建築外牆板及帷幕牆層間交接構造防火性能驗證之研究 內政部建築研究所協同研究報告(10年度)

內政部建築研究所協同研究報告

中華民國 107 年 10 月

(本報告內容及建議,純屬研究小組意見,不代表本機關意見)

10715B0002

建築外牆板及帷幕牆層間交接構造

防火性能驗證之研究

研究主持人:王榮進

協同主持人:林大惠

研究員: 雷明遠、蘇鴻奇、胡幃傑、陳俊貴

研究助理:黃俊諭、張劭謙

研究期程:中華民國107年2月至12月

研究經費:新臺幣1369500元

內政部建築研究所協同研究報告

中華民國107年10月

(本報告內容及建議,純屬研究小組意見,不代表本機關意見)

表次	•••••	•••••••••••••••••••••••••••••••••••••••	III
圖次	•••••	•••••••••••••••••••••••••••••••••••••••	V
摘要	•••••	•••••••••••••••••••••••••••••••••••••••	XV
第一章	緒論	•••••••••••••••••••••••••••••••••••••••	1
	第一節	研究緣起與背景	1
	第二節	研究目的	2
	第三節	研究目標與成效	2
第二章	研究方法	去與進度說明	5
	第一節	本研究採用之方法	5
	第二節	計畫時程與進度說明	7
第三章	文獻回顧	頁	11
	第一節	外鉴工注朗帷墓鉴幺缢穑稻	11
	分 一 公	ノ 個 二 ム 六 作 亦 個 示 心 住 み ·····	20
	第一即	眉间奉上広	29
	弗二即	火災延烧现象分析	33
	第四節	帷幕牆層間交接構造試驗標準.	53
	第五節	外牆或帷幕牆防火阻熱性能分析	斤58
第四章	帷幕牆與	卑層間塞系統防火試驗	83
	第一節	試體試驗	83
	第二節	防火試驗屋修復與改裝	110
	第三節	不同試體的試驗情況分析	114
	第四節	第二次試體試驗	120

	第五節	循環試驗設備	規劃122
第五章	外牆裝飾	板延燒試驗	
	第一節	外牆飾板設計	工法與材料分析127
	第二節	耐燃性試驗	
	第三節	延燒試驗	
第六章	結論與建	議	
	第一節	結論	
	第二節	建議	
附錄一	•••••	••••••	
附錄二	•••••	••••••	
附錄三	•••••	••••••	
附錄四	•••••	•••••	
附錄五	•••••	•••••	
附錄六	•••••	•••••	
附錄七	•••••	•••••	
參考書	目	•••••	

表次

表	2-1	研究進度表9
表	3-1	牆面裝修工程與類型12
表	3-2	國際能源署之外牆用語16
表	3-3	帷幕牆之性能分類22
表	3-4	帷幕牆之特性23
表	3-5	帷幕牆依材料分類23
表	3-6	帷幕牆依框架分類24
表	3-7	帷幕牆系統構法分類25
表	3-8	玻璃帷幕牆構法27
表	3-9	帷幕牆系統優缺點之比較28
表	3-10	帷幕牆相關防火時效規定整理
表	3-11	火災發展各階段歷程基本特性
表	3-12	火災外牆噴出火焰溫度分佈41
表	3-13	ASTM E2307-15b 試驗通過標準54
表	3-14	BS EN 1364 之 SWOT 分析 55
表	3-15	ASTM E2307-15b 之 SWOT 分析 56
表	3-16	NFPA 285、ASTM E2307-15b 與 BS EN 1364
		之比較分析
表	3-17	燃烧器流量63
表	3-18	試驗歷程表(帷幕牆外部)64

表	3-19	試驗歷程表(觀察室)65
表	4-1	燃烧器流量99
表	4-2	試驗歷程表(室外觀測)100
表	4-3	試驗歷程表(觀察室)100
表	4-4	建築技術規則防火時效相關範圍內容 114
表	5-1	各試體組件列表146
表	5-2	試體各材料耐燃性質146
表	5-3	裝修材性質表147
表	5-4	耐燃性試驗試體規格表148
表	5-5	CNS14705-1 所規範之耐燃級數加熱時間149
表	5-6	EPS、PS 和 XPS 耐燃試驗試驗歷程150
表	5-7	EPS、PS 和 XPS 熱釋放率 150
表	5-8	EPS、PS 和 XPS 質量損失率151
表	5-9	PU 試體試驗歷程163
表	5-10	PU 試體熱釋放率163
表	5-11	PU 質量損失率 164
表	5-12	耐燃試驗結果172
表	5-13	延燒試驗參數表175

圖次

圖	2-1	研究流程圖8
圖	3-1	承重牆與非承重牆概述11
圖	3-2	雙重壁系統概念圖13
圖	3-3	雙層壁基本性能構成圖13
圖	3-4	通氣層工法與密著工法14
圖	3-5	整合式節能外牆組成之示意圖15
圖	3-6	IEA 的先進整合式外牆分類階層圖18
圖	3-7	由岩棉隔熱材和陶粒輕隔間幕牆板所構成的
		外牆。19
圖	3-8	外牆外保溫系統構造組成20
圖	3-9	安裝層間塞對火焰延燒路徑之影響29
圖	3-10	未使用支撑柱而弓起層間塞30
圖	3-11	層間塞材料內部纖維排列方向31
圖	3-12	安裝完畢之層間塞剖面圖32
圖	3-13	層間塞表面隔煙系統32
圖	3-14	東方科學園區大樓火災後帷幕牆鋁構架殘景
圖	3-15	金像電子公司中壢廠大火情景
圖	3-16	2016年杜拜阿德理斯飯店大火
圖	3-17	火災成長歷程示意圖

圖	3-18	火災延燒路徑類型39
圖	3-19	火勢延燒路徑示意圖40
圖	3-20	由横長窗噴出火焰之等温線圖41
圖	3-21	鋁帷幕牆各構件破壞與火災歷程之關係42
圖	3-22	外牆/窗延燒路徑潛勢:(1)非耐火層間牆及非
		耐火玻璃窗,(2)耐火層間牆;非耐火玻璃窗,
		(3)耐火層間牆及耐火玻璃窗43
圖	3-23	試體正立與背立面圖44
圖	3-24	全尺寸鋼筋混凝土建築物45
圖	3-25	各種開口組合及橫向火焰噴出實驗照片45
圖	3-26	EPS 延燒試驗47
圖	3-27	實尺寸 EPS 外牆延燒試驗
圖	3-28	XPS 試體延燒試驗設置49
圖	3-29	XPS 受帷幕牆影響延燒試驗設置50
圖	3-30	不同外牆與帷幕牆間距XPS試體向下延燒之
		火焰51
圖	3-31	XPS試體在具有孔隙時的向上延燒試驗設置
圖	3-32	XPS 在 35%孔隙百分比時向上延燒 52
圖	3-33	BS EN1364 與 ASTM E2307-15b 加熱時間曲
		線比較
圖	3-34	A 廠商帷幕牆設計圖(正視圖)58

圖	3-35	A 廠商帷幕牆設計圖(測視圖)59
圖	3-36	A 廠商帷幕牆設計圖(平剖圖)60
圖	3-37	A 廠商帷幕牆與層間塞設計圖60
圖	3-38	106 年度計畫案之試體外觀61
圖	3-39	106 年度計畫案試體試驗屋 1F 試驗室之防
		護
圖	3-40	106 年度計畫案試體試驗屋 2F 觀察室之防
		護
圖	3-41	現場布置圖 66
圖	3-42	窗戶燃燒器火焰正視圖67
圖	3-43	窗戶燃燒器火焰側視圖67
圖	3-44	玻璃碎片掉落於窗户燃烧器出火口68
圖	3-45	熱像儀影像70
圖	3-46	帷幕牆外表面各點溫度變化71
圖	3-47	測試室內部溫度變化72
圖	3-48	帷幕牆外表面與校正牆外表面規定溫度誤差
		變化
圖	3-49	測試室內溫度誤差變化73
圖	3-50	測試室內 1 小時溫度變化
圖	3-51	測試室內部氣壓變化74
圖	3-52	層間塞非曝火面的阻煙膠引燃現象75
圖	3-53	層間塞非曝火面的阻煙膠引燃現象75

圖	3-54	層間塞非曝火面阻煙膠燒焦76
圖	3-55	帷幕牆的鍍鋅鋼板脫落76
圖	3-56	帷幕牆的鍍鋅鋼板脫落77
圖	3-57	層間塞背火面熱電偶布置
圖	3-58	層間塞非曝火面的溫度變化
圖	3-59	帷幕牆外表面火焰延燒限制範圍
圖	3-60	帷幕牆外表面窗户以上 3.05 公尺温度分布
圖	3-61	觀察室內帷幕牆非曝火面溫度變化82
圖	4-1	ASTM E2307-15b 帷幕牆試體設計84
圖	4-2	國外試驗現場84
圖	4-3	安裝試體框架至防火試驗屋
圖	4-4	試體設計圖(正視圖)86
圖	4-5	試體設計圖(側視圖)87
圖	4-6	將骨架固定在試體框架上
圖	4-7	鍍鋅鋼板安裝
圖	4-8	強化玻璃安裝90
圖	4-9	测试室内部窗户開口上方使用岩棉進行保護
圖	4-10	觀察室外牆內表面使用岩棉進行保護,並在
		層間塞上方施加阻煙膠92
圖	4-11	测试室上方熱電偶配置

圖	4-12	测试室内表面熱電偶配置94
圖	4-13	層間塞底部熱電偶位置
圖	4-14	層間塞背火面熱電偶位置
圖	4-15	層間塞背火面熱電偶位置
圖	4-16	帷幕牆面熱電偶布置97
圖	4-17	觀察室內帷幕牆內表面熱電偶布置98
圖	4-18	帷幕牆試體外觀101
圖	4-19	窗戶燃燒器火焰101
圖	4-20	窗戶燃燒器火焰側視圖102
圖	4-21	實驗歷程熱像儀影像103
圖	4-22	帷幕牆外表面各點溫度變化104
圖	4-23	測驗室內部溫度變化105
圖	4-24	帷幕牆外表面與校正牆外表面規定溫度溫差
		變化 105
圖	4-25	測試室內 2 小時溫度誤差變化 106
圖	4-26	層間塞背火面熱電偶位置107
圖	4-27	層間塞非曝火面的溫度變化108
圖	4-28	帷幕牆外表面窗户以上 3.05 公尺温度分布
圖	4-29	觀察室內帷幕牆非曝火面溫度變化109
<u>B</u>	4-29 4-30	觀察室內帷幕牆非曝火面溫度變化109 未整修前試驗屋外觀110

圖	4-32	樓板切除過程111
圖	4-33	測試室內部修護(一)112
圖	4-34	測試室內部修護(二)113
圖	4-35	測試室內部修護(三)114
圖	4-36	帷幕牆與層間交接構造相關防火時效規範示
		意圖115
圖	4-37	106 年計畫案校正試驗之示意圖 116
圖	4-38	106年計畫案進行之試體試驗示意圖117
圖	4-39	本研究進行之試體試驗示意圖118
圖	4-40	局部設計判定方式119
圖	4-41	整體設計判定方式120
圖	4-42	第二次試體試驗設計圖(正視圖)121
圖	4-43	第二次試體試驗設計圖(側視圖)122
圖	4-44	國外循環試驗設備(一)124
圖	4-45	國外循環試驗設備(二)124
圖	4-46	循環試驗設備規劃示意圖125
圖	5-1	試體 A 設計圖(一)128
圖	5-2	試體 A 設計圖(二)129
圖	5-3	試體 A 設計圖(三)130
圖	5-4	試體 A 設計圖(四)131
圖	5-5	試體 B 之設計圖(一)133
圖	5-6	試體 B 之設計圖(二)133

圖	5-7	試體 B 之設計圖(三)134
圖	5-8	試體 B 之設計圖(四)135
圖	5-9	試體 B 之設計圖(五)136
圖	5-10	試體 B 之設計圖(六)136
圖	5-11	試體 C 之設計圖138
圖	5-12	試體 D 之設計圖(一)139
圖	5-13	試體 E 設計圖(一)140
圖	5-14	試體 E 設計圖(二)141
圖	5-15	試體 E 設計圖(三)142
圖	5-16	試體 F 設計圖(一)145
圖	5-17	EPS 試驗歷程圖152
圖	5-18	試驗前之 EPS152
圖	5-19	EPS 試驗後之 EPS153
圖	5-20	試驗前之 PS153
圖	5-21	試驗後之 EPS154
圖	5-22	試驗前之 XPS154
圖	5-23	試驗後之 XPS155
圖	5-24	EPS、PS 和 XPS 熱釋放率與時間之關係
圖	5-25	EPS、PS 和 XPS 質量與時間關係 158
圖	5-26	EPS、PS 和 XPS 平均熱釋放率159
圖	5-27	EPS、PS 和 XPS 平均質量損失率 160

圖	5-28	EPS、PS 和 XPS 點燃與熄滅時間 161
圖	5-29	PU 試體熱釋放率與時間關係164
圖	5-30	PU 試體質量與時間關係165
圖	5-31	PU 試體平均熱釋放率166
圖	5-32	PU 試體平均質量損失率167
圖	5-33	PU 試體點燃與熄滅時間168
圖	5-34	試驗前之 PU1 試體168
圖	5-35	試驗後之 PU1 試體169
圖	5-36	試驗前之 PU2 試題169
圖	5-37	試驗後之 PU2 試體(1)170
圖	5-38	試驗後之 PU2 試體(2)170
圖	5-39	試驗前之 PU3 試體171
圖	5-40	試驗後之 PU3 試體(1)171
圖	5-41	試驗後之 PU3 試體(2)172
圖	5-42	CNS15213-1-建築物外牆立面防火試驗法-
		中尺度試驗設備173
圖	5-43	延燒試驗設備示意圖174
圖	5-44	延燒試驗設備174
圖	5-45	延烧試驗使用之平方火災燃烧器175
圖	5-46	無背板 EPS-18K 在 50kW 引燃條件下試驗歷
		程

圖	5-47	無背板 EPS-18K 在 100kW 引燃條件下試驗
		歷程

圖 5-48 無背板 EPS-18K 單點引燃試驗歷程...... 178

圖 5-49 無背板 EPS-18K 單點引燃試驗熱像儀影像

- 圖 5-50 有背板 EPS-18K 單點引燃試驗歷程...... 180
- 圖 5-51 有背板 EPS 單點引燃熱像儀影像 181
- 圖 5-52 無背板 EPS-18K 線性引燃試驗歷程...... 182
- 圖 5-53 無背板 EPS-18K 線性引燃熱像儀影像... 183
- 圖 5-54 有背板 PS-18K 線性引燃試驗歷程......184

圖 5-55 有背板 EPS-18K 線性引燃試驗熱像儀影像

- 圖 5-58 有背板 PS 單點引燃試驗歷程188
- 圖 5-59 有背板 PS 單點引燃熱像儀影像......189
- 圖 5-60 無背板 PS 線性引燃試驗歷程 190
- 圖 5-61 無背板 PS 線性引燃熱像儀影像...... 191
- 圖 5-62 有背板 PS 線性引燃試驗歷程 192
- 圖 5-63 有背板 PS 線性引燃熱像儀影像 193

摘要

關鍵字:外牆板、帷幕牆、層間塞、延燒、防火安全、ASTM試驗標準。

一、研究緣起

現今許多高樓層建築物的營建技術如:各項設計(輕量化、模組化等)、材料、 外觀以及工法技術均相當多元;以帷幕牆為外部構造的建築物也相當多,其中帷 幕牆設計的材料選擇以及層間塞的施工結合方式,會明顯影響建築物在火災發生 時,是否能夠有效將火勢控制在起火層,藉此減少人員與生命財產的損失。因此 建築法規便有其相關的防火時效規定,如:建築技術規則設計施工編第79-3條規 定,外牆為帷幕牆者,其牆面與樓地板交接處之構造應具有與樓地板同等以上防 火時效,換言之,使用於該處之帷幕牆構造須具有1小時以上防火時效。此類法 規的重要性亦可由一些建築物火災的實例可知,如國內的東方科學園區大樓火 災、台北市東帝士大樓火災;國外近期則有2017年的夏威夷36層混合式大樓Marco Polo火災、英國倫敦Grenfell Tower大火等,均明顯指出高樓層建築物發生火災 時,若無法將火勢控制在起火層,一但帷幕牆或層間塞發生破壞,火焰便會向上 延燒至其他樓層。此現象會造成嚴重的人員傷亡與財產損失。因此帷幕牆層間構 造的材料、設計工法與施工設計,均對火勢的控制有很大的影響性。

二、研究方法與過程

目前國內CNS試驗標準並無明確規定帷幕牆與層間塞的耐火與延燒試驗標 準,但國外ASTM E2307-15b試驗標準則是能夠進行帷幕牆與層間塞的相關耐火 與延燒試驗。本研究預計先進行修復防火試驗屋,使其符合ASTM E2307-15b的 規範,之後再進行分析帷幕牆與層間塞設計工法。目的為驗證不同帷幕牆面與樓 板交接處構造 (建築物樓板周邊防火構造)之防火延燒性能,並藉此提升業者開

發創新具防火性能帷幕牆之研發能力,以及建立帷幕牆層間塞構造之防火性能標 準測試方法與資料庫。在建築外牆板部分,本研究預計蒐集市面上應用之外牆工 法以及相關外牆火災之文獻,對外牆板的防火性能進行分析,並且規劃試驗,探 討相關防止延燒的設計方法。

三、重要發現

1. 帷幕牆層間交接構造防火性能試驗:

本年度試體試驗的結果與106年度的試體試驗結果進行比較,106年的試體 試驗帷幕牆牆體使用的骨架為鋁材,本年度進行之帷幕牆試體樑帶位置骨架為鋼 材,使用鋁材之帷幕牆試體在樑帶部位的鋁受到高溫熔解後,樑帶位置的鍍鋅鋼 板發生了脫落情形,造成了層間塞直接曝火防火性能失效,本年度進行之試體試 驗,直到試驗時間2小時結束,帷幕牆牆體骨架與鍍鋅鋼板皆能維持支撐能力。 但層間塞非曝火面溫度在40分鐘有一溫度量測點超過了溫度上限,推測是施工 不良造成溫度提早超過上限。由於兩次試驗使用的層間塞工法相似,在試驗過程, 若帷幕牆牆體能夠維持支撐效果,鍍鋅鋼板不脫落,則層間塞的防火性與阻熱性 有機會達到一小時以上的防火時效。

2. 帷幕牆層間交接構造防火與阻熱性能評定方式:

日後的試驗評定可建議進行兩種設計工法之判定,第一種為局部設計之判 定,主要在樑帶區域依照廠商帷幕牆與層間塞的層間交接構造設計,其他部位則 是以防火耐燃材料阻隔,進行防火性能測試。此種測試法只判定樑帶區域的防火 與阻熱時效性。第二種為整體試判定方式,目前已進行的實尺寸試驗皆為整體判 定,除了ASTM E2307-15b規範之層間塞的遮焰與溫度判定,也能以NFPA 285輔 助觀測外牆延燒情形與量測外牆曝火面與背火面溫度變化。

3. 外牆飾板材料防火性能研究:

本研究以 CNS14705-1 圓錐量熱儀試驗法進行了五種不同的聚苯乙烯材料

(EPS、XPS、PS)與四種不同聚胺脂(PU)的耐燃性試驗,其中 EPS、XPS 和 PS 試 體皆無法通過耐燃 3 級測試,一種 PU 試體通過耐燃 1 級測試,一種 PU 試體通 過耐燃 3 級測試。

中尺度延燒試驗選用了 EPS-18K、PS 與兩種不同的 PU 材料,目前已經進 行了 EPS 與 PS 兩種試體的延燒試驗;試驗結果發現,不同的引燃火源與背板效 性會影響試體的延燒型態,如 EPS-18K 在燃燒火焰的試驗條件,並沒有發生火 焰垂直延燒的現象,但在單點火源與線性火源引燃的條件,則是可以觀察到火焰 垂直延燒的現象。此外,EPS-18K 在各試驗條件下,均會發生熔解並向下滴落燃 燒的現象。PS 試體在單點火源與線性火源引燃的條件,可觀察到垂直延燒的速 度會比 EPS-18K 慢,但在延燒過程所產生的火燄會比 EPS-18K 大。

四、主要建議事項

建議一

立即可行建議:ASTM E2307-15b 相關設備的修改

主辦機關:內政部建築研究所

目前內政部建築研究所防火實驗中心已經具有 ASTM E2307-15b 試驗法的 試驗屋與燃燒器,並能依據測試結果判定層間塞是否具有建築法規所要求的防火 與阻熱性。但循環試驗機構尚未完全建置,建議後續可增添該設備之功能。此外, 國外另有 NFPA 285 試驗法來判定外牆的防火、阻熱與延燒性能。目前也將 ASTM E2307-15b 試驗屋的樑帶空間位置特別設計一個連接構件,當安裝此連接構件便 可依照 NFPA 285 試驗法來測試外牆的防火、阻熱與延燒性能試驗。

建議二

中長期建議:提昇帷幕牆、層間塞的防火與阻熱性能 主辦機關:內政部建築研究所

協辦機關:帷幕牆協會、防火材料協會

由本計畫的測試結果發現,純粹使用具有防火時效性的層間塞材料與帷幕牆 相互結合,並無法完整確保達到建築法規要求的防火與阻熱時效性,原因為各項 構件的材料、施工與接合部保護措施均會影響帷幕牆與層間塞的防火與阻熱性能 。因此帷幕牆與層間塞的整合設計,除了材料的選擇之外,尚需要進行防火與阻 熱的試驗才能確定是否達到建築法規所要求的標準。此ASTM E2307-15b試驗法 能夠驗證各帷幕牆與層間塞結合工法的防火與阻熱性能。

ABSTRACT

Keyword: Exterior Wall Panel, Curtain Wall, Perimeter Fire Containment Joint, Flame spread, Fire Safety, ASTM E2307 Fire Test Standard

Curtain walls are widely used in high rise building design. If the flame penetrates the perimeter fire containment joint, it will lead to loss of human life and properties. ASTM E2307-15b is a fire test method to test fire resistance of the perimeter fire containment joint. According to ASTM E2307-15b fire test standard, there is the design drawings for the full size equipment, and refer to NFPA 285 to adjust details of equipment. The 2-story of the real size equipment, which the upper room is observation room and the lower room is test room. There is the test frame of real size equipment, can be used to install the calibration wall and test specimen.

In this rearch, we have conducted ASTM E2307-15b fire test. It was found that the perimeter fire containment joint can not reach the one-hour fire resistance. Compared with the ASTM E2307-15b test conducted last year, the positions of the window burner and window opening were different. When we build the fire test standard in Taiwan, these two test results should be refered to. In the future, we will interact with other manufactures to plan ASTM E2307-15b fire test for further researches.

In the fire resistance of exterior wall panel part, we have conducted the cone calorimeter test of two specimens EPS and PU. The test results showed that only PU can reach the fire resistance classification 3. In the future we will interact with other manufactures for further researches.

第一章 緒論

第一節研究緣起與背景

現有建築物外牆大多是以水泥、磚造、鋼筋混泥土、木材與帷幕牆...等為主; 結構類別又可分為單一壁面與雙重壁面。在營建技術朝向輕量化、模組化的發展 中,以幃幕牆為外圍構造,或是建築外牆翻修的裝飾材等相關設計與施工技術則 不斷的發展與改進。但由一些建築物火災實際案例可發現,不論是單一壁面或雙 重壁面,若該建築物的設計工法不佳或使用錯誤的材料,便會使得該棟建築物在 火災過程,無法有效控制火勢,一但發生火焰向上延燒現象,便會造成產產與生 命嚴重損失。如國內的東方科學園區大樓火災、台北市東帝士大樓火災、中壢金 像電子公司中壢廠大火;國外的洛杉磯歐美中心大樓火災、美國芝加哥LaSalle Bank 大廈火災、夏威夷36層混合式大樓Marco Polo火災、英國倫敦Grenfell Tower 大火...等實際案例,均有嚴重的財產損失與人員傷亡。

有鑑於火災延燒現象的嚴重性,便有許多研究著重於基礎火災延燒現象、樓 板和牆面銜接之層間塞的施工設計,更甚至有相關的標準試驗規範,如 ASTME2307-15b、NFPA285、BS EN 1364、UL2079...等[1-5]。由於先前國內的 CNS試驗標準並無明確規定帷幕牆的耐火與延燒試驗標準,也未有層間塞的防火 與阻熱試驗規範[6-9];但於104年度建研所研究計畫先行比較各國際試驗標準 [9],其中以ASTM E2307-15b[1]的試驗標準較能觀察到建築外牆、帷幕牆結構的 變形、脫落等現象,並同時觀察層間塞在試驗過程是否有產生變形、縫隙、燃燒... 等。此外,在試驗過程的煙流變化也能夠一併觀察。105年度建研所計畫先將 ASTM E2307-15b[1]的試驗標準,研擬出CNS試驗標準的草案,該標準草案於106 年度已經審查完畢,預計未來會公告執行。

該試驗標準的相關設備,建研所於105年度與106年度的研究計畫[10,11],依 據ASTM E2307-15b[1]與NFPA 285[2]建置「外牆與層間縫隙耐火試驗設備」,該

1

設備已經完成相關校正試驗,並進行國內第一次的帷幕牆與層間塞防火阻熱性能 試驗。此設備能作為國內常用之建築外牆、外牆裝飾材料、帷幕牆或各式層間塞 材料。

第二節 研究目的

目前建研所防火試驗中心已依據ASTM E2307-15b[1]與NFPA 285[2]建置「外 牆與層間縫隙耐火試驗設備」並於106年度建研所研究計畫[11],執行國內第一 次帷幕牆與層間塞防火與組熱性能試驗。此外,ASTM E2307-15b[1]試驗標準已 納入CNS試驗標準草案亦審查完畢,於未來會有CNS相關的測試方式與評定標 準。由於目前國內依據ASTM E2307-15b[1]測試標準的研究案例尚未完善,因此 本研究以測試建築外牆裝修系統、帷幕牆與層間塞設計工法為目標;藉此提升相 關業者開發具防火與阻熱性能之產品,以及建立相關試驗成果資料庫,其中下列 四點為研究重點:

- (1) 帷幕牆表面延燒特性以及層間交接構造的防火時效探討。
- (2)協助建築主管機關、防火材料評定機構建立建築技術規則有關帷幕牆層間交接構造(牆面與樓板交接處構造)之防火性能評定認可基準。
- (3) 擬透過各國可燃性外牆飾板火災之相關文獻收集,分析可燃性外牆飾板的火災特性,探討相關的防止延燒設計手法。
- (4)配合現行法規提出帷幕牆層間交接構造及外牆飾板使用限制與建議,未來可供設計者及相關主管機關制定法規之參考。

第三節 研究目標與成效

本研究預計建立建築技術規則有關帷幕牆層間交接構造(牆面與樓板交接處構造)之防火性能評定認可基準;原因為國內CNS試驗標準對帷幕牆性能試驗尚 無標準試驗方式,因此現今多以該組成材料的防火時效作為判斷依據,而帷幕牆 與建築物整合之後的遮煙性能亦無法判定。有鑒於此,本研究以國外ASTM E2307-15b的試驗標準[1],將國內常用的帷幕牆設計與材料進行試驗,並觀察試驗過程產生的相關現象;亦希望能將此ASTM E2307-15b試驗標準[1]納入國內相關的CNS試驗標準。

目前本所已比照 ASTM E2307-15b 試驗法之規範,按照防火試驗屋之設計 圖,並參考 NFPA 285 之設備細節進行適當調整以及完成建置兩層樓的防火實驗 屋,上層為觀察室,下層為測驗室。在 106 年度建研所計畫「帷幕牆層間縫隙構 造防火性能及設計構法之研究」[11],已經完成了校正試驗並進行了一次試體試 驗,本年度計劃案預計先完成試驗屋之修改以及維護,著重探討帷幕牆層間交接 構造在不同材料與施工構法上的防火時效差異性,將試驗結果納入後續相關法規 與試驗標準的判定參考依據。建築外牆板部分預計蒐集國內外常見之外牆飾材工 法進行分析,並且規劃試驗探討外牆板之防火性能。

本計畫預計有以下成效:

1. 完成外牆與層間交接構造耐火試驗設備的操作手冊。

2. 提出具有防火時效性之設計工法。

研提增修建築技術規則有關帷幕牆層間交接構造(牆面與樓板交接處構造)及
外牆飾板之防火性能規定建議。

協助建築防火材料評定機構建立帷幕牆層間交接構造(牆面與樓板交接處構造)之防火性能有關評定認可基準。

3

第二章 研究方法與進度說明

第一節 本研究採用之方法

文獻分析

本研究計畫將依照計畫之研究議題,蒐集包含國內外建築外牆板、帷幕牆以 及層間塞之整合設計工法、測試案例以及相關文獻資料,並藉由106年度建研所 研究計畫 [11]於帷幕牆與層間塞防火阻熱性能之相關研究成果進行比較分析與 歸納整理;作為本研究計畫在實驗設計規劃階段之基礎參考。希望藉由收集文獻 的分析與比對能夠明白國際間與本研究議題相關之發展方向與現況,作為本研究 計畫報告與投稿論文撰寫之文獻回顧資料庫。

專家諮詢法

研究結果經初步整理後,研究團隊將定期邀請相關學者以及產業界、工會專 家進行意見溝通交流,並針對研究內容進行審議,提出應修正及增刪之意見,作 為充實、加強本研究計畫內容之參考。並擇期辦理期中、期末簡報來說明研究計 畫執行成效、進度及所遭遇之問題。

實尺寸實驗驗證

本研究於實尺寸實驗驗證主要探討,不同建築外牆板、帷幕牆的耐火性與延 燒試驗以及帷幕牆層間縫隙構造防火性能測試。

目前建築研究所防火實驗中心已具有ASTM E2307-15b試驗標準[1]的測試 設備,測試標準的校正牆試驗以及溫度曲線均已完成;並另有完成國內第一次帷 幕牆與層間交接構造的防火與阻熱性能試驗。由於國內僅有這一次的相關測試結 果,該結果也顯示層間塞尚未達到60分鐘以上的防火時效;因此本年度研究會藉 由第一次試驗的經驗,探討各種材料的性質與接合工法之外,亦會額外測試其他 不同設計工法的建築外牆板、帷幕牆與層間塞,藉此瞭解市面上廠商所採用的設 計工法是否具有防火與阻熱性能。

研究採用方法之原因

ASTM E2307-15b試驗標準[1]能夠測試建築外牆或帷幕牆的結構變形、延 燒、脫落等現象,亦能測試層間縫隙阻火材在測試過程是否有產生變形、縫隙、 燃燒...等現象;此外在試驗過程還能同時觀察煙流情況。此ASTM E2307-15b[1] 試驗標準已納入中華民國國家標準(CNS)草案審查完畢,相關主要設備於建築研 究所防火試驗中心已完成建置;並於106年度建研所研究計畫執行國內第一次的 帷幕牆與層間縫隙構造的防火與阻熱性能試驗[11]。該試驗結果清楚顯示帷幕牆 的結構破壞過程,煙流變化以及層間縫隙阻火材失效的情況。有鑑於ASTM E2307-15b[1]試驗標準在未來會納入中華民國國家標準(CNS),因此本研究預計 分析國內常用之發生火焰延燒時所產生的各種結構變化現象,以及層間縫隙阻火 材的防火與阻熱性能。

研究過程中可能遭遇之困難

目前建築研究所防火試驗中心,將ASTM E2307-15b試驗標準[[1]的相關設備 建制完畢,但是相關設備與試驗屋的使用壽命與維護概況仍須注意。於106年度 建研所研究計畫共進行9次的校正牆試驗以及一次的帷幕牆實體試驗[11]。在校 正牆試驗的過程發現,該校正牆每進行一次試驗之後,便需要進行修補的動作, 若進行3次的校正牆試驗,該校正牆則需要進行大面積的相關耗材替換,因此該 校正牆的使用壽命仍須觀察注意。此外,試驗屋的內部相關隔熱裝潢,也開始有 脫落的情形,於層間隙縫處的樓地板也開始有少量的龜裂現象。因此相關設備與 試驗屋必須要有維護廠商進行按時維護。

本研究會再進行建築外牆、帷幕牆以及層間縫隙阻火材的防火與阻熱性能試驗,但現行設計與工法種類繁多,若要將所有設計與工法納入本研究全面探討,則 會面臨經費與執行期程的限制。因此本研究先以透過文獻收集的方式,僅針對市面 上最常用的設計工法進行試驗。

第二節 計畫時程與進度說明

在內政部建研所 106 年計畫案[11]中,已經完成了試體試驗之建置,在本年 度計畫中,預計蒐集相關帷幕牆與層間交接構造與建築外牆相關工法文獻,並且 規劃兩次帷幕牆與層間交接構造防火性能試驗,在第一次試驗完成後進行防火試 驗屋之修改與維護,針對試驗結果進行討論,並且規劃第二次試驗與建築外牆板 防火性能試驗。圖 2-1、表 2-1 和為本研究自 107 年 2 月 27 日至 12 月 31 日之 時程規劃。

(本研究製作)
表 2-1 研究進度表

月	第	第	第	第	第	第	第	第	第	第	第	
	個	2 個	3 個	4 個	5 個	6 個	1個	8 個	9 個	10 個	11 個	供註
工作項目	月	月	月	月	月	月	月	月	月	月	月	佣工
相關文獻收集												
與彙整												
收集外牆板與												
層間構造工法	_	_	_									
的防火性能試	-	-	-									
驗資料												
帷幕牆與層間												
構造的防火性		•	•									
能試驗一												
ASTM E2307												
試驗設備整修												
與改建												
期中審查						-	-					
帷幕牆與層間												
構造的防火性												
能試驗二												
試驗數據整理								-				
期末審查												
研究成果提出												
預 定 進 度 (累 積 數)	5 %	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	
說明:												
1工作項目請視計畫性質及需要自行訂定,預定研究進度以粗線表示其起訖日期。												
2預定研究進度	2預定研究進度百分比一欄,係為配合追蹤考核作業所設計。請以每一小格粗組線											

為一分,統計求得本案之總分,再將各月份工作項目之累積得分(與之前各月加總) 除以總分,即為各月份之預定進度。

3 科技計畫請註明查核點,作為每一季所預定完成工作項目之查核依據。

(本研究製作)

第三章 文獻回顧

第一節 外牆工法與帷幕牆系統種類

1.外牆工法

隨著建築技術的發展與應用材料轉變,不同設計工法與材料的選擇會直接影響到建築物的使用年限,其中建築物的外牆是直接影響居住環境品質與安全的重要因素。建築物依外牆的構造型式可分為承重與非承重牆[12,13],如圖 3-1所示。

 (1)承重牆:主要是承受本身重量及本身受地震、風力之外,還有承載及傳導其 他外壓力與載重之牆壁。外圍承重牆主要大多是以鋼筋混凝土所建造,而外牆表 會再以飾面材料裝修施工,目前是國內建築物使用最廣泛的建築外牆構造方式。
 (2)非承重牆:除承載本身重量及所受之地震力、風力外,不再承載或傳導其他 載重之牆壁。此類牆體以砌磚或其他方式施工,例如空心磚、玻璃帷幕牆等。

圖 3-1 承重牆與非承重牆概述

(資料來源:王琇雄,外牆吊掛石材空縫設計之研究。國立成功大學 建築研究所碩士論文,2013年。) 建築外牆板及帷幕牆層間交接構造防火性能驗證之研究

建築外牆的構法可分為:乾式外牆構法與濕式外牆構法[14-16]。

(1)乾式外牆構法:主要是整體建築結構系統與外牆系統是以繫件所連結,可應用於鋼骨或混凝土構造。依安裝於結構體的方式可分為骨架式與嵌板式兩種。外 牆材料的種類可分為金屬、玻璃帷幕牆系統、複合式系統、預鑄混凝土板帷幕牆 (PC版)等。

(2)濕式外牆構法:為在施工現場配合泥水工程澆灌混凝土之構法,主要是外牆 與整體建築結構為一體澆置完成,主要用於鋼筋混凝土構造。其外牆面裝修工法 包含粉刷類、塗裝類、貼面類等。

建築外牆的裝修材料與工法:

由於外牆構法可分為乾式與濕式兩種構法,而外牆的裝修類型可依據材料種類的 不同再加以分類,如表 3-1所示。

牆面類型 牆面裝修工程	外牆	內牆
粉刷類牆面	0	0
磁磚牆面	0	0
貼石牆面	0	0
木質材牆面		0
貼壁布(紙)牆面		0
噴磁磚牆面	0	0
塗裝工程	0	0

表 3-1 牆面裝修工程與類型

(本研究製作)

於歐、美、日等國家,在建築外牆技術的發展過程,雙重壁構法均發展多年, 但此類設計工法於國內較少使用(如圖 3-2所示)。雙重壁外牆主要能夠提昇外牆 的隔熱性、防水性、耐久性、隔音性與防止結霧...等,並依照多層設計的原則, 分別以內牆體、內牆表面層、隔熱層、支持層、支持層固定系統、外牆材、外牆 材固定系統所構成之牆面系統,圖 3-3所示。雙重壁外牆依據形式可分為透氣 型、通風型以及密閉空氣層型,而外層材料另可區分為鋁金屬板、耐候性鋼板、 GRC板、ALC板、陶質板、磁磚複合板、石材複合板、玻璃...等[17]。

圖 3-2 雙重壁系統概念圖

(資料來源:顧宗沛,以雙重壁原理探討外牆改修構法。國立成功大學建築研究所碩士論文,2004年。)

圖 3-3 雙層壁基本性能構成圖

(資料來源:顧宗沛,以雙重壁原理探討外牆改修構法。國立成功大學建築研究所碩士論文,2004年。)

雙重壁外牆若以外斷熱的隔熱改修工法,可分為通氣層工法與密著工法,其 設計主要是在外牆材與既有牆體之間設置空氣層或裝置隔熱材,如圖 3-4 所示。

建築外牆板及帷幕牆層間交接構造防火性能驗證之研究

圖 3-4 通氣層工法與密著工法

(資料來源:顧宗沛,以雙重壁原理探討外牆改修構法。國立成功大學建築研究所碩士論文,2004年。)

國內建築外牆雖然較少發展雙重壁構法技術,但為了提高建築物外殼相關的 節能特性,主要是另外發展各種有機或無機的隔熱材料應用於建築物外牆的裝修 系統。例如,發泡聚苯乙烯(Expanded Poly-Styrene;簡稱為EPS)的隔熱板具 有輕量、經濟、耐水性、緩衝性佳與施工容易等優點,已有相關應用的研究成果 [18]。若將EPS應用於建築物外牆的裝修材料,其EPS材料之熱傳導係數約為 0.033至0.035W/mK,遠低於一般磁磚之熱傳導係數約為1.3W/mK或其他外牆 之飾材及隔熱材,在一般常見之隔熱材料當中又以EPS材料之熱傳導係數為最 低,故EPS材料屬優秀之隔熱材料。此外,當外牆裝修材剝落時,會具有公共 安全危險的機率產生,然而EPS材料具有重量輕的特點,若以二丁掛尺寸之EPS 材料,由50公尺高處掉落所產生的動能為1.668 kg×m2/s2,並不會對人體造成 傷害,而磁磚約在7公尺高處掉落所產生之動能為20.992 kg×m2/s2,這會對人 體造成傷害。因此EPS材料能夠大幅提升外牆飾材之安全效益,但該EPS材料 是否能夠通過建築相關的防火時效要求,則需要進一步的試驗。 2.外牆應用

根據內政部建研所研究報告「建築物節能外牆之應用研究」[19],國內外現 有節能相關規範的整合式節能外牆,延伸整合複式帷幕(DSF)、環境感應式立面 (RBE)或太陽光電(PV)等主動節能之創新型外牆設計,可整理歸納出外牆組成如 圖 3-5:

「整合式外牆」的組成, 牆+ 開口部 + 遮陽 + PV 板 或 牆+ 牆(雙層牆 DSF) 其中,

牆 = 主牆材料 + 面磚或空氣層等 (剖面);

開口部 = 窗框 + 玻璃;

圖 3-5 整合式節能外牆組成之示意圖

(資料來源:陳嘉懿,鄭泰昇、潘晨安、馬瑜嬪、黃紹筑、陳思吟, 建築物節能外牆之應用研究,內政部建築研究所委託研究報告。2015 年。)

表 3-2 列出國際能源署(IEA)建築與社區節能(ECBCS)執委會 2004-2011 年推動方案中,集結全球十七國,對於外牆類型與構件整合所採用之用語。另外 IEA 整合了比利時建築研究學會[BBRI, (2002)]及美國 USA [Perino, M(2005)]的外 牆立面型式分類法,如圖 3-6,說明了先進整合式立面及各類型外牆立面構件之 階層從屬關係。

英文用語及圖說	中文用語	定義
AIF (Advanced Integrated	先進整合式	運用先進可動式智慧構件整合於外牆的立
Façade)	立面	面設計,以達到室內外環境調適、節能、
FFF Station in Zero	2020-00000	通風、美觀、隱私等目標。如圖 2-1,根據
		國際能源署之定義,可分為 TVF, CW,
		DSF許多子項目。
DSF(Double Skin Facade)	複式帷幕 /	複式帷幕包含內、外雙層透光帷幕及介於
de.	雙層立面	中間的間隔或空氣層,內外層帷幕都可替
		換選用單層或雙層玻璃。實務上兩層之間
		的深度常介於 20-100 公分,並運用自然通
		風或機械排熱。雙層之間常設置遮陽及百
		葉以減少直射熱。把外牆當成室內外之間
		的"動態濾網"觀念取代了傳統上把外牆當
dia.		成"静態屏障"的模式
(IEA , 2008)		
CW (Climate Wall)	氯候調節牆	複層立面室外側採雙層玻璃、室內側採單
0		層玻璃或帷幕,兩層之間透過機械通風與
4) · · · · · · · · · · · · · · · · · · ·		建築物通風系統整合,內層玻璃下方留設
5		10mm 以下小縫隙,以供氣流進入空氣層
æ		
a second s		
(IEA · 2008)		
TVF(Transparent Ventilated	透光垂直通	統稱具垂直通風設計之透光複式帷幕立面
Façade)	風立面	
BF (Buffer)	中空熱緩衝	以雙層玻璃間的靜態空氣層作為熱緩衝
	層複式帷幕	區,外氟僅在平衡風壓時才會流入 [Haase,
		M (2005c)]
U		
(IEA · 2008)		
BW (Box Window)	盒狀通風窗	將複式帷幕分割成垂直及水平的盒狀窗,
	複式帷幕	冷空氣可由盒狀窗下方進入,熱空氣從盒
		狀窗上方排出。傳博蓄熱牆(Trombe walls)
		亦可以嵌入盒中整體設計。[Haase, M
1		(2005c), Oesterle, et al (2001)]
(IEA , 2008)	50 J 4 11 - 0	
SB(Shaft Box)	豎井盒狀通	複式帷幕的盒狀窗之間有垂直豎井,冷空
	風窗複式唯	親目盒狀窗下方進入後,熱空氣在盒狀窗
ke shaft Brine Macada layar	帝	上方的側邊排到暨开帝出。[Haase, M
Hartlerite division		(2003c), Oesterie, et al (2001)J, Compagno, A (2002)]
		(].
(IEA , 2008)		

表 3-2 國際能源署之外牆用語

C (Corrider)	走道式複式	複式帷幕的內外層空間依樓層以走道水平
	帷幕	分割,進氣及排氣氣流方向如圖示,以避
		免下層所排出廢氣成為上層的進氣。
- Busit Statutis Eguar Core Statutis Eguar		[Haase, M (2005c), Oesterle, et al (2001)].
(IEA · 2008)		
MS (Multi-story)	多樓層通風	後式帷幕之間空氣層貫穿多個樓層,中空
ED:	複式帷幕	層外側可改用可動式百葉取代,當開啟狀
10		態時,便不具有雙層牆效果。 [Haase, M
		(2005c), Oesterle, et al (2001)]. 美國的 Twin
1 - '		Façades 也屬於此一類型。[Perino, M
10		(2005)]
(IEA ' 2008)	丁法水活同	いて法史仏傳講茶為岫(Tramba walla) 時日
OVI (Opaque Ventilated Laçade)	个迈兀通風	以不透光的博得看然穑(1101110e walls) 應用 及通用設計為主的立面
SW(Swindow)	知慧通国穷	及通风改司 向王 的上回 各白 统通国 而 恐 計 , 可 油 動 敕 人 你 捆 多
SW(SWIIdow)	A M M M M	為日 然過風的設計 了 上 到 正 日 王 嗣 示
ANT		平衡提設計來調滴准备及排為的控制。
		[Takahashi, Y (2005)].
		[], - ()].
A CONTRACT		
三 (2) 三三 3) 日		
(IEA , 2008)	it is in	游县上山的外人认为了一个不知知认了了如此
	寻尤极	等无极将窗户分為上下兩個部分,上部窗
		尸比較小。 對上下兩部分孫取不同性能的
estator shell		坡喝,以取得取住的休尤双禾。 上部窗户
initial initia		休用可兒尤透射平尚、太陽能得熟係數週
		中或較低的玻璃,比如尤諸選擇型 LOW-L
(IEA · 2008)		坡调, 查9 能夕的分八9 兄元, 问时避光 遇多劫暑淮λ 宏内。
Glazing	開口部	間窗面部位
fins	垂直遮陽	- TOTAL AND LEVEL TO BE AND LEVEL
Self-Shading	自體遮陽	透過建築物本身造型的遮陽方式,如量體
		堆疊或樓板延伸之陽台等等。
NV(Natural Ventilation)	自然通風	運用風力及浮力通風散熱
MV(Mechanical Ventilation)	機械通風	運用風扇排熱
HV(Hybrid Ventilation)	複合式通風	自然機械併用通風

(資料來源:IEA 2008)

圖 3-6 IEA 的先進整合式外牆分類階層圖

(資料來源:陳嘉懿,鄭泰昇、潘晨安、馬瑜嬪、黃紹筑、陳思吟, 建築物節能外牆之應用研究,內政部建築研究所委託研究報告。2015 年。)

在牆體構造及材料的部分,根據內政部建研所研究報告「建築物節能外牆之 應用研究」[19],在節能外牆的技術中,節能需增加隔熱性能與降低日射吸熱, 擁有良好隔熱層的鋁金屬帷幕牆因為熱傳透率低,常被使用在外牆施作上,另外 輕量化的玻璃與金屬外殼,只要加強中間空氣層及隔熱處理,也能成為優良的外 牆外殼。下列為兩種節能外牆構材構造的參考範例,如圖 3-7 與 3-8 所示。

<u>圖 3-7 由岩棉隔熱材和陶粒輕隔間幕牆板所構成的外牆。</u> (資料來源:陳嘉懿,鄭泰昇、潘晨安、馬瑜嬪、黃紹筑、陳思吟, 建築物節能外牆之應用研究。內政部建築研究所委託研究報告,2015 年。)

外牆外保溫及防水裝飾系統 EIFS:根據國際建築規範 ASTM 定義,外牆外 保溫系統(Exterior Insulation and Finish System, EIFS)是一種非承重的外牆覆蓋 系統,由美國能源部支持橡樹嶺國家實驗室進行研究,已證實相對於磚塊、灰泥 及水泥纖維壁板,EIFS 是控制熱和濕度「表現最好的覆層」。其構造包含:

(1)防水層(Water-resistive barrier / WRB):覆蓋襯底。

(2)平面排水:在WRB 與絕緣板之間,常用黏合劑塗在WRB 上的垂直帶。

(3)絕緣板:通常由發泡聚苯乙烯(EPS),該固定用粘合劑或機構在基底。

(4)玻璃纖維:增強網埋置在底塗層。

(5)水底性塗層:施加在絕緣的頂部以用作耐候阻隔。

(6)表面塗層:常使用不退色和抗裂丙烯酸共聚物技術。

圖 3-8 外牆外保溫系統構造組成

(資料來源:陳嘉懿,鄭泰昇、潘晨安、馬瑜嬪、黃紹筑、陳思吟, 建築物節能外牆之應用研究。內政部建築研究所委託研究報告,2015 年。)

在內政部建研所研究報告「建築物節能外牆之應用研究」[19]中,提供了數 種建築外牆實例,我們整理出幾個案例使用的外牆材料以及該材料的耐燃等級: (1) 宜蘭地政大樓:

雙層牆,保溫隔熱性佳的 ALC 板(耐燃一級),木絲水泥板(耐燃二級)

(2) 台積電中科十五場:

RC(耐燃一級)+輕量節能板系統+外掛植生網、遮陽鋁板(耐燃一級)、鋁板帷幕系統(耐燃一級)、玻璃帷幕牆(耐燃一級)、屋頂太陽能板

(3) GSW Headquarters :

雙層牆沖孔鋁板遮陽(耐燃一級)

(4) 德國 Expo-Tower:外牆設計

隔熱構造(保溫層、鋁百葉、節能玻璃)(耐燃一級)遮陽構造(太陽能板)

3.帷幕牆系統種類

帷幕牆之定義為架構於建築物之外牆,且依照建築技術規則定義為「構架構造建築物之外牆,除承載本身重量及其所受之地震、風力外,不再承載或傳導其他載重之牆壁」,因此帷幕牆可稱為非承重外牆(Non-loadbearing exterior wall)。

李錦堃[20]等人研究中, 紹帷幕牆設計過程中,因應環保意識,建築物的規 劃包括:採光、通風、隔熱、空間利用、節能效益等方面,進行評估。有助於, 提出符合相關數據要求之最佳化產品,可配合日常節能指標,發展雙層幕牆、遮 陽、太陽光電發電系統。

內政部建築研究所於民國 81 營建自動化計畫「帷幕牆工程標準規範與解說 之擬定」[21]針對帷幕牆探討其性能、設計、製造、施工及檢查等要項。陳宗熙 [22]等人研究整理出帷幕牆之性能分類,如表 3-3 所示。

建築帷幕牆是屬於建築物外圍保護結構的一種。但它不同於一般的圍牆,帷幕牆用於建築上具有表 3-4[23]所列出幾點特性。

帷幕牆的種類可依材料、造型、框架、構造、功能、表面處理等分類,詳述 如下:

- (1) 依材料種類,可分為金屬帷幕牆、預鑄混凝土帷幕牆、玻璃帷幕牆、石材 帷幕牆等;超高層大樓仍以金屬帷幕牆最為常見,如表 3-5 所示。
- (2) 依框架分類: 鋁帷幕牆外部有顯框式、兩邊隱框式、四邊隱框式,可作為 配合景觀設計之參考,如表 3-6 所示。
- (3) 帷幕牆構造分類:帷幕牆依其構法與組立的型式,大致可分為直橫料構造、 單元式構造、單元直框構造、格版構造、窗間牆構造此五大系統,以及在 近十年引進台灣的新外牆構法系統-玻璃式構造,表 3-7[22]中為五大帷幕 牆構造系統之特性。

性能類別	性能項目	單位	性能要求		
帷幕牆 結構性能	1. 耐風壓性能	Ра	 不須修補的狀況下能繼續使 用之界線內。 帷幕牆單元無被吹散會脫落 之虞之界線內。 		
	2. 耐震性能	弧度角 1/x (x=0)	 吸收性能下列兩狀態內之層 間變位表示。 性能值依正負交替面內之剪 斷變形試驗求得,通常以前 項1之性能值為代表,視實 際需要並列前項2之性能值。 		
帷幕牆 非結構性能	1. 水密性能		規定注水量下,使室內側不產生 漏水現象之界線壓力差。		
	2. 氣密性能	m ³ /m ² h	相對壓力差1Kg/m ² 下,每單位 牆壁面積及單位時間內之通氣 量。		
	3. 隔熱性能	m ² K/W	 1. 以熱貫流阻抗表示 2. 可依標準試驗求得或計算求 得 		
	4. 隔音性能		1. 以隔音等級表示		
	5. 防火性能	hr	 依照建築技術規則之防火時 效表示。 		
帷幕牆	1. 耐久性能				
其他性能	2. 防露性能 3. 熱安定性能				

表 3-3 帷幕牆之性能分類

(資料來源:陳宗熙,高層建築物單元式金屬帷幕牆耐風壓性能之分 區方式研究-以高雄漢來新世界大樓為例-,淡江大學建築學系碩士 論文,2001年。)

22

項目	簡 述
1.預組化	減少現場作業時間,在工廠預組完成,運至工地吊掛。
2.輕量化	可降低結構自重。
3.規格化	可在工廠大量生產。
4.工業化	以生產線製造方式,提高產能與品質,掌握工程進度。
5.自動化	裁切、加工、組立均朝自動化發展。
6.單元化	強調不必現場施作填縫之單元式帷幕牆。

表 3-4 帷幕牆之特性

(資料來源:許燕輝,台北國際金融中心帷幕牆施工之探討。國立交通大學工學院營建技術與管理學程碩士論文,2005年。)

表 3-5 帷幕牆依材料分類

依材料分類				
鋁帷牆	鋁擠型、鋁沖孔板、烤漆鋁板、			
(ALUMINUM CW)	蜂巢鋁板、複合鋁板。			
不銹鋼帷牆	不銹鋼板、不銹鋼沖孔板、不銹鋼管、			
(STAINLESS STEEL CW)	不銹鋼面板。			
預鑄混凝土帷牆	德兴庙、徳芷崩工、晤兴庙。			
(PORCELIAN ENAMELED CW)	錶磁导、錶化崗石、貝磁亭。			
其他帷牆	以 聊 細 七 、 以 聊 沐 七 、 购 珀 七 。			
(OTHER CW)	· 坛耶·納权、坛耶徐攸、固珉权。			

(資料來源:李錦堃, 應用系統整合模式探討帷幕牆工程管理之研

究。東南科技大學防災科技研究所碩士在職專班學位論文,2011年。)

依框架分類				
顯框式 (OBVIOUSLY FRAME CW)	平式、凸式、凹式。			
(OD VIOOSELI TRAINE CW) 兩邊隱框式 (2-SIDE S.S.G. CW)	橫顯直料背撐、直顯橫料背撐、活動扇 顯、活動扇隱。			
四邊隱框式 (4-SIDE S.S.G. CW)	有料支撑 (無料支撑)。			

表 3-6 帷幕牆依框架分類

(資料來源:李錦堃,應用系統整合模式探討帷幕牆工程管理之研究。 東南科技大學防災科技研究所碩士在職專班學位論文,2011年。)

而在薛丞堯[24]等人之研究整理中,近十幾年引進台灣的新外牆構法系統-玻璃式帷幕牆構造,現階段所使用的構法,依對玻璃板片之支承部位的固定及支 承方式可區分兩類:點支承與線支承構法,其構法如表 3-8 所示。

由於帷幕牆系統種類繁多,且各不同系統之構造方式不同,影響力學特性及設計也不盡相同,藉由參考陳宗熙[22]與薛丞堯[24]等人之研究,整理各系統之優缺點,如表 3-9所述。

系統構法分類	系統特性概述
直橫料系統 (Stick System)	 元件在工地上一件件組合,首先先裝上固定繫間 (Anchor),其次是直料(Mullion)、橫料(Horizontal)、窗間
	板(Spandrel Panel),最後加上玻璃及內部裝飾(Internal Trim)。 2. 此種工法由於在工地上切成實際尺寸,所以材料節省、搬 運費用低廉,材料之尺寸較具彈性。 3. 缺點是工地施工時間長、費用高且品質較難控制,但總成 本較便宜,因此仍被廣泛採用。 在設計上最重要的是伸縮縫之位置和層間側向位移之考量,國 內習慣上稱之為注視帷幕牆構法。
單元式系統 (Unitized	 美國近年來超高層建築外牆工法之主流。 组合規格單元化,依次固定於結構系統上。
System)	3 尺寸大小約為 $1.5m$ 寶 x 樓高長,相當於窗格跷距 x 樓高
	 長。 4. 此系統具良好的層間位移承受姓,尤其適合高層建築鋼骨工程之層間位移。其在每一單元中間都有保留間隔空隙,以因應層間位移以及樓板活載重的撓度,使每一單元不致受到擠壓變形或甚至破壞。
單元直框系統 (Unit and	
Mullion System)	
	 介於直橫料系統和單元化系統間的一種構法,屬改良的直 橫料系統,或稱為半單元系統。 先錨定兩邊直框,在直框中再安排預組單元;有時是一層 樓高的版片,有時分為裙板和玻璃窗二單元。
隔版系統 (Panel System)	1. 本系統提供了整個牆面的造型,格狀的樣式有強烈的垂直

表 3-7 帷幕牆系統構法分類

建築外牆板及帷幕牆層間交接構造防火性能驗證之研究

	2.	及水平韻律,每塊版在工廠整體鑄造,運至工地錨定組合 而成為帷幕牆。 此系統類似單元化系統,所不同者是單元化系統是由多小 零件組合,而格版系統多只單元版,如預鑄混凝土版 (Precast Concrete)或金屬版沖壓而成之單片版。
窗間牆系統 (Column Cover		
and Spandrel System)		
	1. 2.	施工步驟:首先是裝上固定系統(Anchoring System),其次 是窗間牆(Spandrel Panel)、柱覆板(Column Cover Panel), 再安裝玻璃(Glazing Infill)。 由於安裝之程序簡單,大部分裝置都在工廠作業,因此品 質得以控制。

(資料來源: 陳宗熙,高層建築物單元式金屬帷幕牆耐風壓性能之分 區方式研究-以高雄漢來新世界大樓為例-。淡江大學建築學系碩士 論文,2001年。)

種類	構法型式	圖片
點支マ	開孔構法(螺栓固定型式): 一般開孔於玻璃四邊角落,並以螺栓 固定。若為大尺寸玻璃則於玻璃兩側 中央增加開孔。	
承構法	無孔構法(板片型式): 玻璃無需開孔,在玻璃角隅部,螺栓 穿越玻璃接縫連接金屬板片而固定 之構法。	
	窗框構法: 玻璃版片固定於四周的框架上,框架 可為鋁合金、不鏽鋼或是木材製品。 框架不畏懼框架部位具有重量輕、高 興能與高品質。	回過量材実定 旗峰村 ●井田園村実定 一般機材実内 一般機材
線支承構法	SSG 構法: 玻璃後不知稱為鋁擠型構架,期間以 結構性填縫劑充填,藉由填縫劑黏著 力與玻璃版片接合之構法。特色為構 架面積較小、透明性高。	HAT BUTT
	玻璃背檔構法: 係利用玻璃背檔固定於玻璃板片接 縫部位,藉以抵抗面外荷重(如風 力)。可形成連續的玻璃面。但面積 與高度均受到限制。	作描版稿 存描版稿 按调版片 按调版片

表 3-8 玻璃帷幕牆構法

(資料來源: 薛丞堯,國內點支承玻璃帷幕牆施工精度控制之研究。

國立成功大學建築學研究所碩士論文,2002年。)

構造系統	優點	缺點
直横料系統	 單價較低 視現場尺寸切割材料 運輸較方便 	 施工品質較難控制 接頭多、填縫多 接受層間變位性較差 防水品質不易控制
單元式系統	 工廠製作精度要求較高 預製規格單元化 承受層間變位佳 適合鋼管結構 	 有時單元體積較大, 搬運及放置不易 精度必須較高 需工廠組合,焊接點 品質難保證
單元直框系統	 施工品質較組合式易控制 單元部分於工廠完成 	 直框與單元相接部 分,施工品質不易控 制 體積較大時運送不易 精度要求較高
格板系統	 單片板於工廠完成,運至 工地直接吊裝 	 體積大運輸不易 工廠及現場工地要求 精度高
點支承系統	 適用於大面積、斜曲面之 牆面、屋頂 提供大面積採光、透明度 乾式施工,以縮短工時 	 材料成本高 施工技術性需求較高 玻璃耐火姓、隔熱 性、隔音性較差 帷幕牆構件須經結構 計算,確認規格、尺 寸

表 3-9 帷幕牆系統優缺點之比較

(資料來源:何明錦、林大惠、李訓谷、胡韓傑、劉育良,建築物帷幕牆垂直立面火焰延燒特性之研究。內政部建築研究所協同研究報告,2016年12月。)

28

第二節 層間塞工法

層間塞(Perimeter fire barrier / Perimeter joint system)的用處在於防止火焰以 及熱氣從樓板與外牆間的空隙進入屋內。如果沒有層間塞的設置,大樓中樓板的 邊緣將會在火災發生時成為煙囪的構造,讓火焰得以垂直延燒至各樓層。

圖 3-9 安裝層間塞對火焰延燒路徑之影響

(資料來源: Owens Corning, <u>Steel Stud Perimeter Fire Containment</u> <u>System -ASTM E2307</u>, Technical Bulletin, 2016)

據 Internatioal Firestop Council, Thermafiber Inc., 及 James Shiver[25-27]等整理,一般關於層間塞的設計主要有六個基本的準則:

 使用支撑柱(Backer bar)在周圍做加固:在裝置層間塞時,材料會以25-50%的 壓縮比裝配在樓板以及牆面之間。受到擠壓的材料會因此弓起,產生空隙讓火焰 以及熱氣得以穿透。為了固定材料的形狀防止其弓起產生空隙,並維持這區域的 密合性以及封閉性,材料旁須裝置支撑柱(backer bar)。支撑柱的形狀一般可使用 角鋼、T型鋼...等,材料一般則為20-gauge 鍍鋅鋼。圖 3-10 為未使用支撑住而 弓起的層間塞。 建築外牆板及帷幕牆層間交接構造防火性能驗證之研究

圖 3-10 未使用支撑柱而弓起層間塞

(資料來源:Thermafiber, Inc., Perimeter Fire Containment in Multi-Story Buildings, 2009)

- 使用礦物綿(Mineral wool)做阻隔:礦物綿的耐熱程度高達攝氏 1100°C,是相 當普遍的層間塞材料。
- 3. 阻隔物須與之作機械耦合(Mechanically attach):作為層間塞的礦物綿應與帷 幕牆試體有機械連接來做固定。如果沒有如此固定的話,在火災發生時此材 料可能會掉落而使這段區域失去隔絕效果。另外,使用黏著性的方法來固定 也是不建議的,因為其中的膠遇高熱時可能會融解,造成隔絕材料。
- 阻隔物須被壓縮配合(Compression fit):被緊密壓縮的阻隔材料將被用來塞在 樓板以及帷幕牆試體間的空隙間,其中材料內部纖維的排列方向如圖 3-11(與 樓板垂直或是平行)並沒有明確指定,但也是需要做測試比較的項目之一。

圖 3-11 層間塞材料內部纖維排列方向

(資料來源: Thermafiber, Inc., Perimeter Fire Containment in

Multi-Story Buildings, 2009)

- 須保護構造中的立柱(Mullions): 帷幕牆試體中的立柱通常使用的鋁材,在約 660°C時就會融化,因此需要用耐熱性較高的礦物綿來包覆,避免與火焰直 接接觸。圖 3-12為安裝完成之層間塞。
- 隔煙系統(Smoke barrier system)設置:火災時所產生的濃煙為造成人員傷亡的 最大原因之一,因此層間塞對煙氣的阻隔也是很重要的功能之一。一般常見 的隔煙系統包括在層間塞的表面抹上一層阻煙劑(例:吸熱型的乳膠製品), 如圖 3-13 所示。

建築外牆板及帷幕牆層間交接構造防火性能驗證之研究

圖 3-12 安裝完畢之層間塞剖面圖

(International Firestop Council, Perimeter Curtain Wall Fire Protection, 2004)

圖 3-13 層間塞表面隔煙系統

(資料來源:James Shriver, Perimeter Fire Containment- The Basics, 2009)

第三節 火災延燒現象分析

目前建築物的營建技術發展已在輕量化與模組化當中,以帷幕牆為外圍構造 的相關設計與施工技術亦不斷的發展與改進,但在一些建築物的火災實際案例中 明確指出,帷幕牆的防火性能會直接影響到生命財產的損失,如國內的東方科學 園區大樓火災、台北市東帝士大樓火災、中壢金像電子公司中壢廠大火;國外的 洛杉磯歐美中心大樓火災、美國芝加哥 LaSalle Bank 大廈火災...等實際案例 [6],均人瞭解到高層帷幕牆之建築物一旦發生火災,若無法將火勢控制於起火 層,一但帷幕牆發生破壞並使得火焰不斷的向上延燒,這將會造成嚴重的財產損 失與人員傷亡,如圖 3-14 和圖 3-15

<u>圖 3-14 東方科學園區大樓火災後帷幕牆鋁構架殘景</u> (資料來源: 雷明遠, 帷幕牆防火性能基準與評估驗證之研究, 內政 部建築研究所自行研究報告, 2003 年。) 建築外牆板及帷幕牆層間交接構造防火性能驗證之研究

圖 3-15 金像電子公司中壢廠大火情景

(資料來源:雷明遠,帷幕牆防火性能基準與評估驗證之研究,內政 部建築研究所自行研究報告,2003年。)

2009 年 2 月 9 日, 央視新址園區在建的附屬文化中心大樓工地發生火災, 該火災大樓是電視文化中心,高 159 m, 被稱為北配樓, 鄰近地標性建築的央視 新大樓。起火大樓結構複雜,建築內部中庭共享空間大,建築材料特殊,建築外 裝飾使用大量可燃材料,造成自上而下、自外而內逆向迅速蔓延,形成立體燃燒, 產生高溫和有毒氣體,並不斷有碎片等物品向下墜落,使火災消防與人員救助帶 來極大困難。由於中國當時對於外牆裝飾燃燒性能規範缺乏標準法規;此火災建 築物的外圍大量使用鈦鋅板(熔點僅為 400°C)、擠塑板以及防水保溫材料。然而 這些材料均具有可燃性,在火災情況下會產生大量熔滴和有毒物質,形成溢火 (Spill fire),促使蔓延速度加快[23]。

2015 至 2016 年間, 阿拉伯聯合大公國接連發生三次高樓帷幕大火, 包括火 炬塔、阿德理斯飯店與阿治曼一號大樓。在三次摩天高樓大火中, 造成數十人受 傷, 數千人緊急疏散, 財務損失高達數千億元。根據 NFPA 美國防火協會報告指 出,2007至2011年間,高層建築火災在整體建築結構火災統計當中佔3%。圖 3-16為2016年杜拜阿德里斯飯店大火照片。

圖 3-16 2016 年杜拜阿德理斯飯店大火

(資料來源:瑞德感知科技,巴別塔的火焰挑戰(一):高層建築的火災 風險。瑞德消防雜誌,2016年。)

由於高層建築的特殊結構與人口密集特性,使得高層建築火災具有以下風險特性:濃煙密佈、高溫灼熱、延燒快速(煙囪效應)、逃生疏散不易、搶救困難、火 險隱患多...等,容易造成嚴重損失與傷亡[29],目前國內與帷幕牆位置相關防火 時效規定如表 3-10 所示。

條次	規範項目	範圍內容		
第 74 條	構造之防火時效認定	經主管機關認可具半小時以上防火		
		時效者		
第 79 條	面積區劃	外牆與防火區劃壁交接處,應有		
		90cm 以上其構造具區劃牆同等以		
		上之防火時效		
第79條之3	樓層區劃	外牆與樓板交接處,應有高度 90cm		
		以上其構造具樓地板同等以上之防		
		火時效		
第 99 條	與屋頂避難平台連接	外牆一小時以上防火時效		
第 110 條	防火間隔	距境界線<1.5m 外牆防火時效>1		
		小時		
		1.5m<距境界線<3m 外牆防火時效		
		>半小時		
		二幢間<3m 外牆防火時效>1 小時		
		3m<二幢間<6m 外牆防火時效>半		
		小時		

表 3-10 帷幕牆相關防火時效規定整理

(資料來源:何明錦、林大惠、李訓谷、胡韓傑、劉育良,建築物帷幕牆垂直立面火焰延燒特性之研究。內政部建築研究所協同研究報告,2016年12月。)

建築物之火災成長歷程可用溫度-時間變化來說明,火災歷程可分為起火 期、成長期、全盛期及衰退期,如圖 3-17 [30]所示。而各階段之燃燒現象、經 歷時間和室內空氣溫度及特性如表 3-11 所示。根據 B. R. Cuzzillo[31]等人研究, 由於外牆開口部的玻璃通常於成長期發生破裂,很可能會導致閃燃的發生。又根 據 T. J. Shields[32]等人之研究,火場發生閃燃時所產生的瞬間高壓將玻璃衝破, 大量空氣進入,使得火災進展到全盛期。當閃燃發生之後,火災不僅對外牆加溫, 也可能經由外牆開口部對外牆外側及上一樓層造成威脅,形成外牆之火焰延燒。

根據陳弘毅[33]等人研究,全盛期之火災溫度會受到室內可燃物量、開口部 之大小、以及室內周圍牆壁等熱的性質所影響。林文意等人之研究[34],一般常 見木質材料等可燃物燃燒時,如獲得充分之氧氣供應,且氣體與空氣混合而完全 燃燒時,其火焰溫度依據理論計算應可達到 2000℃以上之高溫,現此溫度之氣 體濃度範圍甚小,故在空氣中可得之最高溫度大約在 1200℃~1300℃之間,而實 際上一般居室火災達到全盛期時,其室內之平均溫度較預期低,因此只能將溫度 維持在 800℃~1200℃左右。

圖 3-17 火災成長歷程示意圖

(資料來源: 陳太農,郭炳林,帷幕牆防火性能評估與設計準則。內 政部建築研究所專題研究計畫成果報告,1999年)

基本特性 火災歷程	火災現象與燃燒 範圍	經歷時間	室內空氣溫度	
起火期	局限於著火源附近	約 1~10 min	100°C	
成長期	由起火點向四面 八方延燒,火焰隨 熱氣上升至天花	5~20 min	100°C~650°C以上	
閃燃	极 室內所有可燃物 在接近的時間內 同時著火燃燒	一瞬間	至少 800°C	
全盛期	室內所有可燃物 皆燃燒	不一定	通風控制燃燒: 600~900℃ 燃料控制燃燒: 600~1200℃	
衰退期	可燃物燃燒速度 開始減少至火勢 熄滅	不一定 但通常比成長期 與全盛期久	約 200~300°C	

表 3-11 火災發展各階段歷程基本特性

(資料來源: 雷明遠,建築防火區劃構件設計與應用技術。建築物防 火法規與防火安全設計研習會,1999年)

蕭江碧之研究[35],建築物火災發生時當火災進入全盛期時,溫度高達 800℃~1200℃,若無有效的控制,則有極大的機會經由各個途徑延燒到其他居 室,延燒之途徑可分為垂直延燒、水平延燒,如圖 3-18 所示。 在垂直延燒路徑方面,又可分為內部及外部延燒,而帷幕牆的延燒主要發生 在開口部及層間塞部位。開口部的延燒包括火焰由開口部位竄出,延燒到上一樓 層,如圖 3-19所示之路徑 10、12[36],或者是由帷幕牆構件之內部延燒,如圖 3-19 所示之路徑 11。

圖 3-18 火災延燒路徑類型

(資料來源: 蕭江碧,劉慶男,何明錦,建築防火有關性能試設計 法建議草案與案例解說。內政部建築研究所,2002年。)

圖 3-19 火勢延燒路徑示意圖

(資料來源:賴韻蘋,改良式金屬帷幕牆防火性能初探-以直橫料式構 法足尺試驗探討之。國立成功大學建築學研究所碩士論文,民國 93 年。)

此外下層開口部延燒至室內之火災模式是經由開口部在帷幕牆外部延燒之 型態,以接焰為主,意指下層空間之開口部噴出火舌引起上層空間的破壞,其火 舌之溫度分布可參考田中哮義等人研究之圖 3-20 所示[37]。

此外,依據川越邦雄等人之研究,進行豎框架構銘帷幕牆的實際大火燃燒實驗。結果顯示由開口部竄出的火焰將對帷幕牆外側造成影響,最高溫度出現在起 火居室的外牆開口部最上端(D-6 位置),溫度超過 800°C,上層樓層外牆面的溫 度隨高度增加而減低,而帷幕牆單元之間的水平界面處(D-2~D-4 位置)溫度約 560°C~685°C,如表 3-12 所示[21]。

圖 3-20 由横長窗噴出火焰之等溫線圖

(資料來源:田中哮義,建築物火災安全工學入門,日本建築中心,1993年。)

D4	位置 编號	距起火樓層窗戶下 框的重直距離Z (m)	起火後經過 時間(分)	最高温度 (℃)
D-2	D-I	3,66	35	475
Da	D-2	2.76	30	560
	D-3	2.22	30	690
D-P E	D-4	1.86	25 · 35	685
***	D-5	1.60	35	840
	D-6	1.35	30	880
July Mr.	D-7	1.00	40	675

表 3-12 火災外牆噴出火焰温度分佈

(資料來源:陳慶銘,王榮吉,施乃中,帷幕牆工程標準規範與解說 之擬定。內政部建築研究所籌備處,民國 81 年。) 以鋁帷幕牆為例,各構件破壞與火災歷程之關係如圖 3-21 所示[38]。推測 各構件破壞順序最先破壞為玻璃窗的成形襯墊,其次是填縫材料、玻璃、鋁合金 板及鋁合金框架,最後破壞的為繫件與鋼骨。

圖 3-21 鋁帷幕牆各構件破壞與火災歷程之關係

(資料來源:陳海曙,周鼎金,建築防火安全設計學。茂榮書局,1998年。)

由101年度建研所自行研究報告「非承重外牆與層間縫隙耐火性能驗證基準 之研究」當中的內容指出[8],部份以全尺寸建築物模擬外牆火災延燒時,因密 閉火災室內缺乏足夠的空氣,故無法產生燃燒的現象,以致外牆開口部之玻璃不 會受到高溫影響進而破裂。由於此現象與真實火場的情況不同,所以此類的外牆 延燒試驗無法以此種試驗方法進行。目前世界各國之外牆試驗都是在火災室開口 部未裝設玻璃情況下,進行燃燒試驗,然而實際火場情況並非如此。於火場建築 中,玻璃厚度或防火性能皆會影響玻璃破壞之時機,當玻璃具有較佳之防火性能時,能延後火焰竄出時間,甚至若使用較佳之特殊玻璃,開口部的玻璃亦不完全 掉落,因此開口部之破壞型態會左右火場之燃燒行為[8]。此外火災發生時的延 燒狀況亦會與建築物燒毀程度呈現正相關,但若防火區劃管理的當,則是可以減 少建築物的燒毀與延燒狀況[39]。

目前外牆依耐火性須求概分為三種情境,圖 3-22(1)為非耐火層間牆及非耐 火玻璃窗,此情境在 CNS、EN 及 ISO 等標準並無適用之試驗法;圖 3-22(2)為 耐火層間牆;非耐火玻璃窗,由層間縫隙及由開口噴出火焰對上層玻璃窗加熱, 在 CNS 並無適用之耐火試驗法;圖 3-22(3)為耐火層間牆及耐火玻璃窗,耐火 玻璃窗可由 CNS14815 測試其耐火性[40],但無阻熱性其經熱傳及輻射而延燒則 無適用之 CNS 標準。上述三種情境之層間縫隙之延燒防止耐火性能,因縫隙大 且受層間牆之層間變位,火災時層間牆受火之熱變形,皆對層間縫隙耐火性具有 影響性,在考量這些因素下,CNS 並無適用之試驗法[8]。

圖 3-22 外牆/窗延燒路徑潛勢:(1)非耐火層間牆及非耐火玻璃窗,(2)

<u>耐火層間牆;非耐火玻璃窗,(3)耐火層間牆及耐火玻璃窗</u> (資料來源:蔡銘儒,非承重外牆與層間縫隙耐火性能驗證基準之研 究,內政部建築研究所自行研究報告,2012年)。) 張菀育[41]以無開口銘板為對象作初探,找出影響其防火性能之主要因子, 並以 CNS12514-1 的試驗標準進行試驗,最後再對帷幕牆無開口銘板的防火設計 與施工提出具體之建議。研究結果指出,於試驗中使用之帷幕牆無開口銘板常用 工法,無法通過防火測試規範之半小時防火時效,且皆為阻熱性失敗。遮焰性則 至少可達到 40 分鐘。不同構造因子對帷幕牆無開口銘板耐火性能之影響,以板 的組構因子影響阻熱性最鉅,而岩棉材料之等級對遮焰性影響最大,其餘因子效 應則較不明顯。

林慶元[42,43]以實尺寸建築物直橫料式帷幕牆火災實驗,探討金屬帷幕牆在 受到火災侵害時,火災加害條件與材料構造的受熱行為。居室內可燃物火載量條 件以木材堆架加以模擬,各次火災實驗在不同的開口狀況及換氣條件下於一座兩 層樓高的 RC 建築物上裝設帷幕牆試片進行,共進行4次實驗。其研究結論:噴 出開口部之火焰,受開口部大小及位置直接影響,且亦受室外環境因子之影響, 當垂板深度增大時,雖然並不會依垂版深度,而成等比例降低噴出火焰之高度, 但可以證明的是垂板理論上能有效降低噴出火焰高度,並能降低二樓延燒之危險 性。且由實驗結果得知,當居室之可燃物大量集中靠近外牆開口部時,本試驗中 任一種開口組合,並不能有效防止二樓延燒,如圖 3-23 至圖 3-25 所示。

圖 3-23 試體正立與背立面圖

(資料來源:林慶元,實尺寸帷幕牆防火性能之實驗研究(I)(II),行政 院國家科學委員會專題研究計畫成果報告,2004/2005年。)

圖 3-24 全尺寸鋼筋混凝土建築物

(資料來源:林慶元,實尺寸帷幕牆防火性能之實驗研究(I)(II),行政 院國家科學委員會專題研究計畫成果報告,2004/2005年。)

圖 3-25 各種開口組合及橫向火焰噴出實驗照片

(資料來源:林慶元,實尺寸帷幕牆防火性能之實驗研究(I)(II),行政 院國家科學委員會專題研究計畫成果報告,2004/2005年。)

李奇峰[44]以實尺寸帷幕牆層間塞之模型配合 CNS15038 所衍生遮煙之量 測空氣洩漏量裝置進行相關遮煙性能,針對不同岩棉密度、厚度、線性開口大小 及附加材質,來檢討帷幕牆安全設計法應用於評估層間塞之洩漏量。經試驗結果 得知:(1) 岩棉密度 80 kg/m3 及 60 kg/m3 共有三種不同厚度遮煙效果,岩棉厚 度遮煙效果為 15 cm > 10 cm > 5 cm。(2) 鋁箔岩棉比一般岩棉密度為 80 kg/m3 及 60 kg/m3 有效抵擋煙氣洩漏量減少約為 42 %。(3) 岩棉煙氣洩漏量的問題在 於岩棉密度而不是在於岩棉與樓板銜接介面洩漏問題。(4) 一般業界在線性開口 部有施作層間塞,都會符合" IBC713.5 Penetrations in smoke barriers"及"IBC 714.6 Fire-resistant joint systems in smoke barriers"最低要求數值。

萬復森[45]以未具試體延伸板及具試體延伸板兩項裝置進行牆面延燒研究。實驗結果證實寬度效應確實會影響火焰延燒行為,牆面火焰延燒速率隨火焰 寬度增加而增加,且寬度對火焰高度及加熱強度均有造成影響。牆面火焰高度於 未具試體延伸板火焰高度分析結果,不同寬度火焰所產生的火焰高度變化並未受 到寬度影響而有所差異,但將延伸板加入之後,火焰高度於延燒後期明顯產生差 異,使得越寬的火焰,其火焰高度越高。

游依婷[46]歸納出單元式鋁帷幕牆防火構法之問題與對策。關於帷幕牆本體 部分,不應使用玻璃棉作為隔熱材,且應以鍍鋅鐵條固定隔熱材。窗間牆室內側 之鋁擠型應以隔熱材或耐燃等級合格之內裝材作為保護。背襯骨架固定方式以拉 釘和植焊螺栓較佳,並應以隔熱材保護。應以開口部比例、窗間牆高度、出簷等 工法使噴出火焰不沿外牆面垂直延燒。鋁帷幕牆單元間之界面部分,界面接頭形 式應增長且使火煙穿透路徑迂迴。橫向界面位置應設計於樓板上並盡量接近板 面。帷幕牆與結構體之界面部分,單元的縱向界面應配合柱位或防火區劃牆配 置,且單元板片與層間塞或柱間塞接合部位應具有與結構體同等級之防火時效。 帷幕牆與樓板之距離亦應考量防火處理施作之可行性,而繫件位於樓板上方較 佳。帷幕牆與內裝之界面部分,帷幕牆內側之內裝材一應具合格耐燃等級,且其

46

與鋁擠型接合處應確實保護。

Liang Zhou[47]等人進行了垂直方向岩棉做為防火阻隔應用在 EPS 隔熱外牆 板的延燒試驗,並且提到在中國絕大多數的 EPS 外牆火災發生在施工階段,在 外牆火災發生時,火焰除了垂直方向也會往水平方向延燒,受熱融化的 EPS 向 下滴時,水平方向的防火阻隔也無法有效的防護,此研究先將 EPS 試體進行圓 錐量熱儀試驗,在熱通量 50kW/m²時,長 10 公分寬 10 公分的 EPS 試體進行圓 雞量熱儀試驗,在熱通量 50kW/m²時,長 10 公分寬 10 公分的 EPS 試體最大熱 釋放率為 4.52kW,接著研究將垂直方向的岩棉作為防火阻隔時,不同的岩棉寬 度以及岩棉間距對於 EPS 溫度與延燒速率之影響,實驗如圖 3-26 所示實驗結果 發現岩棉作為防火阻隔時,間距寬度越低,越能有效減少 EPS 之延燒速率。最 後進行了實尺寸七層樓高的 EPS 外牆延燒試驗,使用 30 公分寬的水泥作為垂直 防火阻隔如圖 3-27 所示,實驗結果證實垂直的防火阻隔能夠有效阻擋 EPS 外牆 發生火災時火焰水平方向的延燒。

<u>圖 3-26 EPS 延燒試驗</u>

(資料來源:Liang Zhou, Aiping Chen, Lei Gao, Zhifeng Pei, <u>Effectiveness of vertical barriers in preventing lateral flame spread</u> <u>over exposed EPS insulation wall.</u>, Fire Safety Journal, 91(2017), 155-164.) 建築外牆板及帷幕牆層間交接構造防火性能驗證之研究

圖 3-27 實尺寸 EPS 外牆延燒試驗

(資料來源: Liang Zhou, Aiping Chen, Lei Gao, Zhifeng Pei, <u>Effectiveness of vertical barriers in preventing lateral flame spread</u> <u>over exposed EPS insulation wall.</u>, Fire Safety Journal, 91(2017), 155-164.)

Miao-miao YU 等人[48]使用 60 公分高、5 公分厚七種不同寬度的 XPS 試體 進行延燒試驗,觀察 XPS 試體在有無石膏板狀況下的延燒情形,得到在無石膏 板的條件下,火焰延燒的較快,在開始後 15 秒火焰延燒趨於穩定,25 秒後延燒 速率穩定;有石膏板的條件下,火焰延燒相對穩定,延燒速率基本上為定值。 在無石膏板的條件下,前 15 秒受層流火焰主導,火焰外型呈矩形,25 秒後受紊 流火焰主導,火焰外型變為三角形;在有石膏板的條件下,火焰外型基本上都呈 現三角形,前 25 秒受層流火焰主導,三角形的外型維持的較好,25 秒後受紊流 火焰主導,三角形開始呈現較不規則狀。 在兩種不同工作條件下,因為石膏板 的存在,限制了其中一側的熱散失,造成延燒行為的不同。在有石膏板的條件下, 試體兩側的限制條件不同,造成不均匀的延燒,形成了熱解斜角,熔融狀態的 XPS 因受重力影響,會向下流動,加劇火勢的延燒。無石膏板的平均火焰高度普 遍高於有石膏擋板的實驗條件,兩條件下的平均火焰高度,皆有隨試體寬度的 增加,而先降後升的趨勢。無石膏板的實驗條件下,熱裂解速率在不同試體寬度的 情況,皆高於有石膏擋板的實驗條件。兩實驗條件下,熱裂解速率皆有先降後升 的趨勢。材料熱裂解速率與材料在預熱區吸收的熱有直接關係,預熱區吸收的熱 可分為兩個部分:一部分來自火焰氣相的熱傳,另一部分來自材料固相的熱傳。 無石膏板的實驗條件下,火焰氣相熱傳扮演主要影響的角色;而有石膏擋板的實 驗條件下,火焰氣相熱傳與材料固相熱傳皆有影響,隨著試體寬度的增加,材料 固相熱傳的影響漸增。

Fig.1 A measuring device for the spread of XPS vertical countercurrent fire

圖 3-28 XPS 試體延燒試驗設置

(資料來源: Miao-miao YU, Guo-qing ZHU, Qing-xuan Meng, <u>Experimetal Study and Analysis of XPS Vertical Countercurrent Fire</u> Spread., Procedia Engineering, 211(2018), 945-953.)

Weiguang An 等人[49]進行了 XPS 外牆在受到平行的帷幕牆影響時火焰向下 延燒的研究,在石膏板上固定 XPS 試體,以酚醛發泡模擬帷幕牆,試驗條件為 調整不同的外牆與帷幕牆間距,試驗結果發現,當間距上升時,延燒的火焰會變 得不規律,當間距小於 11.5 公分時,主要影響火焰高度的因素為煙囪效應,當 間距大於 11.5 公分後,帷幕牆距離外牆較遠,使得空氣的進氣量上升,使得火 焰的高度會上升,外牆的溫度則是會隨著間距的上升進氣量增加後溫度隨之提升, 當間距大於 11.5 公分後,影響溫度的主要原因為帷幕牆對外牆的輻射熱回饋, 隨著距離增加,輻射熱減少,溫度也隨之降低。火焰的延燒速率與溫度有關,因 此具有同樣的趨勢。

圖 3-29 XPS 受帷幕牆影響延燒試驗設置

(資料來源: Weiguang An, Rongliang Pan, Qingxuan Meng a, Hongya Zhu, <u>Experimental study on downward flame spread characteristics</u> <u>under theinfluence of parallel curtain wall.</u>, Applied Thermal Engineering, 128 (2018), 297–305)

圖 3-30 不同外牆與帷幕牆間距 XPS 試體向下延燒之火焰

(資料來源: Weiguang An, Rongliang Pan, Qingxuan Meng a, Hongya Zhu, <u>Experimental study on downward flame spread characteristics</u> <u>under theinfluence of parallel curtain wall.</u>, Applied Thermal Engineering, 128 (2018), 297–305)

Qing xuan Meng 等人[50]進行了 XPS 在配置上包含空隙時的延燒行為研究, 空隙所佔的百分比定義為空隙的面積除以試體的總面積,試驗結果發現當孔隙百 分比為 35%時火焰平均高度最高。 建築外牆板及帷幕牆層間交接構造防火性能驗證之研究

<u>圖 3-31 XPS 試體在具有孔隙時的向上延燒試驗設置</u>

(資料來源: Qing xuan Meng, Guo qing Zhu, Miao miao Yu, Zhen huan Liang, <u>Experimental study on upward flame spread</u> <u>characteristics of external thermal insulation material under the</u> <u>influence of porosity.</u>, Case Studies in Thermal Engineering, 12 (2018), 365–373.)

圖 3-32 XPS 在 35% 孔隙百分比時向上延烧

(資料來源: Qing xuan Meng, Guo qing Zhu, Miao miao Yu, Zhen huan Liang, <u>Experimental study on upward flame spread</u> <u>characteristics of external thermal insulation material under the</u> <u>influence of porosity.</u>, Case Studies in Thermal Engineering, 12 (2018), 365–373.)

第四節 帷幕牆層間交接構造試驗標準

除了 ASTM E2307-15b 之外,國際上測試相關防火性能的試驗方法尚有 BS EN 1364-3 及 BS EN 1364-4。其在複雜度方面依試驗組態型式區分為 16 種,歸 類成 13 種試驗組構型式,再依室內或室外曝火分別以 2 個試驗標準溫升條件測 試;另外依外牆型式與耐火性須求,區分為 10 種型式,依型式與耐火性須求分 別以 3 個試驗標準測試。因為門牆爐的構造,在此試驗方法中帷幕牆面系統同時 只會有一面曝火,因此一次完整的試體防火性能判定至少需要做兩次(牆面內外 表面各做一次測試)。

ASTM 為美國材料與試驗協會縮寫,其英文全稱為 American Society for Testing and Materials。ASTM 前身是國際材料試驗協會(International Association for Testing Materials, IATM)。19世紀 80年代,有人提出建立技術委員會制度, 由技術委員會組織各方面的代表參加技術座談會,討論解決有關材料規範、試驗 程式等方面的爭議問題。IATM 首次會議於 1882 年在歐洲召開,會上組成了工 作委員會。當時,主要是研究解決鋼鐵和其它材料的試驗方法問題。1902 年在 國際材料試驗協會分會第五屆年會上,宣告美國分會正式獨立,取名為美國材料 試驗學會(American Society for Testing Materials)。隨著其業務範圍的不斷擴大 和發展,學會的工作中心不僅僅是研究和制定材料規範和試驗方法標準,還包括 各種材料、產品、系統、服務項目的特點和性能標準,以及試驗方法、程式等標 準。1961年該組織又將其名稱改為延用至今的美國材料與試驗協會。

BSEN-1364 來源為英國標準學會(British Standards Institution; BSI)世界上第 一個國家標準化機構。英國政府承認並支持的非營利性民間團體。成立於 1901 年,總部設在倫敦。目前共有捐款會員 20 000 多個,委員會會員 20 000 多個。

1901 年,由英國土木工程師學會(IEC)、機械工程師學會(IME)、造船工程

師學會(INA)與鋼鐵協會(ISI)共同發起成立英國工程標準委員會(ESC 或 BESC),並於同年 4月 26日在倫敦召開第一次會議。這是世界上第一個全國性 標準化機構。 1902 年電氣工教師學會(IEE)加入該委員會,英國政府開始給予財 政支持。 1902 年 6月又設立標準化總委員會及一系列專門委員會。專門委員會 的任務是制定技術規格,如電機用異型鋼材、鋼軌、造船及鐵路用金屬材料等標 準。 1918 年,標準化總委員會改名為英國工程標準協會(BE-SA)。1929 年 BESA 被授予皇家憲章。 1931 年頒佈補充憲章,協會改用現名(BSI)。

ASTM E2307-15b 是透過防火試驗屋配合測試室內燃燒器及窗戶燃燒器各一 台,同時對帷幕牆面的內外表面,以及層間塞交接構造進行測試。其試驗與加熱 方式,對於外牆面與層間交接構造系統之耐火性測試較接近於建築火災實際狀 況;這是由於此試驗是在室內可控制的環境下進行,並依據試驗測試要求,對於 此一外牆模擬結構,控制下層燃燒室燃燒溫度,測試外牆外表面及上層觀察室的 溫度升高情形,觀察牆面結構的變形、脫落等對層間縫隙阻火材的影響,並觀察 層間縫隙阻火材的耐火性能(是否產生變形、開裂、縫隙、火焰及熱氣流滲透等), 亦可同時可觀察上層煙流情況。圖 3-33 BS EN1364 與 ASTM E2307-15b 加熱時 間曲線比較;表 3-13 為 ASTM E2307-15b 試驗通過標準,表 3-14、表 3-15 則 是以 SWOT 分析方法,探討 BS EN 1364、ASTM E2307-15b 之優勢劣勢;表 3-16 則是 NFPA 285、ASTM E2307-15b 與 BS EN 1364 之比較分析。

表 3-13 ASTM E2307-15b 試驗通過標準

認證	通過試驗條件
T等級	非曝火面上偵測的溫度不超過初始溫度的 181°C 以上。
F等級	火焰突破層間塞/層間塞非曝火面上的棉花墊未遭火焰 或熱氣點燃。

(本研究整理)

圖 3-33 BS EN1364 與 ASTM E2307-15b 加熱時間曲線比較

(資料來源:蔡銘儒,非承重外牆與層間縫隙耐火性能驗證基準之研究。內政部建築研究所自行研究報告,2012年)

S	W
Strength:優勢	Weakness:劣勢
◎ 複雜度依試驗組態型式區分為16種,	◎ 複雜度雖多樣化,但是多面試
歸類成13種試驗組構型式。	體的配置方式固定,受到侷限,無
◎ 依室內或室外之試驗標準作溫升測	法测試特殊規格品
試。	◎ 無法在一個試驗中探討室內與
◎ 依外牆型式與耐火性區分成 10 種型	室外火源同時發生之現象
式,依型式與耐火性以3個試驗標準測試。	
0	Т
Opportunity:機會	Threat:威脅
◎ 相較於其他之防火標準規範,此規範	◎ 內政部建築研究所已具有大型
之試體形狀不侷限於一般之矩形,可提供	門牆耐火加熱爐,依照 CNS 標準、
符合試驗組態之試體進行測試。	ISO標準以及自訂模式標準進行升
	溫。

表 3-14 BS EN 1364 之 SWOT 分析

(資料來源:何明錦、林大惠、李訓谷、胡韓傑、劉育良,建築物帷幕牆垂直立面火焰延燒特性之研究。內政部建築研究所協同研究報告,2016年12月。)

S	W
Strength:優勢	Weakness:劣勢
◎ 試驗與加熱方式對於外牆與層間縫隙	◎ 目前國內並無符合 ASTM
阻火系統之測試較接近實際建築火災情	E2307-15b之防火試驗屋。
況。	◎ 標準試驗沒有分開探討室內及
◎ 測試中,可觀察到帷幕牆結構之變	室外火源發生之現象。
形、脫落,層間縫隙阻火材之耐火性能及	
上層煙流情況。	
0	Т
Opportunity:機會	Threat:威脅
◎ 國內建置好符合 ASTM E2307-15b 之	◎ 國內由於無現有符合標準之防
防火試驗屋,將會有一套可以較接近實際	火試驗屋,業者已習慣使用如 CNS
火災之測試法,模擬帷幕牆結構及層間縫	12514-1 等等相關可測試帷幕牆耐
隙阻火材受火災之情況。	火性能之標準,在建置好試驗屋後
	的推廣度是有一定的隱憂。

表 3-15 ASTM E2307-15b 之 SWOT 分析

(資料來源:何明錦、林大惠、李訓谷、胡韓傑、劉育良,建築物帷幕牆垂直立面火焰延燒特性之研究。內政部建築研究所協同研究報告,2016年12月。)

法規	NFPA 285	ASTM E2307-15b	BS EN 1364
實驗屋尺寸	雨層樓房,. (室內尺寸約為長	正面開口建築 3m×寬 3m×高 2m)	立面 3m×3m 的門牆爐
試驗情況	室內火災、窗戶破口延燒		室內火災
試驗試體	一般牆面、平面帷幕牆	平面帷幕牆、層間塞	帷幕牆(不限定平面)(調整牆體 的安裝方向即可分別測試內外 部曝火實驗) (BS EN 1364-4 則為測試帷幕 牆系統中特定元件,如立柱 等,的方法)
試體尺寸	兩層樓高的試驗牆(裝配 於框架上) (約 5.3m 高×4.1m 寬)	試驗牆尺寸同 NFPA 285 層間塞至少 4m 長	配合門牆爐開口大小
試驗火源	900 kW 的測試室燃燒器 400 kW 的窗戶燃燒器 (前者點燃 5 分鐘後再點燃)		門牆爐內燃燒器 (參照 BS EN 1364-1)
試驗時間	30 分鐘	2小時(前30分鐘過程與 NFPA 285相同,之後將室 內溫度控制在E119溫度 曲線的指定範圍內)	不限,視實驗需求而定。
時間-溫度曲線	見文獻[1][2]		見文獻[3]
未通過試驗條件	牆外表面的火焰延燒至 窗戶上方 3.05 公尺以上 時,或中心線兩側 1.5 公 尺以外 帷幕牆二樓背火面溫度 達 206℃以上	T 等級: 層間塞非曝火面上偵測的 溫度超過初始溫度的 181℃以上 F 等級: 火焰突破層間塞/層間塞非 曝火面上的棉花墊遭火焰 或熱氣點燃	檢視牆面及封口處遇火後的完 整度及密封狀況(參照 BSEN 1364-1) 牆面是否有變形產生

表 3-16 NFPA 285、ASTM E2307-15b 與 BS EN 1364 之比較分析

(資料來源:何明錦、林大惠、李訓谷、胡幃傑、劉育良,建築物帷

幕牆垂直立面火焰延燒特性之研究。內政部建築研究所協同研究報告,2016年12月。)

第五節 外牆或帷幕牆防火阻熱性能分析

在106年度建研所計畫案[11]中已經完成一次ASTM E2307-15b 試體試驗, 圖 3-34 至圖 3-37 為廠商提供之設計圖,圖 3-38 為施工完成之試體外觀,圖 3-39 與圖 3-40 為測試室與觀察室內部之防護,在此次試體試驗所使用之帷幕牆 為直橫料鋁帷幕牆,試體的框架為鋁擠型,在樑帶上下範圍部分使用鍍鋅鋼板進 行防護。

圖 3-34A 廠商帷幕牆設計圖(正視圖)

圖 3-35A 廠商帷幕牆設計圖(測視圖)

<u>圖 3-36A 廠商帷幕牆設計圖(平剖圖)</u>

圖 3-37 A 廠商帷幕牆與層間塞設計圖

圖 3-38 106 年度計畫案之試體外觀

<u>圖 3-39 106 年度計畫案試體試驗屋 1F 試驗室之防護</u> (資料來源:蔡綽芳,胡幃傑,蘇鴻奇,羅啟文,林大惠,陳俊貴, 楊明璁,黃俊諭,帷幕牆層間縫隙構造防火性能及設計構法之研究, 內政部建築研究所協同研究報告,2017 年。)

圖 3-40 106 年度計畫案試體試驗屋 2F 觀察室之防護

此次試驗共進行 54 分鐘 33 秒,主要是火焰穿透層間塞並點燃阻煙膠後終止 試驗。本次試驗所使用的 LPG 流量如表 3-17 所示,實驗歷程如表 3-18 表 3-19 所示,現場布置與火焰照片如圖 3-38 至圖 3-44,熱熱像儀影像如圖 3-45。第 一次試體試驗的升溫曲線如圖 3-46 及圖 3-47 所示,而溫度誤差隨時間的變化 則如圖 3-48 至圖 3-49 所示。其中 5 號熱電偶因為功能失效,因此測得數據不 予採計。測試室內完整試驗期間的溫度變化則由圖 3-50 所示。

Time Internal	Room Burner (m ³ /min)		Window Burner (m ³ /min)	
(min)	ASTM E2307-15b	Test 9 (0.7/0.6x)	ASTM E2307-15b	Test 9 (0.3/0.2x)
0-5	1.08	0.76	0	0
5-10	1.08	0.76	0.25	0.08
10-15	1.22	0.85	0.34	0.07
15-20	1.30	0.91	0.45	0.07
20-25	1.30	0.91	0.54	0.08
25-30	1.42	0.99	0.62	0.09
30-35	1.42	0.85	0.62	0.09
35-40	1.42	0.78	0.62	0.09
40-45	1.42	0.99	0.62	0.09
45-50	1.42	0.99	0.62	0.09
50-55	1.42	0.99	0.62	0.09

表 3-17 燃燒器流量

(資料來源:蔡綽芳,胡韓傑,蘇鴻奇,羅啟文,林大惠,陳俊貴, 楊明璁,黃俊諭,帷幕牆層間縫隙構造防火性能及設計構法之研究, 內政部建築研究所協同研究報告,2017年。)

63

Time (hr : min : sec)	發生現象
00:00:00	測試室燃燒器點燃,實驗開始。
00:05:00	窗戶燃燒器點燃。
00:06:00	玻璃開始裂開,現場有巨響。
00:06:15	窗户開口部上方玻璃開始掉落。
00:06:20	窗戶開口部上方玻璃繼續掉落,其中一片落在窗戶燃燒 器出火口上。
00:10:50	細碎玻璃掉落。
00:14:14	二樓下半部玻璃開始裂開。
00:15:14	帷幕牆上緣冒煙。
00:15:21	窗戶開口部上方鋁料燒毀。
00:16:00	窗戶開口部中間兩根鋁料變形。
00:19:14	位於二樓樓板處的橫梁邊緣著火。
00:20:07	原落於燃燒器出火口上的玻璃碎片改變位置,中間處的 火焰高度開始變高。
00:22:44	窗戶開口部上方中央處鍍鋅鋼板邊緣著火。
00:24:17	二樓樓板以上的玻璃開始掉落, 位於該處的6號熱電偶 位置開始隨氣流擺盪。
00:36:11	二樓樓板以上的玻璃掉落。
00:40:47	二樓樓板以上位於角落的玻璃掉落。
00:54:33	試驗結束。

表 3-18 試驗歷程表(帷幕牆外部)

Time (hr : min : sec)	發生現象
00:00:00	室內燃燒器點燃,實驗開始。
00:02:43	試驗框與樓板連接支架(室內往窗戶看右側)處有煙流
	飄出。
00:05:00	點燃窗戶燃燒器。
00:06:00	玻璃發出聲音。
00:09:08	煙流量變多。
00:16:00	從二樓窗戶可以看到室外火焰。
00:16:30	中間偏左的熱電偶處有煙流飄出。
00:19:30	帷幕牆與層間塞交接處有煙流飄出。
00:20:30	層間塞中間熱電偶部位有煙流飄出。
00:30:00	層間塞中間熱電偶部位飄出的煙流變多。
00:30:00~00:47:00	煙流持續漂流至觀察室,室內可感覺到溫度明顯上升
	(體感)
00:48:00	開始有火焰從層間塞與帷幕牆交接處竄出,但不連續。
00:52:30	層間塞與帷幕牆交接處縫隙明顯變大,從觀察室已經可
	以看到火焰。
00:53:40	火焰延燒至二樓,阻煙膠被點燃。

表 3-19 試驗歷程表(觀察室)

建築外牆板及帷幕牆層間交接構造防火性能驗證之研究

圖 3-41 現場布置圖

圖 3-42 窗戶燃燒器火焰正視圖

(資料來源:蔡綽芳,胡韓傑,蘇鴻奇,羅啟文,林大惠,陳俊貴, 楊明璁,黃俊諭,帷幕牆層間縫隙構造防火性能及設計構法之研究, 內政部建築研究所協同研究報告,2017年。)

圖 3-43 窗戶燃燒器火焰側視圖

<u>圖 3-44 玻璃碎片掉落於窗戶燃燒器出火口</u> (資料來源:蔡綽芳,胡幃傑,蘇鴻奇,羅啟文,林大惠,陳俊貴, 楊明璁,黃俊諭,帷幕牆層間縫隙構造防火性能及設計構法之研究, 內政部建築研究所協同研究報告,2017年。)

試驗進行五分鐘並點燃窗戶燃燒器後,位於窗口上方的玻璃開始破裂,並於 試驗六分鐘之後開始掉落。在約6分20秒的時候,其中一塊玻璃碎片掉落於窗 戶燃燒器的出火口上,並蓋住了火焰(圖 3-44)。由於此玻璃碎片落於燃燒器的 中央位置,使得位於帷幕牆外表面中心線上的2號至7號熱電偶所量測的溫度驟 降,直到該片玻璃在試驗進行約20分鐘後掉落至地面,溫度才開始升高(圖 3-46),並回復至 ASTM E2307-15b 所規定的容許範圍內(圖 3-48)。從熱像儀影 像圖 3-45)中,我們可以觀察到火焰在第10分鐘以及第15分鐘時,溫度分布因 為中間部分被玻璃碎片蓋住而呈現中間低兩側高的「凹」字型;而火焰在試驗進 行20分鐘之後,玻璃碎片離開出火口後恢復以往中間較高兩側較低的三角形型 態。

在試驗進行至約24分鐘時,位於樑帶上方中央的玻璃也開始破碎並掉落。 位於該處的4-7號熱電偶原本以耐火膠帶固定於帷幕牆上,在表面玻璃掉落後, 整束熱電偶離開了帷幕牆表面的位置,開始隨上升的熱氣擺盪,因此在該時間點 之後所量測的溫度上升幅度開始趨緩,其中以6號熱電偶的結果最為明顯。

測試室內的溫度,由於試驗條件皆與第九次校正牆試驗相同,因此兩次的試驗結果也非常相似。試驗前 30 分鐘,位於測試室天花板下方以及帷幕牆內表面所量測到的溫度皆符合 ASTM E2307-15b 的規範(圖 3-47、圖 3-49),而在試驗第 30 分鐘後至 54 分鐘試驗結束時,測試室內的溫度亦符合 ASTM E119 的規範(圖 3-50)。

69

圖 3-45 熱像儀影像

圖 3-46 帷幕牆外表面各點溫度變化

圖 3-47 測試室內部溫度變化

<u>圖 3-48 帷幕牆外表面與校正牆外表面規定溫度誤差變化</u> (資料來源:蔡綽芳,胡幃傑,蘇鴻奇,羅啟文,林大惠,陳俊貴, 楊明璁,黃俊諭,帷幕牆層間縫隙構造防火性能及設計構法之研究, 內政部建築研究所協同研究報告,2017 年。)

圖 3-50 測試室內1小時溫度變化

根據 ASTM E2307-15b,在試驗進行期間層間塞下方的氣壓需保持在 2.5 Pa 以上。為了測量該處的氣壓,研究團隊在距離測試室牆面 10 公分,分別離地面 0.5 公尺以及 1.6 公尺兩處各裝設一支壓力探頭測量該處的氣壓變化,並由兩處 的高度去推算出層間塞底部(距地面 2.1 公尺處)的氣壓。如圖 3-51 所示,試驗期 間層間塞底部的的氣壓皆大於 2.5 Pa,因此符合法規要求。

圖 3-51 測試室內部氣壓變化

(資料來源:蔡綽芳,胡韓傑,蘇鴻奇,羅啟文,林大惠,陳俊貴, 楊明璁,黃俊諭,帷幕牆層間縫隙構造防火性能及設計構法之研究, 內政部建築研究所協同研究報告,2017年。)

本次試驗在進行至約9分鐘時,已開始有煙流穿透層間塞到達觀察室,而在 試驗進行至15分鐘後煙流量開始顯著增加。試驗進行至第48分鐘時,開始有不 連續的火光出現在帷幕牆以及層間塞的交接處,直到試驗進行至第52分鐘之 後,由於帷幕牆樑帶的鍍鋅鋼板脫落而失去保護,使得火焰直接延燒至觀察室, 並引燃層間塞表面的阻煙膠。試驗最後於54分鐘33秒時終止。圖 3-52 至圖 3-54 為層間塞非曝火面上阻煙膠引燃之情形。圖 3-55 及圖 3-56 可觀察到因鍍鋅鋼 板脫落而出現的縫隙,以及帷幕牆試體鋁擠型骨架的變形狀況。

圖 3-52 層間塞非曝火面的阻煙膠引燃現象

(資料來源:蔡綽芳,胡愇傑,蘇鴻奇,羅啟文,林大惠,陳俊貴, 楊明璁,黃俊諭,帷幕牆層間縫隙構造防火性能及設計構法之研究, 內政部建築研究所協同研究報告,2017年。)

圖 3-53 層間塞非曝火面的阻煙膠引燃現象

圖 3-54 層間塞非曝火面阻煙膠燒焦

(資料來源:蔡綽芳,胡韓傑,蘇鴻奇,羅啟文,林大惠,陳俊貴, 楊明璁,黃俊諭,帷幕牆層間縫隙構造防火性能及設計構法之研究, 內政部建築研究所協同研究報告,2017年。)

圖 3-55 帷幕牆的鍍鋅鋼板脫落

圖 3-56 帷幕牆的鍍鋅鋼板脫落

根據 ASTM E2307-15b T-Rating 的判定標準,當層間塞的量測表面上任一點 溫度高於起始溫度 181℃以上、或是平均量測溫度高於起始溫度 139℃以上時, 即判定層間塞的阻熱功能失效,或是有火焰竄出,則是防火性能失效。由於此次 試驗的起始溫度為 25℃,因此各點所溫度上限為 206℃,平均量測溫度的上限則 為 164℃。層間塞非曝火面上熱電偶的位置如圖 3-57 所示;層間塞非曝火面各 量測點在試驗過程的溫度變化如圖 3-58 所示。

於試驗進行期間, 位於中間位置的層間塞與帷幕牆交界處所量測的溫度一直 高於其他點, 試驗時間 48 分鐘時, 可觀察到層間塞與帷幕牆交接處有不連續的 火焰產生, 之後於 52 分 27 秒時, 鍍鋅鋼板脫落造成火焰穿透層間塞引燃阻煙膠, 該層間塞中心線上的溫度超過 206℃的上限,因此判定層間塞的 F-rating 與 T-Rating 於此時失效。層間塞與帷幕牆試體交界處以及中心處所量測的溫度分別 在 52 分 38 秒以及 53 分 05 秒時超過 206 ℃。而試驗進行至 54 分 33 秒中止前, 層間塞非曝火面的平均溫度為 155 ℃, 尚未超出 164 ℃ 的上限。

圖 3-57 層間塞背火面熱電偶布置

圖 3-58 層間塞非曝火面的溫度變化

本試驗另外依據 NFPA 285 所要求之熱電偶布放位置,該試驗總共僅需進行 30 分鐘,並依據帷幕牆表面的延燒情形以及溫度變化作為判定通過測試標準。 在試驗期間,帷幕牆外表面的火焰不得延燒至窗戶以上 3.05 公尺處,以及垂直 中線左右各 1.52 公尺處(圖 3-59 中紅框範圍)。而位於該高度上限的 11、14-17 共5處之熱電偶,試驗期間所量測的溫度亦不得高於 538 ℃。該 5 處的熱電偶溫 度變化如圖 3-60 所示;從圖中可看到各點的溫度在試驗前 30 分鐘皆未超過 538 ℃的上限,其中溫度最高的 11 號熱電偶位於中心線上,在 30 分鐘時溫度為 307.9 ℃,而試驗中止前的溫度為 336.8 ℃。另外從圖中也可觀察到距離中心線同樣的 距離,帷幕牆外表面右側的溫度會高於左側。

而依據 NFPA 285 在觀察室中的帷幕牆背火面上所布置的 49 號至 51 號熱電 偶(圖 3-61),在試驗期間的溫度上限則為 206 ℃。該 6 點的溫度變化如圖 3-61 所示。從圖中可觀察到距離地面 15.2 公分的 49-51 號熱電偶所量測到的溫度,比 距離地面 45.7 公分的 52-54 號熱電偶來的高。而相同水平面上,帷幕牆試體背火 面左側的溫度比右側來的高,此現象與帷幕牆外表面所量測的溫度分布相符。在 試驗進行至 30 分鐘時,溫度最高的位置為位於中間下方的 50 號熱電偶,溫度為 105.5 ℃。該處在試驗中止前的溫度上升至 192.6 ℃,依然未超出法規的上限 206 ℃。綜合以上結論,該帷幕牆試體通過 NFPA 285 的 30 分鐘防火與阻熱測試。

80

<u>圖 3-59 帷幕牆外表面火焰延燒限制範圍</u> (資料來源:蔡綽芳,胡幃傑,蘇鴻奇,羅啟文,林大惠,陳俊貴, 楊明璁,黃俊諭,帷幕牆層間縫隙構造防火性能及設計構法之研究, 內政部建築研究所協同研究報告,2017年。)

圖 3-60 帷幕牆外表面窗戶以上 3.05 公尺溫度分布

(資料來源:蔡綽芳,胡韓傑,蘇鴻奇,羅啟文,林大惠,陳俊貴, 楊明璁,黃俊諭,帷幕牆層間縫隙構造防火性能及設計構法之研究, 內政部建築研究所協同研究報告,2017年。)

圖 3-61 觀察室內帷幕牆非曝火面溫度變化

(資料來源:蔡綽芳,胡韓傑,蘇鴻奇,羅啟文,林大惠,陳俊貴, 楊明聰,黃俊諭,帷幕牆層間縫隙構造防火性能及設計構法之研究, 內政部建築研究所協同研究報告,2017年。)

第四章 帷幕牆與層間塞系統防火試驗

第一節 試體試驗

試體建置

本計畫案已進行一次 ASTM E2307-15b 試驗,依照 ASTM E2307-15b 進行熱 電偶布置與試驗判定,除了 ASTM E2307-15b,本計畫參照了 NFPA 285 進行熱 電偶布置,進行輔助的試驗判定,帷幕牆層間交接構造據 ASTM E2307-15b 之規 定,帷幕牆試體之大小至少為 5.34 公尺(高)×4.06 公尺(寬);牆面至少須延伸至 測試室樓板下方 51mm、試驗屋頂部以上 610mm、以及牆面兩側各 305mm 的距 離,並須完全覆蓋試驗屋的正面。在一樓測試室處,試體牆面中央將會有一個 762mm×1981mm 大小的窗戶開口。窗戶高度雖沒有強制,但將參考校正牆試驗 之設計,位於下緣離地 762mm處。此窗戶開口之目的為模擬實際火災發生時, 牆面受熱產生破口後火焰的延燒現象。另外,法規裡也要求帷幕牆試體的曝火 面,窗戶上緣以下的區域皆須覆蓋兩層 15.9mm 厚的 X-type 石膏板(圖 4-1)。安 裝於二樓樓板以及帷幕牆試體間的層間塞尺寸大小則為長度至少須 4.06 公尺 長,而寬度則依各廠商設計為主。在 106 年度內政部建研所計畫案中,已經完成 了第一次 ASTM E2307-15b 試驗,本研究目前已進行完第二次 ASTM E2307-15b 試驗,兩次試體在標帶防護的位置不同,本研究也將會進行兩次試驗的比較。

圖 4-2 為 ASTM E2307-15b 國外試驗現場的配置,圖 4-3 則為防火實驗中 心目前尚未安裝帷幕牆試體之防火試驗屋。圖中橘色框架為安裝於防火試驗屋上 的試體框架。

83

圖 4-1 ASTM E2307-15b 帷幕牆試體設計

(資料來源:ASTM E2307-15b Standard Test Method for Determining Fire Resistance of Perimeter Fire Barriers Using Intermediate-Scale, Multi-story Test Apparatus, ASTM International, 2015.)

圖 4-2 國外試驗現場

(資料來源: Owens Corning, Aluminum-Framed Curtain Wall Perimeter Fire Containment System - ASTM E2307, Technical Bulletin, 2016)

圖 4-3 安裝試體框架至防火試驗屋

(本研究製作)

圖 4-4、圖 4-5 為本次計畫案依照 ASTM E2307-15b 進行測試的帷幕牆試體 設計圖,帷幕牆試體表面為強化玻璃,在一、二樓樓板樑帶的上下位置安裝鍍鋅 鋼板作為防火背板,開口部窗戶上緣以下的曝火面,依照法規要求安裝強化石膏 板保護。此帷幕牆試體骨架在樑帶部分橫料由鋼材構成,先將直料固定在框架之 後,再進行橫料的安裝,骨架安裝完成後,進行鍍鋅鋼板以及強化石膏板的安裝, 最後安裝強化玻璃,圖 4-6 至圖 4-10 為施工之過程。 建築外牆板及帷幕牆層間交接構造防火性能驗證之研究

圖 4-4 試體設計圖(正視圖)

(資料來源:B廠商)

圖 4-5 試體設計圖(側視圖)

(資料來源:B廠商)

圖 4-6 將骨架固定在試體框架上

圖 4-7 鍍鋅鋼板安裝

圖 4-8 強化玻璃安裝

(本研究製作)

帷幕牆試體安裝完畢後,為了保護立柱以及樑帶部分,會將岩棉覆蓋在試驗 屋一樓以及二樓的內表面並且固定,此處使用的岩棉材料與層間塞使用的岩棉相 同,唯密度較層間塞使用的岩棉大,試驗屋樑帶位置內部表面的岩棉施工完成後 會進行層間塞的施作。 層間塞的安裝過程中,層間塞所使用的材料為密度 64kg/m³的岩棉,為了保 持 80%的壓縮比,需以寬度 30 公分的未壓縮岩棉來填塞現場 25 公分寬的層間縫 隙。安裝的方法為先以塑膠套將岩棉綑綁,壓縮至所需的寬度後塞進層間縫隙 中。將綑綁的塑膠套移除後,岩棉將會自動膨脹並與曾間縫隙緊密配合。確定岩 棉的表面與樓板等高後,即可塗上厚度 1/8 英吋的阻煙膠,並將表面延伸至覆蓋 樓板 1/4 英寸的長度。

<u>圖 4-9 測試室內部窗戶開口上方使用岩棉進行保護</u> (本研究製作)

<u>圖 4-10 觀察室外牆內表面使用岩棉進行保護,並在層間塞上方施加</u> 阻煙膠

(本研究製作)

熱電偶布置

ASTM E2307-15b 主要目的為測試層間縫隙處之層間塞的防火性能,判斷火 焰是否能穿透層間縫隙到達二樓,因此試驗期間主要只量測測試室內的溫度以及 層間塞背火面的溫度變化。測試室內的熱電偶安裝位置,除了校正試驗中天花板 下方 15.2 公分處五點(圖 4-11 中 41 號至 45 號熱電偶)、及帷幕牆內表面上距地 面 182.9 公分處三點(圖 4-12 中 46 號至 48 號熱電偶)之外,尚需在層間塞底部處 安裝四個裸線熱電偶。此四個裸線熱電偶分別距離帷幕牆內表面及層間底部 30.5 公分,並彼此距離 61 公分平均分布於測試室內,如圖 4-13 圖 4-14 所示。

圖 4-11 測試室上方熱電偶配置

(資料來源: NFPA 285 Standard Method of Test for the Evaluation of Flammability Characteristics of Exterior Non-Load-Bearing Wall Assemblies Containing Combustible Components Using the Intermediate-Scale, Multistory Test Apparatus, National Fire Protection Association, 2012.)

圖 4-12 測試室內表面熱電偶配置

(資料來源: NFPA 285 Standard Method of Test for the Evaluation of Flammability Characteristics of Exterior Non-Load-Bearing Wall Assemblies Containing Combustible Components Using the Intermediate-Scale, Multistory Test Apparatus, National Fire Protection Association, 2012.)

圖 4-13 層間塞底部熱電偶位置

(資料來源: ASTM E2307-15b Standard Test Method for Determining Fire Resistance of Perimeter Fire Barriers Using Intermediate-Scale, Multi-story Test Apparatus, ASTM International, 2015.)

根據 ASTM E2307-15b, 需分別在層間塞背火面的中線、層間塞與樓板的交 界處、及與外牆的交界處上布置至少兩個熱電偶,另外每塊層間塞的中心處也需 布置一個熱電偶(圖 4-14)。由於本試驗的試體總共在層間縫隙左、中、右處各有 安裝一塊岩棉作為層間塞,因此選擇在這三塊岩棉的垂直中線上依照法規所指定 的位置安裝 4 個熱電偶, 如圖 4-15 所示。最後層間塞背火面上總共安裝 12 個熱 電偶, 而每個熱電偶的表面皆依法要求裝上隔熱墊片。

建築外牆板及帷幕牆層間交接構造防火性能驗證之研究

(資料來源:ASTM E2307-15b Standard Test Method for Determining Fire Resistance of Perimeter Fire Barriers Using Intermediate-Scale, Multi-story Test Apparatus, ASTM International, 2015.)

圖 4-15 層間塞背火面熱電偶位置

(本研究製作)

NFPA 285 主要目的為測試帷幕牆的延燒與防火性能,判斷火焰是否會沿著 帷幕牆表面延燒至二樓,因此試驗期間主要量測帷幕牆上內外表面的溫度變化。 本試驗依照 NFPA 285 的規定(圖 4-16),於帷幕牆外表面上安裝 1 號至 13 號熱 電偶於中心線上,並於窗戶上方 3.05 公尺處(與 11 號熱電偶同高)安裝 14 號至 17 號熱電偶。內表面則沿中心線安裝 21 號至 28 號熱電偶,並於觀察室內的帷幕牆 內表面上安裝 49 號至 54 號熱電偶如圖 4-17 所示。

圖 4-16 帷幕牆面熱電偶布置

(資料來源: NFPA 285 Standard Method of Test for the Evaluation of Flammability Characteristics of Exterior Non-Load-Bearing Wall Assemblies Containing Combustible Components Using the Intermediate-Scale, Multistory Test Apparatus, National Fire Protection Association, 2012.) 建築外牆板及帷幕牆層間交接構造防火性能驗證之研究

圖 4-17 觀察室內帷幕牆內表面熱電偶布置

(資料來源:NFPA 285 Standard Method of Test for the Evaluation of Flammability Characteristics of Exterior Non-Load-Bearing Wall Assemblies Containing Combustible Components Using the Intermediate-Scale, Multistory Test Apparatus, National Fire Protection Association, 2012.)

試驗結果

表 4-1 為根據內政部建研所 106 年「帷幕牆層間縫隙構造防火性能及設計構 法之研究」實驗之結果所設定之燃燒器流率,在試驗進行至 87 分鐘時,為了使 測驗室內溫度更接近 ASTM E119 之規範,將室內燃燒器的流率增加至 1.2 m3/min。

本次試驗總共進行了2個小時,實驗歷程如表 4-2 及表 4-3 所示,現場布 置如圖 4-18 所示,圖 4-19 和圖 4-20 為窗戶燃燒器火焰,熱像儀影像如圖 4-21 所示,試體的升溫曲線如圖 4-22 所示,測驗室內的溫度變化如圖 4-23 所示, 溫度誤差隨著時間的變化如圖 4-24 所示,圖 4-25 為測試室內溫度變化。

Time	Room Burner (m ³ /min)		Window Bur	mer (m ³ /min)
Interval	ASTM	Test 9	ASTM	Test 9
(min)	E2307-15b	(0.7/0.6 x)	E2307-15b	(0.3/0.2x)
0-5	1.08	0.76	0	0
5-10	1.08	0.76	0.25	0.08
10-15	1.22	0.85	0.34	0.07
15-20	1.30	0.91	0.45	0.07
20-25	1.30	0.91	0.54	0.08
25-30	1.42	0.99	0.62	0.09
30-35	1.42	0.85	0.62	0.09
35-40	1.42	0.78	0.62	0.09
40-45	1.42	0.99	0.62	0.09
45-50	1.42	0.99	0.62	0.09
50-55	1.42	0.99	0.62	0.09
55-60	1.42	0.99	0.62	0.09
60-65	1.42	0.99	0.62	0.09
65-70	1.42	0.99	0.62	0.09
70-75	1.42	0.99	0.62	0.09
75-80	1.42	0.99	0.62	0.09
80-85	1.42	0.99	0.62	0.09
85-87	1.42	1.1	0.62	0.09
87-end	1.42	1.2	0.62	0.09

表 4-1 燃燒器流量

Time (hr : min : sec)	發生現象
0:00:00	實驗開始。
0:05:18	外燃燒器點燃。
0:07:40	窗户上方玻璃破裂。
0:08:35	窗户上方更多玻璃破裂。
0:09:40	窗戶兩側直料之塑膠外殼融化。
0:17:15	二樓玻璃破裂。
0:32:50	更多二樓玻璃破裂。
0:49:55	窗户上緣石膏板掉落。
1:20:05	二樓玻璃,零星碎片掉落。
2:00:00	實驗結束。

表 4-2 試驗歷程表(室外觀測)

表 4-3 試驗歷程表(觀察室)

Time (hr : min : sec)	發生現象
0:00:00	實驗開始(下午02:10)。
0:05:18	外燃燒器點燃。
0:07:40	左側直料位置的岩棉漏煙。
0:09:55	右側直料位置的岩棉漏煙。
0:14:42	中間岩棉漏煙。
0:19:30	固定岩棉釘子的白色蓋子脫落(可能是因受熱變形)。
0:22:20	右側外牆與樓板的固定件位置的岩棉漏煙。
0:30:20	壁面岩棉的縫隙漏煙。
0:34:10	阻煙膠開始出現膨脹的現象。
0:47:00	阻煙膠多處明顯膨脹。
0:55:00	左邊牆壁的固定件漏煙。
1:01:00	左側的固定件漏煙。
1:02:00	中間岩棉壁面靠近樓板的位置漏煙。
1:27:00	層間塞多處開始漏煙,樓板的裂縫漏煙並且有水氣。
1:37:00	左右側扣件位置的阻煙膠變色。
1:44:00	中間阻煙膠變色。
1:52:00	岩棉最頂部縫隙漏煙。
2:00:00	實驗結束。

圖 4-18 帷幕牆試體外觀

圖 4-19 窗户燃烧器火焰

建築外牆板及帷幕牆層間交接構造防火性能驗證之研究

圖 4-20 窗戶燃燒器火焰側視圖

(本研究製作)

試驗開始進行 5 分鐘之後點燃窗戶燃燒器,在時間 7 分 40 秒時帷幕牆的玻 璃開始破裂,在 9 分 40 秒時窗戶開口兩側的直料外殼融化,試驗進行過程中玻 璃持續的破裂,根據圖 4-22 可以觀察到外牆中心線 2 號到 7 號的熱電偶溫度變 化,各點在前 5 分鐘時皆未達到法規要求之溫度,2 號點 5 至 10 分鐘溫度進入 法規規定範圍,到 30 分鐘時在法規規定之上限,3 號點在 15 分鐘後溫度約在法 規下線符合法規標準,其餘溫度點皆低於法規之標準。直到試驗結束帷幕牆骨架 與鍍鋅鋼板皆未掉落。

測試室的溫度在試驗開始 5 分鐘到 15 分鐘這段時間內表面的量測點略高於 法規標準,15 分鐘後天花板下方與內表面量測之溫度皆符合 ASTM E2307-15b 的規範,30 分鐘後到試驗結束,室內溫度也符合 ASTM E119 的規範。

圖 4-21 實驗歷程熱像儀影像

(本研究製作)

圖 4-23 測驗室內部溫度變化

(本研究製作)

圖 4-25 測試室內 2 小時溫度誤差變化

根據表 4-3 表 4-3 試驗歷程表(觀察室)試驗開始 7 分 40 秒後,左側直料位 置的岩棉開始有煙流流出,隨著試驗進行,岩棉煙流流出的位置變多,試驗開始 後 34 分 10 秒,阻煙膠開始膨脹,試驗到了 47 分時,阻煙膠多處明顯開始膨脹,

根據 ASTM E2307-15b T-Rating 的判定標準,當層間塞的量測表面上任一點 溫度高於起始溫度 181°C 以上、或是平均量測溫度高於起始溫度 139°C 以上時, 即判定層間塞的阻熱功能失效,或是有火焰竄出,則是防火性能失效。此次試驗 起始溫度為 17°C,各點溫度上限 198°C,平均量測溫度上限 156°C,層間塞非曝 火面上熱電偶位置如圖 4-26 所示,各量測點在試驗過程中的溫度變化如圖 4-27 所示。 在試驗進行中,右側扣件右方的層間塞溫度在40分27秒時超過上限198°C, 61分52秒右側層間塞中心線處的量測點超過198°C,中間層間塞65分42秒時 層間塞與外牆交接處的溫度超過上限198°C,從圖中也可觀察到在中間與左邊的 層間塞量測點,層間塞與外牆交接位置的溫度較層間塞中心線和層間塞與樓板交 接位置的溫度高,右側的層間塞量測點,中心線位置的溫度最高,其次是外牆與 層間塞交接處溫度,最低的則是層間塞與樓板交接處。非曝火面平均溫度至結束 前都未超過156°C的上限。

圖 4-26 層間塞背火面熱電偶位置

本試驗另外依據 NFPA285 所要求之熱電偶位置布置熱電偶, NFPA285 試驗 進行僅需要 30 分鐘,依據帷幕牆表面延燒情形以及溫度變化作為判定通過測試 標準,在試驗期間帷幕牆外表面的火焰延燒不得延燒至窗戶以上 3.05 公尺處, 以及垂直中線左右各 1.52 公尺處(圖中紅框範圍)而位於高度上限處的熱電偶(編 號 11、14-17 共五點)量測溫度不可超過 538°C。該五點的量測溫度變化如圖 4-28 所示,從試驗開始到試驗結束溫度皆沒有超過 538°C,溫度最高的點為位於中心 線的 11 號熱電偶線,到實驗終止前溫度為 311.6°C,從圖中也可觀察到左側右側 的溫度差異並不大。

牆體背火面上所布置的 49 號至 54 號熱電偶,根據 NFPA285 之規定,試驗 期間的溫度上限為 206°C。該 6 點的溫度變化如圖 4-29,可以觀察到牆面左側的 熱電偶 49 號和 52 號點與右側的 51 號點和 54 號點,距離地面 15.2 公分的 49 號 點量測到的溫度大於距離 45.7 公分的 52 號點,中心線上的 50 號和 53 號點,距 離地面 15.2 公分 50 號點溫度比距離地面 45.7 公分的 53 號點熱電偶量測到的溫度還要來的低。在試驗進行至 30 分鐘時,所有測溫點皆沒有超過法規的上限 295℃。綜合以上結論,該帷幕牆試體通過 NFPA285 的 30 分鐘防火與阻熱測試。

圖 4-28 帷幕牆外表面窗戶以上 3.05 公尺溫度分布

圖 4-29 觀察室內帷幕牆非曝火面溫度變化

(本研究製作)

建築外牆板及帷幕牆層間交接構造防火性能驗證之研究

第二節 防火試驗屋修復與改裝

本年度計畫案進行試體試驗之後,該試驗屋一樓天花板鋪棉發生塌陷之情 形,之後試驗屋於一二樓之間的樓板也須切出符合 ASTM E2307-15b 規範約 45 公分預鑄樓板與層間塞預留空間,圖 4-30 至圖 4-35 為試驗屋整修過程。

圖 4-30 未整修前試驗屋外觀

圖 4-31 测試室的天花板鋪棉損壞

(本研究製作)

圖 4-32 樓板切除過程

圖 4-33 測試室內部修護(一)

<u>圖 4-34 测试室内部修護(二)</u>

圖 4-35 測試室內部修護(三)

第三節 不同試體的試驗情況分析

表 4-4 為目前建築技術規則與防火時效相關之條文,根據第 79 條之 3,外 牆與樓板交接處應有高度 90 公分以上具樓地板同等以上防火之時效,圖 4-36 為帷幕牆與層間交接構造相關防火時效示意圖。

表 4-4 建築技術規則防火時效相關範圍內容

條次	規範項目	範圍內容
第74條	構造之防火時效認 定	經主管機關認可具半小時以上防火時效者
第79條 之3	樓層區劃	外牆與樓板交接處,應有高度 90cm 以上其 構造具樓地板同等以上之防火時效

<u>圖 4-36 帷幕牆與層間交接構造相關防火時效規範示意圖</u> (本研究製作)

在內政部建研所 106 年度帷幕牆層間縫隙構造防火性能及設計構法之研 究,進行校正牆試驗與一次的試體試驗,本年度計畫案目前已進行一次試體試 驗,校正試驗與兩次試體試驗差異如圖 4-37 至圖 4-39 所示,本年度試體試驗 的設計為標帶 90 公分防護之標準,窗戶開口上緣距離二樓樓地板平面為 110cm, 相較第一次試體試驗窗戶開口上緣距離二樓樓地板平面 75cm,加熱條件的差異 可能影響兩次試驗結果。另外 106 年度計畫案進行校正試驗時,燃燒器與校正牆 面距離為 15 公分,在試體試驗時窗戶燃燒器定位為距離框架 15 公分,但是第一 次試體試驗帷幕牆試體的牆面突出框架約 8 公分,窗戶燃燒器幾乎與牆面接觸, 因此將窗戶燃燒器的位置調整至距離牆面 15cm。第二次試體試驗的牆面約突出 框架 5 公分,燃燒器的位置與校正試驗相同,距離框架平面 15 公分,校正試驗 與試體試驗的加熱條件有所差異。試體試驗的結果發現,帷幕牆牆體與層間塞在 防火性能的表現會互相影響,若是帷幕牆損壞,也會直接使層間塞曝火造成防火 性能失效,未來法規在防火性能的判定需要參考試驗結果進行擬定。

將此次試體試驗的結果與 106 年度帷幕牆層間縫隙構造防火性能及設計構 法之研究進行之試體試驗結果進行比較,106 年的試體試驗帷幕牆牆體使用的骨 架為銘材,本年度進行之帷幕牆試體樑帶位置骨架為鋼材,使用銘材之帷幕牆試 體在樑帶部位的銘受到高溫熔解後,樑帶位置的鍍鋅鋼板發生了脫落情形,造成 了層間塞直接曝火防火性能失效,本年度進行之試體試驗,直到試驗時間2小時 結束,帷幕牆牆體骨架與鍍鋅鋼板皆能維持支撐能力。但層間塞非曝火面溫度在 40 分鐘有一溫度量測點超過了溫度上限,較 106 年進行之試體試驗來的早,然 而該點的位置位於試驗屋的右側,並非室外燃燒器直接加熱的位置,推測是施工 不良造成溫度提早超過上限,直到了試驗進行 60 分鐘後才有另外兩個溫度點超 過溫度上限,兩次試驗使用之層間塞工法相似,在試驗過程中如果帷幕牆牆體能 夠維持支撐效果,鍍鋅鋼板不脫落,層間塞的防火性能有一會達到一小時之防火 時效。

(本研究製作)

圖 4-38 106 年計畫案進行之試體試驗示意圖

圖 4-39 本研究進行之試體試驗示意圖

(本研究製作)

經過兩次的試體試驗,對於帷幕牆層間交接構造試體防火試驗中,各構件在 試驗過程中的受熱狀況與溫度變化有初步概念,本研究以內政部建築研究所防火 試驗中心之設備,進行 ASTM E2307-15b 試驗,層間交接構造防火性能之應該以 樑帶 90 公分處的防護為判定,其中包含帷幕牆與層間塞等構件。往後的試驗可 以進行兩種設計工法判定,第一種為局部設計之判定,如圖 4-40 所示藍色框部 分為耐燃之材料不進行帷幕牆體設計,在黑色部分樑帶區域依照廠商帷幕牆與層 間塞的層間交接構造設計,進行防火性能測試。第二種為整體試判定方式,如圖 4-41 所示,目前已進行之兩次實驗皆為整體判定,除了 ASTM E2307-15b 規範之 層間塞溫度判定,也能以 NFPA 285 輔助觀測外牆延燒情形與量測外牆曝火面與 背火面溫度變化。

圖 4-41 整體設計判定方式

(本研究製作)

第四節 第二次試體試驗

本研究第二次的試體試驗,於試驗屋安裝層間塞的部位有先行安置預鑄樓板;該預鑄樓板的形式與材料,為相關業者依照設計需求或案場特性進行製作。 受測試的帷幕牆以鋁材為主,並且帷幕牆與層間塞之間有另外增加防護性設計, 希望能夠達到更高的防火與阻熱性能時效,如圖 4-42 與圖 4-43 所示。正式的試 體試驗時間會在計畫結案前進行。

圖 4-42 第二次試體試驗設計圖(正視圖)

(資料來源:廠商 C)

圖 4-43 第二次試體試驗設計圖(側視圖)

(資料來源:廠商 C)

第五節 循環試驗設備規劃

根據 ASTM E2307-15b[1],試驗委託者必須提供檢測實驗室有關受測的周邊 接合部保護系統之標稱、最大值與最小值接合部寬度值。當最大接合部寬度不等 於最小接合部寬度時,依規定須要進行移動循環試驗。

本研究依據 ASTM E2307-15b 的相關要求,以及國外實際試驗方式的資料, 思考出循環試驗的兩個設計方案。方案一:固定預鑄樓板,搖動帷幕牆進行相關 循環試驗。此設計方案會面臨到許多的問題,如(1)帷幕牆重量過重,需要相當 大的力量才能夠使帷幕牆移動。(2)帷幕牆在位移過程會有現場安全性的疑慮。(3) 同時移動帷幕牆與試體框,會使試體框的使用壽命縮短,以及增加變形的問題。 由上述多種考量因素的結果顯示,方案一不是一個好的設計方式。 方案二:固定帷幕牆,搖動預鑄樓板進行相關循環試驗。由於預鑄樓板本身 的重量遠比帷幕牆輕,並且又是一個消耗性的物件;因此在整體設計的規劃會較 容易進行相關試驗。方案二的設計重點分為三項:(1)預鑄樓板支撐架、(2)預鑄 樓板位移與固定裝置、(3)位移驅動設備。詳細如圖 4-44 與圖 4-45 所示

- (1)預鑄樓板支撐架:預鑄樓板支撐架主要設置於防火試驗屋的兩側,兩側支撐 架上方設置一個平面,位於支撐架與平面的交接處以油壓系統支撐,此油壓 系統能進行上下行程的位移。
- (2)預鑄樓板位移與固定裝置:支撐架上方平面,設置有另一組位移與固定裝置; 該固定裝置為可調整大小的凹槽設計,主要用來放置與固定不同尺寸的預鑄 樓板。位移裝置設計在固定裝置下方,主要是滑輪與滑軌的設計,並能使固 定裝置藉由位移驅動設備,產生前後的位移。
- (3) 位移驅動設備:循環試驗的上下與前後位移的動力源,主要是由油壓推動設備所控制。油壓推動設備設置在預鑄樓板支撑柱的上半部,以及位移與固定裝置的後方。

圖 4-46 為循環試驗設備示意圖;關於試驗步驟順序為(1)使用位移與固定裝 置將預鑄樓板固定,(2)將試體框固定於防火試驗屋,(3)試體框與帷幕牆體的連 接與固定施作,(4)層間塞與帷幕牆、預鑄樓板的固定施作,(5)啟動位移驅動設 備,進行循環試驗。(6)停止位移驅動設備,進行防火與阻熱性試驗。

123

圖 4-44 國外循環試驗設備(一)

(資料來源:Understanding the Basics of Firestopping: Part Two., https://ifpmag.mdmpublishing.com/understanding-basics-firestoppin g-part-two/)

圖 4-45 國外循環試驗設備(二)

(資料來源: Understanding the Basics of Firestopping: Part Two., https://ifpmag.mdmpublishing.com/understanding-basics-firestoppin g-part-two/)

圖 4-46 循環試驗設備規劃示意圖

第五章 外牆裝飾板延燒試驗

第一節 外牆飾板設計工法與材料分析

NFPA 285 為測試外牆延燒之試驗標準,外牆試體的設計十分多樣化,在各部分組件材料的選擇也十分多元,以下列出國外通過 NFPA285 測試的試體設計 與說明[52-57]:

1. 試體 A Carter Architectural Panels Inc[52]

圖 5-1 至圖 5-4 為試體 A 設計圖,試體組件包含立柱、外保護層、樓板平 面的防火阻隔、底漆、隔氣層、Z 型鋼、隔熱層、外牆板和內部包層。立柱使用 3-5/8 in. 20GA 鋼骨立柱,中心上 24in 固定在 20GA 鋼軌,項部與底部使用#8×1/2 in.的平頭螺釘固定。外保護層使用 4 ft. × 8 ft. × 5/8 in. Georgia Pacific DensGlass® Sheathing 安裝在外側,長邊垂直於立柱,使用#6×1-1/4 in.鑽尾鍍鋅螺絲,在周 邊間隔 8in.,內部間隔 12in. 的方式固定。

樓板平面的防火阻隔使用 4 pcf Thermafiber® mineral wool 壓縮放置。底漆 的部分在外層保護上使用 Henry® 545 Aquatac™ Primer。隔氣層為一層 Henry® Blueskin® Roof High Temperature Underlayment vapor barrier,以 3 in 重疊的方式 黏著在外保護層。安裝完隔氣層在外層石膏板後安裝 2 in. 18GA 的 Z型鋼。外牆 中空隔熱層使用 2 in. Roxul CavityRock®安裝在外保護層上,Z型鋼之間。外牆 板使用 EVO Aluminum Panel System 直接固定在Z型鋼上。內部包層為一層 4 ft × 10 ft × 5/8 in. American Gypsum FIREBLOCK TYPE X™石膏牆板以長邊垂直於 立柱的方式以#6 × 1-1/4 in. 鍍鋅鑽尾喇叭螺絲固定,螺絲間隔在周圍為 8 in. 內

圖 5-1 試體 A 設計圖(一)

(資料來源: Intertek Test Report, Report Number: 102936114SAT-004B, 2017.)

<u>圖 5-2 試體 A 設計圖(二)</u>

(資料來源: Intertek Test Report, Report Number: 102936114SAT-004B, 2017.)

<u>圖 5-3 試體 A 設計圖(三)</u>

(資料來源: Intertek Test Report, Report Number: 102936114SAT-004B, 2017.)

"Changing the Standard by Design" DURING ENVILOPEDICLIPHONE

026 Destant Drive Bronphin, ON 145 SH

Tel: 905-462 LABA Fee: 905.407.1685 tes: 1.844.888.5018 nos patoistoreroticis form massessessesses

Home of the CVL^{*} Architectural Panel System +

圖 5-4 試體 A 設計圖(四)

資料來源 (: Intertek Test Report, Report Number: 102936114SAT-004B, 2017.)

2. 試體 B Polyguard Products, Inc.[53]

圖 5-5 至圖 5-10 為試體 B 設計圖,試體組件包含內部牆面包層、外牆芯材、 窗戶開口、外保護層、隔氣層和外牆包層。內部牆面包層使用 National Gypsum 5/8 in. thick Type X 石膏板,用#10 x 1-1/4 in. 在周圍間隔 8in.,內部間隔 12in.方式 固定。在燃燒室樓層窗戶開口左右邊配置兩片垂直方向的石膏板,開口上下方使 用切割過的石膏板,長邊對著窗戶開口。二樓的石膏板,長邊平行於立柱進行配 置,所有的接縫使用 USG Sheetrock paper joint tape 來密封,並使用 Sheetrock Joint Compound 填充。

外牆芯材的部分,外牆組件包含 18 ft.長 3-5/8 in. 20GA 鋼骨立柱固定在 14ft. 20GA 鋼軌,使用#8 x 1 in.長頭鑽尾螺,在窗戶開口上每4 ft.置放水平的 16 gauge x 1-1/2" wide 的 CRC 支撐鋼固定立柱,以 1 in. x 1 in. x 3 in. x 0.030 in. 的 L 型鋼架固定,L型鋼架和立柱以兩個#8 x 1 in.的鑽尾螺絲固定,和 CRC 支撐鋼 用一個#8 x 1 in.鑽尾螺絲固定。在窗戶開口的設計,窗戶開口寬 78 in. 高 30 in, 用 20GA 的鍍鋅鋼軌構成,位置在高於一樓樓地板平面 30 in 處,厚度為 0.030 in. 的 PolyGuard Detail Sealant 覆蓋層在窗戶開口窗台表面。安裝完外牆包層後,0.04 鋁遮雨板安裝在窗戶周圍,遮雨板彎曲為 C 字型,總寬度為 7-5 / 8 in.,彎曲 90° 的 1 in.腿覆蓋內部和外部包層,使用 # 10 x 1 英寸長的六角頭自鑽螺釘將遮雨板 固定在窗口開口框架上,距開口/侧柱和門檻/侧柱接頭間隔 1 in.。

外保護層使用 5/8 in. 厚的 Georgia-Pacific DensGlass Gypsum Sheathing,使 用#10 x 1-1/4 in.長的平頭鑽尾螺絲在周圍以 8 in. 的間隔固定,內部以 12 in. 的 間隔固定,保護層的尺寸為 4 ft. x 8 ft. 和 4 ft. x 6 ft.,在每個直排個別會有 6 ft. 和 8 ft.餘隙。隔氣層部分在每個接縫處會使用 Polyguard Detail Sealant PW/ Hole Filler 來進行密封,密封膠厚度為 0.02 in.,並用滾輪方式在外保護層上加上 0.03 in.的 Polyguard Airlok Flex Gray Integrated Building Envelope。外牆包層使用 BAMCO G 500 Composite Wall,包括 0.050 in.厚鋁擠型 L 型支架,以# 10 x 1-1 / 2 英寸長的六角鑽尾螺釘固定在窗台,間距為 24 in.。 1-3 / 4 in. 鋁擠型基座安 裝在垂直 L 型支架上,跟 4 mm 的 Mitsubishi Plastics Alpolic/fr panels 裝配。鋁 擠型透過鋁製 L 型支架固定在芯材上,並用 # 10×1-1 / 2 in.長的六角頭鑽尾螺釘 固定在中心 24 in.上,4-1/2 in.寬 x 7/8 高 x 0.060 in.厚的鍍鋅鋼 hat channel, 放置在組件外的整個寬度上,使用 # 10 x 1-1 / 2 in.長六角頭鑽尾螺釘通過每個凸 緣固定到芯材,在中心上 24 in.。78 in.長 x 3/4 in. overall 高 x 3-1/2 in.寬 x 0.060 厚的鋁擠型,使用#10 x 1-1/2 in.長的六角鑽尾螺絲以中心距 24 in.方式固 定在窗台上。T型鋁擠型固定在 4mm 的 Mitsubishi Plastics Alpolic/fr panels 後方, 用來進行外牆板間的固定。外牆板使用#10 x 1 in.長的六角鑽尾螺絲通過鋁擠型 固定在 hat channel 上,在施作過程中,先將 4mm 的 Mitsubishi Plastics Alpolic/fr panels 鋪在外牆組件中心線左側,再鋪設右半部的外牆板,板子間縫隙使用 Dow 795 密封膠密封,再加上 Tremco 5/8 in.矽膠墊片。

<u>圖 5-5 試體 B 之設計圖(一)</u>

(資料來源: Architectural Testing, Report Number: C5740.01-121-24, 2013.)

(資料來源: Architectural Testing, Report Number: C5740.01-121-24, 2013.)

(資料來源:Architectural Testing, Report Number: C5740.01-121-24, 2013.)

(資料來源:Architectural Testing, Report Number: C5740.01-121-24, 2013.)

圖 5-9 試體 B 之設計圖(五)

(資料來源:Architectural Testing, Report Number: C5740.01-121-24, 2013.)

<u>圖 5-10 試體 B 之設計圖(六)</u>

(資料來源:Architectural Testing, Report Number: C5740.01-121-24, 2013.)

3. 試體 C Exterior Non-Load-Bearing MCM Wall Assembly[55]

圖 5-11 為試體C設計圖,試體組件包含內部牆面包層、外牆芯材、外保護 層、以及外牆包層。內部牆面包層:使用 National Gypsum 5/8 in. thick Type X 石 膏板,用#10 x 1-1/4 in. 在周圍間隔 8in.,內部間隔 12in. 方式固定。在燃燒室樓 層窗戶開口左右邊配置兩片垂直方向的石膏板,開口上下方使用切割過的石膏 板,長邊對著窗戶開口。二樓的石膏板,長邊平行於立柱進行配置,所有的接縫 使用 USG Sheetrock paper joint tape 來密封,並使用 Sheetrock Joint Compound 填 充。

外牆芯材的部分,外牆組件包含 18 ft.長 3-5/8 in. 20GA 鋼骨立柱固定在 14ft. 20GA 鋼軌,使用#8 x 1 in.長頭鑽尾螺,在窗戶開口上每 4 ft. 置放水平的 16 gauge x 1-1/2" wide 的 CRC 支撑鋼固定立柱,以 1 in. x 1 in. x 3 in. x 0.030 in.的 L 型鋼架固定,L型鋼架和立柱以兩個#8 x 1 in.的鑽尾螺絲固定,和 CRC 支撐鋼 用一個#8 x 1 in. 鑽尾螺絲固定。外保護層使用 5/8 in. 厚的 Georgia-Pacific DensGlass Gypsum Sheathing,使用#10 x 1-1/4 in.長的平頭鑽尾螺絲在周圍以 8 in. 的間隔固定,內部以12 in. 的間隔固定,保護層的尺寸為4 ft. x 8 ft. 和 4 ft. x 6 ft.,在每個直排個別會有6ft.和8ft.的餘隙。窗戶開口為寬78 in.x 高30 in.的 窗户開口,由 20GA 鍍鋅鋼軌,窗台位置位於一樓樓地板上方 30 in.,在安裝完 外牆板,窗戶開口的周邊用 16GA 的鍍鋅鋼板遮雨板覆蓋,並使用#12 x 1-1/2 in. 長的六角鑽尾螺絲。外牆包層安裝 4mm 厚的 Alubond panels, 垂直的鋁擠型軌道 與 5/16 in. thick. 1-1/2 in. leg x 1-1/2 in. leg x 3 in. long 的鋁架用直徑 5/16 in.長 1 in.的螺栓固定,L型架有溝槽可以容納固定件,螺栓頭會放在鋁擠型軌道內,到 想要的位置後,使用 5/16 in.的螺帽拴緊,L 型架再用六角鑽尾螺絲和外保護層 和立柱固定。L型架垂直間距 24 in,除了裝配側柱處的鋁擠型軌道位於窗戶開 口框架處的鋁擠型軌道間隔 42in., 位於外牆組件中心線上的鋁擠型軌道與位於 窗口開口邊框處的鋁擠型軌道軌道間隔 38in.,安裝完鋁擠型軌道後,5/16 in.厚 的鋁架放進軌道內使用直徑 5/16 in.長 5/16 in.的螺絲固定,鋁架的位置根據 Alubond panels 的位置決定, 並使用#6 x 1 in. 長的螺絲固定。

137

<u>圖 5-11 試體 C 之設計圖</u>

(資料來源: Architectural Testing, Report Number: C6579.01-121-24, 2017.)

4. 試體 D Demilec (USA) LLC Heatlok Soy 200[55]

圖 5-12 為試體 D 設計圖,組件包含牆體、外保護層、隔熱層、內部包層。 牆體為 18 ft.高 X14 ft. 寬的 ISMA 測驗牆由兩個 9ft.高的管子框架連接構成。外 保護層:4 ft. x 8 ft. x 5/8 in. GlasRoc® Sheathing 安裝在外牆外側,常邊垂直於立 柱使用#6 1-1/4 in.鍍鋅鑽尾螺絲固定,,在周圍間距為 12 in.,內為間距為 12 in.。 隔熱層使用 Heatlok Soy 200, 4-1/2 in.厚(密度 2.0PCF),噴塗在 GlasRoc® Sheathing 的內表面。內側包層為 4' x 10' x 5/8" USG SheetRock® Firecode Core TYPE XTM的石膏板以長邊垂直於立柱的方式,使用#6 x1-1/4" 鍍鋅喇叭頭鑽尾

螺絲在周圍以間距 12in.內部間距 12in.的方式固定。

<u>圖 5-12 試體 D 之設計圖(一)</u>

(資料來源:Interek Test Report, Report Number: 102936114SAT-004B, 2012.)

5. 試體 E: 4-mm thick Alfrex ACM Panel [55]

圖 5-13 至圖 5-15 為試體 E 設計圖,試體組驗包含外牆板、骨架、內側包 層、外保護層、隔氣層、外牆板、接縫處理和遮雨板。外牆尺寸高 18 ft. x 寬 14 ft.,由鋼骨立柱、DensGlass® sheathing、Tyvek® vapor barrier 和 4mm 的 Alfrex ACM Panel 構成。使用 3-5/8" x 1-3/8",20GA 的鍍鋅鋼骨立柱,用 7/16"長的圓 頭螺絲固定在 20GA 的上軌道和下軌道,1-1/2 "x 1/2",16 GA 的水平支撐架,在 樓板水平面使用 4pcf 的防火阻隔。內側包層使用 4' x 10' x 5/8" American Gypsum® FireBlock TYPE X™石膏板,配置方式為長邊方向垂直於立柱,使用#6 x1-1/4"鍍鋅喇叭頭鑽尾螺絲在周圍以 8in.的間距內部 12in.的間距固定。外保護層 使用 4' x 8' x 5/8" DensGlass® Gold Exterior Sheathing,長邊方向垂直於立柱的方 式,使用#6 x1-1/4"鍍鋅喇叭頭鑽尾螺絲在周圍以 8in.的間距內部 12in.的間距固 定,窗戶開口周邊內部也使用一層 5/8" DensGlass®sheathing.保護層。隔氣層為 一層 DuPont[™] Tyvek[®] vapor barrier 長邊水平置放釘在外保護層上,接縫以 6in. 重疊,釘子間隔 24 in.。外牆板為 4mm Alfrex ACM Panels,依照附錄的方式安裝, 板子和板子之間留有 1/2 in.間距,使用#12x 3 in.的 TEK 螺絲以 24 in. 間距固定。 接縫處使用直徑 7/8"的 Tundra Foam (Industrial Thermo Polymers Limited)放置在 外牆板間的縫隙,放置完泡棉後,使用 Dow Corning[®] 795 Silicone Building Sealant 填補剩下的縫隙。遮雨板:使用 L 型 0.04in.的鋁防雨板安裝在窗戶周圍,使用 1-1/4" 鑽尾螺絲以 24in. 的間距固定。

圖 5-13 試體 E 設計圖(一)

(資料來源: Interek Test Report, Report Number: 101530130SAT-007_Rev.2, 2016.)

第五章 外牆裝飾板延燒試驗

<u>圖 5-14 試體 E 設計圖(二)</u>

Interek Report, Report Number: (資料 來 源 : Test 101530130SAT-007_Rev.2, 2016.)

<u>圖 5-15 試體 E 設計圖(三)</u>

(資料來源:Intertek Test Report, Report Number: 101530130SAT-007_Rev.2, 2016.)

試體 F Henry® Blueskin® SA Air and Vapor barrier membrane, 1-1/2 in. thick Roxul[™] ComfortBatt® Insulation, Neolith cladding panels utilizing Strongfix attachment system.[57]

圖 5-16 為試體 F 設計圖,試體組件包含內側包層、骨架、外保護層、防水 層、窗戶開口、外部隔熱層和外部包層。內部包層使用 5/8 in. 厚 National Gypsum Gold Bond® Fire-Shield® gypsum board 满足 ASTM C1396 規範,使用#6 x 1-1/4 in.喇叭頭鑽尾螺絲固定,周圍間隔 8in.,內部間隔 12in. 的方式固定。在燃燒室 樓層窗戶開口左右邊配置兩片垂直方向的石膏板,開口上下方使用切割過的石膏 板,長邊對著窗戶開口。二樓的石膏板,長邊平行於立柱進行配置,所有的接縫 使用 USG Sheetrock paper joint tape 來密封,並使用 Sheetrock Joint Compound 填 充。

骨架部分外牆組件核心包含 18ft.長 6in.深 18GA 的鍍鋅鋼骨立柱,以中心距 24in.固定在 14ft.長 6in. 深 18GA 的鍍鋅鋼軌上,使用#6 x 1/2 in.的圓頭鑽尾螺 絲,另外使用兩個 18ft.長 6in.深 18GA 的鍍鋅鋼骨立柱作為窗戶主要的框架。在 二樓樓板使用 4pcf 的 Johns Manville MinWool®作為防火阻隔,長度不得小於樓 板厚度 8in.。外保護層使用 1/2in.厚的 Georgia-Pacific DensGlass® exterior gypsum sheathing,满足 ASTM C1177 規範,在外牆組件整個外表面用水平的方式置放, 安裝時時預留 16in.垂直方向的接縫,使用#6 x 1-1/4 in.長的喇叭頭鑽尾螺絲周圍 間隔 8in.,內部間隔 12in. 的方式固定。

防水層、外保護層的接縫使用 Henry® Blueskin®925 BES 密封膠,在安裝防 水層之前,先等密封膠乾掉,密封膠乾了之後將 Henry®574 Blueskin® LVC 黏著 劑滾在外保護層上,最後將 Henry® Blueskin® SA 水平的方式從底部往上黏貼, 保護膜會黏在整個外保護層,包含窗台,窗戶側邊以及頂部,保護層會以 2in 的 長度重疊。窗戶開口:78in.寬 x 30 in.高的窗戶開口由 18GA 的鍍鋅鋼軌構成, 窗台距離地面 30in.,鍍鋅鋼軌在角落使用#6x 1/2 in.的圓頭螺絲固定,完成外保 護層施工之後,進行防水層的施工,完成外部包層的施工後,窗戶開口使用 18GA 的鍍鋅鋼從內側石膏板包覆到外牆板,使用#12 x 1 長六角頭鑽尾螺絲以 10in.的 間距固定。外部隔熱層使用 1-1/2 in. RoxulTM ComfortBatt® Insulation 安裝在外牆 組件外表面,為了保持隔熱性,使用了 3 in.長,底部穿孔的架子將隔熱層固定在 外牆表面,這些架子以垂直方向間距 4ft 安裝在每個立柱上,使用 4 in. x 4 in.的 Henry® Blueskin® SA 將架子固定在外牆表面,再安裝隔熱層。

在安裝隔熱層時,會使用鋁製的墊片固定。外部包層部分安裝 Strongfix system 時,要先安裝 3-1/8 in. deep x 4-3/4 in. tall x 1-1/2 in. flange x 1/8 in. thick 的 鋁架,每個鋁架使用 3 個直徑 1/4in. x 2 in.長的六角頭鑽尾螺絲固定,鋁架用垂 直的方式固定在立柱上,然後將 2 in. deep x 3-1/8 in. wide x 5/64 in.的垂直鋁材 "T"型部分用兩個#12 x 1-1/2 in.的六角頭鑽尾螺絲通過凹槽與鋁架固定,和兩個 #12 x 1-1/2 in.的六角頭鑽尾螺絲通過鋁架和垂直鋁型材"T"固定。接下來水平方 向的鋁架和"T"固定,水平方向的鋁架有一個 2-1/4 in. 寬的面還有 5/8 in. 寬 x 5/8 in. 高的J型固定件,在每個水平鋁架和"T"鋁材的交接處都使用兩個#12 x 3/4 in.的六角頭鑽尾螺絲固定,接下來安裝 Neolith Panels, Neolith Panels 有一個搭 配的固定件與鋁架固定,外牆板覆蓋在外牆的外表面,用摩擦力固定,並非使用 螺絲固定。外牆板水平和垂直的接縫為 7mm,垂直接縫處位於窗戶開口的側邊 框架,水平接縫處在窗戶開口頂部上方 39-3/4 in.、79-1/2 in.和 119-1/4 in 處。

144

<u>圖 5-16 試體 F 設計圖(一)</u>

(資料來源: Intertek Test Report, Report Number: G9194.01-121-24-R0, 2017.)

表 5-1 為六種外牆試體的各個組件整理,在內部包層使用的都是強化石膏板,外部包層皆使用 Georgia Pacific DensGlass® Sheathing,立柱皆使用鍍鋅鋼骨,外牆板則依設計不同使用不同的外牆板,表 5-2 列出各材料通過的耐燃等級。

	內部包層	外部包層	立柱	外牆板
試體 A	TYPE XTM石膏板	Georgia Pacific 鍍鋅鋼骨		铝複合板
		DensGlass® Sheathing	ensGlass® Sheathing	
	TYPE X™石膏板	Georgia-Pacific		Mitsubishi Plastics
試體 B		DensGlass Gypsum	鍍鋅鋼骨	Alpolic/fr panels
		Sheathing		(鋁板+岩棉)
	TYPE XTM石膏板	Georgia-Pacific		
試體 C		DensGlass Gypsum	鍍鋅鋼骨	鋁複合板
		Sheathing		
試體 D	TYPE XTM石膏板	Georgia-Pacific		
		DensGlass Gypsum	鍍鋅鋼骨	
		Sheathing		
	TYPE X™石膏板	Georgia-Pacific		Alfrex ACM Panels (鋁複合板)
試體 E		DensGlass Gypsum	鍍鋅鋼骨	
		Sheathing		
試體 F	National Gypsum	Coorgia Decifia		
	Gold Bond®	DengClass Cursum	確缺細學	Neolith Panels
	Fire-Shield®	Shoothing	到文 34十 34时 月	
	gypsum board	Sheadhing		

表 5-1 各試體組件列表

(本研究製作)

表 5-2 試體各材料耐燃性質

材料	耐燃等級	
TYPE X™石膏板	耐燃1級	
Georgia-Pacific DensGlass Gypsum Sheathing	耐燃1級	
鍍鋅鋼骨	耐燃1級	
鋁複合版	耐燃2級	
	Heat Released Test for Non-combustible	
Mitsubishi Plastics Alpolic/fr panels	Material(ISO 5660-1) & Toxicity Gas Test 通	
	過 BS476 Part 7 class 1, BS476 Part 6 class 0	
Alfrex ACM Panels	GB 8624 Class, B, S1, d0, t0	

第二節 耐燃性試驗

建築物外牆與內牆的應用材料相當多元,表 5-3 為本研究整理應用於外牆或 內牆的裝修材與其耐燃等級;由表顯示纖維強化水泥板、ALC 板、銘板和鋼板 都達到了耐燃1級,木絲水泥板與銘複合板達到了耐燃2級,然而作為建築物保 溫材的 EPS(發泡性聚苯乙烯)為未達耐燃3級不耐燃的材質,同樣作為保溫材的 PU(聚胺脂),則因在材料在製程中的添加劑不同,在耐燃等級的表現也有所不同。

材料	外牆	內牆	耐燃等級
纖維強化水泥板	О	0	耐燃1級
壓出成型水泥板	О	0	耐燃1級
ALC 板	О	0	耐燃1級
鋁板	0		耐燃1級
氟素樹脂塗裝鋼板	О		耐燃1級
鍍鋅鋼板	О		耐燃1級
鋼浪板	0		耐燃1級
耐候性鋼板	О		耐燃1級
小型磁磚複合板	О	0	耐燃1級
大型磁磚面板	О	0	耐燃1級
陶磚面板	О	0	耐燃1級
玻璃	0		耐燃1級
石材複合面板	0		耐燃1級
木絲水泥板	0		耐燃2級
鋁複合版	0		耐燃1級或耐燃2級
EPS(發泡性聚苯乙烯)	О		未達3級
XPS(擠塑性聚苯乙烯)	О		未達3級
PU(聚胺脂)	0		未達耐燃三級或耐燃三級 以上

表 5-3 裝修材性質表

(本研究製作)

本研究以市面販售9種不同的 EPS、XPS 與 PU 產品,進行 CNS14705-1 圓 錐量熱儀試驗[58],試體規格如表 5-4 所示, EPS-9K、EPS-12K、EPS-18K 為不 同密度的 EPS(發泡型聚苯乙烯),此三種 EPS 皆無添加阻燃劑,PS 同樣發泡型 聚苯乙烯,不同於普通的 EPS,PS 添加了防火劑,PU1 至 PU4 為不同規格的四 種 PU(聚胺脂)試體,其中 PU3 與 PU4 成分相同,試體差異為厚度不同, XPS 為 擠塑型聚苯乙烯,與 EPS 的差異為成型的方式。

	長	寬	厚	規格	
	(cm)	(cm)	(cm)		
EDS OK	10	10	3	發泡聚苯乙烯(無添加防火劑)	
LI 5-9K	10	10	5	密度 9kg/m ³	
EDS 12K	10	10	3	發泡聚苯乙烯(無添加防火劑)	
LF 5-12K	10	10	5	密度 12kg/m ³	
EDC 19V	10	10	3	發泡聚苯乙烯(無添加防火劑)	
LIS-IOK	10	10	5	密度 18kg/m ³	
DC	10	10	5	發泡聚苯乙烯、發泡劑、防火劑、色粉、安	
15	10	10	5	定劑等	
PU1	10	10	5	聚胺脂、無機粉體及助劑	
DI 12	10	10	5	聚胺脂。添加物:氫氧化鎂、氫氧化鋁、發	
PU2	10	10	5	泡劑、石墨、助劑、碳酸鈣	
				高度聚胺脂發泡材	
	10	10	2.5	耐重力≦20.42kN	
PU3				抗曲強度 4254kPa	
				吸水量 0.26g/cm ²	
				導熱係數 0.0301 W/mK	
				高度聚胺脂發泡材	
				耐重力≦20.42kN	
PU4	10	10	3	抗曲強度 4254kPa	
				吸水量 0.26g/cm ²	
				導熱係數 0.0301 W/mK	
				擠塑型聚苯乙烯(XPS)	
				密度 43kg/m ³	
VDC	10	10	5	抗壓強度 1.8 kgf/cm ² 以上	
лгэ				抗彎強度 2kgf/cm ² 以上	
				吸水性 0.07 g/m ² 以下	
				熱傳導係數 0.029Kcal/m. h.°C	

表 5-4 耐燃性試驗試體規格表

根據 CNS14705-1 試體在 50kW/m² 水平配置加熱熱通量下,依照欲檢測之耐 燃等級進行加熱時間設定如表 5-5 所示,並且須要符合下列規定才能合格:

<u>入 2 2 2 101 1 102 1 71 兆电~ 17 派录表示 宗内间</u>			
耐燃性級別	加熱時間(min)		
耐燃1級	20		
耐燃2級	10		
耐燃3級	5		

表 5-5 CNS14705-1 所規範之耐燃級數加熱時間

(資料來源: CNS14705-1 建築材料燃燒熱釋放率試驗法-第1部圓錐 量熱儀法。中華民國國家標準(CNS))

總熱釋放量(應符合下列其中一項之規定):

耐燃1級材料總熱釋放量為8MJ/m2以下,或總熱釋放量為15MJ/m以下, 且依CNS14705-3之A-2計算所得b參數為-0.4以下。

耐燃2級及3級總熱釋放量為8MJ/m²

(1)最大熱釋放率無持續 10s 以上,超過 200kW/m²。

(2)無防火上有害之貫穿之背面之龜裂及孔穴。

表 5-6 為 EPS、PS 和 XPS 試體的試驗歷程,每種試體會進行 3 次的重複試驗,表 5-7 與表 5-8 為 EPS、PS 和 XPS 的熱釋放率與質量損失率, 圖 5-17 為 EPS-18K 試體之試驗過程,試驗開始進行加熱時,可以觀察到 EPS 試體開始熱裂解, 17 秒時 EPS 試體引燃後會持續燃燒, 60 秒時 EPS 試體燃燒殆盡。此現象也同樣發生在 EPS-9K、EPS-12K 的試體。

圖 5-18 至圖 5-23 為 EPS、PS 與 XPS 試驗前後照片,在試驗過程可觀察到 火焰的產生,以及試驗結束後各試體的外觀與形狀均與試驗前有很大的差異。

	點燃(sec)	熄滅(sec)	初始質量(g)	剩餘質量(g)
EPS-9K-1	4	45	2.4	0.2
EPS-9K-2	24	54	4.3	2.3
EPS-9K-3	4	44	4.4	2.6
EPS-12K-1	24	64	4.8	1.8
EPS-12K-2	21	60	4.8	2.3
EPS-12K-3	24	65	5.4	2.7
EPS-18K-1	24	93	6.2	2.3
EPS-18K-2	17	60	5.6	1.8
EPS-18K-3	18	91	6.7	2.7
PS-1	2	305	23.7	5.8
PS-2	2	319	23.1	5.8
PS-3	2	270	23.3	5.7
XPS-1	3	279	19.2	5.1
XPS-2	3	298	19.4	5.1
XPS-3	2	279	19.4	5.2

表 5-6 EPS、PS 和 XPS 耐燃試驗試驗歷程

(本研究製作)

	平均熱釋放率	總熱釋放率	最大熱釋放率	最大熱釋放率
	kW/m ²	(MJ)	(kW/m^{2})	時間
EPS-9K-1	19.29	5.8	291.71	18
EPS-9K-2	19.41	5.4	308.48	37
EPS-9K-3	20.35	6.1	302.26	21
EPS-12K-1	31.68	8.7	328.69	44
EPS-12K-2	32.18	9.0	369.78	37
EPS-12K-3	32.37	9.0	335.14	46
EPS-18K-1	53.41	14.8	403.37	45
EPS-18K-2	49.94	14.1	393.51	49
EPS-18K-3	53.57	15.1	395.36	46
PS-1	239.31	71.3	344.93	31
PS-2	247.44	73.7	370.11	33
PS-3	250.81	71.5	404.99	34
XPS-1	178.45	53.0	347.26	78
XPS-2	192.07	57.1	384.60	11
XPS-3	190.50	56.8	361.09	33

表 5-7 EPS、PS 和 XPS 熱釋放率

	平均質量損失率	最大質量損失率	最大質量損失率
	(g/s)	(g/s)	時間(s)
EPS-9K-1	0.008	0.493	258
EPS-9K-2	0.007	0.692	48
EPS-9K-3	0.006	0.294	22
EPS-12K-1	0.062	6.074	29
EPS-12K-2	0.009	0.254	37
EPS-12K-3	0.010	0.244	47
EPS-18K-1	0.014	0.223	28
EPS-18K-2	0.014	0.277	43
EPS-18K-3	0.014	0.184	46
PS-1	0.06	0.418	175
PS-2	0.059	0.373	112
PS-3	0.062	0.422	26
XPS-1	0.048	0.354	12
XPS-2	0.048	0.379	19
XPS-3	0.047	0.371	92

表 5-8 EPS、PS 和 XPS 質量損失率

<u>圖 5-17 EPS 試驗歷程圖</u>

(本研究製作)

圖 5-18 試驗前之 EPS

<u>圖 5-19 EPS 試驗後之 EPS</u>

圖 5-20 試驗前之 PS

<u>圖 5-21 試驗後之 EPS</u>

(本研究製作)

<u>圖 5-22 試驗前之 XPS</u>

圖 5-23 試驗後之 XPS

圖 5-24 為 EPS、PS 和 XPS 在試驗過程的熱釋放率變化,可觀察到兩種不同的變化趨勢。第一種變化趨勢為 3 種 EPS 的在試驗過程的熱釋放率變化,會 急速上升之後又急速下降;第二種變化趨勢為 PS 和 XPS 的熱釋放率會急速上 升,之後會隨著時間而緩慢下降。此結果顯示 EPS 的燃燒時間會比 PS 和 XPS 短,因此質量損失率(圖 5-25)的變化,EPS 也是會比 PS 和 XPS 更快達到穩定值。 圖 5-26 顯示 EPS、PS 和 XPS 的平均熱釋放率。由圖顯示平均熱釋放率的大小為 PS > XPS > EPS;此外,EPS 的平均熱釋放率會隨著 K 值的增加而略為增加。圖 5-27 平均質量損失率的結果與平均熱釋放率相似,依序為 PS > XPS > EPS。

圖 5-28 為 EPS、PS 和 XPS 在試驗過程所需的引燃與熄滅時間。結果顯示 PS 和 XPS 的引燃與熄滅時間差異不大,但 EPS 所需的引燃時間會高於 PS 和 XPS,但熄滅時間會低於 PS 和 XPS。此外,EPS-9K 與 EPS-18K 在不同樣品時 的試驗結果會有所差異。這顯示 EPS-9K 與 EPS-18K 的測試樣品較沒有品質穩定 性。

由圖 5-24 至圖 5-28 的 EPS 整體試驗結果顯示,密度較大的 EPS,較慢點 燃,熄滅的時間也較密度小的 EPS 慢,熱釋放率與質量損失率都較大,EPS-9K 的平均熱釋放率大約為 20 kW/m²,最大熱釋放率大約為 300 kW/m²,平均質量 損失率大約為 0.007g/s, EPS-12K 的平均熱釋放率大約為 30 kW/m²,最大熱釋放 率大約為 330 kW/m²,平均質量損失率大約為 0.01g/s , EPS-18K 的平均熱釋放 率大約為 50kW/m², 最大熱釋放率大約為 400 kW/m²,平均質量損失率大約為 0.014g/s。

PS與XPS整體試驗結果,由於試體厚度為5公分,質量較大,燃燒的時間 較長,PS試體平均熱釋放率大約為230 kW/m²,最大熱釋放率約在350 kW/m² 至400 kW/m²之間,平均質量損失率大約為0.06g/s,XPS 試體平均熱釋放率大 約為190kW/m²,最大熱釋放率大約為360 kW/m²,平均質量損失率大約為 0.048g/s。

圖 5-24 EPS、PS 和 XPS 熱釋放率與時間之關係

(本研究製作)

(本研究製作)

<u>圖 5-27 EPS、PS 和 XPS 平均質量損失率</u>

圖 5-28 EPS、PS 和 XPS 點燃與熄滅時間

(本研究製作)

表 5-9 為 4 種 PU 試體的試驗歷程,每種試體會進行 3 次試驗,表 5-10 與表 5-11 PU 質量損失率表 5-11 為 PU 的熱釋放率與質量損失率。

圖 5-29 為 4 種 PU 在試驗過程的熱釋放率變化,可觀察到兩種不同的變化趨勢。第一種變化趨勢為 PU1 與 PU2 會急速上升之後又急速下降為穩定值;第二

種變化趨勢為 PU3 與 PU4 會急速上升,之後會隨著時間而緩慢下降。質量損失率的變化,如圖 5-30 所示; PU1 與 PU2 在整體試驗過程,各別質量隨著時間呈現很少量的變化,但 PU3 與 PU4 的質量則是會隨著時間的增加而減少,因此由平均熱釋放率(圖 5-31)與平均質量損失率(圖 5-32)的結果可以觀察到,PU3 與 PU4 的平均熱釋放率與平均質量損失率會明顯大於 PU1 與 PU2。圖 5-33 為 4 種 PU 在試驗過程所需的引燃與熄滅時間。結果顯示 PU3 與 PU4 所需的引燃與熄滅時間會高於 PU1 與 PU2。此外,PU1 與 PU2 在不同樣品時的引燃時間會有明顯差異。這顯示 PU1 與 PU2 的測試樣品較也有品質穩定性的問題。

圖 5-29 至圖 5-33 的 4 種 PU 整體試驗結果顯示, PU1 與 PU2 的平均熱釋 放率大約在 10~20kW/m²之間,最大熱釋放率大約大約在 80~90kW/m²之間,平 均質量損失率大約為 0.007g/s。PU3 與 PU4 的成分相同,只有試體厚度的差別, PU3 的平均熱釋放率大約在 230 至 260kW/m²之間,最大熱釋放率大約大約在 360~370kW/m²之間,平均質量損失率大約為 0.1g/s,PU4 的平均熱釋放率大約 在 250 至 270kW/m²之間,最大熱釋放率大約大約在 390kW/m²之間,平均質量 損失率大約為 0.1g/s,厚度較大熄滅時間會稍微延長,總熱釋放率也較大。

圖 5-34 與圖 5-35 為 PU1 試驗前後照片,在燃燒過後 PU1 質量損失較低。 圖 5-36 至圖 5-38 為 PU2 試驗前後之照片,圖 5-37 可觀察到 PU2 在試驗過程 中質量損失雖然低,但是試體體積明顯的收縮。圖 5-39 至圖 5-41 為 PU3 試驗 前後照片, PU3 在燃燒過程中有明顯的質量損失。

162

	點燃(sec)	*(sec) 熄滅 初始質量(g)		剩餘質量(g)
PU1-1	1	63	24.6	17.3
PU1-2	1	54	26.1	17.8
PU1-3	1	44	26.6	18.8
PU2-1	1	61	21.7	13.7
PU2-2	1	95	22.8	15.6
PU2-3	7	90	22.5	15.0
PU3-1	7	421	62.4	24.9
PU3-2	8	452	63.1	27.8
PU3-3	7	391	63.1	23.9
PU4-1	6	501	67.3	28.5
PU4-2	7	446	67.3	28.1
PU4-3	7	501	66.8	27.0

表 5-9 PU 試體試驗歷程

(本研究製作)

	平均熱釋放率	總熱釋放率	最大熱釋放率	最大熱釋放率
	(kw/m^2)	(MJ)	(kw/m^2)	時間(sec)
PU1-1	11.10	13.3	83.25	10
PU1-2	18.41	15.9	84.65	11
PU1-3	12.43	14.9	78.63	9
PU2-1	10.98	13.2	93.86	11
PU2-2	8.52	10.2	92.63	11
PU2-3	9.06	10.9	92.67	12
PU3-1	245.87	101.8	360.46	120
PU3-2	227.44	101.0	363.25	52
PU3-3	266.15	102.2	378.13	111
PU4-1	245.01	121.3	392.71	106
PU4-2	279.51	122.7	380.89	32
PU4-3	250.74	123.9	375.85	37

表 5-10 PU 試體熱釋放率

	平均質量損失率	最大質量損失率	最大質量損失率
	(g/s)	(g/s)	時間(sec)
PU1-1	0.006	0.14	10
PU1-2	0.007	0.344	15
PU1-3	0.007	0.104	413
PU2-1	0.007	0.107	450
PU2-2	0.006	0.137	700
PU2-3	0.006	0.131	4
PU3-1	0.101	0.496	123
PU3-2	0.095	0.538	108
PU3-3	0.109	0.436	77
PU4-1	0.091	0.499	186
PU4-2	0.102	0.525	69
PU4-3	0.09	0.455	40

表 5-11 PU 質量損失率

(本研究製作)

(本研究製作)

圖 5-31 PU 試體平均熱釋放率

(本研究製作)

(本研究製作)

圖 5-33 PU 試體點燃與熄滅時間

圖 5-34 試驗前之 PU1 試體

<u>圖 5-35 試驗後之 PU1 試體</u>

(本研究製作)

<u>圖 5-36 試驗前之 PU2 試題</u>

<u>圖 5-37 試驗後之 PU2 試體(1)</u>

(本研究製作)

<u>圖 5-38 試驗後之 PU2 試體(2)</u>

<u>圖 5-39 試驗前之 PU3 試體</u>

圖 5-40 試驗後之 PU3 試體(1)

圖 5-41 試驗後之 PU3 試體(2)

(本研究製作)

表 5-12 為各試體的耐燃試驗結果, EPS、PS 和 XPS 試體在測試過程中因為 明顯的質量損失以及熱釋放率超過規定,皆未達耐燃 3 級。PU1 試體在試驗過程 中,有兩個試體的總熱釋放率小於 15MJ,根據 CNS14705-3 之 A-2 計算所得 b 參數為-0.4 以下,通過耐燃 1 級,PU2 試體在試驗過程中雖然總熱釋放量低於 15MJ,但因為試體內縮無法通過耐燃 1 級,僅能通過耐燃 3 級測試,PU3 與 PU4 因為熱釋放率超過標準,無法通過耐燃 3 級。由耐燃性試驗的結果,後續會選擇 EPS-18K、PS、PU1 與 PU3 進行垂直立面的延燒試驗。

表 5	-12 🖷	付燃	試驗、	結果	R
-----	-------	----	-----	----	---

	長	寬	厚	计睑结果
	(cm)	(cm)	(cm)	武一般。后入
EPS-9K	10	10	3	未達3級
EPS-12K	10	10	3	未達3級
EPS-18K	10	10	3	未達3級
PS	10	10	5	未達3級
PU1	10	10	5	通過1級
PU2	10	10	5	通過3級
PU3	10	10	2.5	未達3級
PU4	10	10	3	未達3級
XPS	10	10	5	未達3級

第三節 延燒試驗

本研究依據耐燃試驗的結果選用兩種發泡型聚苯乙烯與兩種聚胺脂進行延 燒試驗,延燒試驗方式主要參照國內外相關延燒試驗[45]、[47~50]與 CNS15213-1-建築物外牆立面防火試驗法-中尺度試驗[59]進行試驗相關規劃。 CNS15213-1 的試驗方式為外牆立面底部設有燃燒器作為火源,與外牆立面距離 25 公分,並在頂部設有熱通量計,如圖 5-42 所示。

圖 5-42 CNS15213-1-建築物外牆立面防火試驗法-中尺度試驗設備 (參考資料: CNS15213-1-建築物外牆立面防火試驗法-中尺度試驗。 中華民國國家標準(CNS)。)

圖 5-43 為本研究規劃的試驗方式;兩側支架固定試體,試體大小為 0.8 m x 1 m(寬 x 高),試體厚度與耐燃性試驗的厚度相同,支架中間為試驗使用之平方 火災燃燒器,圖 5-44 為試體固定在支架上,並將熱電偶以耐熱膠帶固定在試體 表面。延燒試驗的引燃火源,分為單點火源引燃、線性火源引燃、燃燒器引燃。 單點火源引燃的方式,是以噴燈火焰直接在試體正下方單點引燃,當試體引燃之 後噴燈火焰會立即移開試體;線性火源引燃的方式,會先用石膏板遮蔽在試體引

燃位置的上方,此石膏板主要用來防止試體尚未完全線性引燃時,阻擋先行引燃 向上延燒的火焰,當試體完成線性引燃,便立即將石膏板移開,之後可觀察整體 延燒的現象。燃燒器引燃的方式,主要是調整不同熱釋放率的氣態燃燒器火焰進 行引燃的行為,如圖 5-45 所示。

圖 5-43 延燒試驗設備示意圖

(本研究製作)

圖 5-44 延燒試驗設備

圖 5-45 延燒試驗使用之平方火災燃燒器

(本研究製作)

表 5-13 為延燒試驗參數表,預計進行四種試體(EPS-18K, PS, PU1, PU3)之 延燒試驗,並使用不同的引燃方式,平方燃燒器 50 kW 火源、平方燃燒氣 100 kW 火源、噴燈單點引燃以及線性引燃方式來進行試驗,並且分別討論有無石膏板作 為背板對試體延燒之影響。本試驗所使用之石膏板為 14 mm 厚 TypeX 強化石膏 板,表格中標示黑色標記為目前已完成之試驗。

	試驗條件							
試體	50kW		100kW		單點引燃		線性引燃	
	有背板	無背板	有背板	無背板	有背板	無背板	有背板	無背板
EPS-18K								
PS								
PU1								
PU3								

表 5-13 延燒試驗參數表

(本研究製作)

圖 5-46 為 EPS-18K 在使用平方火災燃燒器作為引燃源之試驗歷程;試驗計

時開始時,先以點火器引燃燃燒器,在 32 秒時燃燒器完全引燃,EPS-18K 試體 底部受到燃燒器加熱後會開始熔解,熔解後的 EPS-18K 會滴落至燃燒器上方並 且引燃,此時燃燒器的火焰會變得更旺盛。在試驗過程可觀察到 EPS-18K 在引 燃之前會先因為熔解而向下滴落,因此 EPS-18K 試體本身較無火焰直接延燒的 現象;隨著試驗時間的增加,熔解的 EPS-18K 也累積在燃燒器的平面,因此燃 燒器的火焰也會隨著時間而增加。在 88 秒時,可觀察到燃燒器火焰已經成長至 穩定的高度,並且 EPS-18K 試體的熔解區域不再向上延伸。試驗結果顯示 EPS-18K 的熔解區域為三角形的形狀,此現象表示試體受到燃燒器火焰加熱的過 程,試體中心線受到較高的溫度影響,因此熔解速度會高於試體的兩側。

圖 5-46 無背板 EPS-18K 在 50kW 引燃條件下試驗歷程

(本研究製作)

圖 5-47 為燃燒器在 100kW 的試驗結果。 EPS-18K 同樣先熔解向下滴落至 燃燒器,並使得燃燒器火焰變得更旺盛。本試驗由於增加燃燒器的熱釋放率,因 此 EPS-18K 在試驗結束後的熔解的區域會較增加。根據燃燒器兩種不同熱釋放 率的試驗條件,可以觀察到, EPS-18K 會先受熱之後熔解滴落至燃燒器,並使得 燃燒器的火焰變大,但在整體試驗過程,EPS-18K的試體本身較無火焰直接延燒的現象。

推論在實際火災發生時,若是較低樓層火勢已經成長旺盛,高樓層的 EPS 外飾材受到低樓層的火焰引響,會融解並且向下滴落,造成火勢加劇,並且使火 勢向下延燒。

<u>圖 5-47 無背板 EPS-18K 在 100kW 引燃條件下試驗歷程</u>

(本研究製作)

圖 5-48 與圖 5-49 分別為無背板 EPS-18K 在單點引燃條件的試驗歷程;在 試驗開始時使用噴燈引燃 EPS-18K 試體底部中心位置,當試體引燃後可觀察其 延燒行為,並以熱像儀拍攝 EPS-18K 試體在試驗過程的溫度變化。EPS-18K 試體 的熱裂解溫度大約在 360°C,因此可藉由熱像儀觀察試體在熱裂解位置,並判斷 其延燒速率。

單點引燃的試驗條件,可觀察到持續性火焰會在 EPS-18K 試體產生延燒現 象,並且受熱熔解與燃燒的 EPS-18K 也會向下滴落至地面持續燃燒。在試驗過 程中,EPS-18K 試體除了有火焰垂直延燒以外,也有水平延燒的現象,但整體而 言,垂直延燒的速度受到浮力的引響,因此會比水平延燒的速度還快。由圖顯示, EPS-18K 試體引燃 80 秒後,火焰已經延燒至試體板頂部,整體的延燒範圍呈現 三角形的形狀。

<u>圖 5-48 無背板 EPS-18K 單點引燃試驗歷程</u>

圖 5-49 無背板 EPS-18K 單點引燃試驗熱像儀影像

圖 5-50 與圖 5-51 為加上石膏板作為背板時 EPS 的延燒歷程與熱像儀影像, 在有背板的條件下,因為背板吸熱所造成的熱損失,使得 EPS 的延燒速率較慢, 在試驗過程中,EPS 延燒速率並非穩定的數值,延燒過程較不規律,有背板之試 驗條件在 100 秒時延燒至頂部。根據單點引燃的試驗結果,可以推論當外牆飾材 使用 EPS 材料時,若是部分的 EPS 裸露,並且不慎引燃,EPS 會向上延燒,引 燃的 EPS 液滴也會造成火焰往低樓層延燒。

圖 5-50 有背板 EPS-18K 單點引燃試驗歷程

圖 5-51 有背板 EPS 單點引燃熱像儀影像

圖 5-52 與圖 5-53 為無背板時,EPS-18K 使用線性引燃的試驗歷程與熱像 儀影像,在試驗開始前,於EPS-18K 底部上方 10 公分處加上石膏板遮擋火焰向 上延燒,使用噴燈均勻引燃試體底部後將石膏板抽離,實驗開始。在線性引燃的 條件下,EPS-18K 試體因為材料性質,在受熱融解後會往下滴落,使得試體底部 點燃後延燒並非均勻的向上延燒,在 96 秒時火焰延燒至試體頂部。圖 5-54 圖 5-55 為有背板的條件下 EPS-18K 線性引燃的試驗歷程與熱像儀影像,延燒行為 也並非均勻地往上延燒,在 66 秒時火焰已經延燒至試體頂部。在線性引燃的條 件下,即使試驗開始時火焰均勻引燃試體底部,但因為過程中的延燒行為不規律, 有無背板對延燒至頂部的時間影響與單點引燃的結果不同,但我們仍可歸納出, 使用 1 m 高的 EPS-18K 試體,不管背板的有無以及引燃方式,試體大約在 1 分 鐘至 2 分鐘之間就能延燒至試體的頂部。

圖 5-52 無背板 EPS-18K 線性引燃試驗歷程

圖 5-53 無背板 EPS-18K 線性引燃熱像儀影像

圖 5-54 有背板EPS-18K 線性引燃試驗歷程

圖 5-55 有背板 EPS-18K 線性引燃試驗熱像儀影像

圖 5-56 圖 5-57 為 PS 板在無背板時單點引燃的試驗歷程與熱像儀影像,使 用的 PS 板為 5 公分厚的 PS 板,此種 PS 板質量較 EPS-18K 大,內部結構較為緻 密,在試驗過程中可以觀察到燃燒所形成的火焰較為旺盛,也可以觀察到點燃的 PS 液滴往下滴落並且燃燒。圖 5-58 圖 5-59 為 PS 板加上石膏板背板單點引燃 的試驗歷程與熱像儀影像,在無背板的條件下在 141 秒時,試體完全熱裂解的區 域擴散至試體頂端,有背板的條件則是 196 秒,由熱像儀影像可以觀察到,此種 PS 試體在燃燒過程中會產生較大的火焰,並且預熱上方尚未熱裂解的區域,在 加上石膏板背板的條件下,上方的試體預熱的面積較大。

<u>圖 5-56 無背板 PS 單點引燃試驗歷程</u>

<u>圖 5-57 無背板 PS 單點引燃熱像儀影像</u>

<u>圖 5-58 有背板 PS 單點引燃試驗歷程</u>

圖 5-59 有背板 PS 單點引燃熱像儀影像

(本研究製作)

圖 5-60 圖 5-61 為 PS 板在無背板的條件下,使用線性引燃的試驗歷程與熱 像儀影像,因為此種 PS 板的材料特性,相較於 EPS-18K 線性引燃後,底部仍然 保持著均匀的引燃狀態並持續向上延燒,在試驗開始後 96 秒,因為 PS 無法固定 在試驗使用的鐵架上,向下滑落,因此試驗停止。圖 5-62 圖 5-63 為 PS 板在加 上背板的條件下,使用線性引燃的試驗歷程與熱像儀影像,在試驗開始後 91 秒, PS 燃燒的火焰高度已經到達試體頂部,由熱像儀影像可以觀察到,左半部的 PS 試體熱裂解區向上移動的速度較快,造成這個現象的原因可能是因為試驗設備的 設計,使得左右兩側試體受到兩側的氣流影響造成較快的延燒速率,在試驗時間 到 106 秒時,因為試體向下滑落試驗停止。從不同的試驗條件的試驗結果可以觀 察到,PS 在試驗過程中,雖然延燒的速度較 EPS-18K 慢,但在燃燒過程中產生 的火勢較大,在實際火災發生時,對上方樓層的影響較大,點燃並往下滴落的 PS 液滴也會對下方樓層產生影響。

<u>圖 5-60 無背板 PS 線性引燃試驗歷程</u>

圖 5-62 有背板 PS 線性引燃試驗歷程

<u>圖 5-63 有背板 PS 線性引燃熱像儀影像</u>

第六章 結論與建議

第一節 結論

1. 帷幕牆層間交接構造防火性能試驗:

本年度試體試驗的結果與106年度的試體試驗結果進行比較,106年的試體 試驗帷幕牆牆體使用的骨架為銘材,本年度進行之帷幕牆試體樑帶位置骨架為鋼 材,使用銘材之帷幕牆試體在樑帶部位的銘受到高溫熔解後,樑帶位置的鍍鋅鋼 板發生了脫落情形,造成了層間塞直接曝火防火性能失效,本年度進行之試體試 驗,直到試驗時間2小時結束,帷幕牆牆體骨架與鍍鋅鋼板皆能維持支撐能力。 但層間塞非曝火面溫度在40分鐘有一溫度量測點超過了溫度上限,推測是施工 不良造成溫度提早超過上限。由於兩次試驗使用的層間塞工法相似,在試驗過程, 若帷幕牆牆體能夠維持支撐效果,鍍鋅鋼板不脫落,則層間塞的防火性與阻熱性 有機會達到一小時以上的防火時效。

2. 帷幕牆層間交接構造防火與阻熱性能評定方式:

日後的試驗評定可建議進行兩種設計工法之判定,第一種為局部設計之判 定,主要在樑帶區域依照廠商帷幕牆與層間塞的層間交接構造設計,其他部位則 是以防火耐燃材料阻隔,進行防火性能測試。此種測試法只判定樑帶區域的防火 與阻熱時效性。第二種為整體試判定方式,目前已進行的實尺寸試驗皆為整體判 定,除了ASTM E2307-15b規範之層間塞溫度判定,也能以NFPA 285輔助觀測外 牆延燒情形與量測外牆曝火面與背火面溫度變化。

3. 外牆飾板材料防火性能研究:

本研究以 CNS14705-1 圓錐量熱儀試驗法進行了五種不同的聚苯乙烯材料 (EPS、XPS、PS)與四種不同聚胺脂(PU)的耐燃性試驗,其中 EPS、XPS 和 PS 試 體皆無法通過耐燃 3 級測試,一種 PU 試體通過耐燃 1 級測試,一種 PU 試體通 過耐燃 3 級測試。

中尺度延燒試驗選用 EPS-18K、PS 與兩種不同的 PU 材料,目前已經進行

了 EPS 與 PS 兩種試體的延燒試驗;試驗結果發現,不同的引燃火源與背板效性 會影響試體的延燒型態,如 EPS-18K 在燃燒火焰的試驗條件,並沒有發生火焰 垂直延燒的現象,但在單點火源與線性火源引燃的條件,則是可以觀察到火焰垂 直延燒的現象。此外,EPS-18K 在各試驗條件下,均會發生熔解並向下滴落燃燒 的現象。PS 試體在單點火源與線性火源引燃的條件,可觀察到垂直延燒的速度 會比 EPS-18K 慢,但在延燒過程所產生的火燄會比 EPS-18K 大。

第二節 建議

建議一

立即可行建議:ASTM E2307-15b 相關設備的修改

主辦機關:內政部建築研究所

目前內政部建築研究所防火實驗中心已經具有 ASTM E2307-15b 試驗法的 試驗屋與燃燒器,並能依據測試結果判定層間塞是否具有建築法規所要求的防火 與阻熱性。但循環試驗機構尚未完全建置,建議後續可增添該設備之功能。此外, 國外另有 NFPA 285 試驗法來判定外牆的防火、阻熱與延燒性能。目前也將 ASTM E2307-15b 試驗屋的樑帶空間位置特別設計一個連接構件,當安裝此連接構件便 可依照 NFPA 285 試驗法來測試外牆的防火、阻熱與延燒性能試驗。

建議二

中長期建議:提昇帷幕牆、層間塞的防火與阻熱性能

主辦機關:內政部建築研究所

協辦機關:帷幕牆協會、防火材料協會

由本計畫的測試結果發現,純粹使用具有防火時效性的層間塞材料與帷幕牆相互結合,並無法完整確保達到建築法規要求的防火與阻熱時效性,原因為各項構件的材料、施工與接合部保護措施均會影響帷幕牆與層間塞的防火與阻熱性能

。因此帷幕牆與層間塞的整合設計,除了材料的選擇之外,尚需要進行防火與阻熱的試驗才能確定是否達到建築法規所要求的標準。此ASTM E2307-15b試驗法 能夠驗證各帷幕牆與層間塞結合工法的防火與阻熱性能。

附錄一

附錄一

內政部建築研究所

107年度建築防火安全工程創新科技及應用研發計畫

協同研究計畫(一)

第2案「帷幕牆層間縫隙構造防火性能及設計構法之研究」

第一次工作會議紀錄

	時間:107年3月20日
	出席人員:
	內政部建築研究所:蔡綽芳、雷明遠、胡韓傑
	成功大學:林大惠、陳俊貴
	工作會議事項
1.	ASTM E2307 法規的試驗屋修改事項說明
2.	本年度計畫執行事項說明

內政部建築研究所 107 年度建築防火安全工程創新科技及

應用研發計畫協同研究計畫(一)第2案

建築外牆板及帷幕牆層間交接構造防火性能驗證之研究

第一次工作會議紀錄

時間:10	07年3月20日	
出席人員	:	
內政部建	禁研究所:蔡綽芳、雷	明遠、胡韓傑
成功大學	1:林大惠、陳俊貴	
	工作會議事	項
1. ASTM E23	07 法規的試驗屋修改事	項說明。
2. 本年度計3	畫執行事項說明。	
	出席人員	
姓名	單位	簽章
蔡綽芳	內政部建築研究所	旅学去
雷明遠	內政部建築研究所	言い法
胡幃傑	內政部建築研究所	拍情解
林大惠	成功大學	#=2
陳俊貴	成功大學	陳作意

附錄二

內政部建築研究所

107年度建築防火安全工程創新科技及應用研發計畫

協同研究計畫(一)

第2案「帷幕牆層間縫隙構造防火性能及設計構法之研究」

第二次工作會議紀錄

	時間:107年6月5日
	出席人員:
	內政部建築研究所:蔡綽芳、雷明遠、胡幃傑
	成功大學:陳俊貴、黃俊諭
	工作會議事項
1.	本年度計畫執行進度說明。
2.	層間交接構造防火性能判定討論

內政部建築研究所 107 年度建築防火安全工程創新科技及

應用研發計畫協同研究計畫(一)第2案

建築外牆板及帷幕牆層間交接構造防火性能驗證之研究

第二次工作會議紀錄

時間:1	07年6月5日	
出席人員	:	
內政部到	建築研究所:蔡綽芳、雷	了明遠、胡韓傑
成功大学	P:陳俊貴、黃俊諭	
	工作會議事	項
.本年度計:	畫執行進度說明。	
1. 層間交接權	造防火性能判定討論。	
	出席人員	
姓名	單位	簽章
蔡綽芳	內政部建築研究所	松泽多
雷明遠	內政部建築研究所	雪如素
胡帷傑	內政部建築研究所	胡桔傑
陳俊貴	成功大學	陳任康
黃俊諭	成功大學	黄度新

附錄三

內政部建築研究所

107 年度建築防火安全工程創新科技及應用研發計畫協

同研究計畫(一)第2 案

「建築外牆板及帷幕牆層間交接構造防火性能驗證之研究」

項次	審查意見	研究團隊回覆
1	不同的建築構法的試驗標準 在制定時都有其背景因子,可 以去探討試驗標準在建立時 的背景,若要將多個試驗標準 併在一起執行,有其難度。當 試驗標準要推廣至業界時,針 對不同不同的設計構法需要 找到一個共通合適的試驗準 則。	目前國內審查完畢的三個 CNS草案,主要是參考ASTM E2307-15b 以及 BS EN 1364。各別試驗標準的差異與 探討,於先前許多建研所的研 究報告均有討論。本計畫所進 行的試驗,主要是以 ASTM E2307-15b 為判斷依據,另外 結合 NFPA 285 的熱電偶佈放 位置,是想要多瞭解帷幕牆面 的溫度變化,藉此瞭解實驗狀 況與增加判定的參考依據。
2	1.本公司已有產品送往國外 Intertek 進行 ASTM E2307 試 驗,能夠達到 148 分鐘的阻熱 性能以及 180 分鐘的遮焰 性,未來願意提供相關試體進	感謝委員提供之意見與測試 意願。

第一次專家座談會議紀錄

	行檢測。	
	2.國內發展自己的試驗標準	
	時,並不一定有優勢,許多試	
	體能夠送至國外的檢驗中心	
	進行檢測,在發展試驗標準	
	時,可以考慮根據我國現況進	
	行修改。	
	帷幕牆非防火構造物,所以才	
	需要在層間交接構造處進行	
	防護,帷幕牆層間交接構造包	
	含哪些項目,需要詳細的定	
	義,樑帶部分的防護,實際施	
	作 90 公分至 120 公分都有,	
3	交界構造不同設計的層間塞	感謝委員提供之意見
	厚度皆有不同,防火性能都需	
	要進行測試。在法規的部分,	
	ASTM E2307-15b 進行檢測	
	的不是只有層間塞這個材	
	料,而是整個層間帶的防火性	
	能。	
	過去帷幕牆相關的防火設計	式地禾昌担供ユ辛目・日六国
	規劃,因為沒有試驗標準,通	感谢安貝灰供之息兄,日刖國 中家本它思始二佃 CNIS 苔
4	常都是建築師自行認定,現在	內衛查元華的三個 CNS 早
	CNS 要制定試驗標準,營建	余, 夜頃101 須土官機關 米指
	署樂見相關試驗標準的制定。	天 °

附錄三

	建築技術規則 70 條規定之樑	
	带90公分要與樓板同等防火	ASTM E2307-15b 主要是在
	時效的規定應該要維持,以防	測試層間交接構造的防火與
5	造成像東帝士大樓火災的案	阻熱性能,目的也是在測試火
	例再次發生。目前討論的都是	焰內外部的延燒問題;關於火
	樓板上下竄燒的問題,但是如	焰延燒至鄰棟建築物的概
	果同一棟建築物有鷹角,使得	況,則不在 ASTM E2307-15b
	火災延燒至相鄰的建築物,是	的測試範圍,後續會再探討是
	否也要有相關的規範,請研究	否有相關的試驗標準。
	團隊參考。	
6	與層間交接構造相關的兩個	
	試驗標準 ASTM E2307-15b	
	與 BSEN 1364,於 CNS 草案	
	皆已經審完;後續可以參考	咸谢忝冒捍仕之音目
	BSEN 1364 當中,與層間交	感谢女只從伝之忘九
	接構造相關的試驗方法,依照	
	實際火場發生情形,規劃後續	
	哪個試驗標準較為適用。	
	樑帶 90 公分的防護部分, 樑	
	上下加總為90公分即可,若	
	是樑帶向下 90 公分,會與其	感謝委員提供之意見,相關測
7	他消防法規有所牴觸。試體試	試結果亦能夠提供後續試驗
	驗部分先前本公司提供的試	標準的參考依據。
	體為實際在販售施作的鋁帷	
	幕牆,試驗的結果可以得知在	

	探的下方火焰的破壞力較	
	大,使得鍍鋅鋼板剝落造成層	
	間防護瓦解。	
	目前的試驗結果,外牆和層間	
	塞防火性能會互相影響,判定	
	區劃應該為整個層間交接構	
	造的層間帶, 樑帶 90 公分位	感謝委員提供之意見,關於樑
Q	置為法規上制定之問題,需要	帶 90 公分位置的問題,以及
0	營建署進行釐清,目前試驗結	IBC 的規範,後續會詢問營建
	果阻熱性無法達到要求,IBC	署相關事宜。
	的規範只有遮焰性的要求,阻	
	熱性的部分未來也能請營建	
	署進行判定。	

附錄四

內政部建築研究所

107年度建築防火安全工程創新科技及應用研發計畫

協同研究計畫(一)

第2案「帷幕牆層間縫隙構造防火性能及設計構法之研究」

第三次工作會議紀錄

	時間:107年7月6日
	出席人員:
	內政部建築研究所:蔡銘儒、胡幃傑
	成功大學:陳俊貴、黃俊諭
	工作會議事項
1.	ASTM E2307 試驗屋修改事項

內政部建築研究所

107 年度建築防火安全工程創新科技及應用研發計畫 協同研究計畫(一)

第2案「建築外牆板及帷幕牆層間交接構造防火性能驗證之研究」

第三次工作會議紀錄

ASTM E2307 試驗屋修改事項 出席人員 姓名 單位 英章 蔡銘儒 內政部建築研究所 胡韓傑 內政部建築研究所 胡韓傑 內政部建築研究所 開催 國立成功大學 陳俊貴 國立成功大學	WART HILVEN HER	工作会議宣 頂	
出席人員 姓名 單位 簽章 蔡銘儒 內政部建築研究所 第代公式 胡悼傑 內政部建築研究所 []]] 「情報 林大惠 國立成功大學 詳し、 陳俊貴 國立成功大學 []]	ASTM E2307	二 作 青 戰 平 項 試驗 层 條 改 事 項	
 姓名 單位 蔡銘儒 内政部建築研究所 募金法 胡韓傑 内政部建築研究所 胡韓傑 林大惠 國立成功大學 韓俊貴 國立成功大學 陳俊貴 國立成功大學 陳俊貴 		出席人員	
蔡銘儒 內政部建築研究所 英公公 胡韓傑 內政部建築研究所 開嘴傑 林大惠 國立成功大學 群 之上 陳俊貴 國立成功大學 降低魚	姓名	單位	簽章
胡韓傑 内政部建築研究所 開催 保 林大惠 國立成功大學 軒 て 上 陳俊貴 國立成功大學 降低食	蔡銘儒	內政部建築研究所	義生活
林大惠 國立成功大學 拼 Z 上 陳俊貴 國立成功大學 陳俊文	胡韓傑	內政部建築研究所	明情化
陳俊貴 國立成功大學 陳俊文	林大恵	國立成功大學	科工上
same of the second s	陳俊貴	國立成功大學	陳後旗
黃俊諭 國立成功大學 责任新	黄俊諭	國立成功大學	责队输

附錄五

內政部建築研究所

107 年度建築防火安全工程創新科技及應用研發計畫協

同研究計畫(一)第2 案

「建築外牆板及帷幕牆層間交接構造防火性能驗證之研究」

期中審查會議紀錄

項次	審查意見	研究團隊回覆
1	 1.預期成果第1項「完成外牆 與層間縫隙,耐火試驗的操作 手冊」在期中報告裡並未提及 進行的完成情形,是否在下半年的研究工作會納入? 2.建議能整理歸納試驗結果 未能通過T級或F級防火性 能的因素,可以提供業者改進 施作工法的參考。 	操作手冊內容已納入期末報 告內容。 相關試驗成果已彙整說明,感 謝委員提供之意見。
2	本研究以 ASTM E2307-15b 的試驗標準就國內常用的帷 幕牆設施與材料進行試驗,並 期望能將此 ASTM 標準納入 我國相關 CNS 試驗標準,研 究目的具體並有意義,建議可 提出修正標準之草案。 2.先前已建置兩層樓的防火	感謝委員提供之意見。本年度 第一次的試驗結果未達1小 時,經由後續分析發現是現場 施工的瑕疵,後續會再要求施 工品質,並且也會參考國外通 過試驗的工法,加以精進防火 與阻熱時效的設計;。

	實驗屋,並完成校正試驗及一	
	次試體試驗,今年計畫著重在	
	帷幕牆層間交接構造在不同	
	材料與施工構造上的防火時	
	效差異性,具延續性,值得進	
	行	
	本研究参考 ASTM	
	E2307-15b 擬定 CNS 草案,	
	標驗局參考後所制定之「周邊	
	防火阻隔體採用中尺度、多樓	
	層試驗裝置之耐火試驗法」已	
	於106年完成審查。預期成果	
	之試驗設備的操作手冊宜補	
	充 CNS 之說明,如試體的組	
	裝架設細節等。	
3	2.106 年度試驗結果顯示校正	感謝委員提供之意見。
	牆試驗進行 3 次時即需進行	
	大面積的表面耗材替換,建議	
	可採用防火性能較好之板材	
	以減少耗材替换次數,例如符	
	合 ASTM 之 TYPE X 石膏	
	板。根據貴所歷年的研究實驗	
	顯示若於旺盛期火災之板材	
	耐火性能,石膏板優於矽酸鈣	
	板,而石膏板種類中 ASTM	

	C1396之TYPEX耐火等級之	
	石膏板最佳,且國內廠商亦有	
	生產。	
	3.本案相關試驗的標準引用	
	是研究的關鍵重點,建議文獻	
	回顧可針對 NFPA、ASTM 及	
	BS-EN 相關規範或標準檢討	
	及具體建議可以參考引用之	
	測試標準的層級及測試條件。	
	本案就外牆帷幕牆系統、層間	
	塞工法、火災現象及國際使用	ASTM E2307-15b 有規定受
	標準進行分析,並進行層間塞	檢測之系統需要另行製作預
	系統及外牆裝飾板延燒之試	鑄樓板,此預鑄樓板以各家廠
	驗,未來成果有助於法規研	商的設計需求為主。檢測判定
	修,下列建議提供參考:	雖然是以層間塞的防火與阻
	1.層間塞系統之試驗係依	熱性能為主,但是周邊的預鑄
4	ASTM E2307-15b 之規定,然	樓板與帷幕牆面的防護能力
4	測試時對於外牆或樓板構造	也會直接影響到層間塞的防
	是否有特定要求?亦或單一試	火與阻熱性能。因此本試驗法
	驗只就單一種牆、樓板及層間	在本質上也是在檢測樓板、牆
	塞系統三者之組合的性能予	與層間塞三者結合後的性能
	以確認?有無可能將牆、樓板	表現。
	規範其防火性能,而得以替	其他建議事項,感謝委員提供
	換,提高試驗結果的運用性。	之意見。
	2.外牆裝飾板延燒之試驗標	

	準採 NFPA 285,雖然本案試	
	驗結果都符合標準,建議可否	
	彙整材料材質及防火性能之	
	條件,以利於輔助層間塞系統	
	性能判定之參考。	
	3.另本案層間塞工法系統,建	
	議多徵詢建築師之意見。	
	1.為符合帷幕牆層間防火時	
	效及兼顧大樓帷幕牆的外觀	
	及室內裝修,建議採用樑帶	
	90 公分等同於樓板組件之防	
5	火時效(期中報告第116頁)。	咸谢禾昌埕从力音目。
J	2.樓板與帷幕牆之間,先鋪滿	感谢女只徙伝之忌尤。
	1.6t 或 2t 鍍鋅鋼板再安裝岩	
	棉以確保安裝層間塞較為確	
	實,以防因實際施工不確實,	
	而影響防火時效。	
	去年度的自行研究案中發現	
	之不同種類板材雖皆具耐燃	日前大计队的拉正恢星经田
	1級耐火性能,但於防火時效	日前本試驗的役止個足採用 Tung V 幼工亭扩制体, 後續
6	實驗時確實有相當之差異,建	Iype A 的石肓 极表作, 夜頃
	議校正牆採用防火性能較好	曾丹铜金钗司兴祖农刀式,稻
	之 TYPE X 石膏板可增加耐	此咱进仪止痼的使用奇叩。
	用性而減少更換次數。	
7	1.建議提出建築法規增修條	感謝委員提供之意見。

	文規定建議時,請以三欄式格	
	式呈現。	
	2.評定認可基準建議後續洽	
	指定評定機構協助研擬。	
	1.目前實驗案例1與2其阻燃	
	性與防焰性尚皆無法達到現	本年度的第一次試驗結果未
	行法規要求,建議思考若下次	達1小時,經由後續分析發現
	試驗仍無法達到法規要求	是現場施工的瑕疵,後續會再
8	時,應如何提出改善建議?	要求施工品質,並且也會參考
	2.報告中提到之外牆裝修材	國外通過試驗的工法,加以精
	料未達耐燃3級,建議對國內	進防火與阻熱時效的設計;其
	現有使用案例進行調查並預	他事項依據審查意見辦理。
	想因應對策。	
	1 日前 CNS 煙進已案查通	
	1. 口刷 CIND 你干口雷旦巡	
	過,此計畫執行時是否依照	本計畫的執行是依照 CNS 的
	過,此計畫執行時是否依照 CNS(即ASTM)標準進行?	本計畫的執行是依照 CNS 的標準進行試驗。本年度的試驗
	 過,此計畫執行時是否依照 CNS(即ASTM)標準進行? 2.樓板一般要求防火時效為1 	本計畫的執行是依照 CNS 的 標準進行試驗。本年度的試驗 結果未達1小時,經由後續分
	 過,此計畫執行時是否依照 CNS(即ASTM)標準進行? 2.樓板一般要求防火時效為1 小時以上,目前實驗案例皆未 	本計畫的執行是依照 CNS 的 標準進行試驗。本年度的試驗 結果未達1小時,經由後續分 析發現是現場施工的瑕疵,後
	 過,此計畫執行時是否依照 CNS(即ASTM)標準進行? 2.樓板一般要求防火時效為1 小時以上,目前實驗案例皆未 能符合,是否可尋找較佳之工 	本計畫的執行是依照 CNS 的 標準進行試驗。本年度的試驗 結果未達1小時,經由後續分 析發現是現場施工的瑕疵,後 續會再要求施工品質。此外,
	 1. 山南 ChB 标平已番重通 過,此計畫執行時是否依照 CNS(即 ASTM)標準進行? 2.樓板一般要求防火時效為1 小時以上,目前實驗案例皆未 能符合,是否可尋找較佳之工 法進行實驗? 	本計畫的執行是依照 CNS 的 標準進行試驗。本年度的試驗 結果未達1小時,經由後續分 析發現是現場施工的瑕疵,後 續會再要求施工品質。此外, 也會參考國外通過試驗的工
	 1. 山州 CNB 採平已審查通 過,此計畫執行時是否依照 CNS(即 ASTM)標準進行? 2.樓板一般要求防火時效為1 小時以上,目前實驗案例皆未 能符合,是否可尋找較佳之工 法進行實驗? 3.請研究團隊協助估算執行 	本計畫的執行是依照 CNS 的 標準進行試驗。本年度的試驗 結果未達1小時,經由後續分 析發現是現場施工的瑕疵,後 續會再要求施工品質。此外, 也會參考國外通過試驗的工 法,加以精進防火與阻熱時效
	 1. 山州 CNB 林平已審查通 過,此計畫執行時是否依照 CNS(即 ASTM)標準進行? 2.樓板一般要求防火時效為1 小時以上,目前實驗案例皆未 能符合,是否可尋找較佳之工 法進行實驗? 3.請研究團隊協助估算執行 實驗所需之人力、設備等成本 	本計畫的執行是依照 CNS 的 標準進行試驗。本年度的試驗 結果未達1小時,經由後續分 析發現是現場施工的瑕疵,後 續會再要求施工品質。此外, 也會參考國外通過試驗的工 法,加以精進防火與阻熱時效 的設計。實驗相關設備、操作
	 山州 ChB 林平已審查通 過,此計畫執行時是否依照 CNS(即 ASTM)標準進行? 2.樓板一般要求防火時效為1 小時以上,目前實驗案例皆未 能符合,是否可尋找較佳之工 法進行實驗? 3.請研究團隊協助估算執行 實驗所需之人力、設備等成本 分析,並評估未來是否需要申 	本計畫的執行是依照 CNS 的 標準進行試驗。本年度的試驗 結果未達1小時,經由後續分 析發現是現場施工的瑕疵,後 續會再要求施工品質。此外, 也會參考國外通過試驗的工 法,加以精進防火與阻熱時效 的設計。實驗相關設備、操作 流程與校正牆維護費用,如附

附錄六

內政部建築研究所

107年度建築防火安全工程創新科技及應用研發計畫

協同研究計畫(一)

第2案「建築外牆板及帷幕牆層間交接構造防火性能驗證之研究」

第四次工作會議紀錄

時間:	107年9月26日上午9點
地點:	新北市新店區北新路三段 200 號
出席。	人員:
內政音	邹建築研究所: 蔡綽芳、雷明遠、胡幃傑
成功。	大學:林大惠、陳俊貴、黃俊諭
	工作會議事項
1.	帷幕牆層間塞防火性能試驗規劃
2.	帷幕牆層間塞系統防火性能之判定方式
3.	外牆板防火性能之試驗規劃

內政部建築研究所

107年度建築防火安全工程創新科技及應用研發計畫

協同研究計畫(一)

第2案「建築外牆板及帷幕牆層間交接構造防火性能驗證之研究」

第四次工作會議紀錄

山市内政	(八員· (部建築研究所: 蔡	续劳、雷明遠、胡悼傑						
成功	1大学:林大志、陳	度頁、頁後朝 工作會議事項						
1.	帷幕牆層間塞防火性能試驗規劃							
2.	帷幕牆層間塞系統防火性能之判定方式							
3.	外牆板防火性能之試驗規劃							
		出席人員						
	姓名	單位	簽章					
	蔡綽芳	內政部建築研究所	获得芬					
	雷明遠	內政部建築研究所	書い法					
	胡幛傑	內政部建築研究所	州传保					
	林大惠	國立成功大學能源科 技與策略研究中心	Af 22					
	陳俊貴	國立成功大學能源科 技與策略研究中心	陳任慶					
	黃俊諭	國立成功大學機械系	黄度論					

附錄七

ASTM E2307-15b 試驗操作手冊

- 一、試驗設備
- 1. ASTM E2307-15b 試驗屋、試體框架

2. 室內燃燒器

3. 窗戶燃燒器

- 4. 壓力計
- 5. Type K 裸線型熱電偶

6. DA100

7. DS600

二、試驗前準備

(一)熱電偶布置

 ASTM E2307-15b 主要目的為測試層間縫隙處之層間塞的防火性能,判斷火 焰是否能穿透層間縫隙到達二樓,因此試驗期間主要只量測測試室內的溫度 以及層間塞背火面的溫度變化。測試室內的熱電偶安裝位置,除了校正試驗 中天花板下方 15.2 公分處五點(中 41 號至 45 號熱電偶)、及帷幕牆內表面上 距地面 182.9 公分處三點(中 46 號至 48 號熱電偶)之外,尚需在層間塞底部處 安裝四個裸線熱電偶。此四個裸線熱電偶分別距離帷幕牆內表面及層間底部 30.5 公分,並彼此距離 61 公分平均分布於測試室內,如圖所示。

218

 根據 ASTM E2307-15b,需分別在層間塞背火面的中線、層間塞與樓板的交 界處、及與外牆的交界處上布置至少兩個熱電偶,另外每塊層間塞的中心處 也需布置一個熱電偶,每個熱電偶的表面皆依法要求裝上隔熱墊片。

NFPA 285 主要目的為測試帷幕牆的延燒與防火性能,判斷火焰是否會沿著帷幕牆表面延燒至二樓,因此試驗期間主要量測帷幕牆上內外表面的溫度變化

作為輔助的觀測與判定。本試驗依照 NFPA 285 的規定,於帷幕牆外表面上 安裝1號至13號熱電偶於中心線上,並於窗戶上方 3.05 公尺處(與 11 號熱電 偶同高)安裝14號至17號熱電偶。內表面則沿中心線安裝21號至28號熱電 偶,並於觀察室內的帷幕牆內表面上安裝49號至54號熱電偶。

(二)壓力計布置

1.將連接兩個壓力計的金屬管插入下圖紅圈圈起的兩個洞中。

- (三)熱電偶與壓力計訊號連接
- 1. 將 DA100 接上電源打開開關,如圖以網路線與筆記型電腦連接。

2. 紅圈的網路線插槽以網路線與 DS600 連接

3. 開啟 Laucher 程式

4. 進入 Software Configuration 介面

SH BAGS FBC		Parties in X - YOKOGAWA
	- Male	
# 1 2 	The Constraints Departs System Vers Hell	
	nan Sananyi 1 marata waka ata ata ata ata ata ata ata ata ata	
NEW MARK	Real	
😧 😂 🖂 🖉 🚯		- Hora and a second

5. 點選 Diagnostic→Reconstruct, 偵測 DA100 與 DS600。

6. 確認連接至 DA100 與 DS600 後, 關掉視窗並點選上方 DARWIN Hardware Configurator。

Approx.	mm 11	And and a state of the local division of the	-	124			1	-	1.6			_		
	-	3100	-	-	-	-	- 101		1.00	1.86.2	-		-	1000
(n 21)						-			1		-	_	1200	
A DE														
14.245														
14.244														
is zav													1.20	
120														
(H 221													1000	
in the S	-													
in the S														
14245														
11216	-													
100														
am													0.001	
10 27 5-2													1000	
am.														
aut I														
3 2 1 R														

7. 每一台 DS600 皆有編號,假如編號是 1, channel 的編號就是 1XX,根據你使用的 Channel 來選擇訊號來源,壓力計為 Volt,熱電偶為 TC 並選擇 TypeK 熱電偶,沒有使用的 Channel 選擇 Skip。

13.00	Street Based	Province groups	1000 8840 00000	1.00	WHILE IN CONTRACT IN		1.00
	town in the	Tana Maran (ALC: NO	\$1 . B	or the	State Base Ann	Tyle
PINT IAP A							
A REAL PROPERTY.							
and the second							
1000						100	
NAME OF COMMENTS							
and a state						21	
THE PARTY OF							
arrest West 1							
antes states			other Designation of the local division of t				
NID STORE							
sito no						- 31	
018 105						31	
auti- sta						111	
ALL DE CALLER OF STREET							
incent College							

*小技巧:設定好一個欄位後可以選擇 Copy 再貼上,可節省時間。

8. 設定完成後送出設定。

12 miles	at 100 - 10		Brand Carlings Har								100
1	Fairte	1									
-	Seed.		Altering C	1000							
E.	Actor	-	Bit Register) tellings Didy Machine Die Insen gemäge	They do	Tate at	-	time .	-	-	See	- 5
1000	Sec. 1	1984	1000	deal uno					-	1981	
49.95	22										
10.00	83										
100	Page 1										
0.38									111		
to be									DAT:		
in me	100										
40.00	238										
18.52	E201										
44.72	200										
0.24											25
0.24											
(and	bott										
18.04	He state										
16.20	E20										
28.76	Provide State				0.5420					1	
1	- 1	-	1					_	_		
Summer of the local division of the local di	-				1.00				-	COLUMN TWO	
Desiral	ad on the local division of the local divisi								- 04	NUM	

9. 將視窗關閉,並打開 Logger 介面

10. 點選 Logging→General Display Setting,

11. 將所要顯示的 Channel 打勾,完成設定後按下 OK。

Group Ner	The state of the s	1000.0000		05:00:00	SCORE ON	10200102	NO.	20)	2011/2012/2011	100 (20 (20) A	_
Her.	Channellin	1.600	Matur Tora	3000	6	Zo	nie.		THE P.	Travel	Prime
and .	Contraction (1992)	1.000	week (jps	Va	HAX	Pin.	HAX-	12		Condenses 1	
10001	CH218	Lifent	NORMAN	a 11	10	0	100	11	. 19	III10	
1162	CHE12	Linear 1		- 16	ι¢	0	100	田田		C 310	
W83	CHELL	LUBAR	NO DE LO RECOM	2010	10	0	100			C	
1014	CH814	L Dien/		11	10	0	100	111		10	-
WIS-	CHS15	Lines: 1	State (State)	÷ 403	10	0	100	111	- 18	-10	
W96	CHORT	LILIERS		2 (det 1) /	10	0	11100	111	0.18		
- W\$7	CHEES	Lineart	利用 印刷印刷	- 11	10	0	100	FT.	18	-10	
1000	CHORD	TI LICAT			tộ l	0	100	11	18	. ito	1.00
0025	CH304	Lifest 1		411	10	0	100	11	10	(III) - 510	1.00
1111	-flate-	Linear 1		-10.00	18.00	0	100	E	10.00	-18.00	
W11	-110082	LUBBRT	MICH BUILDING	-10.66	16.00	0	100	12	10.00	C .1500	
W12	-Hiller	L. Linear	I 0 0 0 0 0	-10.68	11.00	Ó	100	110	10.00	-18.00	
W13	-line-	Liter		-10.00	18.00	0	100	11	10.95	-18.00	-
per takaran	Contraction of the local division of the loc	and the second second	A DESCRIPTION OF THE OWNER.	10.46	10.00	0	HEAD	1000	10.00	15.00	

General [Display	Sett	ings	8								
01 02 0	03 04	05	06	07	08	09	10	11	12			
Group Nar	Group Name : Group30											
NO	Char	annel No. Y-Axis		Axis	Meter Type							
🖬 W0)	CI	CH210			Linear			\bigcirc	Ċ			
W02	CI	H012			inear	10	\bigcirc					
W03	CI	H013	1		inear	10		0:	C)			
W04	CI	H014		ШL	inear	10		0:	÷C			
W05	CI	H015		EL	inear	10) 🖪	O TOXC				

12. 點選 Monitor, 再點選 Numerical Monitor, 顯示使用中 Channel 量測到的值。

13. 若要紀錄數據,點選 Record,紀錄的頻率可以在 Logging→Logging

Configuration修改。

U.	-	-	Caller.		2	Baller II These	Paint [7	11.bec
	-		N	•	-	Recording Marking Rept (Contenant) [net (Intena)		
-	-	-	1997	the second		Recording (names) = 10	· Sedectara	
-	n	-	1	-	2	Fig. Ledings Devices (C.D. Confidencial ACC Figure ((Punterala	C 100-00
						C. Sette impli-		
10		10	(4)	- Al 🖊		C.4879.998		
ALC: N	+		1		Halle	Manshered Withfront Witherson		-
	-	K	1	1	14	Darrest an A		a second 1
-	100	-	No.	ARCHINGS.	- Alexandre	Inske No.21	E	Cent
-	-				2) 1955			
-	-	1						
0	Q		0 1					11 35 SHOT

14. 若要停止紀錄,則按下 Stop。

15. 點選上方的 File Utility 可以進行記錄檔的轉檔。選擇要 Input 的檔案與 Output 的檔案路徑,記錄檔轉成 Excel。

	Convert Rest	truct.		
Input				2013
			File	· Select
Output				
.			File	▼ Select
Data file				
- File format				
Excel	C ASCI	Lotus		
Report file				
File format		-		
Duteut format	ASCI	Lotus		
 Output format Vert_CH 	C Hor CH			
				1
			0.84	OK Abort
Lais Willow (R4)	//01//025		0 %	OK Abort
1.35.VIEW 10	70705	C .	0%	OK Abort 和政制建業
Labylewy 10 17 (64 Utility	70705	<u> </u>	0%	OK Abort 网络斯建築 新聞新聞書
LIBYIEW 10 17/194 Utility ility Help	70705	<u> </u>	0 %	OK Abort
LabxAEwy 10 It7/624 Utility ility Help e Divide	Convert Restruct.	¢	0%	OK Abort 内以部建築 和法研書
Lasview 10 17 (ee Utility ility Help e Divide	Convert Restruct.		0 %	OK Abort
Lei5XHEWW LO H7/624 Utility illity Help a Divide O	Convert Restruct		0%	
Leibx/HEWy 110 II 7 (64 Utility ility Help Divide Divide G	Convert Restruct.		0 %	
Utility ility Help Divide C	Convert Restruct.		0% ↓ ← 1 ㎡ ▼ 修改日期	OK Abort
Utility Divide Divide CO 另存新 储存於(1): 名稱 ef 图 0072	Convert Restruct.		 0% ○% ○ ○<td>OK Abort Abort 和学校書 副 図 23 算型 3 Microsoft</td>	OK Abort Abort 和学校書 副 図 23 算型 3 Microsoft
LCDXHEWY 10 H7 (64 Utility ility Help Divide Divide Divide C S S 存新 t t 儲存於(1): 名稱 ef I O(72 I I) 0072 II II 0069	Convert Restruct.		 ○ % ○ %	OK Abort 지방하다 이 미 전 회 미 전 회 제 외 3 Microsoft Microsoft
LeibXHEWY 10 II7 (64 Utility ility Help Divide Divide Divide Comparison Comp	Convert Restruct.		 ● 余 回● ● ☆ 回●	OK Abort 전版的建築 대法的語言 - 田 33 - 田
LCIDXIEW 10 Utility ility Help Divide Divide G 公 另存新作 ut 儲存於(1): 名稱 ef 國 0072 國 0072 國 0070 可 國 0071	Convert Restruct.		 ○ % ○ %	OK Abort Abort Abort 通知語言 日 23 第型 3 Microsoft Microsoft Microsoft Microsoft
Loox/Ewy 10 17/64 Utility ility Help Divide Divide Divide CO 容易存新 储存於(1): 名稱 ef 图 0072 章 0069 章 0071 章 0071	Convert Restruct.	117.	 ○ % ○ %	OK Abort Abor
LCDXHEWY 10 Utility Clifty Help Divide Divide Divide Divide C S S S S S S S S S S S S S S S S S S	V. U.V. UES Convert Restruct.		 ○ % ○ %	OK Abort 지않 NET Abort 지 전 NET Abort 지 D NET Abort N D NE
LEDXHEW 10 L7 (64 Utility L1 (64 Divide Divide Divide Divide Divide Comparison Comparis	Convert Restruct.	III III III	 ○ % ● ◆ 全 評 回 修改日期 2018/8/15 上午 11:5 2018/8/9 上午 10:54 2018/8/9 上午 10:54 2018/8/9 上午 10:53 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	OK Abort

Merge	Divide	Convert	Restruc	at.]					
Input -	SARANAS		101/030304985						
C:\DAQV	VORXIDAQ	32Plus\User	data\007	4.DAQ	F	le	- 9	Select	
Output									
C:\Users	\firelab\Des	sktop\test			F	le	* 5	Select	
Convert	setting								Contract of the
- Data fil	e								
File fo	rmat el			Lotus				1	
Descal									
- File fo	rmat								
Exc	el			C Lotus				20	
Outpu	t format								
Ver	t. CH	C Hor. C	H						
									and the second second

- (四)瓦斯開闢與流量控制
- 1. 圖為瓦斯開關位置,試驗前要注意其他試驗設備之瓦斯閥為關上的狀態。

2. 瓦斯閥打開時壓力計正常顯示值如圖所示

3. 窗戶燃燒器與室內燃燒器所連接之瓦斯閥分別在試驗屋的前方與後方。

4. 圖為燃燒器之控制面板,可控制室內燃燒器與窗戶燃燒器之流量。

- 5. 將控制面板之電源線接上插座。
- 6. 將燃燒器連接線接上控制面板,連接線有兩條,按照標籤接上對應的插槽。

7. 將控制面板之電源打開,開闢向上扳為開,向下為關,圖中為打開之狀態。

8. 當 panel setup 介面出現後,按 run 進入控制畫面。

1	anel Setu	ıp
General	Copy to HMI	
Touch Panel		
Set Time/Date		Class
Lush 1	ļ.	Recorded Data
		Run

9. 圖為控制介面

Roon B	urner	Window Burner				
沈量值 🗌	0.00	抗量值 🗍	0.00			
手動開度	0.0	手動開度	0.0			
于杜拉林	脱定	手机组织	設定			
1空制/组建1	6	控制組數	5			
懂行組別	I	運行組別	1			
說定時間	300	稳定時間	.300			
刺給時間	300	刺動時間	300			

10. 控制方法分為手動控制與自動控制,手動控制為控制開度,可輸入的值為
 0~100,點設定按鈕可以調整自動控制之時間與流量值。當模式從手動控制切換至自動控制時,自動控制會從頭開始。

	W.	mdow Bo	unër	
24 B/W	000	T	控制組動	5.0
MERCHAR	0.00		運行組別	1
授制 []		7/	設定時間	180
祖鈔	40	0	何餘時間	166
(赶到)	0000	0003	0003	-0004
動作時間	180	.90	180	120
4				
流和設定	0.07	0.08	90.0	0.22
主論問	15 27 3	W	上一頁	T-M

Window Borner										
	0.00	古	2朝組動	5 .						
Comment of	Cilco.	9	1							
控制厂上		77	定時簡	180						
· 植教	40	2 7	餘時間	166						
1日日1	0001	0002	0003	0004						
動作時間	180	90	180	120						
+										
洗服织定	0.07	0.08	0.09	0,22						
正此王	修改更	1 1	上一頁	T-A						

	Windo	w Buner	-	
流量值 0.00		-	meth	180
控制	1	0+	1999	Fee
<u>網別</u> c	+	-		Lat
動作時間	4	5	6	Clr
41 1000000000 1	7	8	9	Del
Titte I		0	-	Ent

		Windes	# Bunner		
流量值 (200				0.07
10.85	1		0.01 -	1.02	_
建新 S	1	1	2	3	Esc
瓶別 動作時間		4	5	6	Clr
10.000		7	8	9	Del
主意用	E	1	0		Ent

附錄七

	W	indow Bu	undu	
			控制組數	5 .
			藥行組別	1
			設定時間	180
相數	04	20	有能時間	130
趣預	0001	0002	0003	0004
動作時間	180	90	180	120
- AL	2			
流量設定	0.07	0.08	0.09	0.22
主意面	師改更	¥ [1-1	F

Roos	Room Burner		Window Burner	
			0.0	0.00
1 million	80-	100.0		0.0
1	2	3	Esc	
- 4	5	6	Chr	
- 77	8	9	Del	1
		1	Ent	- 160
	0		Em	125

三、試驗過程

- 將窗戶燃燒器推至試驗屋前方,窗戶燃燒器圓管中心線需要距離牆面15公分。
 移動燃燒器時金屬軟管需先拆下,防止過度彎折造成軟管損壞,定位後再重 新裝上軟管。
- 將試驗過程所需之兩台攝影機分別架在試驗屋正前方以及試驗屋二樓之觀察 室,並將計時器架設在試驗屋正前方攝影機可錄到的範圍。
- 3. 將熱像儀架設在試驗屋正前方,紀錄試驗過程
- 4. 按照流率表設定室內燃燒器與窗戶燃燒器之流量。

Time Interval (min)	Room Burner (m ³ /min)	Window Burner (m ³ /min)
	. . .	()
0-5	0.76	0
5-10	0.76	0.08
10-15	0.85	0.07
15-20	0.91	0.07
20-25	0.91	0.08

25-30	0.99	0.09
30-35	0.85	0.09
35-40	0.78	0.09
40-45	0.99	0.09
45-50	0.99	0.09
50-55	0.99	0.09
55-60	0.99	0.09
60-65	0.99	0.09
65-70	0.99	0.09
70-75	0.99	0.09
75-80	0.99	0.09
80-85	0.99	0.09
85-87	1.1	0.09
87-end	1.2	0.09

5. 將窗戶燃燒器與室內燃燒器的瓦斯閥打開。

- 6. 將少許甲醇淋在室內燃燒器的棉上,並用點火槍點火,離開試驗室將防火門 關上,先將控制面板室內燃燒器用手動開度調整流量大小使燃燒器完全點燃, 然後切換至自動控制,計時器開始計時,試驗開始。
- 試驗開始五分鐘後,要開啟窗戶燃燒器,在試驗進行快要到五分鐘,將甲醇 淋到燃燒器上,用點火槍點火,試驗時間到五分鐘時,將燃燒器以手動開度 模式完全點燃,並轉為自動控制。
- 試驗過程中需要兩個人紀錄過程,一個人從筆電監控各個溫度點變化,並記錄試驗過程中發生之現象,另一個人在二樓觀察室觀察是否有火焰穿透層間 塞延燒至二樓。
- 當火焰通過層間塞延燒至二樓後,將燃燒器轉至手動開度,並將開度設為0, 關閉瓦斯閥,終止試驗。

四、其他事項

 燃燒器維護:在試驗準備時,燃燒器需要以耐火綿進行包覆,將耐火綿以適 當的厚度包覆住燃燒器圓管並固定,固定方式可使用不燃且耐高溫的線來綑 綁耐火棉。 五、校正牆維修經費預估

根據 ASTM E2307-15b,每年都需要進行校正試驗,校正燃燒器流率達到所 要求的升溫曲線。根據本研究團隊的經驗,當校正牆經過兩次各兩小時的校正試 驗,校正牆內部的輕型鋼架以及內外部強化石膏板就需要更換。先前校正牆框架 維修的價格約為 27000 元,使用在校正牆面的強化石膏板單價為 850 元,維修一 面校正牆大約需要用到 10 片至 20 片強化石膏板,粗估校正牆維修一次需要 3 萬 至 4 萬台幣。

參考書目

- ASTM E2307-15b Standard Test Method for Determining Fire Resistance of Perimeter Fire Barriers Using Intermediate-Scale, Multi-story Test Apparatus, ASTM International, 2015.
- NFPA 285 Standard Method of Test for the Evaluation of Flammability Characteristics ofExterior Non-Load-Bearing Wall Assemblies Containing Combustible Components Using the Intermediate-Scale, Multistory Test Apparatus, National Fire Protection Association, 2012.
- 3. BS EN 1364-3 Fire resistance tests for nonloadbearing elements -Part 3: Curtain walling-Full configuration (complete assembly), BS EN Eurocodes, 2014.
- BS EN 1364-4 Fire resistance tests for nonloadbearing elements -Part 4: Curtain walling -Part configuration, BS EN Eurocodes, 2014.
- EMSEAL Joint Systems, Ltd., UL 2079 Certification for Deck and Floor Expansion Joints–What's involved?, 2016.
- 6. 雷明遠(2003)。帷幕牆防火性能基準與評估驗證之研究,內政部建築研究所 自行研究報告。台北市:內政部建築研究所。
- 雷明遠(2004)。區劃開口部防火技術創新與應用研究(1/2),內政部建築研究
 所研究報告。台北市:內政部建築研究所。
- 蔡銘儒(2012)。非承重外牆與層間縫隙耐火性能驗證基準之研究,內政部建築研究所自行研究報告。台北市:內政部建築研究所。
- 陳瑞鈴,林大惠,雷明遠,王天志,蘇鴻奇,陳俊貴,胡愇傑,劉育良(2015)。
 綠能光電模組建築構造之防火性能精進研究,內政部建築研究所協同研究報告。台北市:內政部建築研究所。
- 蔡綽芳, 雷明遠, 蔡銘儒, 吳崇豪, 林大惠, 李訓谷, 胡幃傑, 劉育良(2016)。
 建築物帷幕牆垂直立面火焰延燒特性之研究, 內政部建築研究所協同研究報

告。台北市:內政部建築研究所。

- 蔡綽芳,胡幛傑,蘇鴻奇,羅啟文,林大惠,陳俊貴,楊明璁,黃俊諭(2017)。
 帷幕牆層間縫隙構造防火性能及設計構法之研究,內政部建築研究所協同研 究報告。台北市:內政部建築研究所。
- 王琇雄(2013)。外牆吊掛石材空縫設計之研究,國立成功大學建築研究所碩 士論文,台南。
- 13. 崔征國(2012)。建築的整體組構,建築圖解事典編集委員會, 詹氏書局。
- 14. 張貞桂(2013)。中高層建築物外牆劣化之研究-以台北市集合住宅為例,國立 成功大學建築研究所碩士論文,台南。
- 15. 石正義(1994)。帷幕墻構法專集, 詹氏書局。
- 另卓夫,葉基棟,黃立昌,蘇志民,鄭奕孟,吳偉國(2005)。營造法與施工, 茂榮書局。
- 額宗沛(2004)。以雙重壁原理探討外牆改修構法,國立成功大學建築研究所 碩士論文,台南。
- 蔡曜謙(2017)。地工泡棉(EPS)應用於建築物外牆飾材之性質研究,國立臺北 科技大學土木工程系碩士論文,台北。
- 19. 陳嘉懿,鄭泰昇、潘晨安、馬瑜嬪、黃紹筑、陳思吟(2015)。建築物節能外 牆之應用研究,內政部建築研究所委託研究報告。台北市:內政部建築研究 所。
- 20. 李錦堃(2011)。應用系統整合模式探討帷幕牆工程管理之研究,東南科技大學防災科技研究所碩士在職專班學位論文。
- 陳慶銘,王榮吉,施乃中(1992)。帷幕牆工程標準規範與解說之擬定,內政 部建築研究所籌備處。
- 22. 陳宗熙(1991)。高層建築物單元式金屬帷幕牆耐風壓性能之分區方式研究: 以高雄漢來新世界大樓為例,淡江大學建築學系碩士論文,台北。

- 23. 許燕輝(2005)。台北國際金融中心帷幕牆施工之探討,國立交通大學工學院 營建技術與管理學程碩士論文,新竹。
- 24. 薛丞堯(2002)。國內點支承玻璃帷幕牆施工精度控制之研究,國立成功大學 建築學研究所碩士論文,台南。
- 25. International Firestop Council, Perimeter Curtain Wall Fire Protection, 2004.
- 26. Thermafiber, Inc., Perimeter Fire Containment in Multi-Story Buildings, 2009.
- 27. James Shriver, Perimeter Fire Containment-The Basics, 2009.
- Owens Corning, Steel Stud Perimeter Fire Containment System -ASTM E2307, Technical Bulletin, 2016.
- 29. 瑞德感知科技(2016)。巴別塔的火焰挑戰(一):高層建築的火災風險。瑞德 消防雜誌。
- 30. 陳太農,郭炳林(1999)。帷幕牆防火性能評估與設計準則,內政部建築研究 所專題研究計畫成果報告。台北市:內政部建築研究所。
- B. R. Cuzzillo and P. J. Pagni, <u>Thermal Breakage of Double-Pane Glazing by</u> <u>Fire.</u> Journal of Fire Protection Engineering, 9.1(1998),1-11.
- T.J.Shields, S. Hassani, G. Silcock, <u>Behavior of Glazing System in Real Fire.</u> <u>Fire, static, and dynamic tests of building structures</u>. Fire, Static and Dynamic Tests of Building Structures, 2 (1997), 69.
- 33. 陳弘毅(1996)。火災學。鼎茂圖書出版公司。
- 34. 林文意(2000)。建築物外牆開口噴出火焰行為研究,國立台灣科技大學營建 工程系碩士論文,台北。
- 35. 蕭江碧,劉慶男,何明錦(2002)。建築防火有關性能試設計法建議草案與案 例解說。台北市:內政部建築研究所。
- 36. 賴韻蘋(2004)。改良式金屬帷幕牆防火性能初探—以直橫料式構法足尺試驗 探討之,國立成功大學建築學研究所碩士論文,台南。
- 37. 田中哮義(1993)。建築物火災安全工學入門。日本建築中心。
- 38. 陳海曙,周鼎金(1998)。建築防火安全設計學。茂榮書局。

- 39. 林元祥(2004年6月)。建築物火災財物損失影響因素與解釋模式。住宅學報,第13卷第1期,。
- 40. CNS 14815 建築用防火固定窗耐火試驗法。中華民國國家標準(CNS)。
- 41. 張菀育(2003)。帷幕牆無開口銘板防火性能之初探,國立成功大學建築研究 所碩士論文,台南。
- 42. 林慶元(2004)。實尺寸帷幕牆防火性能之實驗研究(I),行政院國家科學委員 會專題研究計畫成果報告。
- 43. 林慶元(2005)。實尺寸帷幕牆防火性能之實驗研究(II),行政院國家科學委員 會專題研究計畫成果報告。
- 44. 李奇峰(2012)。帷幕牆層間塞之遮煙性能研究,國立台灣科技大學建築研究 所碩士論文,台北。
- 45. 萬復森(2005)。牆面火焰延燒寬度效應之研究,國立高雄第一科技大學環境 與安全衛生工程所碩士論文,高雄。
- 46. 游依婷(2003)。單元式鋁帷幕牆防火構法之研究,國立成功大學建築研究所 碩士論文,台南。
- 47. Liang Zhou, Aiping Chen, Lei Gao, Zhifeng Pei, <u>Effectiveness of vertical</u> <u>barriers in preventing lateral flame spread over exposed EPS insulation wall.</u>, Fire Safety Journal, 91(2017), 155-164.
- Miao-miao YU, Guo-qing ZHU, Qing-xuan Meng, <u>Experimetal Study and</u> <u>Analysis of XPS Vertical Countercurrent Fire Spread.</u>, Procedia Engineering, <u>211(2018)</u>, 945-953.
- Weiguang An, Rongliang Pan, Qingxuan Meng a, Hongya Zhu, <u>Experimental</u> study on downward flame spread characteristics under theinfluence of parallel <u>curtain wall.</u>, Applied Thermal Engineering, 128 (2018), 297–305.
- 50. Qing xuan Meng, Guo qing Zhu, Miao miao Yu, Zhen huan Liang, <u>Experimental</u> study on upward flame spread characteristics of external thermal insulation <u>material under the influence of porosity.</u>, Case Studies in Thermal Engineering,

12 (2018), 365-373.

- 51. Understanding the Basics of Firestopping: Part Two., https://ifpmag.mdmpublishing.com/understanding-basics-firestopping-part-two/
- 52. Intertek Test Report, Report Number: 102936114SAT-004B, 2017.
- 53. Architectural Testing, Report Number: C5740.01-121-24, 2013.
- 54. Architectural Testing, Report Number: C6579.01-121-24, 2017.
- 55. Intertek Test Report, Report Number: 102936114SAT-004B, 2012.
- 56. Intertek Test Report, Report Number: 101530130SAT-007_Rev.2, 2016.
- 57. Intertek Test Report, Report Number: G9194.01-121-24-R0, 2017.
- 58. CNS14705-1建築材料燃燒熱釋放率試驗法-第1部圓錐量熱儀法。中華民國國家標準(CNS)。
- 59. CNS15213-1-建築物外牆立面防火試驗法-中尺度試驗。中華民國國家標準 (CNS)。