co	rrection	2.260 / 0.0	~			- D								
Range 3 Co	rrection	2.260 / 0.0		rrenti	Flight Li	ne Progres	S							
Range 4 Co	rrection	2.260 / 0.0		Proc	essina S	Statistics —								
Range 5 Co	rrection	2.260 m		Proc	essing -	Fime: 00:00):32							
Scan angle	correct	16704 tick		Estin	nated Tr nated Tr	me Rema otal Time:	ining: 00: 00:04:06	03:34						
Torsion Co	nstant:	23688.60		Point	ts/Seco	nd = 72332	2							
Encoder La	itency:	0.00 mcr s												
Ticks Per P	Revolution:	8386481 ti						Ca	ancel					
		l												
For Help, press F1												0	ead in	JUM M

圖 3-80 ALS50 Post Processor 軟體原始點雲產出示意圖

2 · Optech ALTM 30/70

利用原廠提供之 REALM 軟體(如圖 3-81 所示)將前述計算 後的軌跡導航資訊代入,利用掃描角度及雷射測距等資料,分 別計算出每一條航帶所掃描的光達點雲資料,如圖 3-82。中興 公司辦理之彰化測區雷射點高程上彩圖 3-83 所示。

圖 3-81 REALM 軟體中顯示示意圖

圖 3-82 彰化測區光達點雲涵蓋圖(ALTM 30/70)

圖 3-83 彰化測區光達點雲高程上彩涵蓋圖(ALTM 30/70)

(六)航帶重疊比例分析

LiDAR 飛航掃描成果之初步檢核作業,首先針對航帶間重疊 比例進行分析作業,將重疊航線依上中下三部分量取其航帶寬度與 重疊帶寬(如圖 3-84),以利計算航線間重疊比例(如表 3-18 至表 3-20),其合約規範各航線間重疊率均應大於 40%。

웅 96lidar	_view.dgn (3D - '	V8 DGN)	- MicroSt	ation ¥8.1	1											
<u>File E</u> di	t Element <u>S</u> ettings	s <u>T</u> ools <u>I</u>	<u>I</u> tilities W	for <u>k</u> space	<u>Applications</u>	<u>W</u> indow	<u>H</u> elp									
Default	-	0 -		- 🔳 🛛	🗖) 🥪 🖸	😤 Ier	таScan -	292 727					
	궁 View 1 - Top	,					12		<u>F</u> ile (<u>O</u> utput]	<u>P</u> oint <u>V</u> iev	v <u>C</u> lassify	<u>T</u> ools	Flightline		
±_ 5.0×+								5		_						
- 144 (dd) - 1866 (dd) - 1867 (dd)								1.0	1	א 1 ר ג		04	ററ	100	1011	
97 htt									4.22	JIK		74	20	1024	+ 742	אושי
								$-3 \sqrt{r}$	12/10							
<u> </u>								1	2040							
▶,								235	27							
+, 🗏								100								
							1	300-	E.W.E							
7,0,						$\sim \alpha 4$	<u>a</u>	<u>e</u>	And Astron	X 4 C	x		\overline{a}	1 00		
₿ ⊗; A ,					942	201	וצש		199	9 I K		94	20	1034	H 942	2016
∜ ₿ * ,									No.							
** 🖾								2								
€, -,								5106 -								
\times								2010 A.	1.000							
Д ө-ө								- 8-	100							
							_									
····					942	201	Ø41	24 A 1)1C	143	94	2Ø	1Ø44	942	2Ø10
								1.5.1	Contra de							
Him; ',		2	F > 4						0							
		// L1 13 141														

圖 3-84 航帶重疊比例分析示意圖

航線	人編號	平均寬度(m)	平均重疊 寬度(m)	重疊率%	6 航带線號		平均寬度(m)	平均重疊 寬度(m)	重疊率%			
R01	R02	866.84	386.27	44.56	R27	R28	861.93	362.41	42.05			
R02	R03	868.00	391.74	45.13	R28	R29	861.60	411.65	47.78			
R03	R04	861.76	398.19	46.21	R29	R30	862.26	387.59	44.95			
R04	R05	857.63	360.27	42.01	R30	R31	864.57	369.50	42.74			
R05	R06	862.76	409.04	47.41	R31	R32	861.93	371.95	43.15			
R06	R07	865.41	382.26	44.17	R32	R33	860.28	398.05	46.27			
R07	R08	861.07	386.30	44.86	R33	R34	863.25	377.99	43.79			
R08	R09	863.70	390.84	45.25	R34	R35	858.63	395.56	46.07			
R09	R10	867.22	382.05	44.06	R35	R36	851.68	382.05	44.86			
R10	R11	868.54	405.33	46.67	R36	R37	853.01	390.31	45.76			
R11	R12	868.21	387.08	44.58	R37	R38	854.00	360.38	42.20			
R12	R13	862.59	391.74	45.41	R38	R39	856.97	400.08	46.69			
R13	R14	862.67	392.70	45.52	R39	R40	866.23	372.94	43.05			
R14	R15	863.83	383.14	44.35	R41	R42	952.50	581.03	61.00			
R15	R16	864.99	397.21	45.92	R42	R43	948.50	622.15	65.59			
R16	R59	947.50	849.50	89.66	R43	R44	949.50	585.55	61.67			
R59	R17	946.00	582.62	61.59	R44	R45	952.50	602.82	63.29			
R17	R18	861.60	352.47	40.91	R45	R46	965.00	627.81	65.06			
R18	R19	860.94	376.63	43.75	R46	R47	957.00	638.44	66.71			
R19	R20	859.45	376.64	43.82	R47	R48	953.50	598.17	62.73			
R20	R21	860.11	387.62	45.07	R48	R49	960.00	572.79	59.67			
R21	R22	864.24	390.12	45.14	R49	R50	953.50	711.08	74.58			
R22	R23	858.95	368.00	42.84	R50	R51	951.00	767.06	80.66			
R23	R24	850.69	393.74	46.28	R51	R52	872.00	380.44	43.63			
R24	R25	858.62	375.95	43.78	R52	R53	871.00	402.32	46.19			
R25	R26	864.90	417.47	48.27	R53	R54	868.00	649.07	74.78			
R26	R27	861.93	378.19	43.88	R54	R55	873.00	386.06	44.22			
	平均重疊率(%)					50.37						

表 3-18 彰化測區航帶間重疊比例分析表(ALS50)

航線編號	航帶寬(m)	平均帶寬(m)	重疊長度(m)	重疊度(%)	備註
01	1002.829				
06	1000 697	1001.758	408.74	40.8%	
00	1000.087	1007.0855	440.165	43.7%	
09	1013.484	1008 76	408 086	40.5%	
20	1004.036	1008.70	408.980	40.378	補飛02:997.845m
07	1008 540	1006.2925	407.899	40.5%	
07	1008.349	1016.755	412.111	40.5%	
10	1024.961	1016 769	470 400	47.29/	
05	1008.575	1010.708	479.409	47.270	
0.8	1005 252	1006.914	423.122	42.0%	
08	1003.233	1000.945	425.473	42.5%	
19	996.637	1004 50	412 575	41 10/	補飛03:949.509m
12	1012.543	1004.59	412.575	41.1%	
11	1019.05	1015.7465	451.129	44.4%	
11	1018.95	1031.988	445.562	43.2%	
14	1045.026	1020 0005	451 228	42 40/	
13	1034.775	1039.9005	451.228	43.4%	
10	1020.007	1027.841	441.503	43.0%	NR 704 1011 017
18	1020.907				釉 舱04:1011.917m

表 3-19 彰化測區航帶間重疊比例分析表(ALTM 30/70)

表 3-20 中高海拔山區航帶間重疊比例分析表

航線	編號	平均寬度(m)	平均重疊 寬度(m)	重疊率%	航線	編號	平均寬度(m)	平均重疊 寬度(m)	重疊率%		
M01	M02	795.33	403.38	50.72	M35	M36	708.33	296.09	41.80		
M02	M03	778.67	410.15	52.67	M36	M37	705.00	331.47	47.02		
M03	M04	774.33	357.33	46.15	M37	M38	734.67	313.37	42.65		
M04	M05	753.67	336.35	44.63	M38	M39	728.00	344.53	47.33		
M05	M06	744.67	376.97	50.62	M43	M44	720.49	299.34	41.55		
M06	M07	760.67	344.90	45.34	M44	M45	761.22	354.28	46.54		
M07	M08	762.00	395.73	51.93	M45	M46	811.94	337.91	41.62		
M08	M09	765.67	332.19	43.39	M46	M47	766.50	327.70	42.75		
M09	M10	780.00	389.38	49.92	M47	M48	772.34	322.07	41.70		
M10	M11	771.33	404.33	52.42	M48	M49	796.00	438.91	55.14		
M11	M12	736.33	337.87	45.89	M49	M50	769.00	408.29	53.09		
M12	M13	725.00	302.73	41.76	M50	M51	797.71	433.05	54.29		
M13	M14	730.33	311.70	42.68	M51	M52	768.85	338.99	44.09		
M14	M15	698.67	289.47	41.43	M52	M53	748.33	340.73	45.53		
M15	M16	650.00	272.30	41.89	M53	M54	734.52	300.83	40.96		
M16	M17	611.67	352.60	57.65	M54	M55	764.67	321.96	42.10		
M17	M18	582.33	268.34	46.08	M55	M56	726.33	365.17	50.28		
M18	M19	573.33	273.26	47.66	M56	M57	726.33	423.33	58.28		
M19	M20	637.67	302.87	47.50	M57	M58	770.00	338.10	43.91		
M20	M21	552.45	314.39	56.91	M58	M30	642.67	419.77	65.32		
M21	M22	572.30	232.32	40.59	M30	M59	619.33	413.31	66.73		
M22	M23	588.76	341.44	57.99	M59	M60	819.33	401.26	48.97		
M23	M24	628.36	328.49	52.28	M60	M61	803.00	428.30	53.34		
M24	M25	573.69	250.21	43.61	M61	M23	698.00	286.81	41.09		
M25	M26	589.70	288.94	49.00	M23	M24	647.92	285.70	44.09		
M26	M27	600.81	258.97	43.10	M24	M62	647.79	349.90	54.02		
M27	M28	574.26	234.16	40.78	M62	M26	660.25	298.71	45.24		
M28	M29	580.77	271.49	46.75	M26	M63	652.33	274.66	42.10		
M33	M34	715.67	330.51	46.18	M63	M64	766.71	410.41	53.53		
M34	M34 M35 671.33 359.23 53.51			M64	M65	754.32	418.42	55.47			
		平均重疊率	(%)		48.03						

(七)各航帶點雲密度分析

各航帶點雲密度係利用各航帶掃描面積 A 及該面積內所包含 之第一回波雷射點數 N,將 N/A 即求得點雲密度。各掃描航線之 點雲密度如表 3-21 至表 3-23 所示,其中部份航線因為潮間地區, 受限於水體問題,導致點雲密度不足,於備註欄處加註說明,而整 體掃描航線之點雲密度均符合合約要求應大於1點/平方公尺。

航線編號	雷射點數	航带面積(m^2)	點雲密度(pt/m^2)	備註	航線編號	雷射點數	航带面積(m^2)	點雲密度(pt/m^2)	備註		
R01	41876202	29701100	1.41		R31	13866342	10010800	1.39			
R02	38754010	29312500	1.32		R32	12666690	9040500	1.40			
R03	41740757	29521200	1.41		R33	13152466	9276900	1.42			
R04	38875323	29376000	1.32		R34	10294926	7898800	1.30			
R05	39563712	28413000	1.39		R35	15761136	7344000	2.15			
R06	38089337	28601600	1.33		R36	8401826	6450000	1.30			
R07	37897256	26901500	1.41		R37	7191253	5788800	1.24			
R08	36831223	26291000	1.40		R38	7347065	5405400	1.36			
R09	34792814	25517500	1.36		R39	6737827	4649400	1.45			
R10	31317682	23929200	1.31		R40	5022506	3579300	1.40			
R11	33291116	24496200	1.36		R59	3102145	2949440	1.05	扣除海域		
R12	32168376	24278400	1.32		R41	8760884	20545200	0.43	整條涵蓋皆為海域		
R13	31924078	22802100	1.40		R42	23816282	22475800	1.06	部分为海域及鱼塭		
R14	30236602	21772800	1.39		R43	17679304	27334000	0.65	幾乎整條涵蓋海域		
R15	30755456	21636200	1.42		R44	44316856	47125200	0.94	大部分為海域		
R16	27788492	21019500	1.32		R45	36299338	38280800	0.95	大部分為海域		
R17	27610074	20327500	1.36		R46	51426489	49672300	1.04	部分为海域及魚塭		
R18	27810651	19264000	1.44		R47	42831400	37797000	1.13	部分为海域及鱼塭		
R19	25379428	18033600	1.41		R48	49721931	45790500	1.09	部分为海域及鱼塭		
R20	26513670	18295600	1.45		R49	46169097	38237500	1.21	部分为海域及鱼塭		
R21	27634529	18943500	1.46		R50	39938219	40317400	0.99	大部分為海域		
R22	23810793	17420000	1.37		R51	16683174	14193000	1.18	部分为海域及鱼塭		
R23	21475079	15719700	1.37		R52	16261773	15537200	1.05	部分为海域及鱼塭		
R24	19350879	14892500	1.30		R53	16574718	18009000	0.92	大部分皆為魚塭		
R25	18624769	14164700	1.31		R54	39194942	37887900	1.03	部分為海域及魚塭		
R26	25976609	13423000	1.94		R55	40262253	35148000	1.15	部分為海域及魚塭		
R27	21002064	16374800	1.28		R56	27451599	20255413	1.36			
R28	25707708	14345300	1.79		R57	11844802	11211024	1.06	扣除海域		
R29	13752303	9688000	1.42		R58	4024039	4007200	1.00	扣除海域		
R30	16656973	11537400	1.44		R59	3102145	2949440	1.05	扣除海域		
		平均點雲密度(pt/m^2)		1.28						

表 3-21 彰化測區航帶點雲密度分析表(ALS50)

航線編號	雷射點數	航帶面積(m^2)	點雲密度(pt/m^2)	備註
1	34100059	29074129	1.17	
2	31700130	30480895	1.04	
3	23199382	21886210	1.06	
4	28295598	24820700	1.14	
5	32280281	27356171	1.18	
6	28357351	24658566	1.15	
7	28248406	27968719	1.01	
8	29372275	27450725	1.07	
9	26204607	24956769	1.05	
10	27945959	27131999	1.03	
11	28891090	27515328	1.05	
12	30695038	27904580	1.10	
13	30007918	27530201	1.09	
14	31414165	27800146	1.13	
15	13974315	13060108	1.07	
16	12282134	12160529	1.01	
17	12924203	12796241	1.01	
18	30235123	29642278	1.02	
19	28180219	27627666	1.02	補飛02:997.845m
20	27442935	24948123	1.10	
21	15260866	14961633	1.02	
22	17711664	16249233	1.09	
23	16403474	14912249	1.10	
24	17768589	16007738	1.11	
25	14793087	14224123	1.04	
26	14319506	14038732	1.02	
27	15867435	14829379	1.07	
28	16934926	15680487	1.08	
29	14071557	14071557	1.00	
30	15936104	14487367	1.10	
31	11731953	11615796	1.01	
平	均點雲密度	(pt/m^2)	1.07	

表 3-22 彰化測區航帶點雲密度分析表(ALTM 30/70)

表 3-23 中高海拔山區航帶點雲密度分析表

航線編號	雷射點數	航带面積(m^2)	點雲密度(pt/m^2)	備註	航線編號	雷射點數	航带面積(m^2)	點雲密度(pt/m^2)	備註
M01	13187817	12650480	1.04		M35	8303874	6079856	1.37	
M02	17476835	12420192	1.41		M36	8119385	5924400	1.37	
M03	15190748	11485952	1.32		M37	8814362	6523312	1.35	
M04	15410320	11373776	1.35		M38	8866047	6465744	1.37	
M05	13126313	11436080	1.15		M39	7059792	5357200	1.32	
M06	15570092	11607840	1.34		M40	7265275	5319376	1.37	
M07	15509238	12674000	1.22		M41	10416761	8162240	1.28	
M08	17712234	12497088	1.42		M42	7243269	5164736	1.40	
M09	14645111	11185328	1.31		M43	8648724	6862800	1.26	
M10	13831653	11030768	1.25		M44	6385615	4812544	1.33	
M11	14471432	10513984	1.38		M45	6939342	5568832	1.25	
M12	14964601	10424240	1.44		M46	6742529	5475456	1.23	
M13	19237365	12609872	1.53		M47	6327747	4972656	1.27	
M14	18721102	12089632	1.55		M48	5644385	4446928	1.27	
M15	15561110	11161760	1.39		M49	7775975	6007024	1.29	
M16	18816756	11774416	1.60		M50	8145556	5401200	1.51	
M17	14633449	9804576	1.49		M51	8564560	6004720	1.43	
M18	16204683	10750848	1.51		M52	9591664	7020032	1.37	
M19	16020074	10446224	1.53		M53	10497232	7133328	1.47	
M20	15902608	9131296	1.74		M54	9946018	6590928	1.51	
M21	15150714	9146864	1.66		M55	10723542	7733728	1.39	
M22	11162259	6302832	1.77		M56	10228528	7264400	1.41	
M23	22946929	13882960	1.65		M57	9205511	6345936	1.45	
M24	21611388	14278640	1.51		M58	16875686	13391472	1.26	
M25	6314647	4394432	1.44		M59	17909631	13497536	1.33	
M26	19890583	12587472	1.58		M60	18682801	14360848	1.30	
M27	8290436	4930352	1.68		M61	20582876	14990800	1.37	
M28	8232111	4719856	1.74		M62	19845666	13405152	1.48	
M29	7911706	4777376	1.66		M63	20770899	12799072	1.62	
M30	5084199	3519392	1.44		M64	19715422	12591408	1.57	
M31	6888202	4839680	1.42		M65	22132305	14043088	1.58	
M32	6482754	4100848	1.58		M66	7354701	4506144	1.63	
M33	8789775	7202928	1.22		M67	5744825	4919536	1.17	
M34	9119228	7052128	1.29		平	均點雲密度	(pt/m^2)	1.42	

第肆章 資料後處理

第一節 航带重疊數據精度評估與平差原理

一、航帶重疊數據精度評估

空載雷射掃描儀若系統率定不完整,GPS 與 IMU 系統誤差會傳 播到解算雷射測點三維坐標的精度,為了檢驗並減少系統誤差,本工 作採用 TerraMatch 模組進行雷射掃描航帶平差,利用航帶重疊數據連 結點的高程與 Intensity 值進行連結點的量測,以評估重疊航帶的內部 精度不符值,並進一步改正系統誤差。圖 4-1 為利用剖面圖檢視航帶 重疊處數據的不吻合及系統偏移量。圖 4-2 則是航帶剖面與已知的地 面高程比較,圖上平滑曲線為地面已知高程面,鋸齒粗為雷射測點剖 面,顯示著隨 FOV 角度越大,兩者差值越大(Morin, 2002)。

圖 4-1 航带重疊處數據不吻合所產生之系統偏移量

圖 4-2 系統誤差影響案例

二、航帶平差原理

TerraMatch 雷射航帶平差的演算法可參考 Burman(2000),觀測方程 式如下:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{GPS} (t) - R_{INS}(t) \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{antenna} + R_{INS}(t) \cdot R_{LRF} \cdot R_{Mirror} \begin{pmatrix} l_x \\ l_y \\ l_z \end{pmatrix}$$

$$\vec{x} \neq \begin{pmatrix} X \end{pmatrix}$$

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{GPS}$$
為 GPS 天線在 WGS84 坐標

 $\begin{pmatrix} x \\ y \\ z \end{pmatrix}_{antenna}$ 為天線到 INS(Inertial Navigation System)平移量

$$\begin{pmatrix} l_x \\ l_y \\ l_z \end{pmatrix}$$
 為雷射定位分量

R_{LRF} 為從雷射掃描頭到 INS 轉換參數

R_{INS} 為 INS 獲取姿態角度

R_{Mirror}為掃描鏡旋轉矩陣

未知數是由使用者選擇,包括平移參數、旋轉參數、平移參數線 性漂移量、旋轉參數線性漂移量,緣由於掃描幾何條件,未知參數之 間存在參數高相關,加入地面已知控制點是重要手段,另一方面,減

少參數量,在隨機模式高相關參數對應組的某一組,選取姿態參數求 定,加權值效果如同去掉平移參數線性漂移量的未知數,會有較穩健 (Robust)的求解成果。未知參數需要輸入先驗精度,如角度量先驗標準 差 0.01 度,長度相關向量 0.1 公尺。

航帶平差輸入資料包括(1)時間序列的航跡三維坐標,(2)時間序列 的點雲三維坐標,(3)地面已知點三維坐標。平差作業流程包括:

- 1. 處理雲點資料,過濾參數的選擇,重點在濾除植被點。
- 航帶之間重疊數據特徵點匹配,連結點的量測,TerraMatch 軟 體,應用 Sobel filter 篩選 intensity image 的特徵線、轉角點等 作為連結點的興趣匹配區。
- 3. 航带平差計算與改正。

4. 航带平差成果評估。

利用航帶重疊數據,進行航帶平差與平差成果評估,可獲得航帶之間的內部精度,並可進行系統性誤差的改正。

三、航帶平差精度檢核---平坦地高程精度分析

航帶平差後,本團隊於第二階段採用之航帶重疊數據分析依 Latypov(2002)提出;選取平坦面積高程進行比對法,目的是為進行獨 立檢查航帶平差後的成果,方法如下:

1.計算小面積內,測點高程平均值 h_s與高程標準偏差 σ_s。

2.計算重疊航帶數據,左右航帶各個小面積高程平均值比較:

 $\delta h = \hat{h}^{(2)} - \hat{h}^{(1)}$

由 σ_s評估地形平坦度(Flatness),篩選平坦區域,計算左右航帶同 一小面積內高程平均值的差值,分析統計量。

四、航帶平差精度檢核---重疊區數據分析

點雲三維坐標計算後,經投影計算到 TWD97 投影坐標系統,經 過航帶平差分析模型變形的參數是否顯著,並進一步檢核航帶重疊區 96年度以空載光達技術建立數值地形模型工作總報告書

🔤 內政部國土測繪中心

間是否有明顯的系統誤差,流程圖如圖 4-3。若航帶重疊區間的系統 誤差高於設定的標準,則應查明原因予以改正,或者重新收集數據。 檢核點計算方法選擇在(1)局部平坦區域且其坡度應小於 10 度、(2)掃 描點均勻覆蓋此區域、(3)無其他局部覆蓋物區域,以航帶內某一5 公 尺×5 公尺範圍內的點雲平均高程為比較值,亦即若要比較兩航帶內某 共軛點的相對高程差,則應以某一平面點位為中心,分別挖取5 公尺 ×5 公尺範圍內的點雲資料計算其平均高程(如圖 4-4),以計算其高程 差。應同時檢核範圍內點雲高程之標準偏差,應避免使用標準偏差大 於 0.5 公尺的區域。若只有少數點偏離平均高程太遠,可嘗試將這些 點摒除在計算點群外,避免影響檢核結果,流程圖如圖 4-5。

圖 4-4 推求兩航帶內某共軛點的相對高程差示意圖

圖 4-5 點雲數據品管流程圖

五、航帶平差精度檢核---交叉飛航重疊區數據分析

同理,分別以上述方式進行交叉飛航航帶與其他重疊航帶切割出 重疊處,篩選平坦區域,分析每個平坦地小面積內進行重疊航高程的 比對,進行統計分析。航帶重疊區皆應接受檢核,檢核通過後才能進 行數據的整合並進行點雲過濾工作。

第二節 航带重疊數據誤差分析

本案之作業區分為彰化測區及中高海拔山區等兩作業區,在彰化測區 中,ALS50(亞新)共進行 59 條航線(包含 3 條交叉航線),ALTM 30/70(中 興)共進行 31 條航線(包含 3 條交叉航線);在中高海拔山區共進行 67 條航 線(包含 4 條交叉航線)。本作業精度評估採用 TerraMatch 模組之 Measure Match 功能,其設定最大搜尋範圍為 20 公尺、高差約制為 20 公分(圖 4-6), 以進行航帶重疊區數據之分析,於航帶重疊區域內之平坦處且坡度小於 10 度,以 5 公尺×5 公尺選取範圍進行點雲資料之平均高程計算,如圖 4-7。在航帶重疊區數據之分析結果中,「計算點數」、「絕對高差量」、「平 均絕對高差量」及「平均高差」的定義如下:

「計算點數」為航帶間選取之共軛區塊進行平差作業的總點數;

「絕對高差量」為計算點數之高差取絕對值;

「高差」為計算點數之高差值;

「平均絕對高差量」為各航帶之絕對高差量的平均值;

「平均高差」為各航帶之高差的平均值;

彰化測區航帶重疊區數據之分析結果 ALS50 的部分如表 4-1,其平均 絕對高差量約為 0.063 公尺; ALTM 30/70 的部分如表 4-2,其平均絕對高 差量約為 0.130 公尺;另中高海拔山區航帶重疊區數據之分析結果如表 4-3,其平均絕對高差量約為 0.087 公尺。

Measure match	
Use Loaded points	
Max thange. [20.00 In length	
Ighore limit: 10.20 m of larger differences	
Use classes	A Calantal I
2 Ground	
3 Low vegetation	
4 Medium vegetation	
5 High vegetation	
6 Building	
/ Low point	_
<u>0</u> K	Cancel

圖 4-6 Measure Match 參數設定

圖 4-7 彰化測區航帶重疊區數據分析情形(航線 R01 與 R02)

	平差前											
平均絕	對高差量			0.0)63							
航線	計算點數	絕對高差量	高差	航線	計算點數	絕對高差量	高差					
R01	807	0.045	-0.021	R31	672	0.070	0.036					
R02	965	0.042	-0.016	R32	963	0.071	-0.063					
R03	928	0.049	0.009	R33	594	0.052	0.006					
R04	911	0.047	0.026	R34	758	0.043	-0.018					
R05	894	0.043	0.011	R35	320	0.048	-0.006					
R06	1114	0.053	-0.045	R36	331	0.064	-0.039					
R07	1232	0.047	-0.002	R37	342	0.056	-0.016					
R08	1226	0.049	-0.023	R38	196	0.068	-0.033					
R09	830	0.052	0.014	R39	176	0.047	-0.018					
R10	1030	0.049	-0.033	R40	128	0.053	0.024					
R11	847	0.098	-0.100	R41	100	0.104	0.051					
R12	1303	0.081	0.068	R42	195	0.110	-0.026					
R13	1507	0.046	-0.024	R43	161	0.093	0.016					
R14	1381	0.067	-0.070	R44	449	0.096	-0.046					
R15	964	0.061	0.031	R45	133	0.102	0.137					
R16	888	0.049	0.003	R46	359	0.094	0.077					
R17	1000	0.065	-0.059	R47	284	0.092	-0.097					
R18	1079	0.044	-0.008	R48	814	0.062	0.052					
R19	1290	0.072	0.056	R49	986	0.057	-0.043					
R20	1785	0.051	0.028	R50	632	0.108	-0.072					
R21	1664	0.062	0.044	R51	756	0.101	0.081					
R22	939	0.043	-0.012	R52	1381	0.064	-0.027					
R23	278	0.085	-0.090	R53	1542	0.073	0.025					
R24	402	0.057	-0.036	R54	1212	0.050	0.005					
R25	112	0.057	-0.007	R55	1126	0.049	-0.006					
R26	851	0.045	-0.003	R56	6521	0.056	-0.001					
R27	661	0.058	0.003	R57	7856	0.058	0.001					
R28	641	0.057	-0.038	R58	2163	0.058	-0.001					
R29	1011	0.061	0.033	R59	1395	0.051	0.015					
R30	934	0.056	-0.050									

表 4-1 彰化測區航帶重疊區數據之分析結果(ALS50)(單位:公尺)

表 4-2 彰化測區航帶重疊區數據之分析結果(ALTM 30/70)(單位:公尺)

	平差前												
平均絕對	對高差量			0.1	.30								
航線	計算點數	絕對高差量	高差	航線	計算點數	絕對高差量	高差						
1	2908	0.137	0.106	17	5677	0.128	0.037						
2	12905	0.107	0.037	18	3886	0.137	0.064						
3	8675	0.096	0.044	19	10025	0.099	0.027						
4	3398	0.112	-0.014	20	12241	0.112	0.062						
5	5614	0.102	0.005	21	5169	0.157	-0.062						
6	6146	0.124	-0.024	22	5833	0.179	-0.088						
7	10048	0.132	-0.052	23	4356	0.188	-0.115						
8	8089	0.110	-0.046	24	3567	0.152	-0.042						
9	7426	0.115	-0.067	25	3377	0.153	-0.037						
10	6637	0.115	0.006	26	2356	0.156	0.008						
11	4193	0.107	-0.004	27	1965	0.158	-0.047						
12	8114	0.119	-0.041	28	1306	0.159	0.002						
13	5106	0.118	-0.045	29	1093	0.149	-0.031						
14	4885	0.114	0.012	30	1176	0.148	0.063						
15	4467	0.104	0.051	31	476	0.124	-0.042						
16	3403	0.104	0.039										

表 4-3 中高海拔山區航帶重疊區數據之分析結果(單位:公尺)

	平差前											
平均絕對	斟高差量		0.087									
航線	計算點數	絕對高差量	高差	航線	計算點數	絕對高差量	高差					
M01	1383	0.064	-0.034	M35	943	0.067	-0.016					
M02	1326	0.070	0.048	M36	880	0.081	-0.061					
M03	1458	0.073	0.047	M37	156	0.104	-0.085					
M04	1383	0.084	0.072	M38	149	0.078	-0.005					
M05	1620	0.088	-0.055	M39	117	0.082	0.006					
M06	797	0.114	0.082	M40	124	0.105	0.051					
M07	661	0.101	0.085	M41	4064	0.076	-0.012					
M08	1407	0.081	0.018	M42	719	0.097	0.001					
M09	759	0.061	0.033	M43	726	0.105	0.099					
M10	874	0.068	-0.007	M44	754	0.095	0.081					
M11	1119	0.081	-0.061	M45	609	0.074	0.041					
M12	712	0.075	0.039	M46	297	0.072	0.041					
M13	600	0.103	-0.093	M47	91	0.072	0.034					
M14	649	0.105	0.088	M48	459	0.068	0.015					
M15	953	0.077	0.035	M49	863	0.072	0.033					
M16	819	0.097	-0.058	M50	287	0.084	0.041					
M17	418	0.114	0.074	M51	176	0.094	0.046					
M18	969	0.078	-0.049	M52	508	0.086	-0.026					
M19	881	0.085	-0.007	M53	909	0.084	-0.025					
M20	600	0.101	0.052	M54	56	0.090	0.026					
M21	857	0.082	0.034	M55	463	0.088	0.037					
M22	966	0.090	0.031	M56	738	0.093	0.042					
M23	933	0.099	0.079	M57	888	0.090	-0.049					
M24	757	0.091	-0.028	M58	864	0.088	0.036					
M25	527	0.104	-0.067	M59	703	0.069	0.016					
M26	773	0.108	0.063	M60	773	0.079	0.021					
M27	498	0.091	0.024	M61	158	0.113	0.090					
M28	543	0.079	0.029	M62	547	0.092	0.015					
M29	682	0.084	-0.023	M63	542	0.095	0.024					
M30	71	0.107	-0.034	M64	217	0.081	0.029					
M31	424	0.101	0.002	M65	181	0.073	-0.035					
M32	143	0.104	-0.028	M66	731	0.096	0.002					
M33	970	0.076	0.035	M67	714	0.093	0.021					
M34	456	0.085	-0.069									

第三節 航带平差飛航數據誤差分析

航帶平差飛航數據誤差分析係採用 TerraMatch 模組之 Find Match 功 能(圖 4-8),求得兩航帶間的修正參數(圖 4-9),其參數包含 Z、Heading、 Roll、Pitch 及 Mirror scale,再將修正參數修正至各航帶(圖 4-10),以進行 點雲資料之平均高程計算。彰化測區航帶重疊區數據平差前後之分析結果 如表 4-4,ALS50 平差前之平均絕對高差量約為 0.063 公尺,平差後之平 均絕對高差量約為 0.054 公尺;ALTM 30/70 的部分如表 4-5,平差前之平 均絕對高差量約為 0.130 公尺,平差後之平均絕對高差量約為 0.100 公尺; 另中高海拔山區航帶重疊區數據之分析結果如表 4-6,其平差前之平均絕 對高差量約為 0.087 公尺,平差後之平均絕對高差量約為 0.081 公尺。

Find match	
Use	Loaded points 💌
<u>I</u> rajectory dir: [<u>C</u> orrect: <u>_</u> <u>K</u> nown points: [F:\lidar\Trajectories Browse
Progress:	Do not save
<u>O</u> bserve every: [<u>M</u> ax triangle: [I <u>g</u> nore limit: [Use classes Weight 1 default Select all 2 Ground Normal Select all 3 Low vegetation Deselect all Deselect all 4 Medium vegetation Deselect all Deselect all 5 High vegetation Deselect all Deselect all 1 th point m length Deselect all 20.00 m or larger differences Deselect all Deselect all
Solve for:	Whole data set Image: Constraint of the setting drift Easting shift Image: Constraint of the setting drift Northing shift Image: Constraint of the setting drift Z shift Image: Constraint of the setting drift Z shift Image: Constraint of the setting drift Heading shift Image: Heading drift Heading shift Image: Heading drift Image: Pitch shift Image: Pitch drift
<u> </u>	Cancel

圖 4-8 Measure Match 參數設定

Apply correction	values		
 Easting shift Northing shift Z shift Heading shift Roll shift Pitch shift Mirror scale 	: 0.0000 : 0.0000 : -0.0178 : 0.00088793 : -0.00440964 : -0.00030291 : -0.00029224	 Easting drift Northing drift Z drift Heading drift Roll drift Pitch drift 	: 0.00000000 : 0.00000000 : 0.00000000 : 0.00000000 : 0.00000000 : 0.00000000
<u>0</u> K			Cancel

圖 4-9 彰化測區航線 R01 與 R02 求得之修正參數

圖 4-10 彰化測區航線 R01 與 R02 修正後之平差結果

表 4-4 彰化測區航帶平差分析結果(ALS50)(單位:公尺)

中的点外点を空 0.005 中的点方を 0.005 市場方 1 2.0005 市場方を 0.001 R01 600 0.042 0.001 R01 801 0.042 0.001 R02 905 0.042 0.006 R03 936 0.046 -0.004 R03 928 0.047 0.026 R04 919 0.400 0.003 R05 1894 0.043 0.011 R05 885 0.040 -0.013 R06 1114 0.033 0.045 R06 1106 0.042 -0.013 R07 1232 0.047 -0.002 R07 1248 0.042 -0.013 R08 1276 0.049 -0.033 R10 1030 0.045 -0.023 R11 849 0.069 4.0108 R11 869 0.043 -0.023 R11 130 0.064 -0.021 R14 1384 0.062 -0.023 R14 </th <th colspan="4">平差前</th> <th colspan="5">平差後</th>	平差前				平差後				
牛肉病差 0.003 牛肉病差 0.004 泉味 甘果死赴 廃井香差 高点 朝未和 日果肉差 高点 R01 807 0.045 -0.021 R01 801 0.042 -0.001 R02 965 0.042 -0.016 R02 969 0.042 -0.001 R03 S28 0.049 0.009 R03 936 0.040 -0.018 R04 911 0.047 0.026 R04 919 0.040 -0.018 R06 1114 0.033 -0.045 R06 1106 0.045 -0.021 R07 1228 0.047 -0.003 R08 1217 0.060 -0.023 R10 1030 0.0452 -0.013 R10 1030 0.044 -0.023 R11 847 0.098 -0.100 R11 869 0.061 -0.033 R12 1303 0.046 -0.023 R13 1501 0.044 -0.023 <th>平均絕對高</th> <th>差量</th> <th>0.063</th> <th></th> <th>平均絕對高</th> <th>差量</th> <th>0.054</th> <th>-</th>	平均絕對高	差量	0.063		平均絕對高	差量	0.054	-	
## 14 \mathbb{P} \mathbb{P} , \mathbb{R} ## 14 \mathbb{P} \mathbb{P} , \mathbb{R} ## ## \mathbb{R}	平均高差		-0.005	5	平均高差		-0.004	1	
R01 D3 D3 D3 D4 D401 R01 D3 R01 D402 D001 R02 965 0.042 -0.016 R02 969 0.042 -0.004 R03 928 0.049 0.009 R03 936 0.0446 -0.018 R04 911 0.047 0.026 R04 919 0.040 -0.003 R05 894 0.043 0.011 R05 885 0.040 -0.013 R06 1114 0.053 -0.002 R07 1248 0.042 -0.011 R08 1250 0.049 -0.023 R08 1217 0.050 0.009 R10 1030 0.049 -0.033 R10 1030 0.045 -0.023 R11 847 0.069 R12 1300 0.064 -0.023 R13 1507 0.046 -0.024 R14 1384 0.062 -0.063 R14 <td< th=""><th>航線</th><th>計算點數</th><th>絕對高差量</th><th>高差</th><th>航線</th><th>計算點數</th><th>絕對高差量</th><th>高差</th></td<>	航線	計算點數	絕對高差量	高差	航線	計算點數	絕對高差量	高差	
R02 965 0.042 -0.016 R02 969 0.042 -0.004 R03 928 0.049 0.009 R03 936 0.046 -0.018 R04 911 0.047 0.026 R04 919 0.040 0.003 R05 1114 0.053 -0.045 R06 1106 0.0442 -0.011 R07 1232 0.047 -0.002 R07 1248 0.042 -0.011 R08 1226 0.049 -0.023 R08 1217 0.050 0.009 R09 830 0.052 0.014 R09 839 0.045 -0.033 R11 847 0.098 -0.100 R11 869 0.063 -0.047 R13 1507 0.046 -0.023 R16 883 0.049 -0.033 R15 964 0.061 0.031 R15 961 0.044 -0.023 R13 1507 0.061 <td>R01</td> <td>807</td> <td>0.045</td> <td>-0.021</td> <td>R01</td> <td>801</td> <td>0.042</td> <td>0.001</td>	R01	807	0.045	-0.021	R01	801	0.042	0.001	
R03 928 0.049 0.039 R03 936 0.046 -0.018 R04 911 0.047 0.026 R04 919 0.040 0.003 R05 8944 0.043 0.011 R05 885 0.040 -0.033 R06 1114 0.053 -0.002 R07 12148 0.042 -0.011 R08 1226 0.049 -0.002 R07 12148 0.042 -0.011 R09 830 0.047 0.013 R10 1030 0.045 -0.023 R11 847 0.098 -0.100 R11 869 0.061 -0.033 R12 1303 0.046 -0.024 R13 1501 0.042 -0.007 R14 1381 0.067 -0.070 R14 1384 0.062 -0.003 R17 1006 0.050 -0.017 R14 1381 0.044 -0.023 R16 888 0.	R02	965	0.042	-0.016	R02	969	0.042	-0.004	
R04 911 0.047 0.026 R04 919 0.040 0.003 R05 884 0.043 0.011 R05 885 0.040 -0.018 R06 1114 0.053 -0.045 R06 1106 0.042 -0.011 R07 1222 0.047 -0.002 R07 1248 0.042 -0.011 R09 830 0.052 0.014 R09 839 0.047 -0.023 R11 847 0.098 -0.100 R11 869 0.081 -0.083 R11 847 0.098 -0.100 R14 1384 0.062 -0.063 R13 1507 0.046 0.021 R15 961 0.044 -0.023 R16 888 0.049 0.003 R16 883 0.046 0.003 R17 1000 0.066 -0.098 R17 1006 0.064 0.011 R18 1080 0.044	R03	928	0.049	0.009	R03	936	0.046	-0.018	
R05 894 0.043 0.011 R05 885 0.040 -0.018 R06 1114 0.053 -0.045 R06 1166 0.045 -0.033 R07 1232 0.047 -0.002 R07 1248 0.042 -0.011 R08 1226 0.049 -0.023 R08 1217 0.050 0.009 R09 830 0.047 0.013 R10 1030 0.045 -0.023 R11 1303 0.068 R12 1300 0.063 0.047 R13 1507 0.046 -0.024 R13 1501 0.042 -0.007 R14 1381 0.067 -0.070 R14 1384 0.062 -0.063 R15 964 0.061 0.031 R15 883 0.046 0.003 R14 1381 0.072 0.056 R19 1303 0.044 0.020 R20 1785 0.051 0.02	R04	911	0.047	0.026	R04	919	0.040	0.003	
R06 1114 0.053 0.045 R06 1106 0.045 0.033 R07 1232 0.047 -0.002 R07 1248 0.042 -0.011 R08 1226 0.044 0.023 R08 1217 0.050 0.009 R09 830 0.052 0.014 R09 839 0.047 -0.033 R10 1030 0.049 -0.033 R10 1030 0.045 -0.023 R11 947 0.098 -0.100 R11 869 0.061 -0.033 R12 1300 0.064 -0.024 R13 1501 -0.042 0.007 R13 1507 0.046 -0.023 R16 883 0.044 -0.003 R15 964 0.061 -0.031 R15 961 0.044 -0.028 R14 1380 0.062 0.044 -0.038 R20 1797 0.041 -0.010 R18 1	R05	894	0.043	0.011	R05	885	0.040	-0.018	
R07 1232 0.047 -0.002 R07 1248 0.042 -0.011 R08 1226 0.049 -0.023 R08 1217 0.050 0.009 R09 830 0.052 0.014 R09 839 0.047 0.013 R10 1030 0.049 -0.033 R10 1030 0.045 -0.023 R11 S47 0.098 -0.100 R11 869 0.081 -0.023 R14 1381 0.067 -0.070 R14 1384 0.062 -0.063 R15 964 0.061 0.031 R15 961 0.046 -0.023 R16 888 0.049 0.020 0.033 R17 1006 0.050 -0.019 R18 1079 0.044 -0.008 R18 1080 0.044 -0.016 R20 1785 0.051 0.022 1330 0.044 -0.016 R19 1303 0	R06	1114	0.013	-0.045	R06	1106	0.045	-0.033	
R08 1226 0.049 -0.023 R08 1217 0.050 0.009 R09 830 0.052 0.014 R09 839 0.047 0.013 R10 1030 0.049 0.033 R10 1030 0.045 -0.023 R11 847 0.098 -0.100 R11 869 0.081 -0.023 R12 1303 0.066 R12 1300 0.063 0.047 R13 1507 0.046 -0.024 R13 1501 0.042 -0.007 R14 1381 0.067 -0.070 R14 1384 0.062 -0.044 R15 961 0.044 -0.023 R16 883 0.040 0.023 R16 888 0.049 0.003 R16 1303 0.049 0.020 R20 1785 0.051 0.028 R20 1797 0.041 -0.016 R21 1664 0.062 0.044 </td <td>R07</td> <td>1232</td> <td>0.047</td> <td>-0.002</td> <td>R07</td> <td>1248</td> <td>0.042</td> <td>-0.011</td>	R07	1232	0.047	-0.002	R07	1248	0.042	-0.011	
R09 830 0.052 0.014 R09 839 0.047 0.013 R10 1030 0.049 -0.033 R10 1030 0.045 -0.023 R11 847 0.098 0.000 R11 869 0.081 -0.023 R13 1507 0.046 -0.024 R13 1501 0.042 0.007 R14 1381 0.067 -0.070 R14 1384 0.062 -0.023 R15 964 0.061 0.031 R15 961 0.044 -0.023 R17 1000 0.065 -0.059 R17 1006 0.050 -0.019 R18 1079 0.044 -0.008 R18 1080 0.045 0.011 R19 1230 0.072 0.056 R19 1303 0.049 0.020 R20 1785 0.051 0.028 R20 1797 0.041 0.029 R21 1664 0.042<	R08	1232	0.049	-0.023	R08	1217	0.050	0.009	
R10 1030 0.049 -0.033 R10 1030 0.045 -0.023 R11 847 0.098 -0.100 R11 869 0.081 -0.083 R12 1303 0.061 0.024 R13 1501 0.046 0.047 R13 1507 0.046 -0.024 R13 1501 0.042 -0.063 R15 964 0.061 0.031 R15 961 0.044 -0.023 R16 888 0.049 0.003 R16 883 0.046 -0.029 R17 1000 0.050 -0.019 R18 1080 0.045 0.011 R19 1200 0.072 0.056 R19 1303 0.049 0.002 R21 1664 0.062 0.044 R21 1661 0.046 -0.002 R22 938 0.043 -0.007 R25 14 0.040 -0.011 R26 851 0.045 <td>R09</td> <td>830</td> <td>0.052</td> <td>0.014</td> <td>R09</td> <td>839</td> <td>0.047</td> <td>0.013</td>	R09	830	0.052	0.014	R09	839	0.047	0.013	
R11 R47 0.005 0.002 R11 R50 0.003 0.008 R12 1303 0.081 0.068 R12 1300 0.043 0.041 R13 1507 0.046 -0.024 R13 1501 0.042 0.007 R14 1381 0.067 -0.070 R14 1384 0.062 -0.063 R15 964 0.061 0.031 R15 961 0.044 -0.023 R16 888 0.049 0.003 R17 1006 0.050 -0.019 R18 1079 0.044 -0.008 R18 1080 0.045 0.011 R19 1290 0.072 0.056 R19 1303 0.049 0.020 R20 1785 0.051 0.028 R20 177 0.043 -0.029 R21 1664 0.067 -0.038 R24 406 0.052 0.013 R22 939 0.045	R10	1030	0.049	-0.033	R10	1030	0.045	-0.023	
R12 1303 0.063 0.066 R12 1300 0.063 0.044 R13 1507 0.046 -0.024 R13 1501 0.042 0.007 R14 1381 0.061 0.031 R15 964 0.061 0.033 R16 883 0.046 -0.033 R16 888 0.049 -0.003 R16 883 0.046 -0.033 R17 1000 0.065 -0.059 R17 1006 0.050 -0.019 R18 1079 0.044 -0.008 R18 1080 0.045 0.011 R20 1785 0.051 0.028 R20 1797 0.041 -0.016 R21 1664 0.062 0.044 R21 1661 0.046 0.002 R24 402 0.057 -0.036 R24 406 0.052 0.013 R25 112 0.057 -0.038 R26 8641 0.044 -0.	R11	847	0.098	-0.100	R11	869	0.081	-0.083	
R13 1507 0.046 -0.024 R13 1501 0.042 0.007 R14 1381 0.067 -0.070 R14 1384 0.062 -0.023 R16 988 0.049 0.003 R16 883 0.046 -0.023 R16 888 0.049 0.003 R16 883 0.046 -0.023 R17 1000 0.065 -0.059 R17 1006 0.050 -0.011 R19 1290 0.072 0.056 R19 1303 0.049 0.020 R20 1785 0.051 0.028 R20 1797 0.041 -0.016 R21 1664 0.062 0.044 R21 1661 0.045 -0.023 R23 278 0.043 -0.007 R23 277 0.038 -0.029 R24 402 0.057 -0.036 R24 406 0.031 R27 660 0.047 -0.003	R12	1303	0.098	0.068	R11 R12	1300	0.063	0.047	
R14 1381 0.067 0.070 R14 1384 0.062 -0.063 R15 964 0.061 0.031 R15 961 0.044 -0.023 R16 888 0.049 0.003 R17 1006 0.050 -0.019 R18 1079 0.044 -0.008 R18 1080 0.045 0.011 R19 1290 0.072 0.056 R19 1303 0.049 0.020 R20 1785 0.051 0.028 R20 1797 0.041 -0.016 R21 1664 0.062 0.044 R21 1661 0.046 0.0029 R22 939 0.043 -0.012 R22 938 0.043 -0.002 R21 1664 0.062 0.044 R21 1661 0.044 -0.011 R25 112 0.057 -0.036 R24 406 0.051 R03 927 0.042 0.002 <t< td=""><td>R12</td><td>1507</td><td>0.081</td><td>-0.024</td><td>R12 R13</td><td>1501</td><td>0.003</td><td>0.047</td></t<>	R12	1507	0.081	-0.024	R12 R13	1501	0.003	0.047	
R15 964 0.061 0.037 R15 961 0.044 -0.023 R16 888 0.049 0.003 R16 883 0.044 -0.023 R17 1000 0.065 -0.059 R17 1006 0.050 -0.019 R18 1079 0.044 -0.008 R18 1080 0.045 0.011 R19 1290 0.072 0.056 R19 1303 0.049 0.020 R20 1785 0.051 0.028 R20 1797 0.041 -0.016 R21 1664 0.062 0.044 R21 1661 0.046 0.002 R23 278 0.085 -0.007 R24 406 0.052 0.013 R25 112 0.057 -0.007 R25 114 0.040 -0.015 R28 641 0.057 -0.038 R28 641 0.044 -0.005 R30 934 0.056	R14	1381	0.067	-0.070	R14	1384	0.062	-0.063	
R16 R16 R16 R16 R17 D000 D005 P17 D006 D0059 P117 R17 1000 0.065 -0.059 R17 1006 0.050 -0.019 R18 1079 0.044 -0.008 R18 1080 0.045 0.011 R19 1290 0.072 0.056 R19 1303 0.049 0.020 R20 1785 0.051 0.028 R20 1797 0.041 -0.012 R22 939 0.043 -0.012 R22 938 0.043 -0.002 R23 278 0.085 -0.090 R23 277 0.038 -0.029 R24 402 0.057 -0.003 R26 864 0.044 -0.001 R26 851 0.045 0.003 R27 660 0.047 -0.005 R29 1011 0.061 0.033 R29 1021 0.044 -0.012	R15	964	0.061	0.031	R15	961	0.002	-0.023	
R17 000 0.045 0.005 R17 0006 0.050 0.019 R18 1079 0.044 -0.008 R18 1080 0.045 0.011 R19 1290 0.072 0.056 R19 1303 0.049 0.020 R20 1785 0.051 0.028 R20 1797 0.044 -0.016 R21 1664 0.062 0.044 R21 1661 0.046 0.002 R23 278 0.085 -0.090 R22 938 0.043 -0.029 R24 402 0.057 -0.036 R24 406 0.052 0.011 R26 851 0.045 -0.007 R25 114 0.040 -0.011 R26 661 0.057 -0.038 R28 641 0.044 -0.005 R30 934 0.056 -0.050 R30 927 0.042 0.002 R31 672 0.071	R16	888	0.001	0.003	R16	883	0.046	0.003	
R18 1000 0.000 R18 1000 0.001 0.011 R19 1290 0.072 0.056 R19 1303 0.049 0.020 R20 1785 0.051 0.028 R20 1797 0.041 -0.016 R21 1664 0.062 0.044 R21 1661 0.046 0.009 R22 939 0.043 -0.012 R22 938 0.043 -0.002 R23 278 0.085 -0.000 R23 277 0.038 -0.029 R24 402 0.057 -0.036 R24 406 0.040 -0.011 R26 851 0.045 -0.003 R27 660 0.047 -0.003 R29 1011 0.061 0.033 R29 1021 0.048 -0.005 R30 934 0.056 -0.050 R30 927 0.042 0.002 R31 672 0.070 0.368	R17	1000	0.045	-0.059	R10	1006	0.040	-0.019	
R19 102 0.041 0.005 R13 1080 0.042 0.011 R19 1290 0.072 0.056 R19 1303 0.044 0.021 R20 1785 0.051 0.028 R20 1797 0.041 -0.016 R21 1664 0.062 0.044 R21 1661 0.046 0.009 R22 939 0.043 -0.012 R22 938 0.043 -0.002 R25 112 0.057 -0.007 R25 114 0.040 -0.011 R26 851 0.045 -0.003 R26 864 0.044 -0.003 R27 661 0.058 0.003 R27 660 0.048 -0.015 R30 934 0.056 -0.050 R30 927 0.042 0.002 R31 672 0.071 -0.063 R32 956 0.066 -0.047 R33 594 0.052	R17	1000	0.005	-0.059	R17	1000	0.030	0.011	
R10 120 0.002 R10 1302 0.004 0.020 R20 1785 0.051 0.028 R20 1797 0.041 -0.016 R21 1664 0.062 0.044 R21 1661 0.046 0.009 R22 939 0.043 -0.012 R22 938 0.043 -0.002 R24 402 0.057 -0.036 R24 406 0.052 0.013 R25 112 0.057 -0.007 R25 114 0.044 -0.004 R26 681 0.058 0.003 R27 660 0.047 -0.003 R28 641 0.057 -0.038 R28 641 0.049 -0.005 R30 934 0.056 -0.050 R30 927 0.042 0.002 R31 672 0.070 0.036 R31 700 0.059 -0.042 R33 594 0.052 0.006	R10	1200	0.072	-0.008	R10	1303	0.049	0.020	
R20 1752 0.001 0.001 0.001 0.001 0.001 0.001 R20 0.001 R20 0.003 0.002 R22 938 0.043 -0.002 R23 278 0.085 -0.000 R23 277 0.038 -0.002 R24 400 0.057 -0.036 R24 406 0.052 0.013 R25 112 0.057 -0.036 R24 406 0.052 0.011 R26 851 0.045 -0.003 R26 864 0.044 -0.003 R28 641 0.057 -0.038 R28 641 0.049 -0.005 R30 934 0.056 -0.050 R30 927 0.042 0.002 R31 672 0.070 0.036 R31 700 0.059 -0.042 R32 963 0.071 -0.063 R32 956 0.060 -0.047 R33 594 0.052 <td>R 20</td> <td>1785</td> <td>0.072</td> <td>0.030</td> <td>R20</td> <td>1707</td> <td>0.041</td> <td>-0.016</td>	R 20	1785	0.072	0.030	R20	1707	0.041	-0.016	
R22 939 0.043 -0.012 R22 938 0.043 -0.002 R23 278 0.085 -0.090 R23 277 0.038 -0.029 R24 402 0.057 -0.036 R24 406 0.052 0.011 R25 112 0.057 -0.007 R25 114 0.040 -0.011 R26 851 0.045 -0.003 R26 864 0.044 -0.001 R27 661 0.058 0.003 R27 660 0.044 -0.005 R29 1011 0.061 0.033 R29 1021 0.048 -0.012 R30 934 0.055 -0.050 R30 927 0.042 0.002 R31 672 0.070 0.036 R31 700 0.059 -0.042 R33 594 0.052 0.006 R33 589 0.042 0.005 R33 100 0.044	R20	1664	0.051	0.028	R20	1661	0.041	0.009	
R22 D25 D.085 D.090 R23 D77 D.038 D.029 R24 402 0.057 -0.036 R24 406 0.052 0.013 R25 112 0.057 -0.007 R25 114 0.040 -0.011 R26 851 0.045 -0.003 R26 864 0.044 -0.003 R27 661 0.058 0.003 R27 660 0.047 -0.003 R28 641 0.057 -0.038 R28 641 0.049 -0.005 R30 934 0.056 -0.050 R30 927 0.042 0.002 R31 672 0.070 0.036 R31 700 0.059 -0.042 R33 594 0.052 0.066 R33 589 0.042 0.005 R34 758 0.043 -0.018 R34 762 0.041 -0.008 R35 320 0.048	R21	939	0.002	-0.012	R21	938	0.040	-0.002	
R23 2.13 0.035 0.036 R24 406 0.052 0.013 R25 112 0.057 -0.007 R25 114 0.040 -0.011 R26 881 0.045 -0.003 R26 864 0.044 0.004 R27 661 0.058 0.003 R27 660 0.047 -0.003 R28 641 0.057 -0.038 R28 641 0.049 -0.005 R30 934 0.056 -0.050 R30 927 0.042 0.002 R31 672 0.070 0.036 R31 700 0.059 -0.042 R32 963 0.071 -0.063 R32 956 0.060 -0.042 R33 594 0.052 0.006 R33 589 0.042 0.005 R33 504 0.048 +0.006 R35 323 0.047 -0.004 R35 320 0.048	R22	278	0.045	-0.012	R22	277	0.045	-0.002	
R25 102 0.057 0.007 R25 114 0.040 0.011 R26 851 0.045 -0.003 R26 864 0.044 0.004 R27 661 0.058 0.003 R27 660 0.047 -0.003 R28 641 0.057 -0.038 R28 641 0.049 -0.005 R29 1011 0.061 0.033 R29 1021 0.048 -0.015 R30 934 0.056 -0.050 R30 927 0.042 0.002 R31 672 0.070 0.036 R31 700 0.059 -0.042 R33 594 0.052 0.006 R33 588 0.042 0.005 R34 758 0.043 -0.018 R34 762 0.041 -0.008 R35 320 0.064 -0.039 R36 329 0.063 -0.022 R39 176 0.047	R23	402	0.065	-0.036	R23	406	0.058	0.013	
R26 R12 0.045 0.003 R26 R64 0.044 0.004 R27 661 0.058 0.003 R27 660 0.047 -0.003 R28 641 0.057 -0.038 R28 641 0.049 -0.005 R29 1011 0.061 0.033 R29 1021 0.048 -0.015 R30 934 0.056 -0.050 R30 927 0.042 0.002 R31 672 0.070 0.036 R31 700 0.059 -0.042 R32 963 0.071 -0.063 R32 956 0.060 -0.047 R33 594 0.052 0.006 R33 589 0.042 0.008 R34 758 0.043 -0.018 R34 762 0.041 -0.008 R35 320 0.044 -0.033 R35 323 0.064 -0.012 R36 331 0.066	R24	112	0.057	-0.050	R24	114	0.032	-0.011	
R27 661 0.058 0.003 R27 660 0.047 -0.003 R28 641 0.057 -0.038 R28 641 0.049 -0.005 R29 1011 0.061 0.033 R29 1021 0.048 -0.015 R30 934 0.056 -0.030 R31 700 0.042 0.002 R31 672 0.070 0.036 R31 700 0.059 -0.042 R32 963 0.071 -0.063 R32 956 0.060 -0.047 R33 594 0.052 0.006 R33 589 0.042 0.008 R35 320 0.048 -0.006 R35 323 0.041 -0.004 R36 331 0.064 -0.033 R38 196 0.066 -0.022 R40 128 0.053 0.024 R40 128 0.053 0.022 R41 100 0.044	R26	851	0.037	-0.007	R25	864	0.040	0.004	
R27 301 0.057 -0.038 R28 641 0.049 -0.035 R29 1011 0.061 0.033 R29 1021 0.048 -0.015 R30 934 0.056 -0.050 R30 927 0.042 0.002 R31 672 0.070 0.036 R31 700 0.059 -0.042 R33 594 0.052 0.006 R33 589 0.042 0.005 R34 758 0.043 -0.018 R34 762 0.041 -0.004 R35 320 0.048 -0.006 R35 323 0.047 -0.014 R36 331 0.064 -0.039 R36 329 0.063 -0.038 R37 342 0.056 -0.016 R37 343 0.054 -0.012 R39 176 0.047 -0.018 R39 179 0.045 -0.022 R40 128 0.053	R20	661	0.049	0.003	R20	660	0.047	-0.003	
R29 1011 0.061 0.033 R29 1021 0.048 -0.015 R30 934 0.056 -0.050 R30 927 0.042 0.002 R31 672 0.070 0.033 R31 700 0.059 -0.042 R32 963 0.071 -0.063 R32 956 0.060 -0.047 R33 594 0.052 0.006 R33 589 0.042 0.005 R34 758 0.043 -0.018 R34 762 0.041 -0.004 R35 320 0.048 -0.006 R35 323 0.047 -0.044 R36 331 0.064 -0.033 R36 329 0.063 -0.038 R37 342 0.056 -0.018 R37 343 0.054 -0.022 R40 128 0.053 0.024 R40 128 0.053 0.030 R41 100 0.104	R28	641	0.057	-0.038	R28	641	0.047	-0.005	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R29	1011	0.061	0.033	R29	1021	0.048	-0.015	
R30 D34 0.030 R30 D34 0.032 R31 0.032 R31 0.032 R31 0.032 R31 0.032 R31 700 0.055 0.042 0.042 R32 963 0.071 -0.063 R32 956 0.060 -0.047 R33 594 0.052 0.006 R33 589 0.042 0.008 R34 758 0.043 -0.018 R34 762 0.041 -0.008 R35 320 0.048 -0.006 R35 323 0.047 -0.004 R36 331 0.064 -0.033 R38 196 0.066 -0.022 R39 176 0.047 -0.018 R39 179 0.045 -0.022 R40 128 0.053 0.024 R40 128 0.030 0.047 R42 195 0.110 -0.026 R42 192 0.100 -0.025 R43	R 30	934	0.001	-0.050	R 30	927	0.042	0.002	
R31 072 0.070 0.030 R31 070 0.037 0.037 R32 963 0.071 -0.063 R32 956 0.060 -0.047 R33 594 0.052 0.006 R33 589 0.042 0.005 R34 758 0.043 -0.018 R34 762 0.041 -0.008 R35 320 0.048 -0.006 R35 323 0.047 -0.004 R36 331 0.064 -0.039 R36 329 0.063 -0.038 R37 342 0.056 -0.018 R37 343 0.054 -0.022 R39 176 0.047 -0.018 R39 179 0.045 -0.022 R40 128 0.053 0.024 R40 128 0.053 0.030 R41 100 0.104 0.051 R41 104 0.098 0.047 R42 195 0.110	R31	672	0.030	0.036	R30 R31	700	0.042	-0.042	
R32 905 0.011 -0.003 R32 930 0.000 -0.004 R33 594 0.052 0.006 R33 589 0.042 0.005 R34 758 0.043 -0.018 R34 762 0.041 -0.008 R35 320 0.048 -0.006 R35 323 0.047 -0.004 R36 331 0.064 -0.039 R36 329 0.063 -0.038 R37 342 0.056 -0.016 R37 343 0.054 -0.013 R38 196 0.068 -0.033 R38 196 0.066 -0.022 R40 128 0.053 0.024 R40 128 0.053 0.030 R41 100 0.104 0.051 R41 104 0.098 0.047 R42 195 0.110 -0.026 R42 192 0.100 -0.025 R43 161 0.093	P32	072	0.070	0.050	D32	056	0.059	-0.042	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	R32 R33	594	0.052	0.005	R32 R33	589	0.000	0.005	
R35 100 0.010 R35 100 R35 100 </td <td>R34</td> <td>758</td> <td>0.032</td> <td>-0.018</td> <td>R34</td> <td>762</td> <td>0.041</td> <td>-0.008</td>	R34	758	0.032	-0.018	R34	762	0.041	-0.008	
R35 320 0.040 0.000 R35 322 0.047 0.038 R36 331 0.064 -0.039 R36 329 0.063 -0.038 R37 342 0.056 -0.016 R37 343 0.054 -0.013 R38 196 0.068 -0.033 R38 196 0.066 -0.022 R40 128 0.053 0.024 R40 128 0.053 0.030 R41 100 0.104 0.051 R41 104 0.098 0.047 R42 195 0.110 -0.026 R42 192 0.100 -0.025 R43 161 0.093 0.016 R43 178 0.089 0.030 R44 449 0.096 -0.046 R44 563 0.083 -0.004 R45 133 0.102 0.137 R45 160 0.072 0.058 R46 359 0.094 <t< td=""><td>R35</td><td>320</td><td>0.045</td><td>-0.016</td><td>R35</td><td>323</td><td>0.047</td><td>-0.008</td></t<>	R35	320	0.045	-0.016	R35	323	0.047	-0.008	
R37 342 0.04 0.03 R37 343 0.056 0.016 R37 343 0.054 -0.013 R38 196 0.068 -0.033 R38 196 0.066 -0.022 R39 176 0.047 -0.018 R39 179 0.045 -0.022 R40 128 0.053 0.024 R40 128 0.053 0.030 R41 100 0.104 0.051 R41 104 0.098 0.047 R42 195 0.110 -0.026 R42 192 0.100 -0.025 R43 161 0.093 0.016 R43 178 0.089 0.030 R44 449 0.096 -0.046 R44 563 0.083 -0.004 R45 133 0.102 0.137 R45 160 0.072 0.058 R46 359 0.094 0.077 R46 381 0.057 -0.010 <td>R36</td> <td>331</td> <td>0.048</td> <td>-0.000</td> <td>R36</td> <td>329</td> <td>0.047</td> <td>-0.038</td>	R36	331	0.048	-0.000	R36	329	0.047	-0.038	
R37 D42 0.000 0.000 R37 D43 0.004 R38 196 0.068 -0.033 R38 196 0.066 -0.022 R39 176 0.047 -0.018 R39 179 0.045 -0.022 R40 128 0.053 0.024 R40 128 0.053 0.030 R41 100 0.104 0.051 R41 104 0.098 0.047 R42 195 0.110 -0.026 R42 192 0.100 -0.025 R43 161 0.093 0.016 R43 178 0.089 0.030 R44 449 0.096 -0.046 R44 563 0.083 -0.004 R45 133 0.102 0.137 R45 160 0.072 0.058 R46 359 0.094 0.077 R46 381 0.057 -0.010 R48 814 0.062 0.052 <td< td=""><td>R37</td><td>342</td><td>0.004</td><td>-0.059</td><td>R37</td><td>343</td><td>0.005</td><td>-0.038</td></td<>	R37	342	0.004	-0.059	R37	343	0.005	-0.038	
R39 176 0.000 0.000 0.001 R39 179 0.045 -0.022 R40 128 0.053 0.024 R40 128 0.053 0.021 R40 128 0.053 0.024 R40 128 0.053 0.020 R41 100 0.104 0.051 R41 104 0.098 0.047 R42 195 0.110 -0.026 R42 192 0.100 -0.025 R43 161 0.093 0.016 R43 178 0.089 0.030 R44 449 0.096 -0.046 R44 563 0.083 -0.004 R45 133 0.102 0.137 R45 160 0.072 0.058 R46 359 0.094 0.077 R46 381 0.057 -0.010 R48 814 0.062 0.052 R48 806 0.044 -0.005 R50 632 0	R38	196	0.050	-0.010	R38	196	0.054	-0.013	
R40 128 0.053 0.024 R40 128 0.053 0.020 R40 128 0.053 0.024 R40 128 0.053 0.030 R41 100 0.104 0.051 R41 104 0.098 0.047 R42 195 0.110 -0.026 R42 192 0.100 -0.025 R43 161 0.093 0.016 R43 178 0.089 0.030 R44 449 0.096 -0.046 R44 563 0.083 -0.004 R45 133 0.102 0.137 R45 160 0.072 0.058 R46 359 0.094 0.077 R46 381 0.057 -0.010 R48 814 0.062 0.052 R48 806 0.049 0.006 R49 986 0.057 -0.043 R49 989 0.047 -0.005 R50 632 0.108 -	R 30	176	0.003	-0.033	R30	170	0.000	-0.022	
R10 120 0.035 0.036 0.047 R42 195 0.110 -0.026 R42 192 0.100 -0.025 R43 161 0.093 0.016 R43 178 0.089 0.030 R44 449 0.096 -0.046 R44 563 0.083 -0.004 R45 133 0.102 0.137 R45 160 0.072 0.058 R46 359 0.094 0.077 R46 381 0.057 -0.010 R48 814 0.062 0.052 R48 806 0.049 0.006 R49 986 0.057 -0.043 R49 989 0.047 -0.005 R50	R40	128	0.053	0.024	R40	128	0.053	0.022	
R42 195 0.110 -0.026 R42 192 0.100 -0.025 R43 161 0.093 0.016 R43 178 0.089 0.030 R44 449 0.096 -0.046 R44 563 0.083 -0.004 R45 133 0.102 0.137 R45 160 0.072 0.058 R46 359 0.094 0.077 R46 381 0.057 0.009 R47 284 0.092 -0.097 R47 321 0.057 -0.010 R48 814 0.062 0.052 R48 806 0.049 0.006 R49 986 0.057 -0.043 R49 989 0.047 -0.005 R50 632 0.108 -0.072 R50 780 0.050 -0.011 R51 756 0.101 0.081 R51 743 0.098 0.075 R52 1381 0.064 <	R41	100	0 104	0.051	R41	104	0.098	0.047	
R43 161 0.093 0.016 R43 178 0.089 0.030 R44 449 0.096 -0.046 R44 563 0.083 -0.044 R45 133 0.102 0.137 R45 160 0.072 0.058 R46 359 0.094 0.077 R46 381 0.057 0.009 R47 284 0.092 -0.097 R47 321 0.057 -0.010 R48 814 0.062 0.052 R48 806 0.049 0.006 R49 986 0.057 -0.043 R49 989 0.047 -0.005 R50 632 0.108 -0.072 R50 780 0.050 -0.011 R51 756 0.101 0.081 R51 743 0.098 0.075 R52 1381 0.064 -0.027 R52 1386 0.065 -0.025 R53 1542 0.073	R42	195	0 1 10	-0.026	R42	107	0 100	-0.025	
R44 449 0.096 -0.046 R44 563 0.083 -0.004 R45 133 0.102 0.137 R45 160 0.072 0.058 R46 359 0.094 0.077 R46 381 0.057 0.009 R47 284 0.092 -0.097 R47 321 0.057 -0.010 R48 814 0.062 0.052 R48 806 0.049 0.006 R49 986 0.057 -0.043 R49 989 0.047 -0.005 R50 632 0.108 -0.072 R50 780 0.050 -0.011 R51 756 0.101 0.081 R51 743 0.098 0.075 R52 1381 0.064 -0.027 R52 1386 0.065 -0.025 R53 1542 0.073 0.025 R53 1521 0.067 0.023 R55 1126 0.049	R43	161	0.093	0.020	R43	172	0.100	0.025	
R45 133 0.102 0.137 R45 160 0.072 0.058 R46 359 0.094 0.077 R46 381 0.057 0.009 R47 284 0.092 -0.097 R47 321 0.057 -0.010 R48 814 0.062 0.052 R48 806 0.049 0.006 R49 986 0.057 -0.043 R49 989 0.047 -0.005 R50 632 0.108 -0.072 R50 780 0.050 -0.011 R51 756 0.101 0.081 R51 743 0.098 0.075 R52 1381 0.064 -0.027 R52 1386 0.065 -0.025 R53 1542 0.073 0.025 R53 1521 0.067 0.023 R54 1212 0.050 0.005 R54 1198 0.047 0.003 R55 1126 0.049	R44	449	0.096	-0.046	R44	563	0.083	-0.004	
R46 359 0.094 0.077 R46 381 0.057 0.009 R47 284 0.092 -0.097 R47 321 0.057 -0.010 R48 814 0.062 0.052 R48 806 0.049 0.006 R49 986 0.057 -0.043 R49 989 0.047 -0.005 R50 632 0.108 -0.072 R50 780 0.050 -0.011 R51 756 0.101 0.081 R51 743 0.098 0.075 R52 1381 0.064 -0.027 R52 1386 0.065 -0.025 R53 1542 0.073 0.025 R53 1521 0.067 0.023 R54 1212 0.050 0.005 R54 1198 0.047 0.003 R55 1126 0.049 -0.006 R55 1150 0.048 -0.002 R57 7856 0.058	R45	133	0.102	0.137	R45	160	0.072	0.058	
R47 284 0.092 -0.097 R47 321 0.057 -0.010 R48 814 0.062 0.052 R48 806 0.049 0.006 R49 986 0.057 -0.043 R49 989 0.047 -0.005 R50 632 0.108 -0.072 R50 780 0.050 -0.011 R51 756 0.101 0.081 R51 743 0.098 0.075 R52 1381 0.064 -0.027 R52 1386 0.065 -0.025 R53 1542 0.073 0.025 R53 1521 0.067 0.023 R54 1212 0.050 0.005 R54 1198 0.047 0.003 R55 1126 0.049 -0.006 R55 1150 0.048 -0.002 R56 6521 0.056 -0.001 R56 6498 0.054 -0.002 R57 7856 0.058 <td>R46</td> <td>359</td> <td>0.094</td> <td>0.077</td> <td>R46</td> <td>381</td> <td>0.057</td> <td>0.009</td>	R46	359	0.094	0.077	R46	381	0.057	0.009	
R48 814 0.062 0.052 R48 806 0.049 0.006 R49 986 0.057 -0.043 R49 989 0.047 -0.005 R50 632 0.108 -0.072 R50 780 0.050 -0.011 R51 756 0.101 0.081 R51 743 0.098 0.075 R52 1381 0.064 -0.027 R52 1386 0.065 -0.025 R53 1542 0.073 0.025 R53 1521 0.067 0.023 R54 1212 0.050 0.005 R54 1198 0.047 0.003 R55 1126 0.049 -0.006 R55 1150 0.048 -0.002 R56 6521 0.056 -0.001 R56 6498 0.054 -0.002 R57 7856 0.058 0.001 R57 7867 0.057 0.001 R58 2163 0.058 <td>R47</td> <td>284</td> <td>0.092</td> <td>-0.097</td> <td>R47</td> <td>321</td> <td>0.057</td> <td>-0.010</td>	R47	284	0.092	-0.097	R47	321	0.057	-0.010	
R49 986 0.057 -0.043 R49 989 0.047 -0.005 R50 632 0.108 -0.072 R50 780 0.050 -0.011 R51 756 0.101 0.081 R51 743 0.098 0.075 R52 1381 0.064 -0.027 R52 1386 0.065 -0.025 R53 1542 0.073 0.025 R53 1521 0.067 0.023 R54 1212 0.050 0.005 R54 1198 0.047 -0.003 R55 1126 0.049 -0.006 R55 1150 0.048 -0.002 R56 6521 0.056 -0.001 R56 6498 0.054 -0.002 R57 7856 0.058 0.001 R57 7867 0.057 0.001 R58 2163 0.058 -0.001 R58 2183 0.053 0.001 R59 1395 0.05	R48	814	0.062	0.052	R48	806	0.049	0.006	
R50 632 0.108 -0.072 R50 780 0.050 -0.011 R51 756 0.101 0.081 R51 743 0.098 0.075 R52 1381 0.064 -0.027 R52 1386 0.065 -0.025 R53 1542 0.073 0.025 R53 1521 0.067 0.023 R54 1212 0.050 0.005 R54 1198 0.047 0.003 R55 1126 0.049 -0.006 R55 1150 0.048 -0.002 R56 6521 0.056 -0.001 R56 6498 0.054 -0.002 R57 7856 0.058 0.001 R57 7867 0.057 0.001 R58 2163 0.058 -0.001 R58 2183 0.053 0.001 R59 1395 0.051 0.015 R59 1398 0.045 -0.001	R49	986	0.057	-0.043	R49	989	0.047	-0.005	
R51 756 0.101 0.081 R51 743 0.098 0.075 R52 1381 0.064 -0.027 R52 1386 0.065 -0.025 R53 1542 0.073 0.025 R53 1521 0.067 0.023 R54 1212 0.050 0.005 R54 1198 0.047 0.003 R55 1126 0.049 -0.006 R55 1150 0.048 -0.003 R56 6521 0.056 -0.001 R56 6498 0.054 -0.002 R57 7856 0.058 0.001 R57 7867 0.057 0.001 R58 2163 0.058 -0.001 R58 2183 0.053 0.001 R59 1395 0.051 0.015 R59 1398 0.045 -0.001	R50	632	0.108	-0.072	R50	780	0.050	-0.011	
R52 1381 0.064 -0.027 R52 1386 0.065 -0.025 R53 1542 0.073 0.025 R53 1521 0.067 0.023 R54 1212 0.050 0.005 R54 1198 0.047 0.003 R55 1126 0.049 -0.006 R55 1150 0.048 -0.003 R56 6521 0.056 -0.001 R56 6498 0.054 -0.002 R57 7856 0.058 0.001 R57 7867 0.057 0.001 R58 2163 0.058 -0.001 R58 2183 0.053 0.001 R59 1395 0.051 0.015 R59 1398 0.045 -0.001	R51	756	0.101	0.081	R51	743	0.098	0.075	
R53 1542 0.073 0.025 R53 1521 0.067 0.023 R54 1212 0.050 0.005 R54 1198 0.047 0.003 R55 1126 0.049 -0.006 R55 1150 0.048 -0.003 R56 6521 0.056 -0.001 R56 6498 0.054 -0.002 R57 7856 0.058 0.001 R57 7867 0.057 0.001 R58 2163 0.058 -0.001 R58 2183 0.053 0.001 R59 1395 0.051 0.015 R59 1398 0.045 -0.001	R52	1381	0.064	-0.027	R52	1386	0.065	-0.025	
R54 1212 0.050 0.005 R54 1198 0.047 0.003 R55 1126 0.049 -0.006 R55 1150 0.048 -0.003 R56 6521 0.056 -0.001 R56 6498 0.054 -0.002 R57 7856 0.058 0.001 R57 7867 0.057 0.001 R58 2163 0.058 -0.001 R58 2183 0.053 0.001 R59 1395 0.051 0.015 R59 1398 0.045 -0.001	R53	1542	0.073	0.025	R53	1530	0.067	0.023	
R55 1126 0.056 0.006 R55 1150 0.049 0.003 R56 6521 0.056 -0.001 R56 6498 0.054 -0.002 R57 7856 0.058 0.001 R57 7867 0.057 0.001 R58 2163 0.058 -0.001 R58 2183 0.053 0.001 R59 1395 0.051 0.015 R59 1398 0.045 -0.001	R54	1212	0.050	0.025	R54	1198	0.007	0.023	
R56 6521 0.056 -0.001 R56 6498 0.054 -0.002 R57 7856 0.058 0.001 R57 7867 0.057 0.001 R58 2163 0.058 -0.001 R58 2183 0.053 0.001 R59 1395 0.051 0.015 R59 1398 0.045 -0.001	R55	11212	0.049	-0.006	R55	1150	0.048	-0.003	
R57 7856 0.058 0.001 R57 7867 0.057 0.001 R58 2163 0.058 -0.001 R58 2183 0.053 0.001 R59 1395 0.051 0.015 R59 1398 0.045 -0.001	R56	6521	0.056	_0.001	R56	6408	0.054	-0.002	
R58 2163 0.058 -0.001 R58 2183 0.053 0.001 R59 1395 0.051 0.015 R59 1398 0.045 -0.001	R57	7856	0.050	0.001	R57	7867	0.054	0.002	
R59 1395 0.051 0.015 R59 1398 0.045 -0.001	R58	2163	0.058	-0.001	R58	2183	0.053	0.001	
	R59	1395	0.051	0.001	R59	1308	0.035	-0.0001	

表 4-5 彰化測區航帶平差分析結果(ALTM 30/70)(單位:公尺)

平差前			平差後				
平均絕對高	差量	0.130		平均絕對高差量 0.100			
平均高差		-0.006	5	平均高差	平均高差 -0.004		ļ
航線	計算點數	絕對高差量	高差	航線	計算點數	絕對高差量	高差
1	2908	0.137	0.106	1	2836	0.082	-0.010
2	12905	0.107	0.037	2	12815	0.079	0.001
3	8675	0.096	0.044	3	8592	0.074	-0.002
4	3398	0.112	-0.014	4	3341	0.096	0.000
5	5614	0.102	0.005	5	5609	0.078	0.006
6	6146	0.124	-0.024	6	6028	0.084	-0.009
7	10048	0.132	-0.052	7	9991	0.085	0.006
8	8089	0.110	-0.046	8	7964	0.081	0.004
9	7426	0.115	-0.067	9	7308	0.070	0.003
10	6637	0.115	0.006	10	6570	0.090	-0.001
11	4193	0.107	-0.004	11	4105	0.082	0.003
12	8114	0.119	-0.041	12	8066	0.090	-0.014
13	5106	0.118	-0.045	13	5005	0.090	-0.006
14	4885	0.114	0.012	14	4774	0.094	-0.002
15	4467	0.104	0.051	15	4414	0.071	-0.006
16	3403	0.104	0.039	16	3335	0.079	-0.009
17	5677	0.128	0.037	17	5646	0.096	-0.007
18	3886	0.137	0.064	18	3861	0.109	-0.008
19	10025	0.099	0.027	19	9909	0.080	-0.012
20	12241	0.112	0.062	20	12155	0.078	-0.010
21	5169	0.157	-0.062	21	5092	0.131	-0.005
22	5833	0.179	-0.088	22	5760	0.142	-0.015
23	4356	0.188	-0.115	23	4325	0.146	-0.018
24	3567	0.152	-0.042	24	3479	0.126	0.003
25	3377	0.153	-0.037	25	3271	0.122	-0.014
26	2356	0.156	0.008	26	2320	0.139	0.012
27	1965	0.158	-0.047	27	1925	0.138	0.000
28	1306	0.159	0.002	28	1258	0.146	-0.026
29	1093	0.149	-0.031	29	1066	0.127	-0.019
30	1176	0.148	0.063	30	1157	0.100	0.009
31	476	0.124	-0.042	31	471	0.099	0.022

表 4-6 中高海拔山區航帶平差分析結果(單位:公尺)

平差前				平差後				
平均絕對高	差量	0.087	7	平均絕對高	送量	0.081		
平均高差		0.013	;	平均高差 0.008				
航線	計算點數	絕對高差量	高差	航線	計算點數	絕對高差量	高差	
M01	1383	0.064	-0.034	M01	1396	0.058	-0.012	
M02	1326	0.070	0.048	M02	1328	0.057	0.012	
M03	1458	0.073	0.047	M03	1415	0.069	0.023	
M04	1383	0.084	0.072	M04	1407	0.065	0.038	
M05	1620	0.088	-0.055	M05	1670	0.086	-0.061	
M06	797	0.114	0.082	M06	910	0.093	0.047	
M07	661	0.101	0.085	M07	726	0.093	0.009	
M08	1407	0.081	0.018	M08	1398	0.075	0.009	
M09	759	0.061	0.033	M09	753	0.059	0.030	
M10	874	0.068	-0.007	M10	874	0.069	-0.028	
M11	1119	0.081	-0.061	M11	1114	0.077	-0.034	
M12	712	0.075	0.039	M12	759	0.068	0.030	
M13	600	0.103	-0.093	M13	635	0.089	-0.066	
M14	649	0.105	0.088	M14	/13	0.096	0.077	
M15	955	0.077	0.033	M15 M16	901	0.074	0.031	
M10 M17	418	0.097	-0.038	M17	502	0.093	-0.049	
M18	969	0.078	-0.049	M18	960	0.101	-0.024	
M19	881	0.078	-0.047	M19	866	0.083	-0.024	
M20	600	0.005	0.052	M20	653	0.084	0.030	
M21	857	0.082	0.034	M21	874	0.081	0.012	
M22	966	0.090	0.031	M22	1061	0.076	-0.001	
M23	933	0.099	0.079	M23	1001	0.089	0.054	
M24	757	0.091	-0.028	M24	755	0.088	-0.021	
M25	527	0.104	-0.067	M25	721	0.094	-0.021	
M26	773	0.108	0.063	M26	963	0.094	0.027	
M27	498	0.091	0.024	M27	489	0.086	0.021	
M28	543	0.079	0.029	M28	498	0.079	0.038	
M29	682	0.084	-0.023	M29	619	0.084	-0.030	
M30	71	0.107	-0.034	M30	81	0.102	0.020	
M31	424	0.101	0.002	M31	424	0.095	0.001	
M32	143	0.104	-0.028	M32	114	0.098	-0.030	
M33	970	0.076	0.033	M33	978	0.076	0.028	
M35	9/3	0.083	-0.009	M35	926	0.079	-0.033	
M36	880	0.081	-0.010	M36	918	0.000	-0.049	
M37	156	0.104	-0.085	M37	185	0.063	-0.007	
M38	149	0.078	-0.005	M38	151	0.071	-0.008	
M39	117	0.082	0.006	M39	130	0.066	0.009	
M40	124	0.105	0.051	M40	122	0.097	-0.014	
M41	4064	0.076	-0.012	M41	4069	0.075	-0.001	
M42	719	0.097	0.001	M42	694	0.092	-0.002	
M43	726	0.105	0.099	M43	734	0.103	0.097	
M44	754	0.095	0.081	M44	803	0.057	0.018	
M45	609	0.074	0.041	M45	613	0.072	0.041	
M46	297	0.072	0.041	M46	301	0.070	0.036	
M47	91	0.072	0.034	M47	95	0.054	0.007	
M48	459	0.068	0.015	M48	445	0.065	0.009	
M49	863	0.072	0.033	M49	854	0.072	0.035	
M51	28/	0.084	0.041	M51	31/	0.081	0.008	
M52	509	0.094	_0.046	M52	580	0.094	-0.001	
M53	900	0.080	-0.020	M53	801	0.074	-0.008	
M54	56	0.084	0.025	M54	55	0.081	0.009	
M55	463	0.088	0.037	M55	470	0.079	0.016	
M56	738	0.093	0.042	M56	740	0.091	0.033	
M57	888	0.090	-0.049	M57	844	0.089	-0.049	
M58	864	0.088	0.036	M58	848	0.086	0.025	
M59	703	0.069	0.016	M59	710	0.067	0.016	
M60	773	0.079	0.021	M60	797	0.077	0.020	
M61	158	0.113	0.090	M61	115	0.109	0.051	
M62	547	0.092	0.015	M62	525	0.089	-0.003	
M63	542	0.095	0.024	M63	456	0.094	0.018	
M64	217	0.081	0.029	M64	215	0.078	-0.007	
M65	181	0.073	-0.035	M65	201	0.073	0.007	
M66	731	0.096	0.002	M66	719	0.094	-0.004	
M67	714	0.093	0.021	M67	620	0.091	0.016	

第四節 交叉飛航數據誤差分析

在彰化測區中,ALS50 共進行 3 條交叉航線;ALTM 30/70 共進行 3 條交叉航線;於中高海拔山區共進行 4 條交叉航線如圖 4-11。本項作業 精度評估採用 TerraMatch 模組之 Measure Match 功能,以進行航帶交叉 數據之分析。彰化測區交叉航帶數據之分析結果如表 4-7 與表 4-8,ALS50 其平差後之平均絕對高差量為 0.055 公尺,平均高差為 0 公尺;ALTM 30/70 平差後之平均絕對高差量為 0.095 公尺,平均高差為-0.009 公尺; 另中高海拔山區交叉航帶數據之分析結果如表 4-9,其平差後之平均絕 對高差量為 0.089 公尺,平均高差為-0.002 公尺,故可知在地勢起伏較 平坦之彰化測區的光達掃描精度優於地勢起伏較大之中高海拔山區。

平差前				平差後				
平均絕對高差量 0.057 ·			平均絕對	平均絕對高差量 0.055				
平均高差		0.000		平均高差		0.000		
航線	計算點數	絕對高差量	高差	航線	計算點數	絕對高差量	高差	
R56	6521	0.056	-0.001	R56	6498	0.054	-0.002	
R57	7856	0.058	0.001	R57	7867	0.057	0.001	
R58	2163	0.058	-0.001	R58	2183	0.053	0.001	

表 4-7 彰化測區交叉航帶平差分析結果(ALS50)(單位:公尺)

表 4-8 彰化測區交叉航帶平差分析結果(ALTM 30/70)(單位:公尺)

平差前				平差後				
平均絕對高差量 0.121		l	平均絕對	平均絕對高差量 0.095				
平均高差		0.043).043 平均高			-0.009		
航線	計算點數	絕對高差量	高差	航線	計算點數	絕對高差量	高差	
17	5677	0.128	0.037	17	5646	0.096	-0.007	
18	3886	0.137	0.064	18	3861	0.109	-0.008	
19	10025	0.099	0.027	19	9909	0.080	-0.012	

表 4-9 中高海拔山區交叉航带平差分析結果(單位:公尺)

平差前				平差後				
平均絕對高差量 0.093			平均絕對	平均絕對高差量 0.089				
平均高差		-0.002		平均高差		-0.002		
航線	計算點數	絕對高差量	高差	航線	計算點數	絕對高差量	高差	
M31	424	0.101	0.002	M31	424	0.095	0.001	
M41	4064	0.076	-0.012	M41	4069	0.075	-0.001	
M42	719	0.097	0.001	M42	694	0.092	-0.002	
M66	731	0.096	0.002	M66	719	0.094	-0.004	

第五節 資料整合成果分析

在彰化測區中,航帶重疊數據平差前後之比較為圖 4-12 與圖 4-13; 中高海拔山區的航帶重疊數據平差前後之比較為圖 4-14。由表 4-4 至表 4-9 中可知,於彰化測區航帶平差前後之平均絕對高差量自 0.063 公尺與 0.130 公尺修正至 0.054 公尺與 0.100 公尺,其皆與交叉航帶平差前後之平 均絕對高差量並無顯著差異;中高海拔山區於航帶平差前後之平均絕對高 差量自 0.087 公尺修正至 0.081 公尺,且與交叉航帶平差前後之平均絕對 高差量亦無顯著差異,故可認定光達之率定作業是良好的。

123

圖 4-12 彰化測區重疊航帶數據平差前後分析比較結果(ALS50)

圖 4-13 彰化測區重疊航帶數據平差前後分析比較結果(ALTM 30/70)

圖 4-14 中高海拔山區重疊航帶數據平差前後分析比較結果

第伍章 DSM/DEM製作及精度評估

第一節 製作程序

原始光達數據(All points),為一群不規則離散測點,製作 DSM 可採 用第一個回波反射數據組成 DSM 規則網格,至於數值高程模型(DEM)的 製作,則需執行濾除與分類的步驟,將測點分類成地面點(Ground)與非地 面測點(Non-ground)。

本案使用商業軟體 TerraScan 對點雲資料進行過濾,該軟體分類地面 點的演算法由 Axelsson(2000)提出,其引用不規則三角網(Triangular Irregular Networks, TIN)來表示地表面,先依據區域內建物可能的最大平 面範圍,由局部的低點組成初始的不規則三角網(TIN),再循序從三角網 內尋求可能的地表點將三角網細化,稱為 Adaptive TIN Surfaces。在三角 網內判斷掃描點是否為地表點的方法,是利用點到三角平面的距離或點到 三個角點的向量與平面的夾角來判斷(如圖 5-1),可預先設定門檻值當成 判斷的標準。類後地面測點與非地面測點數據統計分析

圖 5-1 過濾演算法示意圖(Axelsson, 2000)

門檻參數的設定須視地形、地物的情況設定,主要參數包括:最大建物大小參數(Max building size)、地表角度(Terrain angle)、迭代角度 (Iteration angle)、迭代距離(Iteration distance)。

TerraScan 門檻參數設定的重點,搜尋建物之最大範圍值設定越小 (Max building size),濃密的植被覆蓋會形成地面測點稀疏,而有大空洞沒 有地面點,當空洞大於搜尋範圍,植被點會視為地面(如山頭的效果)則濾 除不乾淨(圖 5-2 左方案例);反之搜尋範圍越大,山頭山脊等地形特徵會 被像房子一般被濾除侵蝕(圖 5-2 右方案例),如圖中山頭山脊地面測點被 誤判濾除,地形山脊如同被刀切掉一般。圖 5-3 是展示門檻值加大,採過 度濾除的手段,植被濾除量大,相應的地形細節、山脊、小路、流水侵蝕 溝等地形紋理都粗化濾掉不見。Raber 等(2002), Vosselman(2000),提出 過濾處理會隨著地形坡度要變換門檻值,以及要隨著植被的特徵變換門檻 值,達到參數自適性調整。

圖 5-2 部分樹未濾除的瑕疵(圖左)山頭、山脊特徵點過度濾除的錯誤(圖右)

圖 5-3 高度過濾值導致地形紋理特徵粗化之示意圖

光達點雲過濾作業若單純採自動化處理,仍無法百分百分類地面、植 被及其他非地面點,而在某些地形、地物較複雜的區域仍須輔以人工檢視 編修方能正確判別地物。如圖 5-4 (a)為山區點雲資料的縱剖面,圖中可看 出箭頭所指區域屬較突出的山頭,該處過濾分類後並無地面點,內插產生 DEM 後則會將該處的地形過度平滑(圖 5-4 (b))。圖 5-5 (b)所指建物區域, 由於該處和周圍道路高度相當,過濾後誤判為地面點。所以由上述可知,
自動過濾後仍須進行人工編修作業最後確認。人工編修作業利用 TerraSolid 系列軟體進行,編修介面如圖 5-4 與圖 5-5。由原始雷射掃描配 合正射像片,可清楚辨別地類,藉由剖面圖進行比對,針對有誤的過濾結 果進行編修,將點位歸類至正確的類別。如圖 5-5(b)所指建物區域對應圖 5-5 (c)之正射像片(箭頭所指區域),因此可清楚了解該處地形、地物,輔 助人工編修判讀。

圖 5-4 山頭未過濾出地面之情形

圖 5-5 人工檢視編修介面

內政部國土測繪中心

本團隊於歷次進行光達飛航掃描作業時,同步進行數位影像之拍攝, 將其製成正射影像,輔以人工濾點作業(圖 5-6),圖 5-7 與圖 5-8 為完成之 DEM 與 DSM 成果。

(a)彰化測區

(b)中高海拔山區

圖 5-6 濾點作業示意圖

96年度以空載光達技術建立數值地形模型工作總報告書

圖 5-7 彰化測區 DEM(左)與 DSM(右)成果圖

圖 5-8 中高海拔山區 DEM(左)與 DSM(右)成果圖

第二節 分類後地面測點與非地面測點數據統計分析

光達掃描之原始點雲資料經由率定及平差作業程序後,再由自動化分 類方式過濾,以及人工方式介入編輯點雲資料,故可將飛航掃描範圍內所 有點雲資料區分為一地面點及非地面點兩大類,其中地面點分類可做為後 續 DEM 內插製作之依據;而非地面點則包含人工建物、植被及不正常低 點與雲點等,分類過濾後各 1/5000 圖幅所包含之光達點雲數統計表如表 5-1 與表 5-2,原始點雲密度係以圖幅範圍內所有紀錄之點雲(含各回波) 總合除以1/5000 圖幅之面積。由表 5-1 與表 5-2 可知於彰化測區之地面點 密度明顯高於中高海拔山區之地面點密度,乃因光達於地形變化平緩之區 域較易獲取明確之地面點資訊。

表 5-1	彰化測區分類渦濾後	$1/5\ 000$	圖幅點雲分類表
衣 い 1	彩儿刚四万朔迥腮饭	1/3,000	回怕劫去万朔衣

圖號	總點數	地面點數	圖幅面積 (m2)	原始點雲密度 (點/m2)	地面點密度 (點/m2)	圖號	總點數	地面點數	圖幅面積 (m2)	原始點雲密度 (點/m2)	地面點密度 (點/m2)
94212037	79626172	4709806	7168000	11.11	0.66	94201023	25577501	12632950	7224000	3.54	1.75
94212038	11079207	4917658	7168000	1.55	0.69	94201024	19616078	11451767	7224000	2.72	1.59
94212039	15918828	5931602	7168000	2.22	0.83	94201025	20039592	11222698	7224000	2.77	1.55
94212047	10622215	4876829	7224000	1.47	0.68	94201026	20383140	9934773	7224000	2.82	1.38
94212048	10983108	4121141	7224000	1.52	0.57	94201027	19317598	7529178	7224000	2.67	1.04
94212049	18217807	5517848	7224000	2.52	0.76	94201028	19029734	5745520	7168000	2.65	0.80
94212057	10968314	3890841	7224000	1.52	0.54	94201029	18387613	5489056	7224000	2.55	0.76
94212058	16603688	5893161	7168000	2.32	0.82	94201032	24055640	10609598	7224000	3.33	1.47
94212059	17882605	5776372	7168000	2.49	0.81	94201033	21177513	12470007	7224000	2.93	1.73
94212067	15161948	5955692	7224000	2.10	0.82	94201034	19994047	9536105	7224000	2.77	1.32
94212068	15647200	5498306	7224000	2.17	0.76	94201035	19329074	8938954	7224000	2.68	1.24
94212069	17189637	5375994	7172400	2.40	0.75	94201036	19463288	9418016	7168000	2.72	1.31
94212076	9351587	4185468	7224000	1.29	0.58	94201037	19201530	9035492	7224000	2.66	1.25
94212077	15492467	4633450	7224000	2.14	0.64	94201038	19020153	6209066	7224000	2.63	0.86
94212078	16754809	4732391	7224000	2.32	0.66	94201039	19024968	6044864	7172400	2.65	0.84
94212079	17518378	5800605	7168000	2.44	0.81	94201042	18189892	9256677	7224000	2.52	1.28
94212085	7581359	4558522	7224000	1.05	0.63	94201043	18361120	10799132	7224000	2.54	1.49
94212086	16325126	6085041	7168000	2.28	0.85	94201044	18235396	9842188	7224000	2.52	1.36
94212087	16954210	5316606	7168000	2.37	0.74	94201045	21129885	11836943	7224000	2.92	1.64
94212088	16712871	5055369	7224000	2.31	0.70	94201046	20117089	10812622	7224000	2.78	1.50
94212089	17514204	6042660	7224000	2.42	0.84	94201047	18792655	10328266	7224000	2.60	1.43
94212094	8955154	4880314	7168000	1.25	0.68	94201048	17907518	10813572	7116800	2.52	1.52
94212095	12946545	5289331	7224000	1.79	0.73	94201049	28525592	13564993	7224000	3.95	1.88
94212096	16949868	6313853	7224000	2.35	0.87	94201051	14162288	7403928	7224000	1.96	1.02
94212097	17081980	6171358	7224000	2.36	0.85	94201052	21957239	11689899	7275600	3.02	1.61
94212098	16963438	5977655	7224000	2.35	0.83	94201053	21875252	11912491	7224000	3.03	1.65
94212099	17119752	5692102	7168000	2.39	0.79	94201054	23157802	12989030	7224000	3.21	1.80
94201003	10458559	5470647	7224000	1.45	0.76	94201055	26187984	13539431	7224000	3.63	1.87
94201004	8056350	3933522	7224000	1.12	0.54	94201056	25182148	13492855	7224000	3.49	1.87
94201005	17248258	5831564	7224000	2.39	0.81	94201057	22068851	12156633	7224000	3.05	1.68
94201006	17471792	6657574	7224000	2.42	0.92	94201058	24249367	13333735	7224000	3.36	1.85
94201007	16805298	5922866	7168000	2.34	0.83	94201059	29453310	14656529	7224000	4.08	2.03
94201008	16819192	5471992	7224000	2.33	0.76	94201061	18631066	10925067	7224000	2.58	1.51
94201009	17400669	5177930	7224000	2.41	0.72	94201062	23118330	12997762	7224000	3.20	1.80
94201013	19764813	11415749	7224000	2.74	1.58	94201063	21134078	12641893	7224000	2.93	1.75
94201014	18935701	9971086	7224000	2.62	1.38	94201064	21784225	13003847	7224000	3.02	1.80
94201015	19112989	10098444	7168000	2.67	1.41	94201065	23428489	13761662	7224000	3.24	1.90
94201016	19875673	8908419	7224000	2.75	1.23	94201066	24249563	14115779	7224000	3.36	1.95
94201017	19161139	8255317	7224000	2.65	1.14	94201067	21195194	13094121	7224000	2.93	1.81
94201018	18448692	5447690	7224000	2.55	0.75	94201068	21451921	12273416	7224000	2.97	1.70
94201019	17662460	4505187	7224000	2.44	0.62	94201069	24992383	12191121	7224000	3.46	1.69

表 5-2 中高海拔山區分類過濾後 1/5,000 圖幅點雲分類表

圖號	總點數	地面點數	圖幅面積 (m2)	原始點雲密度 (點/m2)	地面點密度 (點/m2)	圖號	總點數	地面點數	圖幅面積 (m2)	原始點雲密度 (點/m2)	地面點密度 (點/m2)
96223045	19781747	2494636	7116800	2.78	0.35	96223085	29011733	2782898	7116800	4.08	0.39
96223046	18746509	1834506	7116800	2.63	0.26	96223086	21213213	1229833	7168000	2.96	0.17
96223047	25083710	1429264	7116800	3.52	0.20	96223087	34206067	1052045	7168000	4.77	0.15
96223048	23281232	1398813	7168000	3.25	0.20	96223088	32828569	1310140	7168000	4.58	0.18
96223055	19643829	2022080	7112000	2.76	0.28	96223095	39918762	2366657	7168000	5.57	0.33
96223056	19840332	1950393	7168000	2.77	0.27	96223096	38794589	1997320	7061200	5.49	0.28
96223057	26313594	1444460	7112000	3.70	0.20	96223097	43466159	1184018	7116800	6.11	0.17
96223058	31962063	1213788	7116800	4.49	0.17	96223098	25901127	1387458	7116800	3.64	0.19
96223065	21946668	2706113	7061200	3.11	0.38	96214005	27965366	1648228	7168000	3.90	0.23
96223066	22557587	1636187	7116800	3.17	0.23	96214006	42849092	2208059	7168000	5.98	0.31
96223067	41690382	1402961	7168000	5.82	0.20	96214007	31301277	1998060	7168000	4.37	0.28
96223068	44160166	1279624	7168000	6.16	0.18	96214008	27373340	1147099	7168000	3.82	0.16
96223075	22904571	1871029	7112000	3.22	0.26	96214015	27652710	2367688	7116800	3.89	0.33
96223076	25733447	1619071	7168000	3.59	0.23	96214016	31543505	2736562	7116800	4.43	0.38
96223077	38261291	1659505	7116800	5.38	0.23	96214017	29240828	1024837	7061200	4.14	0.15
96223078	35223495	1325225	7061200	4.99	0.19	96214018	30321565	1802055	7168000	4.23	0.25

第三節 DEM精度評估

一、DEM精度評估規範

DEM 之品質依地形類別及地表植被覆蓋情形而定,高程精度標準 以基本精度加上地形類別及地表植被覆蓋情形之精度調整參數而得, 計算公式如下:

 $\sigma = a + b + c \cdot t$

式中 a 為基本精度;

- *b* 為地形類別調整參數;
- C 為地表植被覆蓋情形調整參數;
- t 為地表植被平均高度。

本案定義 a 為 0.3 公尺。

地形類別調整參數 b(單位:公尺),如表 5-3。

地形類別(編碼)	b
平地(P)	0.0
丘陵(H)	0.3
山地(M)	1.0
陡峭山地(C)	2.0

表 5-3 地形類別及其調整參數對照表

地表植被覆蓋情形調整參數 c(無單位), 如表 5-4。

植被覆蓋類別	С
裸露地	0.00
植生地	0.10
林地	0.20
密林地	0.30

表 5-4 地表植被覆蓋類別及其調整參數對照表

地形類別分為平地、丘陵地、山地、及陡峭山地,其定義如下:

(一)平地-地表坡度在 2°以下的地區。

(二)丘陵地-地表坡度在 2°~6°之間的地區。

(三)山地-地表坡度在6°~25°之間的地區。

(四)陡峭山地-地表坡度在 25°以上的地區。

地表植被覆蓋情形分為裸露地、植生地、林地及密林地等類別:

- 裸露地-以任一點為中心,半徑在10個網格間距的範圍內 其受植被覆蓋之面積少於25%者,則該範圍內視為裸露地。
- 2、植生地-以任一點為中心,半徑在10個網格間距的範圍內 其受植被覆蓋之面積介於25%~50%者,則該範圍內視為 植生地。
- 3、林地-以任一點為中心,半徑在10個網格間距的範圍內其 受樹木覆蓋之面積介於50%~75%者,則該範圍內視為林 地。
- 4、密林地-以任一點為中心,半徑在10個網格間距的範圍內 其受植被覆蓋之面積大於75%,且範圍內樹冠平均高度達 DEM或DSM規範中誤差之4倍以上者,則視為密林地。

二、DEM之精度評估內容

針對彰化測區與中高海拔山區,依據不同土地覆蓋分區進行檢 核,其說明如下:

(一)彰化測區

依遮蔽物分區選出代表性的地面測量檢核區域,檢核作業需至 少有土地覆蓋6區,為方便統計與紀錄分別給於編碼,如表 5-5。 每種土地覆蓋分區至少要有 60 個地面測量檢核點,且應盡可能均 勻分佈於各圖幅。矮植被之地表植被覆蓋情形調整參數 c 比照植生 地;都會區及濕地之地表植被覆蓋情形調整參數 c 比照裸露地。

分類編碼	分類名稱
В	裸露地
	矮植被
L	(周圍為高度不超過1公尺之
	草生地、矮樹群、茶區等)。
V	植生地
F	林地
U	都會區
W	溼地

表 5-5 彰化測區土地覆蓋分區

(二)中高海拔山區

依遮蔽物分區選出代表性的地面測量檢核區域,檢核作業需至 少有土地覆蓋6區,為方便統計與紀錄分別給於編碼,如表 5-6。 每種土地覆蓋分區至少要有 40 個地面測量檢核點,且應盡可能均 勻分佈於各圖幅,林地及密林地如無法進入,經貴 中心同意後得 酌減檢核點數量。矮植被之地表植被覆蓋情形調整參數 c 比照植生 地。

分類名稱
裸露地
矮植被
(周圍為高度不超過1公尺之
草生地、矮樹群、茶區等)。
植生地
林地
密林地

表 5-6 中高海拔山區土地覆蓋分區

(三)橫斷面 (cross section) 檢核測量

- 1、彰化測區:需施行橫互航線的地面檢核剖面,檢核剖面至 少 60 個檢核點,剖面長度總合需超過 40 公里。依據橫互 航線地面檢核剖面測量數據,進行剖面LIDAR數據精度評 估報告。剖面檢核測量點允許選擇透空平坦地進行大剖面 檢核。
- 2、中高海拔山區:需施行橫互航線的地面檢核剖面,檢核剖 面至少40個檢核點,剖面長度總合需超過30公里。廠商 依據橫互航線地面檢核剖面測量數據,進行剖面LIDAR數 據精度評估報告。

三、DEM精度檢核方法

於彰化測區,因地勢較為平坦且手機訊號接收佳,故以 VBS 進行 地面檢核點外業作業;中高海拔山區位於新竹苗栗,地處陡峭山區, 地形高差甚大,因手機訊號接收較不佳,乃以 VBS 及搭配全測站經緯 儀進行地面檢核點外業作業。

外業檢核點量測完成之各類檢核點橢球高,再與繳交之 DEM 成 果1公尺×1公尺的資料兩者進行 DEM 精度分析。DEM 精度分析係 利用 Terrascan 內 Output Control Report 之功能(搜尋半徑範圍為 10公 尺,最大坡度為 30度,Z tolerance 為1公尺,如圖 5-9),將 DEM 資

135

料以內插方式求得外業檢核點之雷射點高程,將其與外業檢核點之實 測高程進行比較分析。

Output control report	
Known points: F:\DEM_block\彰化\agg+ch.TXT	<u>B</u> rowse
<u>C</u> lass: <u>2 - Ground</u> ▼ <u>M</u> ax triangle: 10.0 m length Max <u>s</u> lope: 30.0 degrees <u>Z</u> tolerance: 11 m	
	Cancel

圖 5-9 Output Control Report 功能之參數設定

四、DEM精度檢核結果

彰化測區之檢核點因訊號接收良好,故採用 VBS 進行檢核作業, 各土地分類檢核點數量及分佈情形如表 5-7 與圖 5-10。另中高海拔山 區之檢核點因受限於訊號接收不佳,故以 VBS 搭配全測站經緯儀,進 行檢核作業,各土地分類檢核點數量及分佈情形如表 5-8 與圖 5-11。

土地分類(編碼)	數量	圖例形式
裸露地(B)	68	
矮植被(L)	64	•
植生地(V)	66	•
林地(F)	69	
都會區(U)	71	
溼地(W)	71	
橫斷面(PS)	208	

表 5-7 彰化測區土地分類檢核點數量及圖例參照表

圖 5-10 彰化測區不同土地分類檢核點分佈圖

土地分類(編碼)	數量	圖例形式
裸露地(B)	40	
矮植被(L)	41	•
植生地(V)	42	
林地(F)	40	
密林地(D)	40	
橫斷面(MS)	420	

表 5-8 中高海拔山區土地分類核	檢核點數量及圖例參	\$照表
-------------------	-----------	------

圖 5-11 中高海拔山區不同土地分類檢核點分佈圖

(一)裸露地檢核結果

彰化測區之裸露地檢核點共施測 68 個檢核點,其平均絕對高 差為 0.0638 公尺,平均高差為-0.0123 公尺,最大高差為 0.1870 公 尺,最小高差為-0.1470 公尺;另中高海拔山區之裸露地檢核點共 施測 40 個檢核點,平均絕對高差為 0.1395 公尺,平均高差為 0.0706 公尺,最大高差為 0.4310 公尺,最小高差為-0.4730 公尺。

此二作業區之裸露地檢核統計表如表 5-9, 在彰化測區之檢核 點較差量均可符合規範要求(圖 5-12),乃於此地面檢核點皆選擇於 地處空曠且訊息接收良好之點位,其現場檢核點位照片如圖 5-13; 中高海拔山區之檢核點中,有 2 個檢核點(BP140 為 0.425 公尺及 BP145 為 04.31 公尺)超出規範值(如圖 5-14),探其原因為此點位皆 位於鬆散之土地上,故於豪雨過後導致點位高程受其影響;另有些 點位之高程較差與高程精度規範相差較大(如 BM122、BC124、 BC131、BM143 及 BM144),主因為點位皆位於地表坡度 6°以上 的區域,由規範得知之高程精度規範值較大,而導致兩者之相差較 大,其現場檢核點位照片如圖 5-15。

彰化测區		中高海拔山區		
檢核點數	68	檢核點數	40	
高程較差介小於1倍 高程精度範圍的點數	68	高程較差介小於1倍 高程精度範圍的點數	38	
高程較差介於1倍~2倍 高程精度範圍的點數	0	高程較差介於1倍~2倍 高程精度範圍的點數	2	
平均高差	-0.0123	平均高差	0.0706	
最小高差	-0.1470	最小高差	-0.4730	
最大高差	0.1870	最大高差	0.4310	
平均絕對高差	0.0638	平均絕對高差	0.1395	
均方根誤差量	0.0776	均方根誤差量	0.1828	
備註	符合合約要? 範圍內,其食	长:90%以上點位於1倍語 余點位在2倍高程精度標準	高程精度標準 準範圍內。	

表 5-9 裸露地之檢核成果統計表(單位:公尺)

圖 5-12 彰化測區裸露地檢核之較差成果(左)與直方圖(右)

圖 5-13 彰化測區裸露地檢核現場照片

圖 5-14 中高海拔山區裸露地檢核之較差成果(左)與直方圖(右)

圖 5-15 中高海拔山區裸露地檢核現場照片

(二)矮植被檢核結果

彰化測區之矮植被檢核點共施測 64 個檢核點,平均絕對高差為 0.1325 公尺,平均高差為 0.1073 公尺,最大高差為 0.3560 公尺, 最小高差為-0.1940 公尺;中高海拔山區之矮植被檢核點共施測 41 個檢核點,平均絕對高差為 0.1018 公尺,平均高差為 0.0594 公尺, 最大高差為 0.2660 公尺,最小高差為-0.1740 公尺。

此二作業區之矮植被檢核點統計分析如表 5-10、圖 5-16 與圖 5-18,在彰化測區中,高程較差較大之點位分別 LP03(較差為 0.356 公尺)、LP14(較差為 0.306 公尺)、LP16(較差為 0.326 公尺)及 LP24(較差為 0.318 公尺)等,依雷射點掃描成果觀之,LiDAR 未完 全穿透茂密之矮植被區域以獲得地面點,僅能獲得植被上緣之點位 高度,因此所獲得之點位高程較差較大,其現場檢核點位照片如圖 5-17;中高海拔山區之檢核點較差量均可符合規範要求,其現場檢 核點位照片如圖 5-19。

彰化測區		中高海拔山區		
檢核點數	64	檢核點數	41	
高程較差介小於1倍 高程精度範圍的點數	60	高程較差介小於1倍 高程精度範圍的點數	41	
高程較差介於1倍~2倍 高程精度範圍的點數	4	高程較差介於1倍~2倍 高程精度範圍的點數	0	
平均高差	0.1073	平均高差	0.0594	
最小高差	-0.1940	最小高差	-0.1740	
最大高差	0.3560	最大高差	0.2660	
平均絕對高差	0.1325	平均絕對高差	0.1018	
均方根誤差量	0.1611	均方根誤差量	0.1253	
備註	符合合約要求:90%以上點位於1倍高程精度標準 範圍內,其餘點位在2倍高程精度標準範圍內。			

表 5-10 矮植被之檢核成果統計表(單位:公尺)

圖 5-16 彰化測區矮植被檢核之較差成果(左)與直方圖(右)

圖 5-17 彰化測區矮植被檢核現場照片

圖 5-18 中高海拔山區矮植被檢核之較差成果(左)與直方圖(右)

圖 5-19 中高海拔山區矮植被檢核現場照片

(三)植生地檢核結果

彰化測區之植生地檢核點共施測 66 個檢核點,平均絕對高差為 0.1367 公尺,平均高差為 0.1129 公尺,最大高差為 0.8220 公尺, 最小高差為-0.1610 公尺;中高海拔山區之植生地檢核點共施測 42 個檢核點,平均絕對高差為 0.1318 公尺,平均高差為 0.0889 公尺, 最大高差為 0.7630 公尺,最小高差為-0.2510 公尺。

此二作業區之植生地檢核點統計分析如表 5-11、圖 5-20 與圖 5-22,在彰化測區中,高程較差較大之點位為 VP09(較差為 0.574 公尺)與 VP29(較差為 0.882 公尺),由雷射點掃描成果觀之,LiDAR 未完全穿透茂密之植生地區域以獲得地面點,僅能獲得植被上緣之 點位高度,因此所獲得之點位高程較差較大;另點位 VC76 之精度 規範與高程較差相較落差大,乃因此點位於陡峭山坡(地表坡度大 於 25 度以上),周圍植被高度約為 2 公尺,故其高程精度規範為 0.3+2+0.1×2=2.5 公尺,而實測高程與繳交之 DEM 資料的高程較差 為 0.156 公尺,其現場檢核點位照片如圖 5-21;中高海拔山區之檢 核點較差量均可符合規範要求,其現場檢核點位照片如圖 5-23。

彰化測區		中高海拔山區		
檢核點數	66	檢核點數	42	
高程較差介小於1倍 高程精度範圍的點數	64	高程較差介小於1倍 高程精度範圍的點數	42	
高程較差介於1倍~2倍 高程精度範圍的點數	2	高程較差介於1倍~2倍 高程精度範圍的點數	0	
平均高差	0.1129	平均高差	0.0889	
最小高差	-0.1610	最小高差	-0.2510	
最大高差	0.8220	最大高差	0.7630	
平均絕對高差	0.1367	平均絕對高差	0.1318	
均方根誤差量	0.1941	均方根誤差量	0.1856	
備註	符合合約要求:90%以上點位於1倍高程精度標準 範圍內,其餘點位在2倍高程精度標準範圍內。			

表 5-11 植生地之檢核成果統計表(單位:公尺)

圖 5-20 彰化測區植生地檢核之較差成果(左)與直方圖(右)

圖 5-21 彰化測區植生地檢核現場照片

內政部國土測繪中心

圖 5-22 中高海拔山區植生地檢核之較差成果(左)與直方圖(右)

圖 5-23 中高海拔山區植生地檢核現場照片

(四)林地檢核結果

彰化測區之林地檢核點共施測 69 個檢核點,平均絕對高差為 0.1073 公尺,平均高差為 0.0128 公尺,最大高差為 0.6660 公尺, 最小高差為-0.2040 公尺;中高海拔山區之林地檢核點共施測 40 個 檢核點,平均絕對高差為 0.7331 公尺,平均高差為 0.2989 公尺, 最大高差為 2.3760 公尺,最小高差為-1.8460 公尺。

此二作業區之林地檢核點統計分析如表 5-12、圖 5-24 與圖 5-26,在彰化測區中,各檢核點較差量均可符合規範要求,其現場 檢核點位照片如圖 5-25;中高海拔山區之檢核點較差量均可符合 規範要求,其現場檢核點位照片如圖 5-27。

彰化測區		中高海拔山區		
檢核點數	69	檢核點數	40	
高程較差介小於1倍 高程精度範圍的點數	69	高程較差介小於1倍 高程精度範圍的點數	40	
高程較差介於1倍~2倍 高程精度範圍的點數	0	高程較差介於1倍~2倍 高程精度範圍的點數	0	
平均高差	0.0128	平均高差	0.2989	
最小高差	-0.2040	最小高差	-1.8460	
最大高差	0.6660	最大高差	2.3760	
平均絕對高差	0.1073	平均絕對高差	0.7331	
均方根誤差量	0.1436	均方根誤差量	0.9420	
備註	符合合約要2 範圍內,其自	求:90%以上點位於1倍語 涂點位在2倍高程精度標:	高程精度標準 準範圍內。	

表 5-12 林地之檢核成果統計表

圖 5-24 彰化測區林地檢核之較差成果(左)與直方圖(右)

圖 5-25 彰化測區林地檢核現場照片

圖 5-26 中高海拔山區林地檢核之較差成果(左)與直方圖(右)

圖 5-27 中高海拔山區林地檢核現場照片

(五)都會區檢核結果

彰化測區之都會區檢核點共施測 71 個檢核點,平均絕對高差為 0.0599 公尺,平均高差為 0.0018 公尺,最大高差為 0.2450 公尺, 最小高差為-0.2030 公尺,其高程較差統計分析成果如表 5-13 及圖 5-28,各檢核點之較差量均可符合規範要求,現場檢核點位照片如 圖 5-29。

彰化測區				
檢核點數	71			
高程較差介小於1倍 高程精度範圍的點數	71			
高程較差介於1倍~2倍 高程精度範圍的點數	0			
平均高差	0.0018			
最小高差	-0.2030			
最大高差	0.2450			
平均絕對高差	0.0599			
均方根誤差量	0.0752			
備註	符合合約要求:90%以上點位於1倍高程精度標準 範圍內,其餘點位在2倍高程精度標準範圍內。			

表 5-13 都會區之檢核成果統計表(單位:公尺)

圖 5-28 彰化測區都會區檢核之較差成果(左)與直方圖(右)

圖 5-29 彰化測區都會區檢核現場照片

(六)溼地檢核結果

彰化測區之溼地檢核點共施測 71 個檢核點,平均絕對高差為 0.1638 公尺,平均高差為 0.1635 公尺,最大高差為 0.4850 公尺, 最小高差為-0.0120 公尺,其高程較差統計分析成果如表 5-14 及圖 5-30,其中高程較差量較大之點位分別為 WP12(較差為 0.485 公 尺)、WP21(較差為 0.320 公尺)、WP32(較差為 0.398 公尺)等,其 位置均位於潮間帶地區,而 LiDAR 飛航掃描為 96.12.04~96.12.05 與 97.04.08,而地面實測時間為 97 年 2 月底,期間之海水漲退潮 已至少經過 2 個月時間,因此此差異量可能為期間潮汐影響,使泥 沙量變化所致,現場檢核點位照片如圖 5-31。

彰化測區				
檢核點數	71			
高程較差介小於1倍 高程精度範圍的點數	68			
高程較差介於1倍~2倍 高程精度範圍的點數	3			
平均高差	0.1635			
最小高差	-0.0120			
最大高差	0.4850			
平均絕對高差	0.1638			
均方根誤差量	0.1889			
備註	符合合約要求:90%以上點位於1倍高程精度標準 範圍內,其餘點位在2倍高程精度標準範圍內。			

表 5-14 溼地之檢核成果統計表

圖 5-30 彰化測區溼地檢核之較差成果(左)與直方圖(右)

圖 5-31 彰化測區溼地檢核現場照片

(七)密林地檢核結果

中高海拔山區之密林地檢核點共施測40個檢核點,平均絕對高差為0.6722公尺,平均高差為0.2774公尺,最大高差為2.5590公尺,最小高差為-1.4050公尺,其高程較差統計分析成果如表5-15及圖 5-32,各檢核點之較差量均可符合規範要求,現場檢核點位照片如圖 5-33。

表 5-15 密林地之檢核成果統計表

中高海拔山區				
檢核點數	40			
高程較差介小於1倍 高程精度範圍的點數	40			
高程較差介於1倍~2倍 高程精度範圍的點數	0			
平均高差	0.2774			
最小高差	-1.4050			
最大高差	2.5590			
平均絕對高差	0.6722			
均方根誤差量	0.9197			
備註	符合合約要求:90%以上點位於1倍高程精度標準 範圍內,其餘點位在2倍高程精度標準範圍內。			

內政部國土測繪中心

圖 5-32 中高海拔山區密林地檢核之較差成果(左)與直方圖(右)

圖 5-33 中高海拔山區密林地檢核現場照片

(八)橫斷面檢核結果

彰化測區之橫斷面檢核點共施測 208 個檢核點,全長為 40.95 公里,平均絕對高差為 0.0594 公尺,平均高差為 0.0156 公尺,最 大高差為 0.2290 公尺,最小高差為-0.2170 公尺;中高海拔山區之 橫斷面檢核點共施測 420 個檢核點,全長約為 31.57 公里,平均絕 對高差為 0.1215 公尺,平均高差為 0.0630 公尺,最大高差為 0.5500 公尺,最小高差為-0.4750 公尺。

此二作業區之橫斷面檢核點統計分析如表 5-16、圖 5-34 與圖 5-36,在彰化測區內之檢核點較差量均可符合規範要求,現場檢核 點位照片如圖 5-35;中高海拔山區檢核點中,高程較差量較大之 檢核點(如 MS155、MS218、MS368、MS430..等),其位於地形斷 線處或處於山壁下方,由雷射點掃描成果觀之,LiDAR 並無法完 全穿透茂密之植被區域以獲得地面點,因此所獲得之點位高程較差 較大,其現場檢核點位照片如圖 5-37。

彰化測區		中高海拔山區		
檢核點數	208	檢核點數	420	
高程較差介小於1倍 高程精度範圍的點數	208	高程較差介小於1倍 高程精度範圍的點數	400	
高程較差介於1倍~2倍 高程精度範圍的點數	0	高程較差介於1倍~2倍 高程精度範圍的點數	20	
平均高差	0.0156	平均高差	0.0630	
最小高差	-0.2170	最小高差	-0.4750	
最大高差	0.2290	最大高差	0.5500	
平均絕對高差	0.0594	平均絕對高差	0.1215	
均方根誤差量	0.0775	均方根誤差量	0.1537	
備註	符合合約要求:90%以上點位於1倍高程精度標準 範圍內,其餘點位在2倍高程精度標準範圍內。			

表 5-16 横斷面之檢核成果統計表

圖 5-34 彰化測區橫斷面檢核之較差成果(左)與直方圖(右)

圖 5-35 彰化測區橫斷面檢核現場照片

圖 5-36 中高海拔山區橫斷面檢核之較差成果(左)與直方圖(右)

圖 5-37 中高海拔山區橫斷面檢核現場照片

第四節 點雲過濾成果檢核

依據應用空載光達生產數值地形模型之製作規範,檢核過濾完成後之成果是否有過渡濾除情形,即屬於土地表面點被歸類為地物表點而被濾除,屬於第一類錯誤 (Type I error),或者有濾除不足之情形,即地物表點未被濾除而被當成土地表點,屬於第二類錯誤 (Type II error)。

檢核方式以圖幅為單位,抽驗總圖幅數之5%進行檢核,再由抽驗之 圖幅圈選1公里×1公里之區域進行檢核;點檢核單位以人工進行點雲過 濾作業,過濾結果與作業單位所提成果進行比較,但類別不易判定之點位 得扣除不計。

彰化測區共有 82 幅,故抽驗 5 幅;在中高海拔山區共有 32 幅,故抽驗 2 幅,圖 5-38(a)框選處為地表面點被歸類為地物表點(Type I Error),圖 5-38(b)為經過修正後之情形;圖 5-39(a)框選處為地物表點未被濾除,而 被當成土地表點(Type II Error),圖 5-39(b)為經過修正後之情形,二測區 檢核結果如表 5-17,由表顯示點雲過濾成果均符合規範 Level 2 等級之要 求-Type I error 上限值為 5%; Type II error 上限值為 3%。

圖 5-38 點雲過濾成果檢核之 Type I Error 情形

圖 5-39 點雲過濾成果檢核之 Type II Error 情形

彰化測區				旧依江洪		
圖號	繳交成果之 地面點數	Type I Error 點數	Type II Error 點數	Type I Error 百分比	Type II Error 百分比	規範標準
94212039	749224	1000	123	0.133%	0.016%	Type I Error
94212098	910839	205	1	0.023%	0.000%	百分比<5%
94201055	1478551	119	13	0.008%	0.000%	Type I Error
94201048	1256502	34	47	0.003%	0.004%	百分比<5%
94201052	1570147	1912	108	0.122%	0.007%	
	平北	匀值		0.058%	0.005%	
中高海拔山區						
圖號	繳交成果之 地面點數	Type I Error 點數	Type II Error 點數	Type I Error 百分比	Type II Error 百分比	
96214007	284089	806	0	0.283%	0.000%	
96223076	254141	36	154	0.014%	0.061%	
平均值 0.149% 0.031%						

表 5-17 點雲過濾成果檢核表

第五節 ALS50 與ALTM 30/70 重疊區域之數據比較

一、分析範圍

本案於彰化測區採用兩套不同的光達儀器,分別為ALS 50(重疊 區域上方)與 ALTM 30/70(重疊區域下方),其掃描作業區域如下圖 5-40;另於彰濱工業區平坦路面地區為ALTM 30/70 道路率定場(如圖 5-41),藉由地面實測點位之成果進行精度評估與分析。

圖 5-40 ALS50 與 ALTM 30/70 作業掃描重疊區域

圖 5-41 ALTM 30/70 率定場位置

二、分析方法

本次以ALTM 30/70 與ALS50 兩套空載光達系統飛航掃描彰化河 川及洪氾溢淹區作業,在兩系統重疊區域內分別選取了 5 公尺、100 公尺及 500 公尺區塊進行比對,比對作業利用芬蘭 Terrasolid 公司出 品之 TerraMatch 軟體中之 Measure Magnitude 功能,選取 5 公尺取樣 樣本時盡量以公路為選取標的,而其餘 100 公尺與 500 公尺則是以均 勻分佈為原則,以選取區塊內之地面點進行精度評估。

在 ALTM 30/70 率定場之區域,由於該區已獲取實際地測點位高 程及坐標,因此點位精度檢核係利用 Terrascan 內之「Output Control Report」功能,利用已知點附近之三個最鄰近網格點內插其高程後與 已知控制點之高程比較而得出其較差值;其中 Known points 為所有欲 比較之已知點檔案,Class 為欲比較之點位所在之層,Max triangle 為 已知點附近之搜尋半徑 10 公尺,Max slope 為用以計算比較高差之最 大地形坡度 30 度,Z tolerance 則為計算時使地形坡度不超過最大坡度 時之正常雷射點高差 1.0 公尺;惟 ALTM 30/70 建築物比較不易(該區 以 ALS50 進行掃描時,並未調整點位密度),因此不比較率定建物成 果,如圖 5-42。

圖 5-42 ALTM 30/70 率定場(綠框為率定建築物,紅框為跑道率定場)

三、分析結果

在ALTM 30/70 跑道率定場區域,以 Terrascan 內之「Output Control Report」功能,ALS50 掃描成果與實測點比較結果如表 5-18 所示,表 5-18 之右表為去除較大誤差點 0.782 公尺點後重新計算成果,由表 5-18 中可知,點位精度標準偏差值約為 0.122 公尺;圖 5-43 與圖 5-44 則分 別為 ALS 50 於彰濱地區實測點比較高程較差量散佈圖及直方圖。

表 5-18 ALS 50 於彰濱地區實測點比較成果(單位:公尺)

取樣點數	1004	取樣點數	1003
平均高差	-0.039	平均高差	-0.040
最小高差	-0.270	最小高差	-0.270
最大高差	0.782	最大高差	0.263
平均絕對高差	0.115	平均絕對高差	0.115
均方根誤差量	0.131	均方根誤差量	0.129
標準偏差	0.125	標準偏差	0.122

圖 5-43 ALS 50 於彰濱地區實測點比較高程較差量散佈圖

圖 5-44 ALS 50 於彰濱地區實測點比較高程較差量直方圖

由圖 5-43 中發現,在本次使用之比較資料中,似乎存在一系統性 的誤差量,前面約 370 點(地面實測點)高程較雷射點高程低,而後半 的 630 點高程則較雷射點高程高(圖 5-45),其統計計算成果則如表 5-19 所示,高程較差量散佈圖分別如圖 5-46 與圖 5-47 所示,而,點位標 準偏差量約為 0.07 公尺。

圖 5-45 彰濱地區實測點位置圖及 ALS50 雷射點航線圖

取樣點數	370	取樣點數	633
平均高差	0.092	平均高差	-0.116
最小高差	-0.259	最小高差	-0.270
最大高差	0.242	最大高差	0.263
平均絕對高差	0.106	平均絕對高差	0.119
均方根誤差量	0.120	均方根誤差量	0.134
標準偏差	0.077	標準偏差	0.066

表 5-19 ALS 50 於彰濱地區分區實測點比較成果

圖 5-46 ALS 50 於彰濱地區實測點(前 370 點)比較高程較差量散佈圖

圖 5-47 ALS 50 於彰濱地區實測點(後 630 點)比較高程較差量散佈圖

表 5-20 為 ALTM 30/70 於彰濱地區實測點比較高程較差量統計計 算成果,點位精度標準偏差量約為 0.056 公尺,其高程較差量散佈圖 則如圖 5-48 所示,高程較差量直方圖則如圖 5-49。

取樣點數	893
平均高差	-0.011
最小高差	-0.200
最大高差	0.283
平均絕對高差	0.043
均方根誤差量	0.057
標準偏差	0.056

表 5-20 ALTM 30/70 於彰濱地區分區實測點比較成果

圖 5-48 ALTM 30/70 於彰濱地區實測點比較高程較差量散佈圖

表 5-21 與表 5-22 為 ALTM 30/70 與 ALS 50 於重疊區塊比較結 果,其中,70 號以後航線編號為 ALTM 30/70 航線編號,由表中可知 在兩系統重疊掃描區域之平均絕對高差量介於 0.11 公尺至 0.18 公尺 之間,此高程較差量約相當於空載光達系統的基本精度規格。

表 5-21 ALTM 30/70 與 ALS 50 於重疊區塊 10 公尺比較結果(單位:公尺)

ALTM 30/70 #	航線71與ALS5	0航線比較結果	(10m區塊)	ALTM 30/70 航線76與ALS50航線比較結果(10m區塊)				
平均絕對	計高差量	0.11855		平均絕對	计高差量	0.18111		
航線編號	計算點數	絕對高差量	高差	航線編號	計算點數	絕對高差量	高差	
4	269	0.106	0.0153	4	86	0.3053	0.3053	
11	444	0.0714	0.0312	20	297	0.3247	0.3234	
18	333	0.1928	0.0057	25	160	0.1177	0.0808	
20	373	0.1327	0.082	30	619	0.1287	0.0944	
25	978	0.107	0.038	32	88	0.0815	-0.0001	
30	470	0.096	-0.0377	39	263	0.2141	0.2064	
32	368	0.1276	0.0057	76	1723	0.1749	-0.1515	
39	738	0.1432	0.1102					
71	4638	0.1174	-0.0524					

表 5-22 ALTM 30/70 與 ALS 50 於重疊區塊 100 公尺比較結果 (單位:公尺)

			((
LTM 30/70 航	線71與ALS50	航線比較結果	(100m區塊)	LTM 30/70 航線76與ALS50航線比較結果(500m區				
平均絕對	计高差量	0.14	486	平均絕對	计高差量	0.17848		
航線編號	计算点数	絕對高差量	高差	航線編號	计算点数	絕對高差量	高差	
2	7412	0.1558	0.0732	2	3895	0.2202	0.2095	
3	10691	0.1356	0.0261	4	5217	0.1832	0.1599	
4	9193	0.0958	0.0214	5	5549	0.1549	0.1379	
5	8839	0.07	-0.0171	7	6773	0.1453	0.1247	
6	8752	0.0939	-0.0069	9	7570	0.1611	0.1446	
7	13954	0.0885	0.0325	11	7557	0.1711	0.1551	
8	11588	0.1314	0.094	13	5697	0.185	0.1774	
9	11689	0.0961	0.0275	14	5128	0.1511	0.1265	
10	11561	0.0786	0.0166	16	6320	0.1104	0.0706	
11	10358	0.1442	0.0453	18	7247	0.1547	0.1379	
13	6999	0.1358	0.0624	20	5946	0.1904	0.1623	
14	6223	0.2135	0.0521	22	8191	0.1416	0.1243	
15	10874	0.1332	0.0895	23	7796	0.1706	0.1571	
16	7277	0.1223	0.0215	25	6293	0.1782	0.1607	
17	13581	0.1611	-0.0178	27	4550	0.2041	0.1836	
18	9484	0.1965	0.0582	29	5651	0.1249	0.0926	
19	8102	0.2419	0.1536	30	6307	0.1037	0.01	
20	11093	0.1634	0.109	32	7457	0.1201	0.0744	
21	11747	0.134	0.0972	34	8361	0.1388	0.1198	
22	11351	0.1303	0.0983	36	7353	0.1438	0.0922	
23	11565	0.118	0.0962	38	7334	0.1331	0.0864	
24	11593	0.1953	0.1715	39	8116	0.2119	0.2042	
25	11253	0.1876	0.1328	49	1421	0.5484	0.5482	
26	8650	0.1817	0.0523	52	9059	0.3339	0.3332	
27	8343	0.159	0.0702	53	8181	0.2976	0.297	
29	10627	0.1209	0.0712	55	8048	0.1565	0.1408	
30	9799	0.1214	-0.0291	76	1671878	0.1787	-0.1087	
31	13553	0.1139	-0.0632					
32	10661	0.1027	-0.0217					
33	6080	0.133	0.062					
34	6922	0.1373	0.0815					
35	10834	0.1851	0.1747					
36	11424	0.1781	0.1531					
37	10188	0.1124	0.0579					
38	10677	0.1275	0.0921					
39	10406	0.1274	0.0731					
40	10700	0.2067	0.1904					
52	8105	0.6067	0.6055					
53	13531	0.2775	0.2732					
54	11576	0.0513	-0.0008					
55	13394	0.0966	0.0827					
71	394966	0.1477	-0.0787					

四、結果與討論

- 由重疊區 DEM 成果數據比較結果可發現,雖由不同光達系統獲 取相同地區之高程數據,其結果差異相當於光達掃描之基本精度 範疇。
- 2. 為確保光達掃描之精度,有四點必需特別注意,一為測區光達掃描作業前或作業後(含拆卸),需進行率定場掃描作業,二為 GPS基站的設置 20 公里範圍內至少二點及接收需達到對空通視良好並且避免有多路逕效應產生,三為 GPS level arms 的量測誤差應小於 10 公分以內,四為如果航帶平差發現數據有明顯系統誤差時應回歸率定場檢核是否有系統率定不夠完善所致。綜合以上,相信使用不同光達系統獲取相同地區數據,其結果應無二致。

第六節 DEM正高成果與水準點比較

一、分析範圍

由國土測繪中心提供彰化縣芳苑鄉之水準高程點位資料(樁位高度非地面高度)共計116點,將其點位與本案 DEM 正高成果(1公尺×1公尺)資料進行比較分析,各點位分佈情形如下圖 5-50 所示。

圖 5-50 水準點位分佈圖

二、分析方法

正高成果比較之分析方法先採用內插法,將所有點位進行正高比較,再針對正高較差大於±25 公分以上的點位以平均法的方式進行分

析比較,其分析方式如下:

(一)內插法

內插法係利用 Terrascan 內 Output Control Report 之功能(搜尋 半徑範圍為2公尺,最大坡度為1度,Z tolerance 為1公尺,如圖 5-51),將 DEM 正高成果資料以內插方式求得水準點位處之 DEM 成果正高高程,並進行兩者間之高程比較分析。

report		
F:\彰化正	E高點位比較\正高.txt	Browse
2 - Groun	d 🔻	
2.0	m length	
1.0	degrees	
1.00	m	
		Cancel
	report E: 較化工 2 - Groun 2.0 1.0 1.00	report F:\彰化正高點位比較\正高.txt 2 · Ground ▼ 2.0 m length 1.0 degrees 1.00 m

圖 5-51 正高高程比較之 Output Control Report 參數設定

(二)平均法

於地形變化處,利用內插所得的點位可能會產生高低點位之落 差,導致正高較差較大。因此針對此類點位之 DEM 正高高程採用 平均法求得,即將點位周遭不合理的點位高程去除取,再取其平均 值,如下圖 5-52,點位 G026 之 DEM 正高成果所得正高高程為 5.743 公尺。

圖 5-52 DEM 正高成果採平均法計算之範例

三、分析結果

經 Terrascan 之 Output Control Report 評估結果如下圖 5-53,其平 均絕對高差為 0.2259 公尺,平均高差為-0.1962 公尺,最大高差為 0.2040 公尺,最小高差為-1.6005 公尺,各點位比較成果如表 5-23。

Use	Number	Easting	Northing	Known Z	Laser Z	Dz
\boxtimes	×111	183519.98	2651229.19	5.219	5.170	-0.049
\times	G025	182236.53	2650070.49	3.116	3.130	+0.014
\times	G026	181063.61	2647788.48	5.823	5.510	-0.313
\times	G027	179868.97	2645547.35	3.711	2.380	-1.331
\times	BB66	182234.94	2650102.94	3.221	3.240	+0.019
\times	BB67	182280.34	2650172.42	3.144	3.050	-0.094
\times	BB68	182307.39	2650267.50	3.135	2.940	-0.195
\times	BB69	182365.28	2650365.30	3.053	3.050	-0.003
\times	BB71	182450.41	2650557.73	2.830	2.680	-0.150
veran	e magnitude	0.2259		Óverage	, dz	-0 1962
Average magnitude Std douistion		0.3118		Minimun	, dz , dz	-1 6005
Root mean square		0.3672		n dz	+0.2040	

圖 5-53 Output Control Report 之評估成果

	表 5-23	正高點位比較成果(內插法)
--	--------	---------------

1 1	序號	戰名	X(m)	Y(m)	水準高程	DEM成果 正高高段	正高較差	借註	序號	點名	X(m)	Y(m)	水準高程	DEM成果 正高高段	正高較差	借註
1 111 8839.883 52.1207 52.1307 1.007 4.007 1.0073 1.007 4.017 1.007 4.017 1.007 4.017 1.007 4.017 1.007 4.017 1.007 4.017 1.007 4.017 1.007 4.017 <	/1 ///6	,U		1 ()	(m)	(m)	(m)	1/1 0	/] ///			1 ()	(m)	正向向注 (m)	(m)	1)4 0
1 0.005 10.224.523 30.3070.492 31.00 0.018 -0.026 -0.026 4 0.007 10.986.970 35.30 70.02 -0.038 -0.037 -0.038 -0.037 -0.038 -0.037 -0.037 -0.037 -0.038 -0.037 -0.038 -0.039 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038	1	X111	183519.985	2651229.195	5.21855	5.170	-0.049		59	BA1073	182775.249	2649173.275	4.41533	4.430	0.015	
5 000 1910.608 SUT788.84 5520 -0.037 -0.030 -0.030 5 0006 1923.998 0.9891.098 3.2993 3.2994 0.000 -0.000 5 0006 1523.998 28910.298 3.2991 3.290 0.002 6 0006 1523.998 28910.298 3.2991 3.290 0.002 7 0006 1523.998 28910.298 3.2991 3.290 0.002 9 0007 1525.998 2895774 2895774 2895774 2895774 2895774 289578 4.002 0.002 9 0071 15254.998 28957774 289587 2991 2904 1525778 2895874 4993 2400 2000 2000 10 0071 15254078 2895774 28947 289578 24903 2400 2000 2000 101442 289587344 4993 4000 2000 2000 1014423 2895873444 3000 4013 <	2	G025	182236.533	2650070.492	3.11615	3.130	0.014		60	BA1136	182682.452	2648763.136	5.15647	5.130	-0.026	
4 6.072 Γ.798.07.0 8.0517 3.3 2.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.05 <th< td=""><td>3</td><td>G026</td><td>181063.608</td><td>2647788.484</td><td>5.82262</td><td>5.510</td><td>-0.313</td><td>斜坡處</td><td>61</td><td>BA525</td><td>182425.380</td><td>2648663.545</td><td>4.10687</td><td>4.020</td><td>-0.087</td><td></td></th<>	3	G026	181063.608	2647788.484	5.82262	5.510	-0.313	斜坡處	61	BA525	182425.380	2648663.545	4.10687	4.020	-0.087	
5 θes 15.23 4.98 0.200 (1.9) 6.6 84570 1888 178.28 20.200 0.001 7 0.886 15.237.31 0.2005 5.00 0.329 0.200 0.001 8 0.8877.31 0.2005 5.00 0.3296 0.200 0.200 0.200 0.200 9 8840 15.234.02 0.2005 5.00 0.200 0.66 0.401 15.297.47 0.2002 30 0.403 0.200 0.66 0.401 15.297.47 0.2002 40 0.200 0.66 0.401 15.297.47 0.2003 0.401 0.200 0.66 0.457 1874.421 0.480.201 4.300 0.200 0.66 0.457 1874.421 0.480.201 4.300 0.401 <t< td=""><td>4</td><td>G027</td><td>179868.970</td><td>2645547.353</td><td>3.71082</td><td>2.380</td><td>-1.331</td><td>河道旁</td><td>62</td><td>BA521</td><td>182005.827</td><td>2648667.643</td><td>4.07844</td><td>3.990</td><td>-0.088</td><td></td></t<>	4	G027	179868.970	2645547.353	3.71082	2.380	-1.331	河道旁	62	BA521	182005.827	2648667.643	4.07844	3.990	-0.088	
6 Bib07 II:2283.40 Josh A.G. A.G. A.G. A.G. <	5	BB66	182234.936	2650102.938	3.22097	3.240	0.019		63	BA519	181803.735	2648741.298	2.98571	3.020	0.034	
7 Bills 112/30-29 200007-30 1.333 1.240 4.7109 3.500 -4.235 9 BID1 12430-487 2005073-32 2.7109 3.500 -4.137 9 DD11 12430-487 2005073-12 22480 2.700 0.000 66 M105 118743-23 204803-244 244803 4.333 5.300 -4.011 10 BB77 12523-06 200733-12 22401 2.70 0.000 66 M357 187384-33 204803-244 4.4038 4.300 -4.011 13 BH75 1250970 200972-217 2.230 1.090 0.001 72 A554 12334435 2.54496 4.200 -4.116 12334435 2.54496 4.200 -4.116 12334435 2.54496 4.200 4.2005 2.500 -4.116 1233455 2.64697 2.54496 4.200 4.201 15 BB77 125402-232 2.01144 2.209 0.001 78 4.411 1232355<	6	BB67	182280.340	2650172.416	3.14401	3.050	-0.094		64	BA1086	182011.183	2649251.352	3.32341	3.370	0.047	
8 B809 112206 230 202006 14 20200 6.60 M101 11222-188 204870.382 4.47199 4.500 -0.010 10 B873 162484007 2020077.73 2.7440 2.700 -0.000 6 BAS1 15170.442 2.48833.853 2.54830.244 4.1983 4.300 -0.000 -0.000 6 BAS1 15170.442 2.48833.853 2.48430.234 4.1983 4.300 -0.000 -0.001 -0.001 -0.001 -0.001 10 8.455 1870.442 2.4890.021 4.8558 1.500 4.8558 4.500 4.4558 4.500 4.121 -0.101 -0.111 10.11 <td>7</td> <td>BB68</td> <td>182307.391</td> <td>2650267.504</td> <td>3.13534</td> <td>2.940</td> <td>-0.195</td> <td></td> <td>65</td> <td>BA1090</td> <td>182140.438</td> <td>2649229.582</td> <td>3.79597</td> <td>3.560</td> <td>-0.236</td> <td></td>	7	BB68	182307.391	2650267.504	3.13534	2.940	-0.195		65	BA1090	182140.438	2649229.582	3.79597	3.560	-0.236	
9 BR71 IS240.07 JORIST 72 24080 2003 -0.01 10 BR73 IS259.06 JORIST 72 2400 7.0 0.02 66 BA375 IR174133 JORIST 3333 2400 2.00 -0.00 11 BB73 IS259.06 JORIST 72 JORIST 34 <	8	BB69	182365.280	2650365.304	3.05296	3.050	-0.003		66	M01	182392.748	2649276.382	4.17199	3.980	-0.192	
10 BB72 R24890.02 250007.202 25000 2000 -0.030 12 B844 RS27016 2502006 25007.202 45002.204 41980.284	9	BB71	182450.407	2650557.734	2.82961	2.680	-0.150		67	BA1065	182507.749	2648980.449	4.58332	4.570	-0.013	
11 BB73 R5229.06 Setting 1.4 2.6401 2.6401 6.757 R1790.64 244833.02 4.1983 4	10	BB72	182489.002	2650677.782	2.74401	2.770	0.026		68	BA517	181744.321	2648528.355	2.84049	2.760	-0.080	
12 BM44 IS274772 S2003341 31/90 0.071 70 IAX78 S2048702 S442384 4500 0.013 14 BB76 IS209735 S209725 IZ20872 IZ20872 IZ20872 IZ20872 S400712 S4000 IZ20872 S400712 S4007 IZ20872 S400712 S40071	11	BB73	182529.016	2650739.142	2.64147	2.640	-0.001		69	BA575	181790.454	2648360.284	4.19883	4.190	-0.009	
13 BB75 BE280 735 258094 2.37 21.80 0.054 71 DAX30 PE140502 24980702 45800 4.000 4.010 15 BB77 (52602703 26809738 21097302 47973827 475384 487308 47970827 47580 4700 -0.100 -0.100 -0.100 5198 -0.010 -0.100 5198 -0.010 -0.100 5198 -0.010 -0.100 5198 -0.010 -0.100 5198 -0.010 -0.100 71 MA10 181233525 246907083 4.10194 -3.880 -0.011 R####################################	12	BB44	182574.772	2650839.841	3.19664	3.150	-0.047		70	BA578	182048.785	2648245.962	4.46328	4.350	-0.113	
	13	BB75	182619.735	2650942.517	2.12581	2.180	0.054		71	BA580	182165.052	2648007.032	4.68503	4.500	-0.185	
	14	BB76	182629.720	2650987.561	2.00927	2.070	0.061		72	BA534	182348.502	2647787.827	4.75439	4.610	-0.144	
16 BB78 Ν2806.635 251099.44 2.120 0.001 74 BA54 N2827 PATPUA 51.10 -0.01 17 BB56 N272792 25113145 2.2374 2.300 0.01 75 BA54 N28275 2.5987 54.9977 51.510 51.10 -0.01 19 BB60 16279.233 26517.89 2.2384 0.007 78 M10 18172.832 2.5087 4.00 -0.01 8.00 21 BB61 16276.533 56177.89 2.238 0.007 78 M10 18173.828 64721 4.300 4.00 -1.10 ####################################	15	BB77	182660.283	2651033.805	2.09374	2.140	0.046		73	BA537	182384.205	2647418.126	4.87969	4.720	-0.160	
17 B856 18270-818 2010 2.000 75 BA441 18232322 2.04097101 2.108 2.000 -0.001 19 B1860 18278-922 2.51197411 2.209 0.000 77 M11 181732822 2.64097101 2.830 -0.001 -0.011 20 B1861 18278-922 2.5119741 2.209 0.000 78 M10 18173282 2.64097131 2.400 -1.101 #### 21 B865 18278.062 2.61209712 2.1832 2.200 0.005 79 M22 181705112 2.44790 4.100 -1.101 #### 22 B8664 182704.42 2.51858.66 2.61873.736 4.003 4.000 4.004 4.000 4.008 4.000 4.009 4.011 4.0170-0.28 4.4687 4.000 -0.000 4.011 4.0170-0.28 4.0499 4.000 4.010 4.003 #### 4.000 4.000 4.011 4.011 4.011 4.011 4.011 4.011 4.011 4.011 4.011 4.010 4.010 4.010	16	BB78	182686.635	2651089.841	2.12526	2.210	0.085		74	BA540	182300.857	2647079.090	5.18095	5.150	-0.031	
18 18059 18272-992 201131-845 23274 2205 -0.003 76 PAS42 18272396 204900595 31.1010 51.00 -0.001 19 BB60 18279-252 251217399 220288 2.290 0.007 78 M10 18173282 264900595 4.100 4.200 -0.016 21 BB64 182776-223 2651217399 2.21832 2.219 0.005 79 M12 18170151 2.45774 4.000 -0.006 23 BB65 182934.42 2.518542 2.1818 2.190 0.002 81 M13 181943.66 2.64773.76 4.6607 -0.009 24 BB18 18395.660 2.5185.637 4.1922 3.900 0.001 83 M02 18392.142 2.64898 4.300 4.000 4.200 4.010 4.200 4.010 4.200 4.010 4.200 4.010 4.200 4.010 4.200 4.010 4.200 4.010 4.200 4.110	17	BB56	182704.186	2651144.239	2.30894	2.310	0.001		75	BA541	182283.525	2646989.740	5.21682	5.220	0.003	
	18	BB59	182726.932	2651183.485	2.25274	2.250	-0.003		76	BA542	182223.996	2646991.731	5.16130	5.130	-0.031	
10 B861 182796.02 261217.899 229288 2.590 0.007 78 M10 181433.58 247241.22 531074 4.200 -1.110 #### 21 B864 18278.06 26109112 15325 2.210 0.015 80 GA221 181665.09 2647706.228 4.4596 4.900 -0.006 23 B865 18293.662 2514284.41 3200 0.011 82 M03 1823237.88 2648071.967 4.46596 4.900 -0.030 ###. 25 B8426 18307.207 55137.89 4.1311.8 4.140 0.000 83 M02 18322.3788 2648071.997 3.2897 3.200 0.010 26 B8426 18309.210 251337.89 4.3039 3.100 1.021 7.8 18078.323 246803.68 3.2714 3.200 0.010 28 18309.014 2650970.018 3.1423 3.00 0.011 88 6.333 18049.133 246805.033 3.300	19	BB60	182749.295	2651197.411	2.23951	2.250	0.010		77	M11	181732.832	2646905.985	4.19104	3.880	-0.311	路旁水泥塊上
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	BB61	182795.233	2651217.899	2.29288	2.390	0.097		78	M10	181433.258	2647241.272	5.31047	4.200	-1.110	橋樑旁
122 BB64 18291432 261328.542 213435 2.150 0.006 80 GA22 181643.860 2647867.376 4.66879 4.660 -0.006 23 BB65 182931.432 261368.687 2.2184 2.280 0.002 81 M13 181943.860 2647867.376 4.66879 4.660 -0.000 24 BB15 18293.642 261537.54 4.13118 4.140 0.000 83 M02 1822.242 264871.947 4.33999 4.210 -0.200 25 BB426 183054.223 25697718 3.7248 2.0450 0.000 85 BA281 180551.243 2.6407.071 3.2147 3.200 0.001 28 18830 18326.448 26077018 3.7484 3.000 0.0025 87 78.233 1810.128 2.8403 3.001 0.001 29 B806 18327.443 260867.908 3.6403 3.660 0.025 87 78.233 1810.128 2.8403 3.846432 <td>21</td> <td>BB63</td> <td>182878.696</td> <td>2651290.512</td> <td>2.18532</td> <td>2.230</td> <td>0.045</td> <td></td> <td>79</td> <td>M12</td> <td>181703.151</td> <td>2647991.215</td> <td>4.28774</td> <td>4.190</td> <td>-0.098</td> <td></td>	21	BB63	182878.696	2651290.512	2.18532	2.230	0.045		79	M12	181703.151	2647991.215	4.28774	4.190	-0.098	
13 BB65 1823142 2631368.687 22148 2.280 0.002 81 M13 1804232 606373.76 4.66879 4.6087 -0.009 24 BB18 183057201 554157.490 4.1118 4.100 -0.010 83 M03 182223788 2648391.582 499984 4.100 -0.020 (#) 26 BM20 183057201 551557.39 41118 4.100 (M) 1832242 255155737 41023 5,400 4.053 244841.947 4.3299 4.200 0.100 27 BB10 18323494 2650797.018 3.7142 5,400 -0.025 87 BA23 18061.9139 264687.449 5,2003 1.000 -0.021 29 BB00 18327.554 266045905 4.6319 5,600 -0.025 87 BA23 18061.933 264657.449 5,2003 1.100 -0.160 31 BB07 18312932 260617.856 4.200 -0.118 6,4333 246497.444	22	BB64	182904.434	2651328.542	2.13435	2.150	0.016		80	GA22	181665.039	2647706.228	4.46596	4.390	-0.076	
124 BB18 18299.8660 261425.544 39307 3.9.0 -0.01 82 N03 182227.182 264395.182 499994 4.10 -0.03 25 BB1426 183057.201 261557.790 4.13118 -0.052 #± H BA227 18075.825 264325.52 3.200 -0.010 26 BM20 18352.94 265135.73 4.1922 3.700 -0.625 #± H BA227 18075.825 264782.55 3.200 -0.002 28 LI8600 18326.244 260797.018 3.7142 2.6480.83 3.2141 2.5680.83 3.2174 3.200 -0.002 29 B100 1832.04 25077.018 3.7142 3.600 -0.012 ## 9.833 2.6657.102 9.1018 9.200 -0.002 30 B108 18315.332 260687.786 4.2079 4.837.11 4.203 -0.012 31 B108 18327.91 2.50077.386 4.0707 -0.338 ###############	23	BB65	182931.432	2651368.687	2.21848	2.280	0.062		81	M13	181943.866	2647687.376	4.66879	4.660	-0.009	
125 BH426 188072 101 2651527.001 2651535.073 4.1920 0.010 83 M02 183422.142 2648471.947 4.3299 4.210 0.010 26 BM20 18328.942 2651355.073 3.41923 3.740 0.462 #L 84 BA271 180753.255 3.2958.2 3.000 0.101 28 L3850.0 18328.94.42 250970.012 4.3959.3 3.710 -1.206 5.8 8.9 86 BA281 180331.042 2646870.81 3.27174 3.290 0.001 29 BB09 183296.448 2650977.018 3.710 -1.206 5.8 8.9 86 BA281 180391.019 264697.184 3.28886 3.000 0.011 31 BB07 183158.332 265057.88 4.2079 4.310 -0.462 #####88 BA551 18159.270 2464535.71 4.89856 4.700 -0.131 31 IB200 182304.521 250017.83 3.430 0.000 +######88 P44551 <t< td=""><td>24</td><td>BB18</td><td>182958.666</td><td>2651425.844</td><td>3.93079</td><td>3.920</td><td>-0.011</td><td></td><td>82</td><td>M03</td><td>182223.788</td><td>2648395.182</td><td>4.99984</td><td>4.170</td><td>-0.830</td><td>便橋上</td></t<>	24	BB18	182958.666	2651425.844	3.93079	3.920	-0.011		82	M03	182223.788	2648395.182	4.99984	4.170	-0.830	便橋上
126 BM20 18958-226 265153.33 419232 3.700 0.652 修士 84 BA297 189752.952 24728.552 3.2982 3.000 0.008 27 BB15 183263.944 2651395.697 3.820.941 2.59970.012 3.9299 3.070 -1.226 5.85 B.4281 180531.142 246450.681 3.2717 3.290 0.002 29 BB09 18320.448 2650970.012 4.3993 3.000 -0.005 87 B-233 180491.09 264692.181 3.2886 3.300 0.011 30 BB08 183217.354 2550845.06 3.6430 0.605 4.885 BA351 181691.833 264695.704 4.9016 4.910 0.008 31 BB00 18310.430 2.50073.104 4.6499 3.000 0.050 92 GA40 181163.082 246470.996 4.83751 4.420 4.118 48 BA24 18257.818 2.50073.104 4.6493 0.0001 4.8259 4.202	25	BB426	183057.201	2651527.490	4.13118	4.140	0.009		83	M02	182422.142	2648471.947	4.32999	4.210	-0.120	
127 BB15 18332346 2651355.697 3.82047 3.890 0.070 85 BA281 180551.248 2646450.081 3.2172 3.290 0.008 28 L8630 18326.448 266970.108 3.7142 3.260 -0.022 30 BB08 18320.448 265057.018 3.7142 3.260 -0.011 30 BB07 18326.448 256057.349 5.200 -0.016 31 BB07 183158.332 265057.844 5.200 -0.016 32 GB08 183111.908 256046.597 4.6521 4.170 -0.462 #2.568.61.20 B4552 18155.270 2646435.072 4.9016 -0.018 32 GB08 18311.908 256046.597 4.65219 4.170 -0.462 #2.568.61.20 B4552 18155.070 2646455.053 4.4700 -0.198 34 BB04 182805.97 265017.820 4.320 -0.050 -9.257 18152.070 2646453.03 4.6706 4.600	26	BM20	183054.226	2651535.373	4.19232	3.740	-0.452	椿上	84	BA297	180758.295	2647238.552	3.29582	3.400	0.104	
128 118630 18362.914 2650970.012 4.39593 3,170 -1.226 馬峰奈 86 BA281 180531.142 2646850.681 3.21714 3.250 -0.022 29 BB09 18320.448 265077.018 3.7142 3.690 -0.025 87 BA283 180493.109 2646635.02 4.9016 4.9010 0.008 31 BB07 183158.332 265087.786 4.20795 3.800 -0.408 建施 89 BA551 181594.833 2646635.702 4.90168 4.901 0.008 32 GB08 183014.30 265007.974 3.7006 3.820 0.050 92 GA40 181102.238 2646053.053 4.6706 4.600 -0.071 34 BB04 18273.81 255017.02 245025.727 4.8103 4.564 -0.071 4.555 4.557 4.555 4.557 4.550 -0.557 使施 4.590 -0.171 4.555 4.557 4.559 4.557 4.559 4.557 4.559	27	BB15	183283.946	2651395.697	3.82047	3.890	0.070		85	BA284	180551.248	2646917.097	3.28172	3.290	0.008	
29 BB09 183296.448 2650797.018 3.71482 3.600 -0.025 87 BA283 180439.109 2646692.181 3.28886 3.300 0.011 30 BB08 183217.544 256064.500 3.64150 3.660 0.007 88 GA33 181601.853 2646657.544 5.2003 5.100 -0.160 31 BB07 183158.322 2650517.866 4.20795 3.800 -0.048 使権 89 BA552 181552.790 2646470.996 4.83751 4.400 -0.159 32 GB08 183111.908 2650737.41 3.000 -1.600 + + + + + + + + + + + + + + + + + + +	28	LJ8630	183362.914	2650970.012	4.39593	3.170	-1.226	馬路旁	86	BA281	180531.142	2646850.681	3.27174	3.250	-0.022	
30 BB08 183217.354 2650684.506 3.64350 3.680 0.037 88 GA33 181661.833 2646875.449 5.28033 5.120 4.016 31 BB07 183158.32 265067.886 4.20795 3.800 -0.408 # #?** 9 BA552 181594.333 2646653.702 4.9016 4.000 4.018 (##.1 32 GB08 18301.0430 26500373.110 4.66049 3.060 -1.600 #.?** 9 BA552 18150.927 2646053.053 4.6706 4.600 -0.071 33 BB04 182807.31 2650244.900 4.3267 4.050 -0.333 #.#** 94 BA252 181107.03 264613.871 5.08702 4.550 -0.053 (##.1 36 BB02 182299.312 2650014.930 3.4300 -0.007 95 BM/2730 180813.689 2646745.540 3.4349 3.430 -0.008 38 BB52 182838.761 2651073.820 2.42384 2.580 <td>29</td> <td>BB09</td> <td>183296.448</td> <td>2650797.018</td> <td>3.71482</td> <td>3.690</td> <td>-0.025</td> <td></td> <td>87</td> <td>BA283</td> <td>180439.109</td> <td>2646692.181</td> <td>3.28886</td> <td>3.300</td> <td>0.011</td> <td></td>	29	BB09	183296.448	2650797.018	3.71482	3.690	-0.025		87	BA283	180439.109	2646692.181	3.28886	3.300	0.011	
31 BB07 183158.332 2650517.886 4.20795 3.800 -0.408 使機 89 BA551 181594.833 2646635.702 4.90168 4.910 0.008 32 GB08 183111.908 265046.597 4.6509 4.170 -0.482 # ★ ☆ mbs.1 18159270 264627.272 4.89751 4.420 -0.418 使換上 33 HB290 183010.400 2650373.110 4.6609 -0.000 + ☆ ☆ mbs.1 181592707 2646475.272 4.99856 4.740 -0.1159 34 BB04 182873.61 2650104.635 3.43955 3.100 -0.333 # ☆ mbs.1 811970.74 264643.871 5.0870.2 4.550 -0.557 使換上 36 BB02 18289.79181 2650104.635 3.439 -0.007 95 BM07203 18118.601 264613.692 4.81103 4.640 -0.171 37 BB01 182493.593 265094.132 2.43735 3.430 -0.007 95 BM2733 181185.601 26461	30	BB08	183217.354	2650684.506	3.64350	3.680	0.037		88	GA33	181661.853	2646875.449	5.28033	5.120	-0.160	
32 GB08 183111.908 2650466.597 4.65219 4.170 -0.482 中央介稿集上 90 BA552 181552.790 2646470.996 4.83751 4.420 -0.418 使権止 33 HB290 183010.430 2650273.310 4.6604 3.060 -1.000 中央介稿集上 91 M15 181503.927 2646285.727 4.89856 4.740 -0.159 34 BB04 182875.101 2.650244.900 4.43267 4.050 -0.333 中央介稿集上 93 BA522 18127.97 2646434.871 5.08702 4.550 -0.537 使権上 36 BB02 182839.55 2650017.422 3.43755 3.430 -0.007 95 BM07203 18081.689 264674.540 3.430 -0.008 38 BB52 18283.61 251073.820 2.4528 2.800 0.156 96 BA273 18075.645 2646943.297 3.3667 3.200 -0.137 40 BB44 183002.568 2650944.813 2.9990 0.2054 <td>31</td> <td>BB07</td> <td>183158.332</td> <td>2650517.886</td> <td>4.20795</td> <td>3.800</td> <td>-0.408</td> <td>便橋</td> <td>89</td> <td>BA551</td> <td>181594.833</td> <td>2646635.702</td> <td>4.90168</td> <td>4.910</td> <td>0.008</td> <td></td>	31	BB07	183158.332	2650517.886	4.20795	3.800	-0.408	便橋	89	BA551	181594.833	2646635.702	4.90168	4.910	0.008	
33 HB290 183010.430 2650373.110 4 66049 3.060 -1.600 中央会協員上91 M15 181503.927 2646285.727 4.89856 4.740 -0.159 34 BB04 182873.610 265024.900 4.43267 4.050 -0.333 中央会協員上93 BA221 81297.074 264633.832 4.6706 4.060 -0.071 35 GB12 18285.972 265024.900 4.3257 4.0305 -0.033 中央会協員上93 BA225 18119.7074 264631.872 4.8103 4.640 -0.171 36 BB01 182493.059 265001.422 3.4375 3.430 -0.007 95 BM072303 180815.689 2646746.540 3.43849 3.430 -0.008 38 BB42 183098.14 2650974.481 2.9700 0.204 97 BA285 180613.92 464704.3297 3.300 -0.128 39 BB44 183092.568 2650944.813 2.9692 2.670 -0.019 100 FW+0400 18093135 2646947.029	32	GB08	183111.908	2650466.597	4.65219	4.170	-0.482	中央分隔島上	90	BA552	181552.790	2646470.996	4.83751	4.420	-0.418	便橋上
34 BB04 182873.610 2650279.374 3.77006 3.820 0.050 92 GA40 181102.238 2646053.053 4.67066 4.600 -0.071 35 GB12 182805.972 2650044.900 4.43267 4.050 -0.383 ₱★☆府8.8_1 94 BA252 181297.074 264631.871 5.08702 4.550 -0.337 便換上 36 BB02 18259.059 2650017.422 3.43755 3.100 -0.340 馬募幸 94 BA253 181185.601 264645.343 3.43849 3.430 -0.008 38 BB52 182838.761 2651073.820 2.42384 2.580 0.156 96 BA277 18075.4645 264691.327 3.3067 3.200 -0.137 40 BB44 183092.568 2650944.813 2.96924 2.870 -0.099 98 Mo5 180416.228 264693.096 3.2708 -0.0137 41 BB46 18370.727 2.66007.17 2.6392.5 2.620 -0.019 100 </td <td>33</td> <td>HB290</td> <td>183010.430</td> <td>2650373.110</td> <td>4.66049</td> <td>3.060</td> <td>-1.600</td> <td>中央分隔島上</td> <td>91</td> <td>M15</td> <td>181503.927</td> <td>2646285.727</td> <td>4.89856</td> <td>4.740</td> <td>-0.159</td> <td></td>	33	HB290	183010.430	2650373.110	4.66049	3.060	-1.600	中央分隔島上	91	M15	181503.927	2646285.727	4.89856	4.740	-0.159	
35 GB12 182805.972 2650244.900 4.43267 4.050 -0.383 半央分隔島上 93 BA252 181297.074 2646434.871 5.08702 4.550 -0.537 使換上 36 BB02 182579.815 2650014.635 3.43955 3.100 -0.340 馬路今 94 BA253 181185.501 26464746.540 3.4389 3.430 -0.008 37 BB01 182493.059 2650017.422 3.4375 3.430 -0.007 95 BM072303 180813.689 2646746.540 3.4389 3.430 -0.008 38 BB52 182838.761 2650977.479 2.78604 2.990 0.204 97 BA285 180501.396 2646943.297 3.3667 3.200 -0.137 40 BB48 183092.568 26509071.149 2.990 0.204 99 Mo4 18014.252 264690.960 2.72748 2.810 0.083 41 BB46 183092.568 26509071.149 2.90501 2.6327 1.001 FW0+	34	BB04	182873.610	2650279.374	3.77006	3.820	0.050		92	GA40	181102.238	2646053.053	4.67066	4.600	-0.071	
36 BB02 182579.815 2650104.635 3.43955 3.100 -0.340 馬路令 94 BA253 181185.601 2646746.540 3.4384 3.430 -0.008 37 BB01 182493.059 2650017.422 3.43735 3.430 -0.007 95 BM072303 180813.689 2646746.540 3.4384 3.430 -0.008 38 BB52 18283.612 2651073.820 2.4284 2.580 0.156 96 BA277 180754.645 2646746.540 3.4384 3.430 -0.008 39 BB48 183002.568 2650944.813 2.96904 2.990 0.204 97 BA285 180501.036 2.446943.237 3.8118.5 5.41730 5.270 -0.147 42 BB48 182960.032 265094.813 2.4902 2.400 -0.054 99 Mo4 18014.528 2646907.90 5.92280 5.180 -0.743 &tgbr# 43 BB40 182871.562 2550681.03 2.4902 2.410 -0.0	35	GB12	182805.972	2650244.900	4.43267	4.050	-0.383	中央分隔島上	93	BA252	181297.074	2646434.871	5.08702	4.550	-0.537	便橋上
37 BB01 182493.059 2650017.422 3.430 -0.007 95 BM072203 180813.689 2646746.540 3.43849 3.430 -0.008 38 BB52 182838.761 2651073.820 2.42384 2.580 0.156 96 BA277 180754.645 2646943.297 3.3667 3.200 -0.137 40 BB48 183092.568 2650944.813 2.99024 2.870 -0.099 98 M05 180416.258 2646940.976 2.72748 2.810 0.083 41 BB46 183177.257 2650913.008 3.1441 3.090 -0.019 100 FW0+400 18003.315 246947.029 5.92280 5.180 -0.743 堤防捨 43 BB40 18275.709 2650701.149 2.90501 2.600 -0.0285 斜皮處 102 S10+300 179893.553 2646367.377 5.66667 5.110 -0.560 堤防捨 44 BB41 18275.709 265070.1749 2.9001 2.600 -0.307 ⊭卖/	36	BB02	182579.815	2650104.635	3.43955	3.100	-0.340	馬路旁	94	BA253	181185.601	2646513.692	4.81103	4.640	-0.171	
38 BB52 182838.761 2651073.820 2.42384 2.580 0.156 96 BA277 180754.645 2646816.432 3.0160 3.130 0.128 39 BB49 183008.941 2550977.479 2.78604 2.990 0.204 97 BA285 180501.395 2646943.297 3.33667 3.200 -0.137 40 BB48 183092.568 2650913.008 3.1419 3.090 -0.054 99 M04 18014.521 264708.3835 5.41730 5.270 -0.147 42 BB38 182841.562 265058.103 2.34962 2.410 0.060 101 FW+500 180052.437 2646957.025 5.9228 5.180 -0.773 堤防椿 43 BB40 18275.709 2650701.149 2.90501 2.620 -0.285 #kk 102 S10+300 17983.553 2646367.377 5.6967 5.110 -0.404 堤防椿 44 BB41 18275.202 2649284.032 3.87652 3.340 -0.571	37	BB01	182493.059	2650017.422	3.43735	3.430	-0.007		95	BM072303	180813.689	2646746.540	3.43849	3.430	-0.008	
39 BB49 183008.941 2650977.479 2.78604 2.990 0.204 97 BA285 18051.396 2646943.297 3.33667 3.200 -0.137 40 BB48 183092.568 2650944.813 2.96924 2.870 -0.099 98 M05 180416.258 2646900.960 2.72748 2.810 0.083 41 BB46 183177.257 2650913.008 3.14419 3.090 -0.054 99 M04 180154.321 2647083.835 5.41730 5.270 -0.147 42 BB38 182861.562 2650697.17 2.63925 2.620 -0.019 100 FW0+00 180052.437 2646957.029 5.92280 5.180 -0.713 堤防椿 43 BB40 182841.562 265058.103 2.34962 2.410 0.060 101 FW0+500 180052.437 2.646957.633 5.9906 5.110 -0.404 堤防椿 44 BB41 18275.02 2649284.032 3.87652 3.340 -0.537 ₱.456	38	BB52	182838.761	2651073.820	2.42384	2.580	0.156		96	BA277	180754.645	2646816.432	3.00160	3.130	0.128	
40 BB48 183092.568 2650944.813 2.96924 2.870 -0.099 98 M05 180416.258 2646900.960 2.72748 2.810 0.083 41 BB46 183177.257 2650913.008 3.14419 3.090 -0.054 99 M04 180154.321 2646907.029 5.92280 5.180 -0.743 現防格 43 BB40 182841.562 2650658.103 2.34962 2.410 0.060 101 FW0+500 180052.437 2646857.633 5.9966 5.140 -0.770 現防格 44 BB40 182841.562 2650701.149 2.90501 2.600 -0.225 針求處 102 S10+300 179893.553 264637.377 5.66967 5.110 -0.560 滅防格 44 BB41012 18205.102 2649284.032 3.87652 3.340 -0.537 中央☆隔島上 104 S10+500 179798.110 264617.1320 5.55631 5.110 -0.366 現防格 47 BA1005 181875.202 2649284	39	BB49	183008.941	2650977.479	2.78604	2.990	0.204		97	BA285	180501.396	2646943.297	3.33667	3.200	-0.137	
41 BB46 183177.257 2650913.008 3.14419 3.090 -0.054 99 M04 180154.321 2647083.835 5.41730 5.270 -0.147 42 BB38 182960.033 265069717 2.63925 2.620 -0.019 100 FW0+400 180093.315 2646947.029 5.92280 5.180 -0.743 堤防椿 43 BB40 182841.562 2650658.103 2.34962 2.410 0.060 101 FW0+500 180052.437 2646855.633 5.90966 5.140 -0.770 堤防椿 44 BB41 182755.709 2650701.149 2.90501 2.620 -0.285 \$\$\phi\$\nothightarrow\$ 179893.553 2646367.377 5.66967 5.110 -0.640 \$\$\nothightarrow\$ 45 BA1012 182103.102 2649756.565 4.26096 3.800 -0.431 \$\$\nothightarrow\$ 179788.102 2646127.133 5.59387 5.100 -0.446 \$\$\nothightarrow\$ 46 WATER08 181875.202 2648830.51 2.9128 2.890 -0.023 105 \$30+600 179750.43 2646103.350	40	BB48	183092.568	2650944.813	2.96924	2.870	-0.099		98	M05	180416.258	2646900.960	2.72748	2.810	0.083	
42 BB38 182960.033 2650609.717 2.63925 2.620 -0.019 100 FW0+400 180093.315 2646947.029 5.9280 5.180 -0.743 堤防椿 43 BB40 182841.562 2650658.103 2.34962 2.410 0.060 101 FW0+500 180052.437 2646855.633 5.90966 5.140 -0.770 堤防椿 44 BB41 182755.709 2650701.149 2.90501 2.620 -0.285 ៨½皮塩 102 SJ0+300 179893.553 264637.377 5.66967 5.110 -0.560 堤防椿 45 BA1012 182103.102 2649756.565 4.26096 3.800 -0.611 中央分隔島上 103 SJ0+400 179845.669 2646279.133 5.59387 5.110 -0.446 堤防椿 46 WATER08 181875.202 264984.032 3.87652 3.340 -0.537 中央分隔島上 104 SJ0+500 179702.252 2646015.51 5.4249 5.110 -0.386 堤防椿 47 BA	41	BB46	183177.257	2650913.008	3.14419	3.090	-0.054		99	M04	180154.321	2647083.835	5.41730	5.270	-0.147	
43 BB40 182841.562 2650658.103 2.34962 2.410 0.060 101 FW0+500 180052.437 2646855.633 5.90966 5.140 -0.770 堤防椿 44 BB41 18275.709 2650701.149 2.90501 2.620 -0.285 斜坡處 102 SJ0+300 179893.553 2646367.377 5.66967 5.110 -0.560 堤防椿 45 BA1012 182103.102 2649756.565 4.26096 3.800 -0.461 中央分隔島上 103 SJ0+400 179845.669 2646279.133 5.59387 5.190 -0.404 堤防椿 46 WATER08 181875.202 2649284.032 3.87652 3.340 -0.537 中央分隔島上 104 SJ0+500 179798.110 2646191.320 5.55631 5.110 -0.446 堤防椿 47 BA1005 181632.729 2648830.051 2.9128 2.890 -0.023 105 SJ0+600 179750.043 2646103.350 5.49595 5.110 -0.386 堤防椿 48 M14 181490.105 264870.573 2.84857 2.760 -0.089 106	42	BB38	182960.033	2650609.717	2.63925	2.620	-0.019		100	FW0+400	180093.315	2646947.029	5.92280	5.180	-0.743	堤防樁
44 BB41 182755.709 2650701.149 2.90501 2.620 -0.285 斜坡處 102 SJ0+300 179893.553 2646367.377 5.66967 5.110 -0.560 堤防椿 45 BA1012 182103.102 2649756.565 4.26096 3.800 -0.461 中央分隔島上 103 SJ0+400 179845.669 2646279.133 5.59387 5.100 -0.404 堤防椿 46 WATER08 181875.202 2649284.032 3.87652 3.340 -0.537 中央分隔島上 104 SJ0+500 179798.110 2646191.320 5.55631 5.110 -0.446 堤防椿 47 BA1005 181632.729 2648830.051 2.91288 2.890 -0.023 105 SJ0+600 179750.043 2646103.350 5.49595 5.110 -0.386 堤防椿 48 M14 181490.105 2648245.114 3.95385 3.430 -0.524 中央分隔島上 107 SJ0+800 179654.549 2645927.771 5.66106 5.120 -0.5014 堤防椿	43	BB40	182841.562	2650658.103	2.34962	2.410	0.060		101	FW0+500	180052.437	2646855.633	5.90966	5.140	-0.770	堤防樁
45 BA1012 182103.102 2649756.565 4.26096 3.800 -0.461 中央分隔島上 103 SJ0+400 179845.669 2646279.133 5.59387 5.190 -0.404 堤防椿 46 WATER08 181875.202 2649284.032 3.87652 3.340 -0.537 中央分隔島上 104 SJ0+500 179798.110 2646191.320 5.55631 5.110 -0.446 堤防椿 47 BA1005 181632.729 2648830.051 2.91288 2.890 -0.023 105 SJ0+600 179750.043 2646103.350 5.49595 5.110 -0.386 堤防椿 48 M14 181490.105 2648570.573 2.84857 2.760 -0.089 106 SJ0+700 179702.252 2646015.551 5.64249 5.120 -0.522 堤防椿 50 BA505 180949.229 2647627.476 3.72981 3.810 0.080 108 SJ0+900 179613.132 2645836.636 5.46767 5.160 -0.308 堤防椿 51 GA35 181019.459 2647146.011 4.78508 4.330 -0.455 中央分隔島上 109<	44	BB41	182755.709	2650701.149	2.90501	2.620	-0.285	斜坡處	102	SJ0+300	179893.553	2646367.377	5.66967	5.110	-0.560	堤防樁
46 WATER08 181875.202 2649284.032 3.87652 3.340 -0.537 中央分隔島上 104 SJ0+500 179798.110 2646191.320 5.55631 5.110 -0.446 堤防椿 47 BA1005 181632.729 2648830.051 2.91288 2.890 -0.023 105 SJ0+600 179750.043 2646103.350 5.49595 5.110 -0.386 堤防椿 48 M14 181490.105 2648570.573 2.84857 2.760 -0.089 106 SJ0+700 179702.252 2646015.551 5.64249 5.120 -0.522 堤防椿 49 GA20 181297.304 2648245.114 3.95385 3.430 -0.524 中央分隔島上 107 SJ0+800 179654.549 2645927.771 5.66106 5.120 -0.541 堤防椿 50 BA505 180949.229 2647146.011 4.78508 4.330 -0.455 中央分隔島上 109 SJ1+000 179571.719 2645745.633 5.58517 5.190 -0.395 堤防椿 52	45	BA1012	182103.102	2649756.565	4.26096	3.800	-0.461	中央分隔島上	103	SJ0+400	179845.669	2646279.133	5.59387	5.190	-0.404	堤防樁
47 BA1005 181632.729 2648830.051 2.91288 2.890 -0.023 105 SJ0+600 179750.043 2646103.350 5.49595 5.110 -0.386 堤防椿 48 M14 181490.105 2648570.573 2.84857 2.760 -0.089 106 SJ0+700 179702.252 2646015.551 5.64249 5.120 -0.522 堤防椿 49 GA20 181297.304 2648245.114 3.95385 3.430 -0.524 中央分隔島上 107 SJ0+800 179654.549 2645927.771 5.66106 5.120 -0.541 堤防椿 50 BA505 180949.229 2647627.476 3.72981 3.810 0.080 108 SJ0+900 179613.132 2645836.636 5.46767 5.160 -0.308 堤防椿 51 GA35 181019.459 2647146.011 4.78508 4.330 -0.455 中央分隔島上 109 SJ1+000 179571.719 2645765.633 5.58517 5.190 -0.395 堤防椿 52 M09 181048.551 2646984.413 4.68326 4.480 -0.203 110 SJ1+100	46	WATER08	181875.202	2649284.032	3.87652	3.340	-0.537	中央分隔島上	104	SJ0+500	179798.110	2646191.320	5.55631	5.110	-0.446	堤防樁
48 M14 181490.105 2648570.573 2.84857 2.760 -0.089 106 SJ0+700 179702.252 2646015.551 5.64249 5.120 -0.522 堤防椿 49 GA20 181297.304 2648245.114 3.95385 3.430 -0.524 中央分隔島上 107 SJ0+800 179654.549 2645927.771 5.66106 5.120 -0.541 堤防椿 50 BA505 180949.229 2647627.476 3.72981 3.810 0.080 108 SJ0+900 179613.132 2645836.636 5.46767 5.160 -0.308 堤防椿 51 GA35 181019.459 2647146.011 4.78508 4.330 -0.455 中央分隔島上 109 SJ1+000 179571.719 2645745.633 5.58517 5.190 -0.395 堤防椿 52 M09 181048.551 2646984.413 4.68326 4.480 -0.203 110 SJ1+100 179542.49 2645650.454 5.69401 5.250 -0.444 堤防椿 53 M06 18097	47	BA1005	181632.729	2648830.051	2.91288	2.890	-0.023		105	SJ0+600	179750.043	2646103.350	5.49595	5.110	-0.386	堤防樁
49 GA20 181297.304 2648245.114 3.95385 3.430 -0.524 中央分隔島上 107 SJ0+800 179654.549 2645927.771 5.66106 5.120 -0.541 堤防椿 50 BA505 180949.229 2647627.476 3.72981 3.810 0.080 108 SJ0+900 179613.132 2645836.636 5.46767 5.160 -0.308 堤防椿 51 GA35 181019.459 2647146.011 4.78508 4.330 -0.455 中央分隔島上 109 SJ1+000 179571.719 2645745.633 5.58517 5.190 -0.395 堤防椿 52 M09 181048.551 2646984.413 4.68326 4.480 -0.203 110 SJ1+100 179571.719 2645745.633 5.58517 5.190 -0.395 堤防椿 53 M06 180970.503 2646632.179 3.91210 3.970 0.058 111 SG26 181563.577 2649414.606 5.79064 5.290 -0.501 横上 54 M07 180665.51	48	M14	181490.105	2648570.573	2.84857	2.760	-0.089		106	SJ0+700	179702.252	2646015.551	5.64249	5.120	-0.522	堤防樁
50 BA505 180949.229 2647627.476 3.72981 3.810 0.080 108 SJ0+900 179613.132 2645836.636 5.46767 5.160 -0.308 堤防椿 51 GA35 181019.459 2647146.011 4.78508 4.330 -0.455 中央分隔島上 109 SJ1+000 179571.719 2645745.633 5.58517 5.190 -0.395 堤防椿 52 M09 181048.551 2646984.413 4.68326 4.480 -0.203 110 SJ1+100 179542.249 2645565.454 5.69401 5.250 -0.444 堤防椿 53 M06 180970.503 2646632.179 3.91210 3.970 0.058 111 SG26 181563.577 2649414.606 5.79064 5.290 -0.501 椿上 54 M07 180665.517 2646355.559 3.69370 3.050 -0.644 河道旁 112 FW1+600 181594.049 2649503.797 5.89559 5.420 -0.476 堤防椿 55 GA41 180046.658 <td>49</td> <td>GA20</td> <td>181297.304</td> <td>2648245.114</td> <td>3.95385</td> <td>3,430</td> <td>-0.524</td> <td>中央分隔島上</td> <td>107</td> <td>SJ0+800</td> <td>179654.549</td> <td>2645927.771</td> <td>5.66106</td> <td>5.120</td> <td>-0.541</td> <td>堤防樁</td>	49	GA20	181297.304	2648245.114	3.95385	3,430	-0.524	中央分隔島上	107	SJ0+800	179654.549	2645927.771	5.66106	5.120	-0.541	堤防樁
51 GA35 181019.459 2647146.011 4.78508 4.330 -0.455 中央分隔島上 109 SJ1+000 179571.719 2645745.633 5.58517 5.190 -0.395 堤防椿 52 M09 181048.551 2646984.413 4.68326 4.480 -0.203 110 SJ1+100 179571.719 2645745.633 5.58517 5.190 -0.395 堤防椿 53 M06 180970.503 2646632.179 3.91210 3.970 0.058 111 SG26 181563.577 2649414.606 5.79064 5.290 -0.501 椿上 54 M07 180665.517 2646355.559 3.69370 3.050 -0.644 河道旁 112 FW1+600 181594.049 2649503.797 5.89559 5.420 -0.476 堤防椿 55 GA41 180046.658 2646129.518 4.71051 4.450 -0.261 馬路旁 113 SG27 182001.107 2650188.709 5.64900 5.080 -0.569 椿上 56 BB239	50	BA505	180949.229	2647627.476	3.72981	3.810	0.080		108	SJ0+900	179613.132	2645836.636	5.46767	5.160	-0.308	堤防樁
52 M09 181048.551 2646984.413 4.68326 4.480 -0.203 110 SJ1+100 179542.249 2645650.454 5.69401 5.250 -0.444 堤防椿 53 M06 180970.503 2646632.179 3.91210 3.970 0.058 111 SG26 181563.577 2649414.606 5.79064 5.290 -0.501 椿上 54 M07 180665.517 2646355.559 3.69370 3.050 -0.644 河道旁 112 FW1+600 181594.049 2649503.797 5.89559 5.420 -0.476 堤防椿 55 GA41 180046.658 2646129.518 4.71051 4.450 -0.261 馬路旁 113 SG27 182001.107 2650188.709 5.64900 5.080 -0.569 椿上 56 BB239 182919.847 2650158.178 3.51289 3.450 -0.063 114 BB32 182234.419 2650537.142 5.44145 5.340 -0.101 57 HB322 18293.956 2649885.946 <td>51</td> <td>GA35</td> <td>181019.459</td> <td>2647146.011</td> <td>4.78508</td> <td>4.330</td> <td>-0.455</td> <td>中央分隔島上</td> <td>109</td> <td>SJ1+000</td> <td>179571.719</td> <td>2645745.633</td> <td>5.58517</td> <td>5.190</td> <td>-0.395</td> <td>堤防樁</td>	51	GA35	181019.459	2647146.011	4.78508	4.330	-0.455	中央分隔島上	109	SJ1+000	179571.719	2645745.633	5.58517	5.190	-0.395	堤防樁
53 M06 180970.503 2646632.179 3.91210 3.970 0.058 111 SG26 181563.577 2649414.606 5.79064 5.290 -0.501 椿上 54 M07 180665.517 2646355.559 3.69370 3.050 -0.644 河道旁 112 FW1+600 181594.049 2649503.797 5.89559 5.420 -0.476 堤防椿 55 GA41 180046.658 2646129.518 4.71051 4.450 -0.261 馬路旁 113 SG27 182001.107 2650188.709 5.64900 5.080 -0.569 椿上 56 BB239 182919.847 2650158.178 3.51289 3.450 -0.063 114 BB32 182234.419 2650537.142 5.44145 5.340 -0.101 57 HB322 18293.956 2649885.946 4.15997 4.180 0.020 115 BB29 182385.596 2650733.416 5.20197 5.090 -0.112 58 BA1048 182861.854 2649525.302 4.07750<	52	M09	181048.551	2646984.413	4.68326	4.480	-0.203		110	SJ1+100	179542.249	2645650.454	5.69401	5.250	-0.444	堤防樁
54 M07 180665.517 2646355.559 3.69370 3.050 -0.644 河道旁 112 FW1+600 181594.049 2649503.797 5.89559 5.420 -0.476 堤防椿 55 GA41 180046.658 2646129.518 4.71051 4.450 -0.261 馬路旁 113 SG27 182001.107 2650188.709 5.64900 5.080 -0.569 椿上 56 BB239 182919.847 2650158.178 3.51289 3.450 -0.063 114 BB32 182234.419 2650537.142 5.44145 5.340 -0.101 57 HB322 18293.956 2649885.946 4.15997 4.180 0.020 115 BB29 182385.596 265073.3416 5.20197 5.090 -0.112 58 BA1048 182861.854 2649525.302 4.07750 4.080 0.003 116 SG28 182476.235 2650826.509 5.30480 4.720 -0.585 椿上	53	M06	180970.503	2646632.179	3.91210	3.970	0.058		111	SG26	181563.577	2649414.606	5.79064	5.290	-0.501	格上
55 GA41 180046.658 2646129.518 4.71051 4.450 -0.261 馬路旁 113 SG27 182001.107 2650188.709 5.64900 5.080 -0.569 播上 56 BB239 182919.847 2650158.178 3.51289 3.450 -0.063 114 BB22 182234.419 2650157.142 5.44145 5.340 -0.101 57 HB322 182933.956 2649885.946 4.15997 4.180 0.020 115 BB29 182385.596 265073.3.416 5.20197 5.090 -0.112 58 BA1048 182861.854 2649525.302 4.07750 4.080 0.003 116 SG28 182476.235 2650826.509 5.30480 4.720 -0.585 橋上	54	M07	180665.517	2646355.559	3.69370	3,050	-0.644	河道旁	112	FW1+600	181594.049	2649503.797	5.89559	5.420	-0.476	堤防樁
56 BB239 182919.847 2650158.178 3.51289 3.450 -0.063 114 BB32 182234.419 2650537.142 5.44145 5.340 -0.101 57 HB322 182933.956 2649885.946 4.15997 4.180 0.020 115 BB29 182385.596 2650733.416 5.20197 5.090 -0.112 58 BA1048 182861.854 2649525.302 4.07750 4.080 0.003 116 SG28 182476.235 2650826.509 5.30480 4.720 -0.585 橋上	55	GA41	180046.658	2646129.518	4.71051	4.450	-0.261	馬路旁	113	SG27	182001.107	2650188.709	5.64900	5.080	-0.569	椿上
57 HB322 182933.956 2649885.946 4.15997 4.180 0.020 115 BB29 182385.596 2650733.416 5.20197 5.090 -0.112 58 BA1048 182861.854 2649525.302 4.07750 4.080 0.003 116 SG28 182476.235 2650826.509 5.30480 4.720 -0.585 椿上	56	BB239	182919.847	2650158.178	3.51289	3,450	-0.063		114	BB32	182234.419	2650537.142	5.44145	5,340	-0.101	
58 BA1048 182861.854 2649525.302 4.07750 4.080 0.003 116 SG28 182476.235 2650826.509 5.30480 4.720 -0.585 椿上	57	HB322	182933.956	2649885.946	4.15997	4,180	0.020		115	BB29	182385.596	2650733.416	5.20197	5.090	-0.112	
	58	BA1048	182861.854	2649525.302	4.07750	4.080	0.003		116	SG28	182476.235	2650826.509	5.30480	4.720	-0.585	樁上

由表 5-23 可知,其中有 80 個點位高程較差值在±25 公分之內; 另有 36 個點位高程較差值在±25 公分以上,以下針對高程較差大於± 25 公分之點位採用平均法進行分析,並將其分類為高低位差處、人工 結構物及樁上三種類別,依類別分析結果如下:

(一)高低位差處

此類別之點位主要分佈於地形變化處,共計有8點,其現場點 位照片如圖 5-54 與圖 5-55。

圖 5-54 高低位差處之點位現場照片 1

圖 5-55 高低位差處之點位現場照片 2

(二)人工結構物

此類別之點位主要分佈於人工結構物處(便橋或中央分隔島),共計有12點,其現場點位照片如圖5-56 與圖 5-57。

圖 5-56 人工結構物處之點位現場照片 1

圖 5-57 人工結構物處之點位現場照片 2

(三)樁位

此類別之點位主要分佈於樁位上,共計有16點,其現場點位 照片如圖 5-58 與圖 5-59。

圖 5-58 椿位處之點位現場照片 1

100 内政部國土測繪中心

圖 5-59 椿位處之點位現場照片 2

將此三分類點位(共36點)採用平均法計算,再扣除樁面至地面的 高度,其高程較差成果如表5-24,其中有32個點位高程較差值在±30 公分之內;另有4個點位高程較差值在±30公分以上,分別為G027(河 道旁)、LJ8630(樹下)、HB290(河道上)與M03(橋樑上),其現場情形如 圖5-60。

			内打	臿法		平均法		
類型	點名	水準高程 (m)	DEM成果 正高高程 (m)	正高較差 (m)	DEM成果 正高高程 (m)	椿面至 地面高 (m)	正高較差 (m)	備註
	G026	5.82262	5.510	-0.313	5.743	0.000	-0.080	斜坡處
	G027	3.71082	2.380	-1.331	3.373	0.000	-0.338	河道旁
古仇	LJ8630	4.39593	3.170	-1.226	3.273	0.260	-0.863	馬路旁
尚低	BB02	3.43955	3.100	-0.340	3.140	0.000	-0.300	馬路旁
卫左	BB41	2.90501	2.620	-0.285	2.795	0.000	-0.110	斜坡處
厥	M07	3.69370	3.050	-0.644	3.570	0.000	-0.124	河道旁
	GA41	4.71051	4.450	-0.261	4.570	0.000	-0.141	馬路旁
	M10	5.31047	4.200	-1.110	5.035	0.000	-0.275	橋樑旁
	BB07	4.20795	3.800	-0.408	4.178	0.000	-0.030	便橋
	GB08	4.65219	4.170	-0.482	4.180	0.550	0.078	中央分隔島上
	HB290	4.66049	3.060	-1.600	3.275	0.550	-0.835	中央分隔島上
	GB12	4.43267	4.050	-0.383	4.000	0.500	0.067	中央分隔島上
1 -	BA1012	4.26096	3.800	-0.461	3.773	0.500	0.012	中央分隔島上
人工	WATER08	3.87652	3.340	-0.537	3.378	0.560	0.061	中央分隔島上
結傳	GA20	3.95385	3.430	-0.524	3.458	0.530	0.034	中央分隔島上
物	GA35	4.78508	4.330	-0.455	4.342	0.460	0.017	中央分隔島上
	M11	4.19104	3.880	-0.311	3.900	0.210	-0.081	路旁水泥塊上
	M03	4.99984	4.170	-0.830	4.068	0.220	-0.712	便橋上
	BA552	4.83751	4.420	-0.418	4.598	0.000	-0.240	便橋上
	BA252	5.08702	4.550	-0.537	4.862	0.000	-0.225	便橋上
	BM20	4.19232	3.740	-0.452	3.778	0.210	-0.204	樁上
	FW0+400	5.92280	5.180	-0.743	5.222	0.450	-0.251	堤防樁
	FW0+500	5.90966	5.140	-0.770	5.283	0.460	-0.167	堤防樁
	SJ0+300	5.66967	5.110	-0.560	5.315	0.240	-0.115	堤防樁
	SJ0+400	5.59387	5.190	-0.404	5.268	0.230	-0.096	堤防樁
	SJ0+500	5.55631	5.110	-0.446	5.133	0.260	-0.163	堤防樁
	SJ0+600	5.49595	5.110	-0.386	5.138	0.250	-0.108	堤防樁
挂件	SJ0+700	5.64249	5.120	-0.522	5.125	0.375	-0.142	堤防樁
稻亚	SJ0+800	5.66106	5.120	-0.541	5.147	0.410	-0.104	堤防樁
	SJ0+900	5.46767	5.160	-0.308	5.148	0.230	-0.090	堤防樁
	SJ1+000	5.58517	5.190	-0.395	5.223	0.250	-0.112	堤防樁
	SJ1+100	5.69401	5.250	-0.444	5.320	0.250	-0.124	堤防樁
	SG26	5.79064	5.290	-0.501	5.290	0.330	-0.171	樁上
	FW1+600	5.89559	5.420	-0.476	5.428	0.420	-0.048	堤防樁
	SG27	5.64900	5.080	-0.569	5.260	0.260	-0.129	樁上
	SG28	5.30480	4.720	-0.585	4.848	0.240	-0.217	樁上

表 5-24 正高點位比較成果(平均法)

圖 5-60 採平均法後高程較差大於 30 公分之點位

四、結果與討論

- 水準樁樁面高程與實際地面高有 21 公分~56 公分之落差,且部分 水準樁埋設位置附近地形高低落差大,採平均法較能實際反應 Lidar DEM 精度(改善率為 96.6%)。一般而言,此種地形高低落 差大的點位,並不適合用於與 DEM 精度評估。
- 部分水準樁(共4點)高程扣除樁面高度後,仍與Lidar DEM 高程 落差在34公分~84公分之間,本團隊認為這4點應剔除在本次比 較範圍。

第陸章 測製數值地形向量資料之精度評估

第一節 說明

於鹿港鎮市區選定一區域面積不得小於48公頃,進行以數值航空攝 影測量方式製作數值地形向量資料與高精度高密度光達掃描資料進行平 面及高程精度之比較評估。

第二節 作業區域

本案選定鹿港鎮公所附近48公頃範圍作為此評估區域,如圖6-1。

圖 6-1 鹿港高精度掃描作業區範圍

第三節 光達掃描及數值航測作業內容

一、光達掃描作業內容

(一)合約要求

飛航離地平均高度約為 600 公尺,FOV<30 度,重疊率高於 40%,每平方公尺掃描點雲密度大於2點。

(二)實作規劃

於97年3月4日進行鹿港測區之高密度高精光達掃描,其光 達掃描規劃參數如表 6-1,飛航離地平均高度約為 600 公尺,FOV 20 度,重疊率約於 50%,每平方公尺光達掃描點雲密度大於 8 點。 共規劃 8 條航線如圖 6-2,所得結果除與原掃描結果作比較外,並 與數值地形向量資料作平面及高程精度分析比較。

表 6-1 鹿港地區高精度光達掃描參數(ALS50)

Scanner Setup		鹿港
Scan FOV (full angle)	degrees	20.00
Nominal Flying Altitude AMSL	meters	600.00
Airspeed	knots	90.00
Resulting Scan Pattern		
Total Swath Width	meters	211.59
Point Density (average)	pts/meter^2	8.57

圖 6-2 航線規劃圖

二、數值航測作業內容

(一)合約要求

數值地形向量資料測製至少包括建物、交通、水系等,並包含 高程資料,高程資料需含獨立高程點(每道路交叉口至少1點)、特 徵點、特徵線等;向量資料之平面容許誤差為50公分,高程容許 誤差為30公分。

(二)實作規劃

以數位相機 Rollei AIC(相機規格詳附件十)拍攝地面解析力 10 公分數位影像,共8條航線如圖 6-3,前後重疊 60%,左右重疊 40%,並結合 GPS/IMU 及地面控制點資料進行空三平差及 1/1000 數值製圖作業,圖層編碼依據內政部千分之一地形圖標準辦理。

圖 6-3 鹿港高精度光達掃描軌跡圖

第四節 地面控制测量作業

一、已知點檢測作業

本作業區之平面及高程控制點檢測作業包含於本報告書第貳章第 三節中,不另外進行檢測作業。

二、平面控制測量作業

(一)作業方法

本作業區平面控制點測量作業以 e-GPS 測量方式於作業前先 申請 貴中心本測區 e-GPS 帳號後,於作業前施測鄰近本測區外之 已知控制點 G018N 及 G018 取得坐標系統 N,E 較差後再轉換至本 測區內各後測點。

(二)作業數量

選定航空照片上清晰可辨位置共 12 點,如圖 6-4。 (三)作業精度

連續觀測180筆資料,平面收斂精度≤2公分。

三、高程控制測量作業

本作業區高程控制點測量作業採直接水準測量方式,於作業前引 測鄰近之已知高程控制點 G018 至本測區各後測點,並採取往返施測 方式,其閉合差 ≤7mm√k,水準觀測成果表請詳附件九。

圖 6-4 鹿港測區地面控制點分佈圖

第五節 系統整合率定分析

本案光達率定及相機 boresight 率定同時於 97 年 03 月 04 日於台中港 率定場拍攝 750 公尺及 1250 公尺各對向 4 條航線,飛航軌跡如圖 6-3, 率定場飛完後直飛鹿港再飛 8 條平行航線(其中有 2 條航線為即時重拍以 獲取最佳影像資料)。率定結果分析如下:

一、ALS50 空載雷射掃描系統自身的率定

Boresight Calibration 是以不同之航向、角度與高度之 LIDAR 掃描資料,利用共軛點之 intensity image、laser point 進行計算,以 求取 IMU 與雷射中心偏移值之系統誤差值。

系統先以預先規劃之飛航參數(航高 750 公尺/1250 公尺)及測 區內外三個 GPS 基站(TACH,G,FCU1)於率定場測區進行往返掃

描,再以垂直前次飛行之航向同樣進行往返之掃描,共完成八條航線之掃描;其中並配合各航線最佳共軛點選取及量測,各高低掃描 航線共量取至少 30 個共軛點進行類似空三參數解算觀念解出 Roll、Pitch、 Heading 的差異量。

最後將求解後率定參數回歸至原始光達點雲資料並與現場已 知高程資料比對結果如圖 6-5,由圖中標準偏差值(Std. deviation) 為 0.0361 公尺可知整體光達系統率定結果符合精度預期。

Cont	rol report - G:\l	BORESIGHT_DA	TA\台中港率定	Ξ場\合中港率	定場高程.txt	_ 🗆 X
Use	Number	Easting	Northing	Known Z	Laser Z	Dz
	46	200622.42	2681755.17	23.610	23.610	+0.000 🛋
	79	200325.16	2681872.32	23.860	23.860	+0.000
	425	200274.56	2681196.85	24.232	24.230	-0.002
	222	200758.51	2681673.79	23.513	23.510	-0.003
	238	200609.72	2681732.70	23.623	23.620	-0.003
	61	200483.26	2681810.02	23.834	23.830	-0.004
	89	200232.36	2681908.83	23.924	23.920	-0.004
	68	200418.19	2681835.68	23.785	23.780	-0.005
	60	200492.54	2681806.37	23.856	23.850	-0.006 📃
						-
Average	e magnitude	0.0644		Average	: dz	+0.0635
Std dev	iation	0.0361		Minimum	n dz	-0.0420
Root m	ean square	0.0730		Maximur	n dz	+0.1550
<u>S</u> ho	ow location					dentify

圖 6-5 97.03.04 率定場掃描精度分析(ALS50)

二、AIC數位相機與ALS50 雷射掃描系統之間的率定

空載數位空照相機,其實最主要的目的是利用 Applanix POS AV 510 記錄每一個照相點啟動快門所送出的 TTL(Transistor-Transistor Logic)脈衝信號事件(Event mark)之瞬間 GPS 及 IMU 資料作為數位影 像投影中心點外方位參數(x,y,z,ω,φ,κ)資料來源,優點是可節省大量 地面控制、佈標及航測空三平差推算之工作量,並且可利用數位影像 配合 LIDAR DSM 製作正射影像圖。實際應用上,如要達到大比例尺 製圖精度要求,這中間則需經過精密率定程序找出像機像平面 XYZ 參考坐標系與 IMU 之 boresight angles(ω,φ,κ差異量)方可引用 IMU 的方位參數於航測空三平差,圖 6-3 為率定場飛航成果,其分析說明 如下:

率定場以 1250 公尺飛航高度, 80%前後重疊率及 30%側向重疊率 之飛航照片重組空三模型,並以地面事先佈設每 50 公尺一點全控檢核 點均勻分佈於各航帶內計 50 點,經 POSPAC/POSCAL 軟體解算後可 得到 GPS/IMU/Camera 之間的 boresight angles(Tx,Ty,Tz)及檢核點標準 偏差值(Rx=0.11 公尺, Ry=0.12 公尺, Rz=0.28 公尺)如圖 6-6。

圖 6-6 相機率定場解算及精度分析

第六節 光達掃描作業

一、光達掃描軌跡解算精度分析

詳本報告書第參章第一節有關 97.03.04 解算精度及率定精度分析。

二、光達掃描涵蓋範圍

共掃描8條航線,其光達點雲分佈如圖 6-7。

圖 6-7 鹿港測區光達點雲分佈圖

三、光達點雲密度分析

> 鹿港測區實際掃描光達點雲密度為每平方公尺 8.39 個點,符合合約要求每平方公尺光達點雲密度大於 2 點,其光達點雲密度分析表如表 6-2。

航線編號	雷射點數	航带面積(m^2)	點雲密度(pt/m^2)	備註
1	2160984	257425	8.39	
2	2065679	260311	7.94	
3	2124475	254688	8.34	
4	2116869	255273	8.29	
5	2382217	261293	9.12	
6	2121964	261576	8.11	
7	2149709	258584	8.31	
8	2252071	261252	8.62	
平	均點雲密度	(pt/m^2)	8.2	39

表 6-2 鹿港測區光達點雲密度分析表

四、光達掃描重疊率分析

航線間之平均重疊率為 44.95%,符合合約要求重疊率需大於 40%,其航線重疊率分析表如表 6-3。

航線編號		平均寬度(m)	平均重疊 寬度(m)	重疊率%
1	2	222.44	137.86	61.98
2	3	221.32	125.27	56.60
3	4	219.18 221.97	121.66	55.51
4	5		132.03	59.48 59.63
5	6	224.67	133.98	
6	7	223.52	118.33	52.94
7 8		223.39	130.95	58.62
	57.82			

表 6-3 鹿港測區航線重疊率分析表

五、航帶重疊數據誤差分析

航帶重疊數據誤差分析採用 TerraMatch 模組進行光達點雲資料之 平均高程計算, 鹿港測區航帶重疊區數據平差前後之分析結果如表 6-4, 平差前之平均絕對高差量約為 0.035 公尺, 平差後之平均絕對高 差量約為 0.030 公尺, 其航帶重疊數據平差前後之比較結果如圖 6-8, 由圖中可知平差前後之平均絕對高差量並無顯著差異。

		平差前				平差後	
平均絕對高差量		0.035	平均絕對高	差量	0.030	0.030	
平均高差		0.000		平均高差		0.001	
航線	計算點數	絕對高差量	高差	航線	計算點數	絕對高差量	高差
1	1257	0.032	-0.026	1	1260	0.0259	-0.0006
2	772	0.030	-0.009	2	774	0.0257	-0.0011
3	254	0.033	-0.027	3	243	0.0265	-0.0019
4	448	0.037	-0.006	4	451	0.0329	-0.0123
5	179	0.040	0.027	5	182	0.0341	0.0227
6	286	0.056	0.041	6	278	0.0502	0.0045
7	207	0.020	-0.011	7	206	0.0204	0.0006
8	214	0.028	0.011	8	209	0.0246	-0.0006

表 6-4 鹿港測區航带平差分析結果

圖 6-8 鹿港測區重疊航帶數據平差前後分析比較結果

六、與地面已知檢核點高程數據比較分析

由圖 6-9 比較分析可知同樣的地面已知檢核點與光達點雲成果(其 設定為在最大 10 公尺三角形邊長範圍內,坡度小於 20 度的所有光達 點雲資料,如圖 6-10)比較分析統計結果為標準偏差 0.0461 公尺,最 大值+0.0941 公尺,最小值-0.0359 公尺,光達點雲分類後成果符合地 面檢核之精度要求(<0.3 公尺)。

96 年度以空載光達技術建立數值地形模型工作總報告書

<mark> C</mark> on		_ 🗆 🗙				
<u>F</u> ile						
Use	Number	Easting	Northing	Known Z	Laser Z	Dz
	Lk16	193253.15	2662118.52	22.357		outside 🔺
	Lk14	193097.40	2661750.72	22.484	22.500	+0.016
	Lk15	193015.68	2662169.00	22.404	-	outside
	LK02	192493.07	2662136.52	21.956	-	outside
	Lk13	192499.09	2661744.00	22.936	22.900	-0.036
	LKH01	192580.64	2662095.30	22.430	22.450	+0.020
	LK03	192078.10	2662193.98	21.591	-	outside
	LK04	191586.11	2661868.21	22.136	22.230	+0.094
	LKH02	192431.54	2661352.70	22.590	22.580	-0.010
						-
Averag	je magnitude	0.0327		Average	e dz	+0.0107
Std dev	viation	0.0461		Minimun	n dz	-0.0359
Root m	iean square	0.0434		Maximu	m dz	+0.0941
<u>S</u> how location						<u>I</u> dentify

圖 6-9 光達點雲與已知地面檢核點高程精度比較分析

Output control report										
Known points:	<u>B</u> rowse									
<u>C</u> lass: <u>2</u> <u>M</u> ax triangle: 11 Max <u>s</u> lope: 2 <u>2</u> tolerance: 0.										
<u>0</u> K		Cancel								

圖 6-10 光達點雲精度檢核設定值

七、與同測區不同飛航高度已掃描光達數據比較分析

與96.12.29 航高1200公尺光達點雲地面分類點進行高程誤差分析 比較,選擇地勢平坦的路口位置兩處如圖 6-11,比較成果如圖 6-12(1005 個地面點)及圖 6-13(119 個地面點)。經比較可知,標準誤差 值約5公分左右,最大誤差+20公分,最小誤差-15公分,故可知兩次 光達掃描之高程差異並不明顯。

圖 6-11 選擇交叉路口兩處為評估區

Control report - F/970304\pro_lidar\lukan\1200M_1.xyz								
<u>F</u> ile								
Use	Number	Easting	Northing	Known Z	Laser Z	Dz		
	997	192966.30	2661662.62	22.760	22.830	+0.070 📥		
	998	192964.77	2661662.74	22.770	22.790	+0.020		
	999	192963.25	2661662.85	22.750	22.750	+0.000		
	1000	192955.53	2661663.42	22.700	22.720	+0.020		
	1001	192952.41	2661663.65	22.630	22.660	+0.030		
	1002	192950.85	2661663.77	22.630	22.570	-0.060		
	1003	192949.78	2661662.31	22.610	22.610	+0.000		
	1004	192950.57	2661662.25	22.640	22.610	-0.030		
	1005	192952.93	2661662.06	22.620	22.640	+0.020		
						-		
Average	e magnitude	0.0417		Average	e dz	+0.0054		
Std dev	viation	0.0528		Minimun	n dz	-0.1500		
Root mean square		0.0531		Maximur	m dz	+0.2000		
Sha	ow location					<u>I</u> dentify		

圖 6-12 與原掃描數據高程之比較分析(路口 1)

SControl report - F/970304/pro_lidar/lukan/1200M_2.xyz							_ []	×
_	Use	Number	Easting	Northing	Known Z	Laser Z	Dz	
		111	192862.78	2661588.85	22.610	22.540	-0.070	-
	\boxtimes	112	192860.99	2661588.97	22.650	22.610	-0.040	
	\boxtimes	113	192855.62	2661589.32	22.650	22.630	-0.020	
	\boxtimes	114	192854.74	2661589.37	22.660	22.610	-0.050	
	\boxtimes	115	192855.50	2661588.13	22.610	22.660	+0.050	
	\boxtimes	116	192856.39	2661588.08	22.650	22.660	+0.010	
	\boxtimes	117	192857.29	2661588.01	22.620	22.630	+0.010	
	\boxtimes	118	192858.18	2661587.96	22.650	22.630	-0.020	
	\times	119	192859.07	2661587.90	22.660	22.650	-0.010	
								Ŧ
,	Average	e magnitude	0.0382		Average	e dz	-0.0150	1
1	Std dev	riation	0.0473		Minimun	n dz	-0.1200	
	Root mean square		0.0494		Maximur	n dz	+0.2000	I
<u>S</u> how location		w location					<u>I</u> dentify	

圖 6-13 與原掃描數據高程之比較分析(路口 2)

第七節 數值航测作業

於2008年3月4日所選取鹿港測區進行高密度高精度光達掃描與數 位照相同步作業(掃描參數如表 6-1),地面基站共架設2站(M809及 VR01) 各觀測1筆/秒 GPS 觀測量。航拍數位影像照片共取得8條航線,139張 GSD 10 公分數位影像(原始像元 9um)約1/11000像比例尺影像如圖 6-14。 由於本次照相之外方位參數可透過第五節系統率定整合取得,因此匯入 Z/I 空三軟體 ISAT 後即可自動建立各航帶的關係,以進行空三自動量 測,控制點量測及空三平差作業,整體航測作業說明如下:

一、數位影像RGB 16bit原始壓縮檔轉成 8bit TIF檔

本次作業共取得 139 張 GSD 10 公分數位影像,影像取得前先經過 Phaseone Capture one 軟體將原始 16bit RGB 影像壓縮檔 RAW 轉成 8 bit TIFF 檔如圖 6-14。

圖 6-14 GSD 10 公分數位影像(鹿港鎮立運動場附近)

二、直接定位外方位參數取得

將前述 TIFF 數位影像利用 POSPAC/POSEO 軟體轉置外方位參數 (GPS/IMU 及 Boresight angles)如圖 6-15,重新整理並加入航帶資訊後 製作成航高為橢球高的外方位參數檔(格式為 Photo_id,_strip_id, time stamp, N, E, h, ω, φ, κ)並匯入 Z/I ISAT 空三軟體建立空三模型。

To POSEO: F/970304/970304.pos										
rioject Setup	Inject Seruh Wan Jiew Dishay Tools Helb									
🗅 🥔 🖬		🕮 🎎 (🛞 🔃 .	느이	∡ ⊑	६ 😔				
_										
970304_00310	294	203350.965227	201823.598	2681273.894	733.831	3.46055	3.93018	-129.25395	24.23629046	120.525 🔺
970304_00311	295	203354.465247	201671.248	2681336.158	731.542	5.44526	2.14499	-130.32019	24.23684796	120.524
970304_00312	296	208357.965151	201518.741	2681398.186	729.329	3.75787	2.36100	-130.45646	24.23740631	120.522
970304_00313	297	203361.464996	201365.626	2681461.251	725.119	4.71592	1.31909	-130.12930	24.23796798	120.521
970304_00314	298	203364.965053	201209.832	2681524.448	720.691	5.50367	1.89235	-129.19209	24.23853375	120.519
970304_00315	299	203368.464932	201052.113	2681586.378	719.471	7.02222	3.60123	-129.56435	24.23908800	120.518
970304_00316	300	206371.964586	200896.237	2681645.406	723.263	7.92147	2.72358	-129.22087	24.23961610	120.516
970804_00817	301	203375.464648	200741.668	2681700.801	725.333	5.19431	4.16292	-129.82700	24.24011142	120.514
970304_00318	302	20378.965038	200588.420	2681756.847	727.338	5.43645	3.21367	-128.99709	24.24061264	120.513
970304_00319	303	203382.464570	200434.814	2681813.136	728.720	6.59339	2.53917	-129.44276	24.24111603	120.511
970304_00320	304	203385.964453	200280.126	2681869.669	727.526	4.97507	2.16673	-129.81058	24.24162156	120.510
970304_00321	305	203389.464352	200124.473	2681929.315	723.935	2.54551	3.46467	-130.29976	24.24215517	120.508
970304_00322	306	203392.964352	199969.381	2681994.295	719.870	7.07155	0.52718	-130.75981	24.24273693	120.507
970304_00323	307	203396.464077	199811.290	2682058.378	718.834	5.37386	3.22999	-129.58960	24.24331049	120.505
970304_00324	308	203399.964147	199652.063	2682121.037	720.187	7.88004	1.83289	-128.31651	24.24387113	120.504
970304_00325	309	203403.464172	199490.325	2682178.620	723.379	6.04440	3.79971	-125.85322	24.24438585	120.502
970304_00326	310	203406.964058	199328.356	2682233.204	726.897	2.20966	4.99097	-126.34888	24.24487347	120.501
970304_00327	311	203712.723631	199345.548	2682254.945	730.064	-4.33804	-4.72980	77.81282	24.24507032	120.501:
970304_00328	312	203716.270051	199517.723	2682189.220	736.745	-2.09754	-5.38191	79.45549	24.24448244	120.502
970304_00330	313	203723.270197	199850.005	2682062.174	742.864	-4.16655	-1.69450	78.94609	24.24334600	120.506: 🔤
070204_00221	91.4	-209226-220100	200010-159	n:01000.005	700 AM	1.510/0	1.67706	20.61206	24 24220200	in sex
			100%) Stop	2

圖 6-15 利用 POSPAC/POSEO 軟體轉置外方位參數示意圖

三、空三各模型連接點自動量測及除錯

建立 GPS/IMU 空三模型並確認相機參數無誤後,採用 ISAT 自動空三匹配技術於 Von-Gruber point 各至少留存 2 點,匹配成功自動除錯可達 2.8um 量測精度。

四、控制點加入及量測

投影中心與控制點位分佈關係如圖 6-4。

五、空三精度分析

經過空三約制平差後可建立不同約制方式成果圖 6-16、圖 6-17 及圖 6-18 (空三高程系統採用橢球高系統)。

由圖 6-16 及圖 6-17 可知約制控制點及投影中心與只約制投影中 心空三平差成果之八個地面檢核點平面及高程精度均相當好,約略小 於或等同 1pixel size(10 公分)。反觀只約制控制點不加入 GPS/IMU 輔 助資料空三平差成果(如表 6-4),其中三個檢核點(一平控、二高控)之 平面及高程精度均大於 2pixel size,因此,加入 GPS/IMU 為輔助的空 三平差對於提昇模型絕對精度有極大助益,圖 6-16 及圖 6-17 顯示加 入 GPS/IMU 輔助資料對於不需地面控制點或只需少量外圍四點即可 達到高精度空三控制的效果。

Tholo Inalguadon Results	
Summary Stats Photo Stats Object Stats Point Stats Exteri	or Orientation GPS INS Self-Calibration
Parameter X/Omega Y/Phi Z/Kappa RMS Control 0.008 0.002 0.000 RMS Check 0.095 0.669 0.101 RMS Limits 0.001 0.001 0.001 Max Ground Residual 0.013 0.003 0.000 Residual Limits 0.001 0.001 0.001 Mean Std Dev Object 0.024 0.029 0.096 RMS Photo Position 0.162 0.206 0.080 RMS Photo Attitude 0.002 0.002 0.002 Mean Std Dev Photo Position 0.162 0.206 0.080 Mean Std Dev Photo Position 0.024 0.023 0.002 Mean Std Dev Photo Attitude 0.002 0.002 0.002 Image Photos Used: 4 Cameras used: (1) Cameras used: (1) Current Count Cameras used: (1) Camera Id Lens Photos Used: 139 Photos NU used: 19225 Photos Std Used: 19225 Distangle Photos Used: 19225	Key Statistics Sigma: 2.8 um RMS Image (x, y): 2.3, 2.4 um Number of iterations: 8 Degrees of Freedom: 28625 Gross Image Blunders: 0 Gross Control Blunders: 0 Image Blunders: 0 Solution Status: Solution outside of RMS tolerance. Solution outside of residual tolerance. Distortion Project Settings Linear Units: Meters Angular Units: Meters Atm Refraction: On Earth Curvature: On
Options Control Groups Reports Compute Apply Reset Graphics	Exterior Orientation OK Cancel Help
Object Statistics	
Image: Pootprints Image: Labels Image: Centers Image: Centers Image: Centers	
	△ 檢核點+

圖 6-16 約制控制點及投影中心空三成果及檢核點誤差向量圖(by ISAT)

₩55) 內政部國土測繪中心

96年度以空載光達技術建立數值地形模型工作總報告書

🖹 Photo Triangulation Results	
Summary Stats Photo Stats Object Stats Point Stats Exterio	or Orientation GPS INS Self-Calibration
Parameter X/0mega Y/Phi Z/Kappa RMS Control <th>Key Statistics Sigma: 2.8 um RMS Image (x, y): 2.3, 2.4 um Number of iterations: 8 Degrees of Freedom: 28617 Gross Image Blunders: 0 Gross Control Blunders: 0 Image Blunders: 0 Solution Status: Solution Successful.</th>	Key Statistics Sigma: 2.8 um RMS Image (x, y): 2.3, 2.4 um Number of iterations: 8 Degrees of Freedom: 28617 Gross Image Blunders: 0 Gross Control Blunders: 0 Image Blunders: 0 Solution Status: Solution Successful.
Current Count Control Points Used: 0 Check Points Used: 12 Photos Used: 139 Photos Not Used: 0 Image Points Used: 19225	Distortion Linear Units: Meters Angular Units: Degrees Atm Refraction: On Earth Curvature: On
Options Control Groups Reports	Exterior Orientation
Compute Apply Reset Graphics	OK Cancel Help

圖 6-17 只約制投影中心空三成果及檢核點誤差向量圖(by ISAT)

96年度以空載光達技術建立數值地形模型工作總報告書

🖀 Photo Triangulation Results								
Summary Stats Photo Stats Object	Stats Point Stats Exterior Or	ientation GPS INS Self-Calibration						
Parameter X/Om RMS Control 0.009 RMS Check 0.271 RMS Check 0.271 RMS Check 0.271 RMS Check 0.001 Max Ground Residual 0.016 Residual Limits 0.001 Mean Std Dev Object 0.023 RMS Photo Position RMS Photo Position RMS Photo Attitude 0.011 Image Points Used: 9 Check Points Used: 3 Photos Not Used: 139 Photos Not Used: 0 Image Points Used: 19225	ega Y/Phi Z/Kappa 0.005 0.054 0.083 0.295 0.001 0.001 0.010 0.119 0.001 0.001 0.028 0.104 0.125 0.052 0.009 0.002 Cameras used: (1). Camera Id Lens Dista Rollei_14636781 On	Key Statistics Sigma: 2.5 um RMS Image (x, y): 2.1, 2.2 um Number of iterations: 8 Degrees of Freedom: 27800 Gross Image Blunders: 0 Gross Image Blunders: 0 Image Blunders: 0 Solution Status: Solution outside of RMS tolerance. Solution Status: Solution outside of residual tolerance. Solution Units: Linear Units: Meters Angular Units: Degrees Atm Refraction: On Earth Curvature: On						
Options Control Gro	ups Reports Ext	terior Orientation						
Compute Apply R	eset Graphics	OK Cancel	Help					

圖 6-18 只約制控制點空三成果及檢核點誤差向量圖(by ISAT)

六、1/1000 航測地形圖製作

依內政部千分之一地形圖標準編碼完成數值地形向量資料測製至 少包括建物、交通、水系等,並包含高程資料,高程資料需含獨立高 程點(每道路交叉口至少1點)、特徵點、特徵線等,其成果圖如圖 6-19。

圖 6-19 1/1000 地形圖航測測製成果(約 800 公尺×600 公尺)

第八節 光達與航測數值地形數據之精度比較評估

一、光達點雲成果與1/1000 航測地形圖套合之平面及高程精度比較分析

(一)高程精度比較分析

將航測所測製之獨立高程點(道路交叉口至少一點)共計643 點 與鄰近之光達點雲(橢球高),以圖 6-10 之設定值進行比對分析,統 計結果如圖 6-20,標準偏差為 0.1398 公尺,最大值為+0.289 公尺, 最小值為-0.287 公尺;另將光達點雲的橢球高以內政部公告大地起 伏模式化算正高高程值,再與航測之獨立高程點比較,其統計結果 如圖 6-21,標準偏差為 0.1399 公尺,最大值為+0.294 公尺,最小 值為-0.291 公尺;此兩者光達點雲地面分類點成果與航測高程測製 成果差異尚屬合理範圍。

						_	
Use	Number	Easting	Northing	Known Z	Laser Z	Dz	
\boxtimes	480_116	192926.67	2661592.40	22.906	22.770	-0.136	
\times	480_117	192902.43	2661626.00	22.706	22.660	-0.046	
\times	480_118	192876.85	2661606.10	22.706	22.680	-0.026	
\times	480_119	192878.67	2661574.83	22.706	22.540	-0.166	
\times	480_12	192693.74	2661453.99	22.466	22.400	-0.066	
\times	480_120	192893.71	2661551.32	22,506	22.470	-0.036	
\times	480_121	192801.12	2661411.73	22.481	22.470	-0.011	
\times	480_122	192789.67	2661335.88	23.131	23.340	+0.209	
\times	480_123	192774.89	2661462.21	22.256	22.330	+0.074	
	1990						
verag	e magnitude	0.1211		Average	e dz	-0.0385	
td dev	riation	0.1398		Minimum dz		-0.2870	
loot m	ean square	0.1449		Maximur	n dz	+0.2893	

圖 6-20 光達點雲地面點與航測高程測製成果精度比較分析(橢球高)

) 內政部國土測繪中心

	Cor	trol report -	R:\資料後處理	\盲精度光達	帚猫精度評け	古(正育)98.		×
	File S	<u>š</u> ort						
	Use	Number	Easting	Northing	Known Z	Laser Z	Dz	
5		480_116	192926.67	2661592.40	4.181	4.040	-0.141	*
	\boxtimes	480_117	192902.43	2661626.00	3.981	3.930	-0.051	
	\boxtimes	480_118	192876.85	2661606.10	3.981	3.950	-0.031	-
	\square	480_119	192878.67	2661574.83	3.981	3.810	-0.171	
	\square	480_12	192693.74	2661453.99	3.741	3.670	-0.071	
	\boxtimes	480_120	192893.71	2661551.33	3.781	3.740	-0.041	
	\square	480_121	192801.12	2661411.73	3.756	3.740	-0.016	
	\boxtimes	480_122	192789.67	2661335.88	4.406	4.610	+0.204	
	\boxtimes	480_123	192774.89	2661462.21	3.531	3.600	+0.069	
		1994						-
	Averag	e magnitude	0.1206		Average	e dz	-0.0357	
	Std dev	riation	0.1399		Minimun	n dz	-0.2910	
Root mean square		ean square	0.1443		Maximu	m dz	+0.2940	
Show location		ow location					<u>I</u> dentify	

圖 6-21 光達點雲地面點與航測高程測製成果精度比較分析(正高)

(二)平面精度比較分析

由於光達點雲的平面位置落點之判釋,與點雲的密度及掃描方 式有關,因此為提高點雲的分辨率,Foot print diameter 設定為 0.23 公尺,FOV±10度,點雲取樣密度為 8.57pts/m²,如果將重疊區點 雲加計可達 11pts/m²;另外以同樣 10 公尺×10 公尺方格內量取建 物點雲密度及道路點雲密度,可發現建物的反射密度高於一般道路 面,因此為提高與航測地形圖平面位置比對分辨率,以航帶重疊區 內建物為樣區進行平面精度比較分析。

平面位置比較點取樣採取剖面線(0.1 公尺帶寬)截取所有點雲 xyz 位置與航測 3D 地形圖建物邊緣線交叉點進行比對量測之間的 差值如圖 6-22。經取樣 800 公尺×600 公尺內均勻分佈約 15 處(如 圖 6-23),並統計雷射點與向量點相對距離差值後統計如表 6-5,圖 6-24 為地形圖與點雲套合情形。

由表 6-5 可知光達點雲所組成之建物 3D 點雲正射圖與實測之 1/1000 航測地形圖相較之平均誤差值約為 0.12 公尺~0.15 公尺,與 實際軌跡 GPS 解算之精度(±0.03 公尺)稍大,可能是航測人工量測 誤差或是光達點雲在該處密度不足所致,不過仍屬合理誤差範圍。

圖 6-22 剖面線(0.1 公尺帶寬)截取光達點雲與航測 3D 地形圖建物邊緣線進行比對

圖 6-23 剖面線取樣位置分佈圖

圖 6-24 光達點雲與地形圖套合圖

剖線	剖面線左邊	剖面線右邊
1	-0.139	-0.129
2	+0.136	+0.034
3	-0.073	+0.165
4	-0.024	-0.048
5	-0 101	+0 152
6	-0.114	+0.025
7	-0.082	-0.326
, 8	0.206	0.033
0	-0.200	-0.035
9	+0.122	+0.129
10	-0.150	-0.338
11	+0.228	-0.076
12	-0.286	-0.115
13	-0.208	-0.104
14	+0.143	+0.095
15	+0.148	+0.129
備註	正負符號以剖面	線右方為正,左方為負

表 6-5 光達點雲與建物邊線相對距離差值統計表(單位:公尺)

第柒章 教育訓練

第一節 緣起

藉由本團隊辦理「96 年度以空載光達技術建立數值地形模型工作」 案中之各項工作內容、方法與產製過程,透過教育訓練方式經驗分享,促 使貴 中心相關同仁對光達技術有更進一步的了解。故本團隊將針對 LiDAR 原理、飛航計畫、地面控制規劃、系統整合、資料後處理、數值 高程模型及數值地表模型製作等內容詳盡介紹及說明,以提升貴 中心同 仁對空載光達測繪技術之認識與了解。

第二節 訓練時間與地點

本教育訓練日期為 97 年 8 月 27 日(三),時間為上午 8 點 30 分至下午 4 點 20 分,地點於內政部國土測繪中心 5 樓第二會議室。

第三節 課程規劃

本課程辦理原則為提供至少 30 人次及教材,課程時數共 6 小時,其 課程安排詳見表 7-1 說明,簽到表詳見附件七。

日期時間	97年8月27日 (星期三)
08:30-09:00	報到
09:00-09:50	LIDAR原理、新科技及未來展望 講師:史天元教授
10:00-10:50	光達計畫飛航規劃 講師:徐明鎰 總經理
11:00-11:50	地面控制測量規劃 講師:高玉惠 工程師
	午餐/休息
13:30-14:20	系統整合 講師:高玉惠 工程師
14:30-15:20	光達資料後處理 講師:徐明鎰 總經理
15:30-16:20	LIDAR之數值高程模型及數值地表模型製作 講師:徐偉城研究員
訓練地點	內政部國土測繪中心5樓第二會議室

表 7-1 教育訓練課程表

第四節 課程內容介紹

一、LIDAR原理、新技術及未來展望

(一)講師介紹

	講 師	史天元 教授
	任職	國立交通大學土木工程系教授
	最高學歷	加拿大鈕布朗斯約克大學測量工程博士
	研究專長	攝影測量、地理資訊系統

 1.數碼城市中空間資訊獲取、分析、整合及視覺化研究-子計畫三: 由空載光達點雲數據擷取線形特徵研究(I),國科會,NSC94-2211-E -009-037-

2.以光達、差分雷達、及空照產製數值高程模型及數值覆蓋模型研究(3/3),國科會,NSC93-2211-E-009-011-

3. 數值高程模型及數值覆蓋模型產製品質研究,國科會, NSC93-2211-E-009-038-

4.高光譜影像分析及應用整合型研究-子計畫三:頻角分類與光譜分 離技術研究(I),國科會,87.08-88.07

5.高光譜影像分析及應用整合型研究-總計畫(I),國科會,87.08-88.07

期刊論文

- 1.史天元、黃清美,2007,空載光達入射角與穿透率關係探討,第
 二十六屆測量及空間資訊研討會。
- 2.吳歷韋、史天元,2007,空載光達產製之數值高程模型空間分佈 密度品質探討,第二十六屆測量及空間資訊研討會。
- 3.劉進金、廖子毅、劉治中、史天元,應用彩色正射航照與空載光 達數值地形探討阿里山溪豪大雨促發之山崩,第二十六屆測量及 空間資訊研討會。
- 4.徐偉城、史天元,2007,以衛星影像控制點分析空載光達點雲之 平面精度,第二十六屆測量及空間資訊研討會。
- 5. Chong-Wei Huang and Tian-Yuan Shih, 2007. Constructing the

Domain Boundary from a Point Set with the Longest Edge Deletion.
第二十六屆測量及空間資訊研討會。
6.史天元、黃清美,2007,空載光達人工編修品質探討:南化水庫圖 幅為例,2007年台灣地理資訊學會年會暨學術研討會。
7. 劉金進、史天元,2007,空載光達數值地形應用於地形曲面特徵 之萃取,2007年台灣地理資訊學會年會暨學術研討會。

(二)課程內容

空載雷射掃描系統(Airborne Laser Scanning,簡稱 ALS) 系為一 項結合雷射掃描儀(Light Detection and Ranging, LiDAR)、全球衛星 定位系統(Global Position System, GPS)、慣性導航儀(Inertial Measurement Unit, IMU)等三部份,如圖 7-1。利用雷射掃描儀進行 掃描,藉由反射的回波值與時間,進行距離換算;全球衛星定位系 統可精密定位飛機於空中位置;慣性導航儀可獲取飛機飛行的姿 態,資料經解算後,可得到地形地物的三維坐標(X,Y,Z)。本課程 主要介紹空載雷射掃描原理與應用新知,以期使貴 中心同仁們了 解其原理、新技術及未來發展趨勢。

圖 7-1 空載光達作業示意圖

二、光達計畫飛航規劃

(一)講師介紹

P	講 師	徐明鎰 總經理		
	任職	亞新國土科技股份有限公司總經理		
P	最高學歷	成功大學航空測量研究所碩士班		
11- m	研究專長	光達、航測、遙測、地理資訊		
	▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲			
1.九十三年度台	;灣地區像片	基本圖修測第二標 (93.12~95.1)		
2.九十四年度台	;灣地區像片	基本圖修測 (94.11~96.3)		
3. 彰化縣都市	'計畫區一	千分之一數值航測 GIS 地形圖測製		
(94.6~94.12	2)			
4.95 地理資訊約	维護更新計	畫 (95.7~96.3)		
5.辦理 LIDAR 測區之高精度及高解析度數值地形測繪、資料庫建置				
與應用推廣工作(93.7~94.12)				
6.95 年度國土利用調查計畫第三標範圍內 1/5000 國土調查建置				
(95.7~96.6)				
7.規劃建置都會區千分之一數值地形圖及門牌位置資料之相關推動				
規範(95.8~	96.6)			
8.96 年度以空重	戴光達技術系	建立數值地形模型工作(96.11~97.10)		
		期刊論文		
1.徐明鎰、江俊	記、陳文翁	大,2005,LEICA ALS50 空中雷射地形掃		
描系統與高解析力數位像機整合介紹,第二十四屆測量學術及應				
用研討會。				
2.徐明鎰、李佩芝、鄒慶敏,2008,高密度光達點雲成果與大比例				
尺航測數值地形向量資料測製成果之精度比較分析,第二十七屆				
测量學術及歷	測量學術及應用研討會			

(二)課程內容

應用空載光達技術產製數值地形模型之作業流程,主要分為五個階段,分別為飛航掃描規劃、空中資料掃描、原始點雲解算、點 雲分類與編修及成果產出,如圖 7-2。本課程主要根據本案作業區 所規劃之飛航計畫進行詳盡介紹,其規劃流程如圖 7-3 所示。

圖 7-2 產製數值地形模型之作業流程(修改自 LiDAR 標準作業程序)

三、地面控制測量規劃

(一)講師介紹

	講 自	帀	高玉惠 工程師
	任耳	戠	中興測量有限公司工程師
	最高學歷	孫上	成功大學地球科學系碩士班
	研究專出	EX.	光達

參與計劃

 以空載光達技術辦理河川及洪氾溢淹地區及中高海拔山區數值地 形模型測製與研究(95.07~96.11)

2.大台北地區特殊地質災害調查與監測-高精度空載雷射掃描 (LIDAR)地形測製與構造地形分析(1/3-3/3)

- 94 年度區域排水整治及環境營造計畫-基本資料測量調查第三測
 區
- 4. 西拉雅國家風景區示範區一千分之一航照正射影像電子圖檔與光 達(LIDAR)數值模型資料採購案
- 5.花蓮海岸基本資料監測調查計畫(含七星潭及水璉堤防)
- 6.雲林地層下陷地區地形變遷調查研究案

7.96 年度「地震地質與地變動潛勢分析-活動斷層帶地變動測量 1/4」 委託技述服務採購案

- 8.潮間帶地形測繪先導計畫
- 9.潮間帶基本地形測量技術發展計畫
- 10.光復溪治理規劃檢討外業測量

期刊論文

- 高玉惠,小波轉換應用於影像自動判釋崩塌地分析,成功大學地 球科學系碩士論文,2003。
- 高玉惠, GPS 動態軌跡解算於空載 LiDAR 點雲成果精度之探討, 測量研討會,2005。
- 高玉惠,「辦理 LiDAR 測區之高精度及高解析度數值地形測繪、 資料庫建置與應用推廣工作案」成果發表暨研討會,2005,內政 部。
- 4.高玉惠、鄭鼎耀、張坤樹、林東裕 (2004) 空載雷達掃描率定程序 與分析,第六屆 GPS 衛星科技研討會,台南國立成功大學。

(二)課程內容

本課將針對本案作業區之地面控制規劃方式與過程,進行詳盡 介紹,以期參與學員對於相關光達案之地面控制規劃能有詳細之認 知,圖 7-4 為光達掃描作業示意圖。

圖 7-4 空載光達掃描作業示意圖

四、系統整合

(一)講師介紹

此課程之講師為中興測量有限公司高玉惠工程師,其簡介請參 閱上節(地面控制測量規劃)之講師介紹。

(二)課程內容

本課程主要介紹於光達掃描作業結束後,利用 POSPAC 軟體 解算動態 GPS 與 POS 數據之過程,在經由解算的精度將影響後續 雷射點三維坐標的成果值,其整體解算之流程如下圖 7-5。

圖 7-5 Optech ALTM30/70 資料處理流程

五、光達資料後處理

(一)講師介紹

此課程之講師為亞新國土科技股份有限公司徐明鎰總經理,其 簡介請參閱光達計畫飛航規劃之講師介紹。

(二)課程內容

由 POSPAC 解算後之點雲資料投影計算到 TWD97 坐標系統 後,經過航帶平差分析模型變形的參數是否顯著,並進一步檢核航 帶重疊區間是否有明顯的系統誤差之過程進行介紹說明,其點雲資 料品管流程如下圖 7-6。

圖 7-6 點雲資料品管流程

六、LIDAR之數值高程模型及數值地表模型製作

(一)講師介紹

	講 師	徐偉城 研究員
	任職	工業技術研究院能源與環境研究所研究員
	最高學歷	中央大學土木工程研究所碩士班
	研究專長	光達、航測、遙測、影像處理
參與計劃		

九十三年度建構台北市高解析度衛星影像及應用模組工作案(台北市政府),2004/5~2005/6。

2.辨理 LIDAR 測區之高精度及高解析度數值地形測繪、資料庫建置 與應用推廣工作(內政部),2004/7~2006/6。

3. 土石流防災資訊整合與應用(農委會), 2006/1~2006/12。

4.潮間帶基本地形測量技術發展計畫(內政部土測局),2006/5~2007/5。

5.大台北地區特殊地質災害調查與監測—高精度空載雷射掃描

(LIDAR)地形測製與構造地形分析(地調所), 2005/3~2007/12。

6.先進航遙測應用技術開發(農委會), 2006/1~2008/12。

7.三維數位城市模型先期建置工作案(內政部), 2006/10~2009/4。

期刊論文

- 1.徐偉城,2004,不同等級 QuickBird 衛星影像之幾何校正精度探討,中華地理資訊學會 2004 年年會暨學術研討會論文集。
- 2.何心瑜、史天元、陳大科、徐偉城,2006,空載光達點雲分類人工 編修探討,第25屆測量及空間資訊研討會。
- 3.蕭國鑫、劉進金、游明芳、陳大科、徐偉城、王晉倫,結合空載LiDAR 與航測高程資料應用於地形變化偵測,航測及遙測學刊,95年9月。
- 4.Hsu, W.C., 2006, Change Analysis of Waisanding Offshore Sandbar By LiDAR DEM, ACRS2006, Mongolia.
- 5.Hsu, W.C., Shih, T.Y., Liu, J.K., Chen, T.K., Ho, H.Y., 2007, LiDAR Accuracy Assessment by Intensity Images and Ground Control Points, ACRS2007, Malaysia.

6.Hsiao, K.H., Liu, J.K., Chen, T.K., Hsu, W.C., Ho, H.Y., 2007, Change Detection of Wai-San-Din Sandbar by Combining Multi-Temporal Imageries and Airborne LiDAR Data, ACRS2007, Malaysia.

7.Ho, H.Y., Chen, T.K., Shih, T.Y., Hsu, W.C., Liu, J.K., 2007, On the Manual Editing for DEM Generation with Airborne LIDAR, ACRS2007, Malaysia.

(二)課程內容

精度檢核後之點雲資料以自動化過濾方式,即利用程式查覺大 型建物、植被過濾瑕疵等檢核後,再以人工方式介入編輯與檢查, 進而產製 DEM 與 DSM 資料,如圖 7-7。本課程主要針對 DEM 與 DSM 產製過程與方法進行詳盡介紹,使貴 中心同仁們更加了解整 體產製流程。

圖 7-7 河川與洪氾溢淹區 DEM(左圖)與 DSM(右圖)

第捌章 工作檢討與建議

一、天候觀測與地形克服

(1)取得各機場氣象及潮位站預測資料

彰化地區地勢平坦天候能見度佳,飛航掃描均能依作業規 劃進度完成,惟中高海拔山區五峰至觀霧山區天候甚難掌 握,因此取得各民航局機場氣象資料

(http://aoaws.caa.gov.tw/)及中央氣象局衛星雲圖及潮汐時 刻表(http://www.cwb.gov.tw)顯得相當重要。

(2)24 小時全天候GPS觀測及現地天候通報

中高海拔測區作業期間均利用機場開場(07:00 AM)即起飛 搶拍並與當地民宿業者(清泉及觀霧)充份合作氣候的觀察 及 24 小時 GPS 基站設置,事後亦證明本次作業模式相當成 功。

(3)克服地形光達掃描作業

本計畫採取同一航線微梯形飛航高度作業及山谷地形增 加特別航線飛行方式,以克服地形起伏所造成光達點雲穿 透率及涵蓋不足問題,事後亦證明本次作業模式相當成功。

綜合以上工作累積經驗,對於日後山區的光達掃描作業將可 建立一個可行的參考作業模式,以克服天候及 GPS 基站觀測、光 達掃描作業等問題。 二、現地DEM精度檢核施測克服

本團隊亞新公司於中高海拔山區進行地面檢核點作業時,因 山區地形陡峭 e-GPS 收訊不佳且交通路況多變,為能取得不同類 型地類之檢核點,採取 e-GPS 及全測站經緯儀聯測方式作業,先 於空礦及對空通視及通訊良好處所建立基本控制點,再以閉合導 線方式建立施測檢核點區導線點,故整體作業時間、投入之人力 成本與原先預計增加甚多。加上期間辛樂克及薔蜜颱風造成山區 道路坍方影響現地測量進度,不過仍能於預定計畫期程完成合約 數量檢核點及達到精度規範。

建議日後可先於正射影像圖上先依地形坡度及影像上植被 密度及道路路線圖,圈選測量可及的檢核點,再依現況做必要的 調整。

三、彰化地區地層下陷造成高程控制精度不符規範之克服

本案高程控制因面臨彰化測區大部份位於地層下陷區,特別 是大城、芳苑、二林及竹塘地區年下陷率近10公分,尤其是大 城鄉為近年全台年平均下陷速率最大之地區,最大累積下陷總量 約為220公分(發生在西港國小測點),因此,本團隊為獲取合理 高程控制資訊(非公告值),建議聯測96年度水利署水準網與外圍 台中港區的X105至G009,並由 貴中心代為平差計算測區內各 水準線數據以獲得最新高程資訊解決了本測區高程控制基準問 題。

本團隊建議 貴中心未來可與水利署相關單位建立測繪資訊 共享機制以克服彰嘉雲地區地層下陷所造成一等水準點公告值 不符合高程引測精度規範問題。

第玖章 結論

本案作業總計完成了彰化測區與中高海拔山區原始光達點雲資料收 集及1公尺間距數值高程模型 DEM 與數值地表模型 DSM 之製作; 鹿港 鎮公所附近進行測製數值地形向量資料與光達掃描資料之精度評估; 完成 論文文稿2篇、教育訓練(30人次/6小時)及數值地形模型資料管理軟體2 套交付。綜合本案之作業, 提出以下幾點結論:

- 一、彰化測區航帶重疊區數據平差結果,ALS50 平差前之平均絕對高差 量約為 0.063 公尺,平差後之平均絕對高差量約為 0.054 公尺;ALTM 30/70 平差前之平均絕對高差量約為 0.130 公尺,平差後之平均絕對高 差量約為 0.100 公尺;另中高海拔山區航帶重疊區數據之分析結果,其 平差前之平均絕對高差量約為 0.087 公尺,平差後之平均絕對高差量約 為 0.081 公尺。彰化測區交叉航帶數據之分析結果,ALS50 其平差後之 平均絕對高差量為 0.055 公尺;ALTM 30/70 平差後之平均絕對高差量 為 0.095 公尺;另中高海拔山區交叉航帶數據之分析結果,其平差後之 平均絕對高差量為 0.089 公尺。由上述可知,重疊區數據與交叉航帶平 差前後之平均絕對高差量亦無顯著差異,故可認定光達之率定作業是良 好的。
- 二、本案地面實地檢核以 VRS-RTK 方式進行地面點高程(橢球高)實測, 經過本案作業之比較,其與 LIDAR 飛航掃描之光達點雲高程頗為吻 合,與95年計畫案結果相謀合,再次證明以此方式作為地面實地檢核 實為可行方案之一。
- 三、地面實地檢核在彰化測區共檢核了617點,其中裸露地共施測68個 檢核點,均方根誤差量為0.0776公尺,矮植被共施測64個檢核點,均 方根誤差量為0.1611公尺,植生地共施測66個檢核點,均方根誤差量 為0.1941公尺,林地共施測69個檢核點,均方根誤差量為0.1436公尺, 都會區共施測71個檢核點,均方根誤差量為0.0752公尺,溼地共施測

215

71 個檢核點,均方根誤差量為 0.1889 公尺,橫斷面共施測 208 個檢核 點,均方根誤差量為 0.0775 公尺;中高海拔山區共檢核了 623 點,裸 露地共施測 40 個檢核點,均方根誤差量為 0.1828 公尺,矮植被共施測 41 個檢核點,均方根誤差量為 0.1253 公尺,植生地共施測 42 個檢核點, 均方根誤差量為 0.1856 公尺,林地共施測 40 個檢核點,均方根誤差量 為 0.9420 公尺, 密林地共施測 40 個檢核點,均方根誤差量為 0.9197 公尺,橫斷面共施測 420 個檢核點,均方根誤差量為 0.1537 公尺。各 類別土地檢核成果均能符合合約要求,90%以上之點位符合 1 倍高程精 度標準範圍內,其餘點位在 2 倍高程精度標準範圍內,不同地類的精度 規範值 σ=0.3+b+c×t(定義詳附件八)。

- 四、依據應用空載光達生產數值地形模型之製作規範,檢核過濾完成後之成果是否有過渡濾除情形,於彰化測區抽驗 5 幅(82 幅中抽驗 5%),其
 Type I error 為 0.058%, Type II error 為 0.005%;於中高海拔山區抽驗
 2 幅(32 幅中抽驗 5%),其 Type I error 為 0.149%, Type II error 為
 0.031%,兩測區之點雲過濾成果均符合規範 Level 2 等級之要求-Type I error 上限值為 5%; Type II error 上限值為 3%。。
- 五、由鹿港測試區成果數據可知光達配合量測型數位相機的同步拍攝取像 確實能夠達到互補的效果,高精度高解析度的光達點雲掃描之高程精度 與地面檢核點之比較標準偏差約為±4.6 公分與率定場率定成果±3.6 公 分相當,可見雷射高程精度非常精確且可靠。對於未來使用光達點雲資 料搭配具備 GPS/IMU 外方位參數的數位影像製作大比例尺地形圖,不 但可同步提昇數值地形圖的平面及高程精度,且可有效降低地面控制點 數量,甚至不需要任何事先佈標的控制點即可完成直接定位(Direct Georeference)空三及地面 3D 地形資料的獲取,達到高精度的質與量同 步快速測繪的目標。

- 六、由不同光達系統掃描重疊區數據比較結果可發現,雖由不同光達系統 獲取相同地區之高程數據,其結果差異約為20公分之內,相當於光達 掃描之基本精度範疇。因此,為確保光達掃描之精度,有四點必需特別 注意,一為測區光達掃描作業前或作業後(含拆卸),需進行率定場掃描 作業,二為GPS基站的設置20公里範圍內至少二點及接收需達到對空 通視良好並且避免有多路逕效應產生,三為GPS level arms 的量測誤 差應小於10公分以內,四為如果航帶平差發現數據有明顯系統誤差時 應回歸率定場檢核是否有系統率定不夠完善所致。綜合以上,相信使用 不同光達系統獲取相同地區數據,其結果應無二致。
- 七、採用國土測繪中心提供之 97 年施測水準樁高程數據 116 點與光達正高化算後1公尺 DEM 數據比較發現,未考量樁面高度及樁位地理位置之前有 80 個點位差異≤25 公分,考量樁面高度後(部份樁面高程與實際地面高有 21 公分~56 公分之落差)仍有 4 點差異大於 30 公分,經現場勘查這 4 點中有 3 點位於人工構造物(橋樑上),1 點位於樹下。一般而言,此種地形高低落差大的點位,並不適合用於與 DEM 精度評估,因此惕除不列入比較範圍,最後比較結果可知光達 DEM 數據無論是正高或橢球高資料均符合合約規範之地形精度要求。

第壹拾章 參考文獻

- 內政部,「應用空載光達生產數值地形模型之製作規範及標準作業程 序」。
- 史天元、彭淼祥,2002,九二一地震災區空載雷射掃描作業成果初步 報告,第二十一屆測量學術研討會,論文編號A135。
- 史天元、彭淼祥、徐偉成,2002,應用空載雷射掃描儀進行地震災區
 變形研究,農委會 91-農科-5.1.1-林-R1(8)計畫報告,共13頁。
- 史天元、曾義星、劉榮寬,2003,空載雷射掃描與航空測量數據高程 精度比較之研究,第二十二屆測量學術研討會,195~204。
- 徐明鎰、江俊泓、陳文欽,2005,LEICA ALS50 空中雷射地形掃描系 統與高解析力數位相機整合率定精度探討,第二十四屆測量學術研討 會,59~66。
- 6. 曾義星,2006,空載光達點雲資料的性質與品質驗證,空載光達科技應用論壇。
- 7. 黃清美、何心瑜、史天元,2006。空載光達點雲密度探討指標,內政 部「高精度及高解析度數值地形模型建置計畫」成果發表及相關應用 研討會,137-145。
- 內政部土地測量局、中興測量有限公司,2007。「以空載光達技術辦理 河川及洪氾易淹地區及中高海拔山區數值地形測製與研究」工作總報 告書。
- A.F. Habib, 2006, Integration of Photogrammetric andLIDAR data for Quality Assurance and Quality Control Purposes, Digital Photogrammetry Research Group.
- Applanix corp. , 2004 , POSPac/PosGPS/POSAV/PosEO/POSCal User Manual.
- 11. Terrasolid, 2008, Terramatch, Terrascan, Terramodel training material.
- 12. Ayman Habib, Mwafag Ghanma, Edson Mitishita, CO-REGISTRATION OF PHOTOGRAMMETRIC AND LIDAR DATA: METHODOLOGY

AND CASE STUDY, Department of Geomatics Engineering, University of Calgary.

- 13.Axelsson, P., 2000, "DEM Generation from Laser Scanner Data Using Adaptive TIN Models", International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIII (Pt. B4/1), pp.110–117.
- 14.BALTSAVIAS, E., 1999. A comparison between photogrammetry and laser scanning. ISPRS Journal of Photogrammetry & Remote Sensing, 54(1):83–94.
- 15.Burman, H., 2000. Adjustment of laser scanner data for correction of orientation errors. International Archives of Photogrammetry and Remote Sensing, Vol. XXXIII, Part B3, Amsterdam. CDROM
- 16.Davenport, I.J., R.B Bradbury, G.Q. Anderson, G.R. Hayman, J.R. Kerbs, D.C.Mason, J.D.Wilson, and N.J.Veck, 2000. Improving bird pollution models using airborne remote sening, International Journal of Remote Sening, 21:2705-2717
- 17.Leica Geosystems GIS & Mapping GmbH , 2004 , ALS50 User Guide 700U036003 Rev.B.
- Moritz, H., 1980, Advanced Physical Geodesy, Herbert Wichmann, Karlsruhe, 500pages.
- 19. Rollei GmbH , 2005 , Rollei Aerial Industrial Camera User Manual.
- 20. K. Jacobsen , Institute of Photogrammetry and Geoinformation, University of Hannover, Germany , 2004 , DIRECT / INTEGRATED SENSOR ORIENTATION - PROS AND CONS , TS ThS 16 – Direct Georeferencing invited paper.
- 21.<u>http://www.usgs.gov/</u>
- 22.<u>http://www.lidar.org.tw/</u>

