112 年及 113 年 LiDAR 技術更新數值地 形模型成果測製工作(第2作業區) 2023 and 2024 Government Procurement for Updating Taiwan DEM by LiDAR Technique 2nd Work Zone

112 年度工作總報告 Final Report in 2023

標案案號:NLSC-112-12 主辦機關:內政部國土測繪中心 執行單位:中興測量有限公司

中華民國 112年12月26日

112 年 度
112年及11年L
iDAR 技術更新
數值地形模型成
果測製工作(ダ
弔2作業區)

工作總報告

內政部國土測繪中心

內政部國土測繪中心

地址:臺中市南屯區黎明路2段497號4樓

網址:https://www.nlsc.gov.tw

總機:(04) 22522966

傳真:(04) 22592533

工作總報告

摘要

內政部推動「落實智慧國土-國土測繪圖資更新及維運計畫」,自 105 年起以 LiDAR 技術更新 4,825 幅(1/5000)範圍數值地形模型。本案接續以於 112 及 113 年度規劃辦理 1,701 個圖幅(1/5000)範圍數值地形模型更新作業, 並分為三個作業區,分別第 1 作業區為 567 個圖幅(1/5000)、第 2 作業區為 558 個圖幅(1/5000)以及第 3 作業區 576 個圖幅(1/5000)。持續更新高解析度 數值地形模形資料成果,以供國土建設及未來規劃之重要依據。

中興測量有限公司執行範圍為第2作業區,112年度測區橫跨花蓮縣、 臺東縣、屏東縣,共287個圖幅(1/5000)面積約1,794平方公里,並劃分115 圖幅為第1子測區,172圖幅為第2子測區。工作內容主要如下包含:

- 一、 空載雷射掃瞄飛航計畫規劃與申請。
- 二、 地面 GNSS 基站控制测量。
- 三、 空載雷射掃瞄施測資料獲取。
- 四、 雷射掃瞄點雲資料處理。
- 五、 數值地表模型(DSM)與數值高程模型(DEM)製作。
- 六、 正射影像製作。

本計畫飛航掃瞄總計執行 35 架次飛航作業,共 340 條航線(含補飛)。 航線離地高約 2,300m,採用 Optech ALTM Pegasus HA500 執行雷射掃瞄, 並以 Phase One iXU-RS-1000 進行航空攝影。獲取每平方公尺高於 2 點點雲 密度,並確保每條航線重疊率原則 50%之高密度成果。

光達率定場設置於彰化縣彰濱工業區,飛航掃瞄相互垂直四方向兩個 航高之航線,採用 LMS 軟體自動搜尋重疊航帶內之平面(Tie Plane)之方法 進行共軛匹配,以最小二乘法率定計算,利用平差後航帶間之高程殘差與 共軛面法向量之分布評估航帶平差成果之可靠性,率定成果和確認飛行高 程精度皆符合小於 10 公分標準。

Ι

工作總報告

本測區採用已知連續基站及一自架移動站進行軌跡解算,解算點雲資 料品管後進行航帶平差,每條航帶頭、中及尾人車可到達處,採用全面靜 態 GNSS 測設高程平差控制點共計 116 點(含平差高程控制點 101 點與檢核 點 15 點),另有平面平差控制點共計 32 點及空三測點 66 點。透過 LMS 和 TerraMatch 等商業軟體萃取點雲特徵線及特徵面,進行全區點雲航帶平差 計算。經航帶平差計算後重疊數據之平均絕對差量 2 子測區分別約為 12.4 公分和 13.0 公分。

點雲之過濾分類採用 TerraSolid 軟體進行初步過濾,再接續進行人工編 修,本公司今年亦使用點雲編輯分級制度,針對各種不同地形地面點分類 之難易程度分級,預先進行作業區域圖幅分配,可縮短整體人工點雲濾除 作業時間,並同時確保成果品質。續以產製出1公尺×1公尺之 DEM/DSM。 並以不同土地覆蓋分區檢核點進行精度檢核。

本計畫於空載光達掃瞄同時進行航拍攝影,並經空中三角測量、正射 糾正、色彩平衡、接邊鑲嵌等作業程序。產製地面解析度為25公分之正射 影像。空中三角測量使用之控制點包含高程平差控制點之方格標,及空三 分區四角布設之航空標,並以均勻分布於各空三分區內之15個檢核點進行 精度檢核。正射影像成果描繪水體邊緣線,用以提供後續空載光達點雲資 料編修水域內水點。

據以往經驗飛航任務會因天候不佳延宕,本測區藉由積極飛航待命完 成飛航任務,並產製符合契約規範要求之 287 圖幅成果。透過適宜的航線 規劃與點雲分類編輯技術之精進,提供完整及高精度的光達點雲成果資料, 高精度數值地形模型可供後續進行山崩與土石流等地質因子判釋與地形變 異、地質特性分析。

關鍵字: 空載光達、數值地形模型、數值地表模型、數值高程模型

Π

Abstract

Ministry of Interior updating Taiwan DEM about 4,825 map sheets by LiDAR technique from 2016. The National Land Surveying and Mapping Center conducts the project " Updating Taiwan DEM by LiDAR technique in 2023", will upate 1,701 map sheets in 2023 and 2024. This project divide into 3 work zone, 567 map sheets in the first zone, 558 map sheets in the second zone and 576 map sheets in the third zone.

CHS Surveying Co. Limited won the contract for the second work zone, which covers Hualien, Taitung and Pingtung. in 2023, it is about 1,794 square kilometers, equivalent to 287 map sheets of 1/5,000 scale, which was divided into 115 map sheets in sub-survey-area 1 and 172 map sheets in sub-survey-area 2. The major works include:

I. Flight planning and permission application for airborne laser scanning.

II. Ground Control Survey for GNSS base stations.

III. Airborne laser scanning and data acquisition.

IV. Data processing for laser scanning point clouds.

V. Digital surface model (DSM) and digital elevation model (DEM) production, orthometric height correction, artificial quality checking, data editing, and map mosaicking.

VI. Orthophoto production

The project uses Optech ALTM Pegasus to scan about 35 flight tracks with flight height of 2300 m. Phase One iXU-RS-1000 aerial photography is also used. We also take over 2.0 points clouds per meter square scanning density and 50% overlap of scanning zones on all contiguous scanning strips to ensure the high density and high quality results.

LiDAR calibration site is located in Changhua Coastal Industrial Park, Changhua County. It covers mutually perpendicular flight in 4 direction and 2 altitudes. The LMS software is used to automatically search the tie plan as conjugate matching for band strip adjustment. Least squares were used in calibration calculations. In addition, the relative height among flights and the overall distribution of the normal vectors of tie plans can be used to estimate the reliability of the strip adjustment outcomes assessment. The results of calibration and the accuracy of the flight elevation must be confirmed to the accuracy of less than 10 cm standard.

Trajectories are processed with kinematic GNSS raw data are combined with base station data. The front, middle, and tail parts of each flight are surveyed with static GNSS height measurement. In total, there are 116 vertical adjustment points, 32 horizontal adjustment control points, and 66 aero triangulation points. Characteristic lines and planes were extracted from point clouds via the LMS and TerraMatch. After strip adjustment, this project has an average of about 12.4 cm and 13.0 cm absolute height difference between the overlapping flights in two sub-survey-areas.

Point clouds classification uses TerraSolid software for preliminary filtering. In order to achieve high accuracy of the results, the point clouds must be followed with manual editing. The final edited point clouds can be used to generate contour, and used for self-check. CHS point cloud classification team has years of experience. Regular group meetings and training were implemented to share experiences, especially for this project, and to enhance the ability of team members. After reviewing the recommendations of the parties, the self-examination became integrity and efficient. A series of procedures with programs are designed to check the quality of point cloud editing. Finally, the results of manual editing point clouds completed continued to produce 1 m \times 1 m DEM / DSM. Different areas can be checked with different accuracy standards according to different land cover.

The project uses LiDAR scanning with simultaneous aerial photography and processed with aerial triangulation, orthorectification, color balance, mosaic, and edge alignment. The final production of the orthophotos has a 25 cm resolution. The boundary lines of water bodies can be described with these orthophotos, and provide for the use of following LiDAR point clouds data editing for water points.

According to the experience, flight delays are due to climate reasons. We meet the requirements of the contract specification and complete 287 map sheets by early standby.Integrated performance and higher precision of the DEM/DSM are performed by suitable flight planning and skill improvement of point cloud classification. DEM/DSM can be used for various applications such as environmental factor analysis on geological evaluations.

Keywords: Airborne LiDAR, Digital Terrain Model (DTM), Digital Surface Model (DSM), Digital Elevation Model (DEM)

VI

工作總報告

目	錄
目	錄

摘	要	I
AB	STRA	III
目	錄	VII
圖	目	錄 IX
表	目	錄XII
第-	-章	計畫概述1
第二	二章	作業規劃4
•	82-1	作業準備
	ş2-2	飛航規劃
第三	三章	地面控制點選取與測量工作9
•	§3-1	基站選取
	§3-2	
第四	日章	空載 LIDAR 作業14
	<u></u> 84-1	率定與校正作業14
	§4-2	飛航掃瞄成果
	§4-3	空載 LiDAR 資料處理24
	§4-4	航带平差與內部精度評估29
	§4-5	DEM/DSM 製作55
	§4-6	檢核點蒐集與作業63
第3	五章	正射影像製作78
	§5-1	作業區航拍工作
	§5-2	航拍影像處理79
	§5-3	空中三角測量80
	§5-4	彩色無縫鑲嵌正射影像製作85
	§5-5	正射影像外部接邊91
	§5-6	成果外業驗收
第ナ	5章	成本分析94
第十	ヒ章	機敏資料管制96

第八章	檢討與建議	97
第九章	参考文獻	

- 附件一 作業計畫(含空載光達掃瞄飛航計畫)
- 附件二 地面控制测量成果報告
- 附件三 校正報告
- 附件四 檢核點照片與坐標列表
- 附件五 檢查報表
- 附件六 各次工作會議結論與追蹤事項辦理情形
- 附件七 函文記錄
- 附件八 監審方審查意見
- 附件九 112年工作總報告審查意見回覆表

工作總報告

圖 目 錄

啚	1.1	第2作業區與各子測區示意圖	2
啚	2.1	飛航申請公文	4
圖	2.2	飛機安裝現況圖	6
圖	2.3	儀器架設圖	6
圖	2.4	飛航規劃流程	6
圖	2.5	測區航線展繪圖	8
圖	3.1	GNSS 控制點與基站分布圖	.10
啚	3.2	航带平差控制點分布圖	.12
啚	3.3	GNSS 實際觀測網形圖	.13
啚	4.1	工作流程圖	.14
啚	4.2	率定場位置與現況示意圖	.15
啚	4.3	率定場坡度圖	.16
啚	4.4	率定場植被分布圖	.16
啚	4.5	率定場平均下速率等值圖	.16
啚	4.6	率定 GNSS 基站位置圖	.16
啚	4.7	雷射點至萃取面的距離統計分布圖	.18
啚	4.8	雷射點至萃取面的距離統計直方圖	.19
啚	4.9	率定飛行與確認飛行成果之高程分析統計直方圖(單位:公尺)	.20
啚	4.10	平面精度分析圖(單位:公尺)	.20
啚	4.11	飛航軌跡與基站示意圖(每格為20公里)	.21
啚	4.12	地面基站 PDOP 圖	.22
啚	4.13	機載 PDOP 圖	.22
啚	4.14	空載雷射掃瞄資料作業流程	.24
啚	4.15	點雲解算產製處理流程	.24
啚	4.16	飛航軌道差異量示意圖	.25
啚	4.17	飛航掃瞄航跡示意圖	.25
啚	4.18	重疊率檢查與密度統計示意圖	.27
啚	4.19	地面點大孔洞百分比與既有資料比較分析評估(數據摘錄自監審方檢	查
	通知	æ)	.28
啚	4.20	地面點孔洞分析評估統計(摘錄自監審方檢查通知)	.28
啚	4.21	平差作業流程圖	.29
啚	4.22	雷射點偏移示意圖	.31
啚	4.23	MEASURE MATCH 比對原理示意圖	.32
置	4.24	平差前航線重疊處誤差分析圖	.33
啚	4.25	匹配連結點示意圖	.35

工作總報告

	う 平差前後重疊處平均絕對誤差差量比較	4.26	啚
	' 平差前後測區交叉航線重疊處差量統計分析圖	4.27	啚
51	5 航線重疊處屋頂共軛面與共軛線萃取示意圖	4.28	圖
51) 航線重疊處平差前後共軛線統計分析示意圖	4.29	圖
53) 點雲平面精度檢核示意圖	4.30	啚
54	監審方軟體航帶平差高程差異量檢核圖	4.31	啚
54	? 平差後航帶間高差較大區域示意圖	4.32	圖
(AXELSSON,	ITERATION ANGLE 和 ITERATION DISTANCE 示意圖	4.33	圖
55	000)	200	
	▶ 地形編修示意圖	4.34	啚
	; 橋樑之點雲分類示意圖	4.35	啚
	う 點雲編修與檢核人員分布圖	4.36	啚
59	' SCOP++軟體介面圖	4.37	啚
60	5 测區 DEM/DSM 成果圖	4.38	啚
) DEM/DSM 山地及平地成果圖	4.39	啚
64) 檢核點分布圖	4.40	啚
	各類別檢核點實測照片	4.41	啚
	! 低海拔之裸露地(B)精度成果圖	4.42	啚
	; 低海拔之矮植被(L)精度成果圖	4.43	啚
	- 低海拔之植生地(V)精度成果圖	4.44	啚
69	; 低海拔之林地(F)精度成果圖	4.45	啚
69	う 低海拔之都會區(U)精度成果圖	4.46	啚
69	'低海拔之濕地(W)精度成果圖	4.47	啚
69	5 低海拔之横斷面(S)精度成果圖	4.48	啚
70) 中高海拔之裸露地(B)精度成果圖	4.50	啚
70	中高海拔之矮植被(L)精度成果圖	4.51	啚
70	! 中高海拔之植生地(V)精度成果圖	4.52	啚
70	; 中高海拔之林地(F)精度成果圖	4.53	啚
71	- 中高低海拔之密林(D)精度成果圖	4.54	啚
71	; 中高低海拔之横斷面(S)精度成果圖	4.55	圖
74	'低海拔測區之各土地覆蓋類型之直方圖(單位:公尺)	4.57	啚
75	5 中高海拔測區之各土地覆蓋類型之直方圖(單位:公尺)	4.58	啚
78	正射影像製作流程圖	5.1	啚
79	測區航照涵蓋圖	5.2	圖
	影像色調調整情形	5.3	啚
	空三分區與航空標控制點分布圖	5.4	圖
	測區連結點匹配示意圖	5.5	啚
	空三連結點及空三報表示意圖	5.6	圖

工作總報告

啚	5.7	空三後外方位改正數示意圖	83
啚	5.8	空中三角测量成果上模自我檢核	83
啚	5.9	色差調整前後示意圖	85
昌	5.10	橋樑高差位移糾正示意圖	86
昌	5.11	正射影像編修示意圖	86
啚	5.12	平地正射影像成果圖(96192055)	87
啚	5.13	山區正射影像成果圖(95182038)	87
啚	5.14	第2作業區正射影像成果	87
啚	5.15	正射影像點雲強度檢核示意圖	88
啚	5.16	影像檢核點檢核示意圖	88
啚	5.17	水體繪製成果	90
啚	5.18	TGOS 詮釋資料編輯系統 2.0 操作畫面	91
啚	5.19	原始影像遮密作業	91
昌	5.20	責任接邊範圍	92
啚	5.21	正射影像接邊成果示意圖	92
圖	5.22	112 年度驗收圖幅及點位分布	93
啚	5.23	112 年度驗收現場狀況(左:第2階段、右:第3階段)	93

工作總報告

表目錄

表 1.1	交付成果說明表(含各階段繳交期限)	3
表 1.2	各階段繳交日期與文號列表	3
表 2.1	空載設備規格	5
表 2.2	航線規劃相關規範	7
表 2.3	飛航掃瞄參數表	7
表 3.1	地面控制點坐標成果表(TWD97【2020】坐標)	9
表 4.1	光達率定系統高程分析統計表	19
表 4.2	本計畫飛航各架次成果統計表	22
表 4.3	各子測區密度統計表	27
表 4.4	平差前航線重疊處誤差統計分析	33
表 4.5	平差後航線重疊處誤差統計分析	
表 4.6	第一子測區航線重疊處平差前後差量統計表	
表 4.7	第二子測區航線重疊處平差前後差量統計表	40
表 4.8	平面控制點檢核點雲屋角點差值表(單位:公尺)	
表 4.9	點雲編修自檢紀錄表範例	58
表 4.10	地形類別列表	64
表 4.11	土地覆蓋分區列表	65
表 4.12	地形類別與地表植被覆蓋類別調整參數對照表	66
表 4.13	低海拔各類土地覆蓋分區基本精度分析表(單位:公尺)	67
表 4.14	中高海拔各類土地覆蓋分區基本精度分析表(單位:公尺)	67
表 4.15	低海拔數值精度中央集中趨勢分析表(單位:公尺)	72
表 4.16	中高海拔數值精度中央集中趨勢分析表(單位:公尺)	72
表 4.17	檢核點數值精度偏態檢驗表(單位:公尺)	73
表 4.18	低海拔 DEM 數值適合度檢驗	77
表 4.19	中高海拔 DEM 數值適合度檢驗	77
表 5.1	相機相關規範	79
表 5.2	空三平差成果統計表	84
表 5.3	平面控制點檢核影像差值表(單位:公尺)	88
表 6.1	各項作業成本統計分析表	95
表 6.2	作業人員性平等資訊統計	95

第一章 計畫概述

1. 計畫緣起與目的

近年來全球天候異常現象盛行,臺灣地震頻繁且多颱風及水災等天然 災害,以至於地質敏感地區具有地質結構不穩定等頻繁地形地貌變動,對 於災後重建區域的規劃、國土保育工作、防洪重建工程、水庫營運安全與 河川、野溪疏濬、清疏、等各種分析,均需仰賴可靠之高解析度數值地形 模型資料,提供重要的地形高程資訊,決策時有更準確之參考依據,國家 應持續規劃及更新國土資料,以強化國家空間資訊基礎。

內政部於民國 93 年至 99 年間陸續建置全臺灣數值地形模型(DTM)包 含數值高程模型(DEM)及數值地表模型(DSM)資料。並於民國 99 年起由經 濟部中央地質調查所主導「莫拉克災區 LiDAR 高解析度數值地形製作案」 與「非莫拉克災區 LiDAR 高解析度數值地形製作案」,連續六年以 LiDAR 技術完成全臺掃瞄與 DTM 建置,該資料除可應用於國土規劃、防救災運用 外,亦對於民生、科技、建設等方面,具有極高的應用價值。

內政部報經行政院核定推動「落實智慧國土-國土測繪圖資更新及維運 計畫(105-109)」,自105年度起,委外分年規劃以LiDAR 技術更新DTM 資料,至109年度止共辦理3,177幅(1/5000圖框)範圍數值地形模型更 新作業;110年度起依據「邁向3D智慧國土-國家底圖空間資料基礎建設 計畫(110-114年)」持續辦理DTM資料更新,於111年度止已辦理1,648幅 (1/5000圖框)範圍數值地形模型更新作業。本案接續以於112及113年 度規劃辦理1,701個圖幅(1/5000)範圍數值地形模型更新作業,並分為三個 作業區,分別第1作業區為567個圖幅(1/5000)、第2作業區為558個圖幅 (1/5000)以及第3作業區576個圖幅(1/5000)。持續更新高解析度數值地形 模形資料成果,將建立更完善的國家空間資訊資料庫,以供國土建設及未 來規劃之重要依據。

2. 計畫範圍

本公司承攬第2作業區分為112和113年度執行,112年度測區橫跨花 蓮縣、臺東縣、屏東縣,共287個圖幅(1/5000)面積約1,794平方公里,平

1

地比例約85%,山區約15%,配合期程於第2階段和第3階段各繳交點雲 資料115幅和172幅,後續報告內容稱之第1子測區和第2子測區,第2 作業區位置以及子測區分布如下圖所示。

圖 1.1 第2作業區與各子測區示意圖

3. 各階段期程

為製作 LiDAR 高解析度地形模型,計畫流程包含飛航規劃與執行、地 面控制測量、地面 GNSS 基站控制測量、資料後處理、數值高程模型(DEM) 與數值地表模型(DSM)製作及精度檢核分析,相應之內容如後各章介紹, 成果資料繳交項目細項如表 1.1 所示,實際繳交日期以及文號列表如表 1.2 所示,公文請參閱附件七。

年度	階段	交付項目	繳交期限
112 年度	第1階段	112 年度作業計畫(含空載光達掃瞄飛航計畫) 初稿10份及電子檔2份。	112年2月22日
	第2階段	 DEM/DSM 成果【含圖幅接邊處理,同點雲 資料處理繳交之圖幅、點雲資料處理(112 年範 圍 40%以上圖幅)及控制測量(繳交 112 年範 圍)】。 2.正射影像成果(繳交點雲所含圖幅之資料)。 	112年8月31日
	第3階段	 DEM/DSM 成果【含圖幅接邊處理,同點雲 資料處理繳交之圖幅、點雲資料處理(112 年範 圍之剩餘圖幅數)】。 2.正射影像成果(同點雲資料處理繳交之圖幅)。 	112年11月30日
	第4階段	112年工作總報告(初稿)10份及電子檔3份。修正後112年工作總報告10份及電子檔3份。	112年12月11日 依機關指定期限內 繳交。

表 1.1 交付成果說明表(含各階段繳交期限)

贴职	提送監審方	通過監審方審查	提送貴中心	通過貴中心審查
佰权	日期/文號	日期/文號	日期/文號	日期/文號
第1	112.02.16 中興測字	112.02.21 成大產創字	112.02.22 中興測字	112.03.21 測應字第
階段	第 1120000061 號	第 1121100540 號	第 112000069 號	1121300496 號
第2	112.08.28 中興測字	112.08.30 成大產創字	112.08.31 中興測字	112.09.13 測應字
階段	第 1120000422 號	第 1121102762 號	第 1120000430 號	第 1121565387 號
第3	112.11.28 中興測字	112.12.04 成大產創字	112.12.04 中興測字	112.12.21 測應字第
階段	第 1120000599 號	第 1121103939 號	第 1120000614 號	1121565478 號
第4	112.12.08 中興測字	112.12.11 成大產創字	112.12.12 中興測字	112.12.22 測應字第
階段	第 1120000632 號	第 1121104047 號	第 1120000637 號	1121565473 號

表 1.2 各階段繳交日期與文號列表

第二章 作業規劃

§2-1 作業準備

2-1-1 飛航申請作業

本團隊針對作業所需,租用德安航空 BK-117 飛機,依天氣狀況之許可執行掃瞄作業。並依「國土測繪法」及「實施航空測量攝影及遙感探測管理規則」等相關規定,於112 年 2 月 13 日提交貴中心相關申請資料(中興測字第 1120000054 號)。本案委由貴中心提送內政部進行飛行申請程序,於112 年 3 月 29 日通過內政部審查(台內地字第 1120111553 號)。

並於本計畫簽約後函請航空公司向交通部民用航空局申請飛航許可: 依照「飛航及管制辦法」、「航空器飛航作業管理規則」與飛航指南等相關 規定作業,如需C類空域內作業,應先與相關航管單位協調後實施。且作 業前務必通知空軍總司令部及飛航管制聯合協調中心,作業時勿涉及軍事 設施。

德安航空之 BK-117 型飛機,於 112 年 4 月 24 日通過 112 年度作業飛

航申請(空運管字第1120014763號),核准公文如附件七所示。

2-1-2 系統裝機

本計畫使用 Optech ALTM Pegasus HA500 空載光達搭載全波形感測器 與 Phase One iXU-RS-1000 數位相機規格如表 2.1 所示,裝載於德安航空 BK-117 飛機載台如圖 2.2 所示,本計畫實際執行僅使用德安航空直升機。 安裝重點包括掃瞄儀安置在攝影窗、控制組件安置於機艙座、GNSS 天線 安裝、電力系統介面安裝等。

空載光達 Optech ALTM Pegasus HA500		
<image/>	 ·掃瞄旋角視域 FOV: 0~75 度 ·脈衝率 PRF: 100~500kHz ·掃瞄鏡頻率:0~140Hz ·掃瞄形式: Oscillating, Mirror, Z-shaped ·高程精度: <5-20cm,1σ ·水平精度: 1/5,500 航高,1σ ·雷射波長: 1064nm ·光束發散角度: 0.25mrad(1/e) ·GNSS: Trimble ·定位系統: POS AVTM AP50 (OEM) ·全波形:支援全波形記錄 	
量測型數位相機	Phase One iXU-RS-1000	
	 ・像幅大小:11608×8708 ・像元尺寸:4.6um ・鏡頭焦距:50mm ・FOV:56.2 ・快門速度:1/600s 	

表 2.1 空載設備規格

Optech ALTM Pegasus HA500 雷射掃瞄儀感測器安裝步驟:首先依據照 相機基座的規格安置感測器圖 2.3(a),「控制組件」裝置後如圖 2.3 (b),將 所有接線接上後即算初步完成如圖 2.3 (c)。

雷射掃瞄儀電力系統需28伏特直流電力,瞬時啟動最大電流21安培。 配置一轉接頭連結掃瞄儀到飛機電力系統電力接合後,再實施地電阻的檢 測、電流檢測,以確保機具的穩定及飛行安全,並向交通部民航局申請補 充型別檢定證後,方可執行飛航掃瞄任務。

(a)德安航空之 BK-117 飛機 圖 2.2

(b) ALTM 裝設於直升機之現況圖

(a) 感測器安裝坐架

(b)控制組件

圖 2.3 儀器架設圖

飛機安裝現況圖

(c)接線成果

§2-2 飛航規劃

空載雷射掃瞄資料獲取前需要有完整的飛航規劃, 考慮內容包括掃瞄區範圍、實施之地形、預定規劃的載 體航高、掃瞄儀掃瞄角度、點雲密度及分布航線間的重 疊率、交叉航線位置、點雲穿透表現和航區管制等種種 條件,確定飛航任務符合規範要求,本計畫航線相關規 範要求如表 2.2。

掃瞄任務之規劃會影響點雲品質,如點雲密度、遮蔽程度、航帶檢核 與重疊區分析等重要資訊,飛航規劃作業的方法與步驟流程說明參照圖 2.4。

表 2.2 航線規劃相關規範

項目	說明
飛航掃瞄計畫範圍	應包含全部工作區域
航線轉彎掃瞄資料	不得使用於後續資料產製
航带影像重疊率	重疊率應大於 40%,建議重疊率宜採 50%
點雲密度條件	每平方公尺密度2點為原則
空載光達掃瞄之 FOV	設定不應超過 50 度
航空攝影方式	採垂直連續攝影(攝影軸傾斜角應小於 15 度)
航拍影像前後重疊率	前後重疊率應大於80%
航拍影像 GSD	應優於或等於25公分
治出山区的伯	原則上為飛航當日低潮位前後2小時進行掃瞄,以蒐集最大面
	積海岸沙洲及潮間帶資料
六叉的伯用劃	各條航線之頭尾皆有交叉航線,且每隔至多25公里,應進行垂
义入机砯沉重	直各航線之交叉掃瞄飛航

掃瞄任務之規劃會影響點雲品質,如點雲密度、遮蔽程度、航帶檢核 與重疊區分析等重要資訊,飛航規劃作業的方法與步驟流程說明參照圖 2.4。 關於參數設定,脈衝頻率設定與航高有關,依照測區地形與規範要求規劃 航高後,即能決定脈衝頻率參數。掃瞄頻率則和 FOV 參數連動,於選定 FOV 角度後設定掃瞄頻率,使點雲沿飛行方向和垂直飛行方向點距相近, 即得到掃瞄點均勻分布之點雲,於相同平均點雲密度下更有效的記錄現況 地形。依據本計畫嚴格之重疊率及密度要求和作業經驗,考量地形起伏對 上述要求之影響,規劃出最佳掃瞄參數,規劃成果及說明如表 2.3 及圖 2.5 所示,共 247 條航線里程共 4253.7 公里。

飛航 區域	航線	最高 (m)	平均 高度 (m)	最低 (m)	最小 離地 (m)	平均 離 高 (m)	最大 離地 (m)	航高 (m)	航 速 (kt)	掃瞄 角度 (deg)	掃 瞄 頻 率 (Hz)	雷射 脈衝 率 (KHz)	平均 掃瞄 (m)	平均重叠带寬(%)	影 な 左 重 率 (%)	<i>航線</i> 間距 (m)	平均 點雲 密度 (pt/m2)
A	75	1000	400	0	1200	1800	2200	2200	100	±20	38	100	1237	59	72	510	>2.2
В	36	1200	700	0	1400	1900	2600	2600	100	±20	38	100	1383	57	70	600	>2.2
B+	10	1800	1200	0	800	1400	2600	2600	100	±20	38	100	1019	67	77	600	>2.2
С	46	1700	1000	100	1400	2100	3000	3100	100	±20	38	100	1529	61	72	600	>2.2
C+	24	2300	1700	400	800	1400	2700	3100	100	±20	38	100	1701	71	80	600	>2.2
D	21	2300	1700	800	1400	2000	2900	3700	100	±20	38	100	1456	61	72	570	>2.2
D+	11	3100	2300	1700	900	1700	2300	4000	100	±20	38	100	1237	54	69	570	>2.2
Cross	15								100	±20	38	100					
Coastline	9	50	25	0	2250	2275	2300	2300	100	±25	30	100	2125				

表 2.3 飛航掃瞄參數表

*其中A區對應航線編號為22001~22048、22063~22069、22080~22093、22233~22238,B區對應航線編號為22049~22062、22094~22108、

22173~22179,B+區對應航線編號為 22070~22079,C 區對應航線編號為 22109~22117、22133~22141、22160~22172、22193~22207, C+區對應航線編號為 22180~22192、22208~22218,D 區對應航線編號為 22118~22132、22154~22159,D+區對應航線編號為 22142~22152,交叉航線對應航線編號為 22153、22219~22230、22231~22232,潮間帶航線對應航線編號為 22800~22808(亦為交叉 航線)

*影像前後重疊率設定為85%

工作總報告

8

第三章 地面控制點選取與測量工作

§3-1 基站選取

框架說明

本計畫平面坐標系統採用內政部公告之 TWD97【2020】,高程系統為 WGS84 橢球高。正高成果則使用內政部公告之大地起伏模式進行正高轉換 計算。

2. 地面基站說明

於飛航掃瞄區域 20 公里範圍內,應至少有二個地面 GNSS 基站同步接 收 GNSS 觀測量。其設置處應透空良好且無訊號干擾之虞,同時製作完整 之測量記錄。本案地面基站主要採外購站固定連續站進行規劃,基站位置 分布如圖 3.2。並提送監審方 3 日新設基站觀測量,並聯測作業區附近各機 關之連續追蹤站,而檢測精度符合之連續追蹤站則作為基站使用。

移動站基站編號為 CH62, 布設位置為三等衛星控制點 TP42 伊拉,其 位置透空良好且近年清查點位狀態保存良好,現況照片如圖 3.1 所示。

圖 3.1 CH62 現況照片 表 3.1 地面控制點坐標成果表(TWD97【2020】坐標)

點號	點名	設立單位	縱坐標 N(m)	橫坐標 E(m)	橢球高 h(m)				
CH62	伊拉	自架設移動站	2516263.547	220303.8391	364.5082				
CHGO	成功	內政部國土測繪中心	2555221.633	288366.6339	77.1911				
CISH	旗山	內政部國土測繪中心	2532151.049	196775.993	90.9361				
DASU	大樹	內政部國土測繪中心	2509839.012	191990.1211	54.8405				
FUG2	富岡 2	內政部國土測繪中心	2521257.997	269809.0823	41.6051				
JULI	玉里	內政部國土測繪中心	2582153.019	282533.9041	178.6672				
MAJA	瑪家	內政部國土測繪中心	2511952.565	214254.859	211.8771				
TMAM	太麻里	內政部國土測繪中心	2501771.644	250769.165	58.7341				

工作總報告

Chung Hsing Surveying Co.,Ltd.

WULU	霧鹿	內政部國土測繪中心	2563026.607	254246.1589	928.4672
BIMO	賓茂國中	交通部中央氣象局	2492550.115	246645.5219	48.0721
CHEN	成功	交通部中央氣象局	2555119.477	288268.7685	60.2475
CHUL	初來	交通部中央氣象局	2558945.958	262871.62	465.9251
CLON	南州昌隆	交通部中央氣象局	2481233.758	206724.9363	49.1218
DCHU	東竹	交通部中央氣象局	2567918.417	278716.5322	251.0391
DULI	都歷	交通部中央氣象局	2547164.553	283883.7088	49.9282
KUA2	關山國小2	交通部中央氣象局	2549781.957	266742.8799	271.1497
LIKN	里港彭厝	交通部中央氣象局	2517631.022	201518.4315	63.4058
LONT	鹿野龍田	交通部中央氣象局	2533915.673	263393.3107	203.5771
NIPU	寧埔國小	交通部中央氣象局	2571288.056	292170.1437	67.9747
NJOU	南州糞箕湖	交通部中央氣象局	2489413.039	205904.8616	52.1081
PTUN	六塊厝	交通部中央氣象局	2505611.766	194468.52	40.5472
SAND	三地門	交通部中央氣象局	2513020.83	213085.0829	203.2307
TTUN	台東體中	交通部中央氣象局	2518213.88	258287.7619	100.2761
WDAN	萬丹	交通部中央氣象局	2500747.064	199039.5226	36.4235
YUL1	玉里1	交通部中央氣象局	2579902.389	280701.7529	198.3344
GS45	霧台鄉公所	經濟部中央地質調查所	2516526.84	222082.2128	759.1919
GS46	來義國小	經濟部中央地質調查所	2492008.352	213941.1049	139.9652
GS55	舊寮國小	經濟部中央地質調查所	2527607.076	210008.9085	143.0704
GS56	瑪家國中	經濟部中央地質調查所	2511352.045	209912.6472	106.3152
GS75	旗美高中	經濟部中央地質調查所	2531700.054	198096.3263	66.9889

圖 3.2 GNSS 控制點與基站分布圖

§3-2 控制测量

地面控制測量成果之工作內容主要包括地面 GNSS 基站控制测量及控制點測設工作,其中地面 GNSS 基站相關內容已於 3-1 小節說明。

3-2-1 測量規範

本計畫 GNSS 測量作業依照契約規範主要依照「基本測量實施規則」 所規定之加密控制點施測標準,其施測準則如下:

1.地面 GNSS 基站坐標成果:

- (1) 設置為固定站者:應於架設完成後,蒐集至少3天(72小時)之觀測 檔,並記錄儀器、天線盤型號及天線高等資料。
- (2) 為移動站者:應辦理 GNSS 靜態觀測,重複觀測次數為2次以上 (腳架重擺),每次觀測時間均大於6小時,且應同步連測附近點 位。
- (3) 其他機關設置之連續追蹤站:應向該機關申請並取得至少3天(72 小時)之觀測檔,並記錄儀器、天線盤型號及天線高等資料。
- (4) 全測區應統一進行坐標解算,以確保成果框架之一致性。
- (5) 地面 GNSS 基站採 GNSS 靜態測量,精度應符合內政部「基本測量實施規則」之加密控制測量規定。

2.航帶平差控制點及平面控制點得採 GNSS 靜態測量並依內政部「基本測量實施規則」之加密控制測量規定辦理,或採 VBS-RTK 動態測量方式, 重複觀測至少2 次,每次收斂筆數應達 180 筆,計算每次觀測之平均坐標值,檢核其坐標差平面方向應小於4 公分,高程方向應小於10 公分。如 VBS-RTK 測量無法收斂時,則應取得連續20 分鐘以上、記錄頻率為1 Hz 之靜態觀測資料,並以 VBS-RTK 後處理方式計算該點坐標。

3-2-2 控制點 GNSS 測量

本年度平差控制點測設分為航帶平差高程控制點及航帶平差平面控制 點(特徵角點),提供航帶平差使用,另外也為檢核空三成果設立檢核點。航 帶平差控制點依規範於測區四角應布設 1 組全控點,另外配合空三分區規

11

劃全控點,且皆布設航空標,共35點;另配合航線以鋼釘設置於航帶頭、 中及尾各至少1控制點,以方格標布設,供航帶平差高程約制,共66點。 為有效提昇精度,人車可抵達地區採靜態基線測量方式測設,其餘則採空 三立製方式取得影像控制點 123 點。檢核點須達 5%圖幅數量,本次作業區 規劃共15 個檢核點均勻分布於各空三分區內,布設航空標並採靜態基線測 量方式測設。航帶平面控制點受限於地物環境影響,則採用之 VBS-RTK 方 式測設共32 點,點位分布如圖 3.3 所示,點坐標成果如附件二。

圖 3.3 航带平差控制點分布圖

GNSS 外業測量自 112 年 04 月 10 日至 04 月 13 日,計 4 個工作天共觀 測 15 個時段,其實際觀測網形如圖 3.4。

工作總報告

Chung Hsing Surveying Co.,Ltd.

圖 3.4 GNSS 實際觀測網形圖

平面控制點多選用屋角特徵點,礙於地物環境影響無法適用 GNSS 靜 態測量,故其坐標測設採用內政部國土測繪中心之「e-GNSS 即時動態定位 系統」所提供之即時動態定位服務測設,其系統利用多個衛星定位基準站 所組成的 GNSS 網絡,評估涵蓋地區的定位誤差,再配合最鄰近的實體基 準站觀測資料,產製一個虛擬的基準站(Virtual Base Station; VBS),供即 時動態定位(Real-Time Kinematic; RTK)主站使用,並透過網路及無線數據 傳輸的即時動態定位技術(VBS-RTK)。並於平面控制點測設時段一併施測 鄰近全控點,後續比對坐標值,確認平面控制點系統(VBS-RTK)和全控點 系統(靜態 GNSS)一致。

第四章 空載 LiDAR 作業

空載雷射掃瞄之作業流程:從飛航掃瞄規劃、基站設置、空中資料掃 瞄、點雲解算、點雲分類與編修及成果產出,其相關作業流程如圖 4.1 所 示。

圖 4.1 工作流程圖

§4-1 率定與校正作業

雷射掃瞄器坐標系與機身坐標系之間,常因安置上或時間上的影響, 造成不平行之偏差量,適時的修正偏差量方可得到較正確的結果。以重覆 漸進的方式來求解雷射掃瞄器的安置角,在每一次迭代過程中,依序分別 針對俯仰角、航偏角和側向傾斜角進行率定,並且每求得一個角度,即需

重新計算所有點位資料,再以新的資料進行下一次的計算。當三個角度的 改正值都收斂到可接受的範圍內時,即小於姿態角精度,得完成率定的工 作,本計畫採用之儀器在原廠建議與規定下,以此方式進行實際飛行,確 實完成率定作業。

另外於任務執行前亦先執行南崗校正場飛航,以檢校本計畫所用之光 達設備和中像幅像機坐標器差值,通過檢校後,內政部國土測繪中心測量 儀器校正實驗室將出具校正報告做為品保參據。本案使用設備於 112 年 4 月 14 日通過光達設備校正 (報告編號 I202302140101),校正報告書如附件 三所示。

4-1-1 率定場地點與規格

完整空載光達系統之率定需要兩個分別的率定場,分別為建築物率定場及跑道率定場。此次擇定之場地位於彰濱工業區內,面積為 1.5 平方公里。

(c)建築物率定場

(a)彰濱率定場

(b)跑道率定場

圖 4.2 率定場位置與現況示意圖

平原地區的彰濱工業區具有容易辨識之大型建物(平頂、斜頂)及道路標線等明顯特徵,且率定場內之地表坡度平緩小於10度且極少植被覆蓋,為 小於10%之覆蓋率,並參考經濟部水利署地層下陷監測資訊整合服務系統, 此地區於106年至109年的資料,並無地層下陷之數據,故此位置為符合

本儀器率定之作業地區。

圖 4.3 率定場坡度圖

圖 4.4 率定場植被分布圖

圖 4.5 率定場平均下速率等值圖

率定場基站為 R003 與 R005 兩站,為透空度良好且符合距航線距離 5 公里內,透過長時間聯測算出其坐標,其分布圖如圖 4.6。

圖 4.6 率定 GNSS 基站位置圖

4-1-2 率定場飛行作業程序

使用空載光達設備為 Optech Pegasus HA500。載具部分使用德安航空載 具(BK-117),於點雲資料使用前執行率定作業,於 112 年 6 月 2 日執行率 定作業以修正偏差量,以確保雷射點雲精確度。率定作業參照加拿大原廠 Optech 公司建議與規定,執行相關過程與精度評估。

4-1-3 率定成果

率定飛行後以多條航帶之共軛面進行雷射點至萃取面的距離的分析, 若儀器率定不完全,其誤差將會反應於點至面的距離。將率定前後的雷射 點至共軛面的分析成果以圖 4.7~圖 4.8 表示。

(a)率定前

Project: 112NLSC Block: CAL0602_3 - Accuracy Analysis at All Tie Planes from Standard processing

(a)率定前

雷射點雲的高程精度是將率定後的成果,比對一條平坦且堅硬的地表, 例如柏油路,將雷射點分布軌跡比對平坦面進行高程精度分析。求得之率 定參數解算確認飛行之點雲資料,確認不同航帶間之點雲無明顯偏移後, 再次與地面實測點比較,其高程坐標差值應小於 0.1 公尺。以率定後新參 數值算出新的成果,再次與平坦面進行比對。若高程誤差量大於 0.1 公尺 精度,方需針對測距距離進行修正。率定後雷射點成果與實測點比對,皆 符合依原廠建議與契約規範,詳如下列統計成果所示:

表 4.1	光達率定系統高程分析統計表
•	

高程統計分析	最大差異量(m)	平均差異量(m)	均方根誤差(m)
率定飛行成果	0.036	0.000	0.001
確認飛行成果	0.048	0.000	0.001

Project: 112NLSC Block: CAL0602_3 - Accuracy Analysis at All Tie Planes from Update processing

14 12 10 數量 數量 6 0 0 -0.06 -0.05 0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 **宮根美景(小日)** 高程差量(公尺)

(a)3/1 率定飛行成果比對 (b)3/1 確認飛行成果比對 圖 4.9 率定飛行與確認飛行成果之高程分析統計直方圖(單位:公尺)

空載光達依率定作業飛航高度之平面精度約為 0.4 公尺,將率定參數帶 入確認飛行航線,比對其雷射點與實際屋頂實測得之屋頂平面位置,兩次 率定平面差量皆小於 0.4 公尺 (圖 4.10),確認率定參數可用。

圖 4.10 平面精度分析圖(單位:公尺)

§4-2 飛航掃瞄成果

本計畫於飛航掃瞄同步使用透空度良好之地面基站接收 GNSS 衛星定 位資訊,且基站接收時間應比光達掃瞄系統測量時間早 10 分鐘開機且晚 10 分鐘關機,基站與航線範圍皆小於 20 公里(圖 4.11)。

圖 4.11 飛航軌跡與基站示意圖(每格為 20 公里)

自 112 年 5 月 25 日至 112 年 11 月 05 日共 35 架次飛航任務,總計 340 條航線(含補飛)。本測區於 112 年 4 月 24 日通過民航局申請,至 11 月 05 日共 195 日,扣除航空器無法執行任務天數(飛機保養、航空公司其他業務 安排、航空公司設備驗證、航空器檢修等),飛航作業可飛天數共計 158 天, 皆進行飛航待命把握天氣良好時段進行飛航作業。

另外基站之 PDOP 規範要求 GNSS 需小於 3,且飛航時定位光達掃瞄成果之 GNSS 原始 PDOP 值不得大於 4(圖 4.13),本計畫所有架次執行成果 皆符合規範要求。

圖 4.13 機載 PDOP 圖

每次飛航任務掃瞄前,將航線軌跡資料輸入導航系統中,飛行員依照 所規劃之航線路徑飛行。當飛機升空後,專員依 LiDAR 儀器標準作業程序 操作空載光達瞄設備,逐條獲取原始光達掃瞄資料,同時逐條航線記錄原 始光達掃瞄相關資料。以下表統計各架次飛航作業執行時間、基站使用時 間、執行航線編號、里程數以及各架次報告通過監審方審核日期,其中飛 航執行里程數可能因天氣狀況如測區起雲情形或航線轉彎多寡影響。

序號	作業日期	執行時間	基站使用時間	執行航線編號		監審方審查
加 し			07.00.00 10.00.00		致	口俗口切
1	11205259	07.11.05~00.30.23	0/:00:00~10:00:00	$22030 \times 22031 \times 22040 \times 22045 \times 22046 \times$	166	112/06/20
1	1120525a	07.11.05/209.39.25		22233 • 22234	100	112/00/29
2	1120528a	06:40:36~08:54:21	06:00:00~10:00:00	22081~22083 · 22085 · 22086 · 22089	60	112/06/29
3	1120528b	09:28:54~11:46:53	09:00:00~12:00:00	22010~22015 · 22037 · 22038 · 22228	223	112/06/29
4	1120528c	13:04:21~15:23:26	12:00:00~16:00:00	22016~22022	267	112/06/29
5	1120529a	06:42:05~08:54:30	06:00:00~10:00:00	22004~22009 · 22235 · 22236	125	112/06/29

表 4.2 本計畫飛航各架次成果統計表

序	作業日期	執行時間	基站使用時間	執行航線編號	里程	監審方審查
號		1/4/4 3/-4			數	合格日期
6	1120529b	09:37:45~11:46:14	09:00:00~12:00:00	22022~22025 \$ 22220 \$ 22226 \$ 22227	180	112/06/29
7	1120611a	06:41:08~08:38:26	06:00:00~09:00:00	22001~22003 \cdot 22026~22028	160	112/07/07
8	1120619a	06:37:18~08:59:58	06:00:00~10:00:00	22006 · 22007 · 22093 · 22097 · 22098 · 22100 · 22101 · 22105 · 22106 · 22173	175	112/08/01
9	1120619b	09:41:54~12:00:59	09:00:00~13:00:00	22102~22104 · 22174~22179 · 22804	100	112/08/01
10	1120620a	07:02:06~09:05:53	06:00:00~10:00:00	22042~22048	180	112/08/01
11	1120620b	09:52:11~12:07:14	09:00:00~13:00:00	22198~22201、22204~22210、22219、 22231	124	112/08/01
12	1120621a	07:01:50~09:13:11	06:00:00~10:00:00	22093~22095 、22098 、22101 、 22133~22139	121	112/08/23
13	1120621b	09:58:35~12:13:45	09:00:00~13:00:00	22026、22028、22033~22035、22193	90	112/08/23
14	1120621c	14:24:29~16:25:40	14:00:00~17:00:00	22040、22801~22803、22805~22808	71	112/08/23
15	1120622a	07:10:42~09:17:00	07:00:00~10:00:00	22025 \cdot 22096 \cdot 22099 \cdot 22140 \cdot 22141 \cdot 22163	190	112/08/23
16	1120623a	07:08:36~09:08:33	06:00:00~10:00:00	22025、22038、22039、22041、22049、 22050	172	112/08/23
17	1120704a	06:52:02~09:07:40	06:00:00~10:00:00	22051~22055 · 22193 · 22194 · 22229	140	112/08/23
18	1120704b	09:52:53~11:36:03	09:00:00~12:00:00	22090~22092 · 22164 · 22195 · 22223	101	112/08/23
19	1120705a	07:02:08~09:20:07	06:00:00~10:00:00	22024、22027~22032、22036~22038、 22042	147.5	112/08/23
20	1120706a	07:02:16~09:19:56	06:00:00~10:00:00	22027 • 22030 • 22039 • 22041 • 22045 • 22048 • 22056~22061	138	112/08/23
21	1120706b	10:09:15~11:44:54	09:00:00~12:00:00	22062~22069 \cdot 22071 \cdot 22230	102	112/08/23
22	1120707a	06:57:22~09:05:58	06:00:00~10:00:00	22028 • 22038 • 22039 • 22041 • 22043 • 22044 • 22046 • 22049 • 22050 • 22070~22079 • 22232	128	112/08/28
23	1120707b	09:52:55~12:00:19	09:00:00~13:00:00	22001、22002、22158、22159、 22165~22172	102.6	112/08/28
24	1120723a	07:00:40~09:07:37	06:00:00~10:00:00	22110~22117	137.4	112/09/27
25	1120801a	07:05:13~09:29:39	06:00:00~10:00:00	22040、22196、22197、22202、22203、 22211~22218、22229	101	112/09/27
26	1120815a	08:30:37~10:43:19	08:00:00~11:00:00	22028 · 22040 · 22043 · 22053~22055 · 22212 · 22213 · 22229 · 22800	10.5	112/11/29
27	1120923a	07:06:32~09:33:06	06:00:00~10:00:00	22118~22126	115.39	112/11/29
28	1120924a	07:04:00~09:20:18	06:00:00~10:00:00	22080~22084 \cdot 22087~22089 \cdot 22109 \cdot 22222 \cdot 22223	135.21	112/11/29
29	1121029a	08:10:18~10:03:19	08:00:00~11:00:00	22109 \cdot 22142 \cdot 22143 \cdot 22149 \cdot 22150	23.379	112/11/29
30	1121101a	07:29:58~09:33:48	07:00:00~10:00:00	22108~22110 、22118 、22127 、 22902~22905	51.54	112/11/29
31	1121102a	07:28:20~09:55:09	07:00:00~11:00:00	22131、22132、22154~22158、22164、 22185、22191、22192	138.99	112/11/29
32	1121103a	07:33:15~10:03:33	07:00:00~11:00:00	22127~22130 \cdot 22148 \cdot 22151 \cdot 22152 \cdot 22180~22184 \cdot 22186~22190	154.14	112/11/29
33	1121103b	11:05:42~12:31:17	10:00:00~13:00:00	22081 \ 22083 \ 22089	52.786	112/11/29
34	1121104a	07:31:15~09:56:25	07:00:00~11:00:00	22142~22147 \cdot 22153 \cdot 22221 \cdot 22224 \cdot 22225	30.27	112/11/29
35	1121105a	07:42:31~10:01:09	07:00:00~11:00:00	22107、22108、22118、22122~22126、 22154	23.379	112/11/29

23

§4-3 空載 LiDAR 資料處理

空載 LiDAR 資料前處理作業包括原始資料整理備份、飛航掃瞄航跡 POS 解算及 LiDAR 原始點雲產出。雷射掃瞄資料作業流程如圖 4.14。

1. 資料整理備份

- (1) 蒐集彙整地面 GNSS 固定基站資料。
- (2) 下載 LiDAR 載體動態 GNSS 與 IMU 資料。
- (3) 下載 LiDAR 掃瞄原始資料,並依航線日期分類。
- (4) 原始資料依一定命名法則備份存檔。
- 2. LiDAR 掃瞄飛航軌跡 POS 解算

彙整地面 GNSS 固定基站資料及載體 POS (GNSS、IMU)資料,再搭配 雷射掃瞄回波測距資料,進行後續解算,資料後處理如圖 4.15。

圖 4.14 空載雷射掃瞄資料作業流程

圖 4.15 點雲解算產製處理流程

以 POS GNSS 軟體將地面 GNSS 主站資料及 ALTM 系統之 GNSS 資料 進行結合,過程中需輸入地面 GNSS 主站之坐標值,設定相關參數應用如 C/A Code、L1 相位值及利用 L2 載波處理電離層效應後,以動態差分原理 求解 LiDAR 掃瞄儀航跡之精確三維坐標,其正向解與反向解差異應達一定 之標準,一般評估差異應在 0.2 公尺以內(如圖 4.16)。

圖 4.16 飛航軌道差異量示意圖

最終將載體 IMU 記錄資料與所解算的 GNSS 坐標結合於三維航跡上, 求解出 LiDAR 掃瞄儀之瞬間三維位置與姿態資訊 (POS),一般稱為 Sbet 飛航軌跡資料(圖 4.17)。

3. 原始點雲產出與檢核

結合 LiDAR 之 POS Sbet 軌跡資料與雷射掃瞄測距資料後,將掃瞄角 與距離代入 Optech LMS 軟體中,配合計算後的軌跡資訊輸入,加入各項系 統誤差率定參數及坐標投影參數,逐條航線求解原始點雲資料。

利用監審方提供之程式,展繪各航帶點雲邊緣線,藉此檢查航帶間重 疊率滿足大於40%之契約要求,如圖4.18 航帶間皆有近50%之重疊,符合 規範要求。密度方面則以100×100平方公尺為單位統計,確保測區內點雲 密度達規範要求,統計如表 4.3所示。密度不足比例與低密度比例,皆符 合契約要求。而局部小區域點雲密度較低,係因航線掃瞄時受些許霧氣影 響,並未影響點雲地形描述。

工作總報告

Chung Hsing Surveying Co.,Ltd.

(b)密度統計示意圖(大範圍密度偏低區域為沿海與水庫等水體,不列入密度計算) 圖 4.18 重疊率檢查與密度統計示意圖

	密度	密度不足	是否通過契	低密度	是否通過
子測區編號	合格比例	比例	約規定	比例	契約規定
	(>2 pts/m ²)	$(1 \sim 2 \text{ pts/m}^2)$	<10%	(<1 pts/m ²)	<5%
第一子測區	98.8%	1.2%	通過	0.0%	通過
第二子測區	98.2%	1.8%	通過	0.0%	通過

表 4.3 各子測區密度統計表

4. 孔洞分析

監審方為確保地形測製成果品質,以產製地面點孔洞分析來對山區點 雲過濾成果進行分析和量化分級。統計方式為將分類後之地面點雲,進行 Delaunay 三角剖分分析,剖分成數個三角形,當單一三角形之最大邊長超 過10公尺,則該三角形所涵蓋區域即視為地面點大孔洞範圍。評估標準為 扣除圖幅內平坦地、水域及建物區,統計地面點大孔洞範圍,比例若大於 30%直接判定為不通過,或小於10%即視為合格,介於10%~30%間則適用

於浮動門檻,同圖幅既有成果比較並額外賦予+10%之彈性容許門檻。若該 圖幅可供分析面積未達 36 公頃則不列入孔洞分析。統計各圖幅大孔洞是否 通過檢核後,不通過之圖幅數量需小於 1/10,則判定地面點空間分布檢查 合格。而本公司自我要求地面點空間分布檢查不通過之圖幅數量需等於 0。

監審方第一子測區檢查結果 115 幅中有 26 幅為平地,其餘 89 幅之孔 洞分析結果為通過;第二子測區檢查結果 172 幅中有 12 幅為平地,其餘 160 幅之孔洞分析結果為通過。且全區列入統計之圖幅,大孔洞比例皆小 於規範要求之 10%,其中小於 1%之圖幅合計更高達 216 幅(孔洞統計圖幅 之 75%),孔洞表現多數優於既有光達資料,摘錄監審方統計數據繪製孔洞 百分比比較圖表如圖 4.19,地面點分布評估如圖 4.20。

圖 4.19 地面點大孔洞百分比與既有資料比較分析評估(數據摘錄自監審方檢查通知)

(a)第2作業區孔洞分析圖
(b)第2作業區本案與既有資料比對圖
圖4.20 地面點孔洞分析評估統計(摘錄自監審方檢查通知)

§4-4 航带平差與內部精度評估

由於 LiDAR 掃瞄航帶間存有系統與偶然誤差,造成航帶重疊區之高程 有不一致現象。因此,當 LiDAR 飛航掃瞄完成後,需進行航帶平差修正。 空載雷射掃瞄儀利用 GNSS 及 IMU 結合,使掃瞄的儀器坐標能轉換到通用 的國家大地坐標系統,因此定位精度將受到各種量測值與設定值的影響。 若系統率定不完整,GNSS 與 IMU 系統誤差會影響到解算雷射測點三維坐 標的精度,造成的平面誤差約一公尺,高程誤差則約 0.05%航高(Baltsavias, 1999;童俊雄,2004)。為獲得高精度且實用性之雷射點雲成果,須對點雲資 料進行資料誤差的改正,方法為直接對儀器進行率定,再進行航帶平差以 降低或消除率定後剩餘系統誤差。

為了減少系統誤差,本工作藉率定飛行及良好的飛行計畫,以控管整 個雷射掃瞄之精度,並採用 TerraMatch 模組進行雷射掃瞄航帶平差,利用 航帶重疊數據連結點的高程與訊號強度值(intensity)進行連結點的量測以評 估重疊航帶的內部精度不符值,進一步改正誤差以提高資料品質。

4-4-1 航帶平差及應用軟體

平差作業流程之應用程式為 TerraScan 及 TerraMatch 商用軟體,整個作業的環境是架構在 MicroStation 下,由於平差觀測量必須是針對相同地面

或地物在不同航帶之雷射點結果,為確保航帶間具 有高程差值為相同地面,因此在進行平差作業前, 應用 TerraScan 的雷射點分類能力及互動式分類工 具列進行各種地物點之前期分類作業,後利用 TerraMatch 進行相關航帶平差作業。

TerraMatch 為 TerraSolid 與瑞典 Digpro AB 公司合作研發軟體,具有雷射掃瞄航帶平差之功用, 其核心平差理論於前段所述,藉由比對航帶重疊區 之差量以進行掃瞄時方位參數(Roll、Pitch、Heading 及 dZ 等)之改正,求得系統誤差來增加雷射點精度。 其作業程序如圖 4.21 所示。

4-4-2 航带精度分析及平差處理

雷射掃瞄(Laser Scanning)利用高精度的 GNSS 及 IMU 進行三維坐標之 解算,與傳統的航空攝影測量相較而言,雷射掃瞄不需大量的地面控制網 以進行方位求定,施測時只須於測區範圍擺設二個地面 GNSS 觀測站,在 飛航掃瞄時地面觀測站與掃瞄區不應超過 20 公里。然而空載雷射掃瞄儀的 架構使用相當多的輔助單元,在將掃瞄的坐標轉換到通用的地面坐標系統 過程中涉及多項量測步驟,使得其含有許有誤差來源:GNSS、IMU、Lever Arm、安置角、掃瞄鏡曲率以及雷射光束測距誤差等,因此其定位精度將 受到各種量測值與設定值的影響。

空載雷射掃瞄三維資料的獲取實際上就是應用測距、測角(姿態及掃瞄 角)定位,因此雷射掃瞄光束之空間方位誤差(Orientation Error)將直接影響 雷射點之精度,造成不同航帶在重疊區域同一點之平面坐標和高程有差異。 為使得後續數值高程模型能具有高精度之特性,將利用不同航帶間同一地 物之不符值(Discrepancy)建立之數學模式進行航帶平差,平差之觀測量為同 一地物之高程值,透過最小二乘法平差後將可求得航帶間參數模型之參數 值,進而改正每條航帶之雷射點坐標。

4-4-3 雷射掃瞄誤差來源及精度分析

1. 空載雷射掃瞄資料處理

ALTM 系統利用 Optech 公司的 LMS 軟體進行雷射點資料解算得三維 坐標值,此三維坐標之雷射點雲即可進行後續應用處理。ALTM 利用多回 波(multiple Echoes)的觀測值,即發射單一脈衝得接收多個回訊,可同時測 得地表上覆蓋物頂層和穿透至地表間數個點位,原始雷射測點數據為不規 則離散測點。經濾除與分類的步驟,將最後回波值測點分類出地面點,製 作成數值高程模型(DEM),並使用第一回波資訊製作數值地表模型(DSM)。

本公司目前使用商業軟體 TerraScan 處理雷射測點數據的濾除與分類, 並輔以後處理與品管之工具,進行檢核與視覺製圖檢視等品管流程。然而 就高精度 DEM 等製作而言,若是兩航帶間存在有不符值將影響其成果,為

使全區之成果一致,必須以航帶平差方式進行修正。

2. 雷射點誤差分析

空載雷射掃瞄之誤差來源主要可分為四項。

- (1) GNSS 誤差-GNSS 定位誤差。
- (2) 雷射掃瞄測距誤差-掃瞄測距誤差、大氣折射誤差及掃瞄鏡曲率誤 差等。
- (3) IMU 誤差—陀螺儀飄移誤差、重力模型誤差及大地水準面誤差等。
- (4) 系統整合誤差一動態延遲誤差、GNSS 天線設置誤差、安置角誤差 及地面參考站位置誤差等。

一般而言,前述誤差對平面位置之精度影響較大,實際評估之誤差值 在平面誤差多大於 0.5 至 1 公尺,高程誤差也達 0.2 公尺(Baltsavias, 1999), 通常藉由雷射點資料剖面可檢視平面和高程之偏移量,如圖 4.22 所示,其 中不同航線之房屋脊線有明顯偏移。

圖 4.22 雷射點偏移示意圖

然而在雷射點雲解算後, 需經資料檢核的方式來確定資料的正確性。 檢核方式主要分為內部精度分析與外部精度分析。內部精度分析採用航帶 間重疊區之資料,利用彼此高程之差異量來檢視; 而外部精度分析則是將 已知的地面控制點比對雷射點資料所表現的地形趨勢面,檢視其兩者間之 差異。

內部精度即航帶間精度,利用多條航帶重疊處組成之不規則三角網形 進行高程差異的比對,以獲取航帶間的差異性進行評估。本分析目的為獲 致航帶間是否存在有未率定完善之系統誤差,以確保資料之精度,並進行

重疊航帶誤差分析與交叉航帶誤差分析。實際作業上,為更精確的獲得航線間之精度分析結果,利用 TerraMatch 軟體之 measure match 功能進行航線 重疊處高程差異比對,比對原理如圖 4.23 所示,利用航線點雲組成不規則 三角網形在與另一條航線重疊處,取其最近點比對兩者高程的差異量。

圖 4.23 Measure Match 比對原理示意圖

4-4-4 分區航帶平差

由於本計畫測區廣大,因此為使雷射點資料銜接高程一致,使用航帶 平差控制點,可有效地將資料約制區域間高程,使資料得以符合高精度之 特性。並於各測區完成完整之航拍掃瞄作業後,先進行分區航帶平差作業, 並繳交成果至監審方審查,再進行後續點雲分類作業,可保持成果產製之 時效。

於進行航帶平差前,利用 TerraMatch 軟體之 measure match 功能進行航線重疊處高程差異比對,分析整體航帶間誤差情形,可確保率定完善無系統偏差。並可對於數值異常航線進行了解,評估是否需要調整該條航帶先驗精度,若該條航線點雲品質不佳(如雲洞比率過高或因天氣問題穿透不佳),則考慮重新飛航。

本計畫子測區平差前各航帶重疊處高程誤差分析圖如圖 4.24 所示,數 據統計如表 4.4 所示,所使用之航線皆可進行平差,且無率定不完善導致 之明顯系統誤差。

工作

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
48	统計項目	最大值(m)	最小值(m)	平均值(m)	標準差(m)			
第一	平均絕對差量	0.360	0.133	0.207	0.039			
子測區	平均差量	0.237	-0.270	-0.002	0.083			
第二	平均絕對差量	0.388	0.123	0.212	0.037			
子測區	平均差量	0.263	-0.272	-0.006	0.064			

表 4.4 平差前航線重疊處誤差統計分析



(a)第一子測區



圖 4.24 平差前航線重疊處誤差分析圖

# 4-4-5 航帶平差模式

航帶間存在誤差將影響後續應用,上述誤差可經由率定飛行及良好的 飛行計畫控管整個雷射掃瞄之精度,大部分的誤差都可以被界定出來加以 檢定,然而即使如此,實務經驗上仍無法解決資料存在之誤差量,因此應 用航帶平差理論提高資料品質是必要之手段。

空載雷射掃瞄儀的架構都是由 GNSS 及 IMU 結合,使掃瞄的坐標能轉 換到通用的地面坐標系統,因此其定位精度將受到各種量測值與設定值的 影響,若系統率定不完整,GNSS 與 IMU 系統誤差會傳播到解算雷射測點 三維坐標的精度,為了檢驗並減少系統誤差,本工作採用商業軟體 TerraMatch 進行雷射掃瞄航帶平差,利用航帶重疊數據連結點的高程進行 連結點的量測,以評估重疊航帶的內部精度不符值,並進一步改正系統誤 差(TerraSolid, 2010)。

實際上計算所得的掃瞄點坐標之誤差來源可能受到相當多因素之影響, 包含系統性及偶然性之誤差,系統性之誤差只能將航帶轉換參數所能描述 的誤差量代入予以糾正,剩餘之誤差量則視為偶然誤差利用最小二乘方式 平差之,因此進行航帶平差時須先界定所謂的航帶間幾何轉換參數,才能 藉以發展航帶平差之數學模式。

由於掃瞄幾何條件的未知參數之間存在參數高相關,為減少未知參數 量,在隨機模式高相關參數(如平移參數、旋轉參數、平移參數線性漂移量、 旋轉參數線性漂移量等)中,優先選取姿態參數求定,加權值效果,另外實 際應用上可加入地面已知控制點作為約制。

未知參數需要輸入先驗精度,如角度量先驗標準差依偏航角(heading)、 顛簸角(pitch)、滾動角(roll)依序為 0.008 度、0.005 度、0.005 度(本儀器使 用慣性導航儀 LN200 之理論精度),長度相關向量 0.01 公尺。航帶平差輸 入資料包括:(1)時間序列的航跡三維坐標(2)時間序列的點雲三維坐標(3) 地面已知點三維坐標(本作業加入各航線間頭中尾三點)。利用航帶重疊數據, 進行航帶平差與平差成果評估,可獲得航帶之間的內部精度,並可進行系 統性誤差的改正(林志交,2004)。

平差作業流程包括處理雲點資料,針對較適合作為匹配連結點之地面 及平坦斜坡面屋脊線等進行分類,以提高自動萃取匹配連結點(Tie Line)品 質和效率。此作法將選取均勻分布於航帶重疊區之匹配連結點。



圖 4.25 匹配連結點示意圖

如圖 4.25 其中屋脊線匹配連結點。由此功能可檢視該連結點位置於各 航帶間偏差量,即為航帶相對平差選之使用之觀測量。剔除萃取錯誤之匹 配連結點後,以 TerraMatch 軟體之 Find Tie Line Match 功能決定欲求解之 參數進行航帶平差計算與改正。最後再進行航帶平差成果評估。

## 4-4-6 航带平差成果評估

利用航带平差以獲得更準確及可靠之成果,消除航带間尚存之偏移量, 降低製作 DEM 時於航帶重疊區域之混淆。可由重疊處誤差分析結果,了解 平差後雷射掃瞄測高精度,各測區平差後航帶誤差分析成果如表 4.5 所示, 各測區平差後平均絕對差量皆小於 0.2 公尺,平均絕對差量標準差小於 0.05 公尺,無明顯航帶偏差,可用於後續資料產製。詳細各航線高程差量如表 4.6 與表 4.7,統計圖表如圖 4.26 與圖 4.27。

工作總報告

4	统計項目	最大值(m)	最小值(m)	平均值(m)	標準差(m)				
第一	平均絕對差量	0.199	0.053	0.124	0.038				
子測區	平均差量	0.099	-0.100	0.000	0.038				
第二	平均絕對差量	0.198	0.060	0.130	0.037				
子測區	平均差量	0.133	-0.112	-0.002	0.030				

表 4.5 平差後航線重疊處誤差統計分析

表 4.6 第一子测區航線重疊處平差前後差量統計表

		平差前			平差後	
航線	取樣點數	平均絕對 差量(m)	平均差量(m)	取樣點數	平均絕對 差量(m)	平均差量(m)
22001R0	5498037	0.185	0.069	4298111	0.093	-0.005
22002R0	9942292	0.181	-0.085	8806762	0.087	-0.015
22003R0	13087823	0.169	-0.015	11489210	0.080	-0.013
22004R0	15740057	0.173	-0.031	14090404	0.070	0.010
22005R0	20346262	0.148	0.028	16816571	0.066	0.011
22006R0	27207352	0.188	-0.047	28443048	0.081	-0.012
22007R0	28772483	0.166	0.021	27839581	0.072	-0.008
22008R0	32508692	0.193	-0.019	33616044	0.076	-0.002
22009R0	38137827	0.164	0.052	34268418	0.064	-0.001
22010R0	44740038	0.184	-0.049	40286752	0.065	-0.005
22011R0	43569320	0.157	0.031	37556625	0.062	0.002
22012R0	45433931	0.163	0.013	41002721	0.066	0.001
22013R0	42441996	0.158	0.006	38380966	0.069	-0.012
22014R0	43121306	0.165	0.014	38647388	0.071	0.002
22015R0	48037391	0.182	0.106	42263308	0.068	-0.009
22016R0	57081783	0.174	-0.015	46556372	0.068	0.002
22017R0	59440556	0.176	-0.046	47827506	0.066	-0.005
22018R0	60225623	0.217	-0.171	49648962	0.067	-0.009
22019R0	61833877	0.233	0.139	50746543	0.072	-0.009
22020R0	57964949	0.211	-0.127	48618829	0.076	0.004
22021R0	52709595	0.221	-0.079	44987410	0.083	-0.005
22022R0	29618881	0.262	-0.198	25037979	0.078	0.006
22023R0	52421599	0.224	0.097	41272124	0.090	-0.024
22024R0	37344658	0.168	-0.030	28597452	0.104	0.000
22025R0	51398698	0.173	0.007	42856960	0.126	-0.045
22026R0	46831966	0.198	0.056	38698426	0.111	-0.019
22027R0	9712747	0.169	0.006	7392616	0.101	0.002

		平差前			平差後	
航線	雨样唧軟	平均絕對	亚扚关导(m)	田垟町数	平均絕對	亚圴兰县(m)
	収怺詰敷	差量(m)	十圬左重(III)	収怺茄数	差量(m)	十月左里(111)
22028R0	28960038	0.192	0.012	22599489	0.124	-0.005
22029R0	20649812	0.185	-0.028	15284695	0.125	-0.030
22030R0	8316739	0.197	0.084	2850006	0.142	0.022
22031R0	19630451	0.230	0.008	11934393	0.192	-0.034
22033R0	30118510	0.166	0.006	25232488	0.093	-0.001
22034R0	29424505	0.183	-0.083	24812872	0.091	-0.009
22035R0	27823166	0.210	-0.001	23222301	0.130	-0.046
22036R0	20348422	0.199	0.063	17009513	0.161	0.070
22037R0	40409345	0.174	-0.016	37803442	0.075	-0.016
22038R0	39445047	0.165	-0.010	36893040	0.073	0.011
22039R0	1375935	0.224	0.058	9700978	0.142	0.031
22040R0	6902986	0.183	0.021	10414925	0.156	-0.030
22041R0	630186	0.250	0.166	5006084	0.160	0.047
22042R0	253540	0.227	0.046	1548822	0.149	0.039
22043R0	833814	0.277	-0.070	1801241	0.102	0.018
22044R0	152332	0.183	0.096	952077	0.127	0.043
22045R0	1367079	0.325	0.121	701417	0.198	0.090
22046R0	134460	0.231	0.018	16905	0.184	0.063
22093R0	5258712	0.135	0.022	4071383	0.076	0.001
22094R0	10841002	0.158	0.011	8070894	0.053	-0.009
22095R0	7947305	0.141	-0.014	5691602	0.059	0.004
22096R0	5076295	0.212	0.086	3297779	0.077	0.015
22097R0	2121422	0.206	0.017	1484865	0.087	-0.022
22098R0	4738040	0.171	0.058	3739821	0.074	0.015
22099R0	1319616	0.192	0.061	850450	0.138	-0.037
22100R0	3464916	0.183	0.006	2380928	0.088	-0.006
22101R0	4652729	0.182	0.088	3470169	0.071	0.010
22102R0	2198791	0.192	-0.005	1690506	0.146	0.007
22103R0	4164762	0.193	-0.031	3356423	0.148	-0.028
22104R0	4613000	0.229	-0.050	3819519	0.169	-0.009
22105R0	5001778	0.212	0.029	4017723	0.135	-0.035
22106R0	7912328	0.189	-0.026	6365703	0.098	-0.008
22133R0	1471484	0.188	-0.065	1057648	0.103	-0.005
22134R0	1152691	0.161	0.017	870268	0.111	0.022

		平差前			平差後		
航線	雨拦唧椒	平均絕對	亚	田祥町数	平均絕對	亚均兰昌(m)	
	収怺起數	差量(m)	千圬左重(III)	収怺起数	差量(m)	十圬左里(111)	
22135R0	725689	0.217	-0.125	537600	0.132	-0.052	
22136R0	295599	0.179	0.063	209375	0.130	-0.026	
22137R0	472065	0.175	-0.054	388946	0.128	-0.031	
22138R0	397136	0.181	0.035	494541	0.132	0.003	
22139R0	699521	0.192	-0.041	875604	0.135	-0.038	
22140R0	671086	0.227	-0.044	829549	0.149	-0.024	
22141R0	868491	0.234	0.053	742891	0.199	-0.075	
22160R0	1104927	0.214	0.032	573941	0.153	0.016	
22161R0	893009	0.214	-0.113	295059	0.146	-0.004	
22173R0	11540750	0.181	0.016	9184200	0.081	-0.008	
22174R0	14205824	0.189	-0.065	11393748	0.078	-0.004	
22175R0	17344096	0.200	-0.031	13493347	0.074	-0.005	
22176R0	18796435	0.179	-0.032	14916147	0.075	-0.012	
22177R0	19636979	0.198	-0.116	15636926	0.073	-0.009	
22178R0	14427813	0.178	-0.017	10520644	0.074	-0.005	
22179R0	12569320	0.189	-0.083	9819789	0.099	-0.004	
22193R0	30736528	0.186	0.032	21270067	0.116	0.004	
22194R0	502500	0.231	-0.023	129502	0.193	0.013	
22195R0	352267	0.281	-0.045	889	0.193	0.099	
22219R0	626188	0.235	-0.015	340394	0.185	-0.092	
22220R0	9478287	0.205	0.075	200058	0.066	-0.033	
22226R0	38362073	0.199	0.109	29510633	0.053	-0.004	
22227R0	19785967	0.255	0.161	9936905	0.079	0.003	
22228R0	7583456	0.241	0.173	6246399	0.056	0.011	
22229R0	980927	0.223	-0.125	888829	0.179	-0.076	
22235R0	24294982	0.167	-0.021	21592670	0.071	-0.017	
22236R0	27288239	0.160	-0.002	27342347	0.075	-0.008	
22803R0	27210748	0.222	0.039	13937354	0.176	0.056	
22804R0	2641090	0.270	0.110	28209081	0.183	0.071	
22805R0	12094402	0.218	0.142	8592360	0.087	0.039	
22806R0	9917097	0.360	0.237	7780843	0.111	0.066	
22807R0	11014922	0.235	0.023	6922746	0.183	0.096	
22808R0	12897611	0.221	-0.071	8501736	0.124	0.047	
22001R1	796577	0.234	-0.125	497854	0.155	0.008	

工作總報告

		平差前			平差後	
航線	取樣點數	平均絕對 差量(m)	平均差量(m)	取樣點數	平均絕對 差量(m)	平均差量(m)
22002R1	1405393	0.218	0.027	878374	0.125	0.000
22006R1	18387278	0.160	-0.010	11492044	0.105	0.031
22007R1	18758062	0.246	0.063	11723792	0.126	0.050
22022R1	18944254	0.271	0.121	16470229	0.098	0.010
22024R1	13834620	0.185	-0.003	12360172	0.087	-0.025
22025R1	19853193	0.184	-0.027	17597731	0.128	0.002
22026R1	24268919	0.206	-0.058	23855764	0.135	0.040
22027R1	26339181	0.195	0.009	21396234	0.116	-0.004
22028R1	14394331	0.202	-0.010	11968826	0.138	0.021
22030R1	6880760	0.184	-0.017	4709152	0.136	0.018
22031R1	1412492	0.228	-0.121	450011	0.115	-0.063
22032R1	1684338	0.218	-0.025	931572	0.169	-0.013
22037R1	11664570	0.169	0.027	11036775	0.132	0.017
22038R1	1430675	0.243	0.051	8763451	0.152	0.000
22040R1	2981405	0.133	0.045	2176393	0.101	-0.006
22041R1	610817	0.219	0.145	3477148	0.102	0.005
22042R1	3553880	0.160	-0.019	2784904	0.097	-0.009
22093R1	6315102	0.140	-0.101	4732854	0.068	-0.023
22098R1	2164027	0.192	-0.070	1673966	0.098	-0.026
22101R1	1994919	0.170	-0.007	1209322	0.112	-0.007
22193R1	791472	0.246	-0.081	248530	0.189	0.020
22024R2	2458410	0.194	0.007	1990544	0.160	0.011
22025R2	3436572	0.222	0.107	19925824	0.133	0.031
22028R2	5866131	0.189	0.042	4863106	0.131	-0.032
22030R2	18658683	0.189	-0.052	13030866	0.120	-0.020
22031R2	14074160	0.189	-0.013	9883156	0.139	-0.006
22045R2	835094	0.343	-0.270	432767	0.173	-0.100
22024R3	19813752	0.191	0.095	15880116	0.168	0.081
22027R3	4118601	0.189	0.014	3570975	0.155	0.024
22027R4	12204796	0.176	-0.030	10510637	0.114	-0.018

*R1、R2表示該航線第2、3次飛行,以此類推。粗體為交叉航帶。

工作總報告

		平差前			平差後	
航線	取樣點數	平均絕對 差量(m)	平均差量(m)	取樣點數	平均絕對 差量(m)	平均差量(m)
22001R0	7308872	0.193	0.070	5466871	0.081	0.003
22002R0	4578086	0.181	0.000	6397309	0.068	-0.013
22003R0	1629715	0.169	0.016	4725411	0.062	-0.003
22016R0	416712	0.211	-0.081	89543	0.147	0.056
22017R0	700776	0.241	-0.117	757693	0.106	-0.017
22018R0	1637591	0.288	-0.216	1685908	0.116	-0.013
22019R0	2719561	0.259	0.070	2539838	0.106	0.001
22020R0	3250173	0.303	-0.256	2982557	0.108	-0.047
22021R0	5166054	0.248	-0.047	4812991	0.091	0.016
22022R0	6550910	0.331	-0.272	6392014	0.071	-0.006
22023R0	13784535	0.208	0.034	12247664	0.077	-0.013
22025R0	22729344	0.168	-0.008	20698386	0.078	-0.020
22026R0	30005612	0.190	0.029	25780648	0.082	-0.027
22027R0	42266480	0.199	0.000	30647151	0.089	-0.025
22028R0	38665900	0.212	-0.077	27830509	0.101	-0.017
22029R0	35680053	0.202	0.013	23438014	0.096	0.032
22030R0	30032435	0.195	0.091	20661006	0.095	-0.013
22031R0	21985387	0.196	0.003	15241617	0.112	-0.011
22033R0	8163808	0.172	0.031	16983111	0.064	-0.005
22034R0	5620633	0.236	-0.099	17179157	0.061	0.006
22035R0	9224388	0.214	-0.072	14130824	0.077	-0.001
22036R0	11442011	0.197	0.060	10426391	0.096	0.015
22039R0	1094509	0.214	0.055	11265201	0.112	-0.008
22040R0	9157074	0.151	-0.002	14322668	0.117	-0.005
22041R0	417770	0.230	0.071	7150867	0.124	-0.015
22042R0	446041	0.252	-0.007	6170261	0.092	0.007
22043R0	1882385	0.252	-0.053	11085146	0.085	-0.006
22044R0	3489511	0.251	-0.047	15019409	0.094	0.002
22045R0	20814214	0.201	0.034	23860692	0.108	0.030
22046R0	18876172	0.206	0.090	21927438	0.106	0.017
22047R0	2587602	0.251	0.004	10793656	0.098	-0.021
22048R0	1282546	0.236	0.003	6431127	0.095	-0.014
22049R0	1029445	0.245	0.047	5327223	0.097	-0.006

表 4.7 第二子測區航線重疊處平差前後差量統計表

		平差前			平差後	
航線	T- 1¥ 101. ab/	平均絕對	五七半日()	The 1북 파이 shy.	平均絕對	五七半日()
	以依點數	差量(m)	平均差重(III)	以依點數	差量(m)	平均差重(M)
22050R0	1090405	0.232	0.036	4087088	0.125	-0.032
22051R0	6285689	0.205	0.063	4499969	0.117	-0.005
22052R0	6861033	0.183	0.032	4667077	0.117	0.010
22053R0	8162544	0.185	0.017	5830891	0.121	-0.003
22054R0	9245890	0.198	-0.016	6601450	0.122	-0.006
22055R0	10952823	0.198	-0.011	7608275	0.107	0.003
22056R0	12094714	0.200	0.015	7843134	0.095	-0.012
22057R0	9860027	0.188	0.035	6298267	0.086	-0.011
22058R0	7190072	0.206	-0.037	5005495	0.088	-0.005
22059R0	4982921	0.197	-0.006	3822261	0.089	-0.002
22060R0	4418649	0.217	-0.036	3531391	0.085	-0.007
22061R0	3568436	0.215	-0.015	2566469	0.086	-0.014
22062R0	5689020	0.193	-0.044	3341578	0.073	0.005
22063R0	7169614	0.158	0.010	4581794	0.062	0.001
22064R0	9299599	0.166	-0.057	5819375	0.060	-0.002
22065R0	11648763	0.158	0.009	6948801	0.067	0.002
22066R0	13248922	0.169	-0.052	8972308	0.074	-0.001
22067R0	13570904	0.158	-0.027	9836207	0.085	0.004
22068R0	10198065	0.165	0.068	8334028	0.090	0.010
22069R0	2456503	0.123	0.064	1823655	0.098	0.051
22070R0	926611	0.219	0.000	664985	0.157	-0.015
22071R0	2406661	0.188	0.021	1451634	0.160	0.064
22072R0	2723385	0.214	-0.097	1637227	0.147	-0.039
22073R0	2986960	0.196	-0.055	1792244	0.149	-0.012
22074R0	2595828	0.220	0.000	1119788	0.196	0.024
22075R0	2736217	0.235	-0.013	1835619	0.158	-0.015
22076R0	2995542	0.236	-0.038	2171024	0.150	0.003
22077R0	1452374	0.222	-0.012	1179794	0.141	0.002
22078R0	1215924	0.227	-0.045	857837	0.158	-0.022
22079R0	731890	0.233	0.011	491594	0.180	-0.038
22080R0	25077624	0.129	-0.017	12314260	0.069	0.003
22081R0	9578802	0.176	0.104	3961591	0.080	-0.005
22082R0	9533820	0.213	0.168	6911766	0.117	0.053
22083R0	27634287	0.205	0.042	15819580	0.094	0.017

		平差前			平差後	
航線	取樣點數	平均絕對 差量(m)	平均差量(m)	取樣點數	平均絕對 差量(m)	平均差量(m)
22084R0	24635133	0.221	-0.156	14588647	0.094	-0.008
22085R0	16644240	0.228	-0.062	10664216	0.095	0.019
22086R0	11564836	0.221	0.089	8048482	0.094	0.003
22087R0	8573947	0.210	-0.103	5476454	0.093	0.002
22088R0	7773141	0.183	0.014	4523120	0.102	0.028
22089R0	9122585	0.204	0.014	5188585	0.132	0.050
22090R0	8500777	0.176	-0.046	5481028	0.093	0.028
22091R0	10582870	0.164	-0.020	6933410	0.100	-0.007
22092R0	10925636	0.170	-0.059	7035972	0.100	-0.018
22093R0	10554560	0.136	0.009	9404065	0.071	-0.001
22094R0	10941455	0.161	-0.053	9353543	0.065	-0.003
22095R0	8733971	0.161	-0.031	7447437	0.071	0.005
22096R0	7360392	0.210	0.075	5805118	0.096	0.024
22097R0	6264054	0.210	-0.006	5090496	0.096	-0.020
22098R0	5530167	0.178	-0.010	4638645	0.092	-0.010
22099R0	4333143	0.199	0.054	3129147	0.131	0.015
22100R0	4738995	0.188	-0.037	3463385	0.120	-0.030
22101R0	4616534	0.175	0.056	3637833	0.103	0.014
22106R0	221887	0.206	-0.051	224591	0.123	0.024
22107R0	2238481	0.209	-0.061	1655553	0.112	-0.026
22108R0	9690535	0.192	0.020	6325246	0.112	0.011
22109R0	3835722	0.240	-0.146	2573123	0.151	0.034
22110R0	4262802	0.270	0.154	2667377	0.155	0.031
22111R0	3752455	0.269	0.003	2492870	0.145	0.023
22112R0	3595793	0.246	-0.077	2244094	0.149	0.006
22113R0	3407076	0.270	0.073	2300986	0.159	-0.006
22114R0	3949680	0.240	-0.092	2563497	0.164	0.019
22115R0	5018046	0.262	0.101	3003279	0.150	-0.002
22116R0	6935147	0.225	-0.027	3571614	0.146	-0.005
22117R0	7684131	0.236	-0.022	3537833	0.153	0.048
22118R0	3043453	0.245	-0.040	1506070	0.183	-0.001
22119R0	2783094	0.268	-0.072	1436638	0.193	-0.058
22120R0	3819560	0.257	0.009	2170571	0.181	-0.019
22121R0	5724250	0.275	0.013	3189142	0.185	-0.013

	平差前		平差後			
航線	取送野数	平均絕對	亚均美导(m)	雨送野数	平均絕對	亚均美导(m)
	<b>以</b> 你 和 教	差量(m)	千巧左重(III)	\$\$\$\$\$\$\$	差量(m)	千巧左重(III)
22122R0	8751985	0.249	-0.017	4771892	0.180	0.033
22123R0	6090662	0.265	-0.019	3320100	0.183	0.012
22124R0	5024938	0.263	-0.031	2808277	0.178	-0.008
22125R0	5018535	0.267	-0.061	2610876	0.189	-0.019
22126R0	9503225	0.251	-0.016	4805394	0.186	0.031
22128R0	11584168	0.242	-0.016	6792636	0.176	-0.007
22129R0	12979203	0.249	0.007	8678937	0.172	0.005
22130R0	11778121	0.254	-0.051	8610615	0.173	-0.041
22131R0	8687587	0.255	-0.008	6618068	0.174	0.025
22132R0	6519706	0.258	-0.057	4815851	0.167	-0.026
22133R0	4069717	0.195	-0.053	2856661	0.108	-0.004
22134R0	3213120	0.173	-0.022	2165022	0.110	-0.018
22135R0	2698543	0.180	-0.033	1812861	0.119	-0.007
22136R0	2027139	0.172	-0.008	1366533	0.131	0.018
22137R0	1952386	0.170	0.022	1295680	0.122	-0.010
22138R0	2061991	0.197	0.004	1529491	0.125	0.019
22139R0	2185050	0.240	-0.047	1670419	0.127	-0.023
22140R0	3091314	0.284	-0.048	2299242	0.140	-0.020
22141R0	4035783	0.253	0.050	2600753	0.176	-0.032
22144R0	6548234	0.236	0.018	3873136	0.173	0.032
22145R0	5843994	0.236	0.004	3579804	0.168	0.010
22146R0	6503030	0.229	0.016	4089044	0.189	-0.023
22147R0	6755819	0.229	0.018	3913357	0.189	0.044
22148R0	9156192	0.243	-0.063	5022439	0.177	0.004
22149R0	4745968	0.259	0.087	2700375	0.186	0.028
22150R0	5964159	0.245	-0.008	3545145	0.191	0.036
22151R0	5275244	0.243	-0.067	3969810	0.159	-0.010
22152R0	3817072	0.244	-0.057	2805589	0.162	-0.013
22153R0	5991431	0.270	0.045	3725264	0.182	0.006
22154R0	5405586	0.259	-0.035	3744644	0.160	-0.002
22155R0	4528811	0.257	-0.015	3228686	0.165	0.008
22156R0	5056076	0.272	-0.058	3547762	0.171	-0.017
22157R0	6040802	0.263	0.021	4354379	0.176	0.004
22158R0	5979504	0.245	-0.072	4064980	0.162	-0.022

		平差前		平差後		
航線	TL- 1.24 TPL ab/	平均絕對	五七千日()	TT- 134 TE- 134	平均絕對	五七千日()
	取禄點數	差量(m)	平均左重(m)	取禄點數	差量(m)	平均差重(m)
22159R0	5864583	0.242	-0.066	3584911	0.170	0.047
22160R0	4511512	0.240	0.019	3116819	0.157	-0.001
22161R0	4706646	0.224	-0.005	3083410	0.152	0.012
22162R0	4997034	0.229	-0.007	3160562	0.155	0.014
22163R0	4474880	0.243	-0.025	2876792	0.169	0.023
22164R0	3691203	0.183	0.025	2151092	0.147	0.005
22165R0	4254615	0.215	-0.076	2721542	0.145	-0.018
22166R0	4675621	0.212	-0.089	2961673	0.147	0.017
22167R0	4342191	0.205	-0.074	2532358	0.149	0.010
22168R0	4911265	0.206	-0.061	2776784	0.143	-0.015
22169R0	4890983	0.217	-0.078	2975391	0.141	-0.025
22170R0	6076566	0.199	-0.019	4126446	0.119	0.002
22171R0	6078526	0.195	-0.039	4263422	0.117	0.003
22172R0	5878076	0.204	-0.043	3677442	0.121	-0.024
22173R0	491989	0.255	-0.077	443491	0.137	-0.006
22174R0	325284	0.294	0.048	752973	0.121	-0.019
22175R0	400793	0.225	0.067	1162252	0.110	-0.040
22176R0	1453120	0.195	0.029	1792199	0.105	0.005
22177R0	2520521	0.199	-0.039	1794189	0.111	0.039
22178R0	3526459	0.198	0.050	2522466	0.121	0.015
22179R0	5054427	0.204	-0.002	5692294	0.111	0.008
22180R0	3245906	0.269	0.037	1237047	0.190	0.015
22181R0	2580617	0.262	-0.032	867640	0.198	0.008
22182R0	3502465	0.229	-0.051	1763559	0.176	-0.013
22183R0	3221570	0.217	-0.039	1477196	0.189	-0.021
22184R0	3679436	0.168	0.011	2268630	0.151	-0.014
22185R0	3045744	0.170	0.045	1617416	0.174	-0.021
22186R0	3564088	0.194	0.054	2000737	0.135	-0.014
22187R0	3719346	0.228	0.100	1830399	0.198	-0.075
22188R0	4028918	0.203	0.024	1499791	0.192	0.061
22189R0	3370007	0.215	0.073	1491542	0.180	0.001
22190R0	2969676	0.210	0.051	1392772	0.162	-0.011
22191R0	2550021	0.233	0.100	1456951	0.149	-0.017
22192R0	2205991	0.237	0.101	1345092	0.159	0.023

44

	平差前		平差後			
航線	取樣點對	平均絕對	亚均兰罾(m)	取槎聖數	平均絕對	亚均兰曼(m)
	和你而我	差量(m)	小 · · · · 左 里 ( III )	外很而致	差量(m)	「 <b>冯</b> 左里(III)
22193R0	16501755	0.201	0.052	16561336	0.096	0.008
22194R0	746193	0.223	-0.022	261613	0.190	0.069
22195R0	4462996	0.197	0.018	1113005	0.172	-0.049
22196R0	3246064	0.194	0.062	2324415	0.123	0.000
22197R0	17538247	0.215	0.021	15326113	0.117	0.014
22198R0	25426209	0.179	-0.033	19406237	0.095	0.020
22199R0	21907785	0.176	-0.013	16678785	0.087	0.016
22200R0	17263372	0.169	-0.026	11944722	0.090	0.022
22201R0	13085684	0.189	-0.035	9001620	0.107	0.014
22202R0	10233112	0.207	0.048	6158417	0.144	-0.011
22203R0	9064100	0.195	0.005	5207648	0.124	-0.002
22204R0	6435143	0.218	0.024	3865302	0.121	0.020
22205R0	5396297	0.190	0.014	3615667	0.111	0.008
22206R0	869320	0.127	0.015	354667	0.186	-0.090
22207R0	2068795	0.171	-0.032	528815	0.090	0.002
22208R0	1110690	0.138	0.016	261188	0.152	0.042
22209R0	1870301	0.154	-0.010	1287706	0.128	-0.013
22210R0	2075661	0.151	-0.001	1530983	0.109	0.006
22211R0	2750970	0.162	0.038	1858246	0.111	0.016
22212R0	3576795	0.169	0.047	2534583	0.131	-0.006
22213R0	4427478	0.182	0.036	2889019	0.141	0.037
22214R0	2223298	0.171	0.046	1390228	0.142	-0.029
22215R0	4197036	0.201	0.002	2515886	0.149	-0.003
22216R0	1277967	0.209	0.043	727582	0.180	-0.007
22217R0	1638354	0.212	0.013	996363	0.180	0.047
22218R0	368671	0.208	0.053	216912	0.186	0.078
22219R0	18137362	0.186	0.009	14090355	0.103	-0.009
22220R0	27269042	0.200	0.007	9460954	0.095	-0.020
22221R0	3562701	0.221	-0.014	2198434	0.173	-0.013
22222R0	12534726	0.213	-0.134	8099474	0.124	0.019
22223R0	18561620	0.187	0.027	8575895	0.145	0.021
22224R0	2532943	0.295	0.149	842031	0.192	-0.056
22225R0	4880591	0.208	0.020	2095967	0.159	0.005
22227R0	5265381	0.222	0.092	4212304	0.128	-0.112

		平差前		平差後		
航線	取樣點數	平均絕對 差量(m)	平均差量(m)	取樣點數	平均絕對 差量(m)	平均差量(m)
22229R0	922971	0.246	0.009	1291282	0.152	-0.010
22230R0	7013522	0.178	0.041	2792245	0.115	0.018
22231R0	1782184	0.180	-0.025	1196525	0.150	-0.016
22232R0	2094083	0.233	-0.059	1276713	0.165	0.009
22233R0	4526986	0.274	-0.055	1417755	0.153	-0.077
22234R0	6019912	0.217	0.023	2201284	0.095	-0.010
22800R0	10199909	0.180	-0.007	6495885	0.122	-0.034
22801R0	12398982	0.229	0.118	6594232	0.098	0.030
22802R0	18752231	0.164	0.037	12829670	0.077	0.001
22803R0	5749306	0.207	-0.058	3920080	0.107	-0.024
22804R0	3678133	0.156	0.003	3292046	0.085	0.019
22805R0	10057061	0.198	0.145	6423473	0.091	0.036
22806R0	6333	0.388	0.263	367	0.198	0.117
22902R0	7736989	0.242	0.040	4118359	0.159	0.018
22903R0	11772173	0.227	0.016	7924366	0.132	0.015
22904R0	14999301	0.198	0.015	8861537	0.135	-0.031
22905R0	6941404	0.235	0.007	2713757	0.187	-0.112
22907R0	11129667	0.220	-0.002	1903491	0.144	-0.032
22908R0	11920897	0.227	-0.012	2387307	0.147	-0.036
22024R1	18486105	0.174	-0.028	16536729	0.080	-0.006
22026R1	71068	0.162	-0.072	1655892	0.077	0.003
22030R1	2396073	0.165	-0.028	1916966	0.108	0.009
22031R1	2520096	0.202	-0.083	698229	0.184	-0.038
22032R1	1468226	0.211	-0.047	1059891	0.156	-0.023
22037R1	7444265	0.174	0.026	8181593	0.096	0.001
22038R1	1054627	0.231	0.069	7677251	0.110	-0.009
22039R1	3666294	0.182	-0.027	3364496	0.129	0.035
22040R1	10790042	0.163	0.087	10195263	0.100	0.015
22041R1	628864	0.246	0.140	4845683	0.098	-0.023
22042R1	4616561	0.188	-0.026	4855116	0.092	-0.005
22043R1	2371516	0.209	-0.095	2160045	0.083	0.001
22044R1	5275180	0.214	-0.132	3986667	0.088	-0.016
22045R1	1499224	0.231	-0.014	10697290	0.102	-0.011
22046R1	1495148	0.212	-0.002	10334050	0.094	-0.002

工作總報告

		平差前			平差後	
航線	西洋町秋	平均絕對	<b>亚山关县()</b>	西北西北	平均絕對	亚山关县()
	以係點數	差量(m)	平均差重(M)	以係點數	差量(m)	平均差重(M)
22048R1	1858975	0.232	-0.114	2138485	0.088	0.000
22049R1	930924	0.187	-0.068	1147520	0.119	-0.089
22050R1	2465888	0.209	-0.125	2921159	0.108	0.018
22053R1	1343408	0.230	-0.091	679009	0.181	-0.002
22054R1	3343639	0.219	-0.105	831735	0.142	-0.018
22055R1	5874458	0.197	-0.057	1877540	0.116	-0.014
22071R1	2954642	0.203	-0.021	2121258	0.151	0.041
22077R1	1661694	0.220	0.026	1214678	0.142	0.003
22081R1	29442786	0.149	-0.055	16796772	0.070	-0.006
22082R1	29829442	0.153	-0.011	16167614	0.073	-0.006
22083R1	8484481	0.161	-0.034	6253703	0.095	-0.047
22089R1	1311972	0.175	-0.040	793170	0.112	-0.043
22093R1	12381669	0.142	-0.033	10463526	0.071	-0.003
22098R1	5469708	0.182	-0.057	4486178	0.095	0.010
22101R1	5108783	0.165	-0.020	3910254	0.102	0.010
22107R1	9605956	0.220	0.058	5812787	0.117	-0.010
22108R1	3935644	0.229	-0.027	2819277	0.135	-0.033
22109R1	2545845	0.197	-0.021	866055	0.121	-0.041
22110R1	2306355	0.239	-0.071	1420795	0.166	-0.012
22118R1	9470977	0.199	0.013	2172002	0.162	-0.047
22122R1	7389409	0.236	-0.015	3836643	0.178	0.037
22123R1	7680821	0.233	0.052	4128535	0.182	-0.054
22124R1	5036756	0.229	-0.014	3025907	0.158	0.000
22125R1	1139982	0.224	-0.059	499201	0.187	-0.021
22126R1	4807054	0.215	0.046	3014770	0.184	0.007
22127R1	12925694	0.254	-0.007	6378972	0.181	-0.007
22129R1	3620890	0.259	0.128	2873339	0.156	-0.009
22131R1	1548239	0.257	-0.006	954193	0.196	-0.076
22132R1	5124651	0.246	0.087	3966572	0.152	-0.029
22143R1	7174305	0.242	-0.030	3628644	0.192	-0.023
22154R1	5110199	0.211	0.030	3800915	0.123	-0.005
22156R1	6036766	0.227	0.013	4498739	0.135	-0.011
22157R1	5317420	0.248	-0.016	3937478	0.154	-0.007
22158R1	2855614	0.238	0.013	1727274	0.150	0.001

47

	平差前		平差後			
航線	取樣點對	平均絕對	平均差量(m)	取樣點數	平均絕對	平均差量(m)
		差量(m)			差量(m)	
22164R1	1029878	0.274	0.020	176115	0.194	-0.037
22193R1	563446	0.232	-0.085	297032	0.186	-0.022
22206R1	4171703	0.163	0.016	2253648	0.121	0.003
22212R1	2639384	0.213	-0.085	2062330	0.128	-0.003
22213R1	1134760	0.184	0.013	820457	0.157	-0.036
22223R1	7125541	0.150	0.023	4359025	0.085	-0.013
22229R1	2847827	0.158	0.066	1596256	0.148	0.095
22027R2	10030177	0.170	0.031	8366679	0.098	0.010
22030R2	8844414	0.183	-0.038	4713204	0.104	0.045
22031R2	3582123	0.180	-0.001	1350011	0.107	-0.015
22038R2	2068331	0.204	0.008	2089588	0.132	0.016
22039R2	349394	0.230	-0.119	108269	0.167	-0.010
22040R2	2837592	0.146	-0.016	2772080	0.096	-0.005
22041R2	1728209	0.194	-0.054	1366039	0.119	0.016
22045R2	8410538	0.231	-0.091	7144193	0.115	-0.013
22046R2	4771664	0.258	-0.169	3863985	0.172	-0.095
22081R2	24479136	0.188	0.154	9927750	0.075	0.014
22083R2	15579722	0.186	0.040	5393064	0.088	-0.029
22089R2	2855854	0.181	0.075	1795731	0.127	-0.039
22109R2	5562737	0.201	-0.037	3695721	0.135	-0.023
22125R2	6940182	0.228	0.001	3644176	0.182	-0.047
22131R2	4789061	0.253	0.021	3639306	0.167	0.030
22142R2	7090394	0.241	-0.042	3675558	0.180	0.013
22154R2	999916	0.211	0.055	83998	0.174	0.133
22158R2	6264938	0.268	0.163	3419081	0.164	-0.005
22212R2	2864753	0.172	-0.039	2200534	0.123	0.021
22229R2	2101311	0.165	-0.059	1238688	0.133	-0.060
22038R3	586557	0.243	-0.077	243227	0.185	-0.073
22041R3	2098839	0.222	-0.091	1864659	0.101	0.007
22028R4	38458032	0.253	0.057	24086830	0.144	0.049

*R1、R2表示該航線第2、3次飛行,以此類推。粗體為交叉航帶。

工作總報告







圖 4.26 平差前後重疊處平均絕對誤差差量比較



## (a)第一子測區



(b)第二子測區 圖 4.27 平差前後測區交叉航線重疊處差量統計分析圖

# 4-4-7 航带平差自我檢核成果

於航帶平差過程中,另外可藉由 Optech LMS 軟體評估平差後之高程及

平面精度。因屋頂斜面和屋脊線為空間中三維向量,所以可利用其雷射點 萃取共軛面、共軛線之分析功能,以屋頂為例示意如圖 4.28,其萃取各航 帶重疊區域之屋頂面及屋脊線,以評估平差模式是否恰當,示意圖如圖 4.29 平差前後雷射點至共軛面差量減少,確定點雲平差成果之精度可進行後續 分類作業。





#### (a)平差前雷射點至共軛面差量分析 Roof lines analysis

Standard processing 👻

Parameter	Dim	Mean	RMS	Minimum	Maximum
Delta East	[m]	0.065	0.244	-0.586	0.707
Delta Height	[m]	-0.013	0.067	-0.382	0.244
Delta North	[m]	-0.053	0.164	-0.935	0.426
Horizontal Separation	[m]	-0.063	0.293	-0.718	0.948

(c)平差前屋脊共軛線差量統計 圖 4.29 航線重疊處斗

(b)平差後雷射點至共軛面差量分析 Roof lines analysis

an angle Ideal

Tie Planes from Update processin

Refined processing	•
--------------------	---

Parameter	Dim	Mean	RMS	Minimum	Maximum
Delta East	[m]	-0.003	0.115	-0.414	0.456
Delta Height	[m]	0.005	0.027	-0.079	0.116
Delta North	[m]	-0.019	0.074	-0.393	0.313
Horizontal Separation	[m]	0.008	0.136	-0.544	0.429

(d)平差後屋脊共軛線差量統計

圖 4.29 航線重疊處平差前後共軛線統計分析示意圖

## 1. 平面精度

航帶進行平差時引入平差高程控制點做為約制,高程精度部分將由分 類後點雲產製 DEM 比對檢核點進行評估分析,參閱章節 4-6。平面精度部 分則利用平差點雲成果和平差平面控制點即屋角特徵點進行比較分析,本 工作總報告

計畫控制測量共完成 32 點平面控制點。因點雲無法如照片準確點出平面坐標,採手動量測點雲屋角點三次後之平均值進行評估,差值統計如表 4.8 平面差量皆小於 50 公分。屋角特徵點施測現場照片以及點雲量測屋角點示 意如圖 4.30。

明十明寺	平面控	制點坐標	點雲量測	屋角點坐標	E 方向	N方向	亚五关县
赤山 幼花	Е	Ν	Е	Ν	差量	差量	十回左里
22-0001B	209757.784	2513599.713	209757.781	2513599.432	-0.003	-0.281	0.281
22-0002B	209714.064	2497135.013	209713.614	2497134.977	-0.450	-0.036	0.451
22-0007B	277822.218	2536502.199	277822.276	2536502.088	0.058	-0.111	0.125
22-0008B	280990.435	2540648.906	280990.414	2540648.888	-0.021	-0.018	0.028
22-0009B	284616.042	2548547.662	284616.133	2548547.31	0.091	-0.352	0.364
22-0016B	254937.387	2518631.208	254936.9214	2518631.188	-0.466	-0.020	0.466
22-0019B	262202.383	2541032.468	262202.619	2541032.726	0.236	0.258	0.350
22-0025B	274711.201	2567673.044	274710.84	2567673.09	-0.361	0.046	0.364
22-0028B	253937.162	2511592.364	253937.4491	2511592.514	0.287	0.150	0.324
22-0030B	270034.227	2560869.919	270034.302	2560870.051	0.075	0.132	0.152
22-0032B	209721.864	2506606.963	209721.531	2506606.819	-0.333	-0.144	0.363
22-0038B	214370.131	2512759.395	214370.0135	2512759.623	-0.117	0.228	0.257
22-0042B	214306.879	2497114.39	214306.932	2497114.442	0.053	0.052	0.074
22-0043B	249008.282	2497267.535	249008.211	2497267.313	-0.071	-0.222	0.233
22-0044B	252870.354	2506945.227	252870.0734	2506944.912	-0.281	-0.315	0.422
22-0050B	273164.686	2530067.883	273164.5555	2530068.098	-0.130	0.215	0.252
22-0055B	286429.687	2554059.587	286429.579	2554059.846	-0.108	0.259	0.281
22-0057B	291269.902	2557852.312	291269.7193	2557852.11	-0.183	-0.202	0.273
22-0065B	291276.253	2562207.731	291276.36	2562207.689	0.107	-0.042	0.115
22-0072B	259103.847	2533931.535	259103.517	2533931.3	-0.330	-0.235	0.405
22-0073B	260670.750	2521646.583	260670.906	2521646.897	0.156	0.314	0.351
22-0079B	279389.156	2547827.014	279389.117	2547826.97	-0.039	-0.044	0.059
22-0080B	278874.45	2568092.804	278874.366	2568092.894	-0.084	0.090	0.123
22-0088B	249658.275	2500659.256	249658.11	2500659.459	-0.165	0.203	0.262
22-0090B	266945.263	2557645.035	266945.272	2557644.75	0.009	-0.285	0.285
22-0091B	289692.166	2566100.641	289692.12	2566100.604	-0.046	-0.037	0.059
22-0094B	265357.058	2549348.075	265356.93	2549347.989	-0.128	-0.086	0.154
22-0096B	246037.069	2499795.009	246037.213	2499795.023	0.144	0.014	0.145
22-0097B	265372.882	2538858.795	265372.683	2538858.888	-0.199	0.093	0.220

表 4.8 平面控制點檢核點雲屋角點差值表(單位:公尺)

平面控		制點坐標	點雲量測	屋角點坐標	E方向	N方向
志 3近	Е	Ν	Е	Ν	差量	差量
22-0103B	257525.065	2512370.442	257525.1	2512370.353	0.035	-0.089
22-0104B	263800.279	2515015.110	263800.6314	2515015.136	0.352	0.026
22-0106B	259067.476	2525456.532	259067.613	2525456.306	0.137	-0.226

0.466

0.028

0.248

Chung Hsing Surveying Co.,Ltd.

平面差量最大值

平面差量最小值

平面差量平均值

		- te
		No.
$\succ$	期代:32-00088 新蔵: 日期:113.5.9	
	нан нан нан на на на на на на на на на н	
	Aller & Contraction	

(a)平面控制點量測遠照



平面差量標準偏差

平面差量均方根差

平面差量

0.096 0.353

0.264

0.124

0.268

(b)平面控制點量測近照



圖 4.30 點雲平面精度檢核示意圖

2. 重疊區精度評估

平差成果之點雲除經過商業軟體各式統計報表分析外,提送監審方前 先以監審方自行開發之程式,統計 100×100 平方公尺為單位統計點雲高程

差量,評估平差後高程差異量,確定平差成果合乎契約要求。

如檢核圖圖 4.31 所示,深灰色圖例即高程絕對差量小於 20 公分,其他 大於 20 公分處進行檢查,位置多為常於短時間內變遷之海、河道、池塘或 農田地形等,本計畫飛航掃瞄長達 6 個月,導致此類地形於各架次間點雲 高程不一致,並非平差未完善。擷取說明範例如圖 4.32。



圖 4.32 平差後航帶間高差較大區域示意圖

# §4-5 DEM/DSM 製作

## 4-5-1 點雲編修流程

1. 點雲自動過濾

原始 LiDAR 數據為不規則離散測點,可採用經濾雜點之點雲製作數值 地表模型(DSM)規則網格,數值高程模型(DEM)的製作,則需執行濾除與分 類的步驟,將測點分類成地面點(Ground)與非地面測點(Non-ground)。

本計畫中自動過濾工具是採用商用軟體 TerraScan 工具模組, TerraScan 處理點雲過濾的程式為使用(Axelsson, 2000)文獻的演算法,其基本原理是 先選擇區域內的低點為種子點,資料結構採用 TIN 模型,組成「起始地面」, 然後逐點判斷,判斷候選測點,位置落入種子點構成的 TIN 三角面內,計 算候選測點與三角面的垂直距離(iteration distance)以及離最近三角面頂點 的夾角(iteration angle),當垂直距離小者,表示候選測點離「起始地面」貼 近,當垂直距離小於臨界值以內者視為地面點(iteration angle 判斷亦同理), 逐次將候選測點判斷成地面點或地物點,漸進更新加密新的「起始地面」, 直到所有點判斷完成(圖 4.33)。



圖 4.33 Iteration angle 和 Iteration distance 示意圖 (Axelsson, 2000)

將全區已平差處理後之點雲資料,利用 TerraScan 軟體進行各種不同類 別之點雲資料分類,再利用分類後之資料進行過濾與整合,分別產出僅含 地表面及地形面之非地面測點與地面測點點雲資料。商業軟體 TerraScan 對 點雲資料進行過濾,該軟體分類地面點的演算法引用不規則三角網 (Triangular Irregular Networks, TIN)表示地表面,過濾處理會隨著地形坡度 要變換門檻值,以及要隨著植被的特徵變換門檻值,達到參數自適性調整。

## 2. 人工點雲編修

分類後的空載 LiDAR 地面點雲資料,可能因雜訊或其他地物干擾,而 有非預期的反射資訊出現,如地面之突然單一突出物或不合理坑洞...等, 並確定在本計畫規範的密度、重疊率與高程差可達標準;將分類後的點雲 資料展示於螢幕上,利用 TerraScan 及 TerraModeler 軟體中之點位編修功能, 交互觀察三維表面模型與點雲剖面,將不合理或不符合定義的點位刪除或 進行編輯(圖 4.34)。人工編修點位過程亦可配合地面影像,如航空照片或高 解析度衛星影像等,依不同之地表覆蓋給予不同自動過濾參數再次分類及 人工編修,以確保點位分類之正確性,示意圖如圖 4.35,編修前大範圍地 面點不足,編修後可呈現地形變化。



圖 4.35 橋樑之點雲分類示意圖

## 4-5-2 點雲編修狀況

延續本公司多年光達點雲編輯經驗,並針對監審方修正建議滾動式更 新點雲濾除重點及注意事項,且藉由定期會議討論提升作業人員濾除能力, 並對於濾除能力進行評估,確認濾除人員能因應各式地形。於點雲編修流 程中,濾除人員需先檢查點雲資料正確,並確認自動分類之雲點、明顯雜 點已分類完全,再進行主要非地面點濾除工作,並負責分配圖幅之測區內 部圖幅接邊,完成後自檢和填表如表 4.9 再提交檢核人員。第2 作業區點 雲編修人員共9位,品管檢核人員共7位,圖幅分配繪製於圖 4.36,藉由 良好之點雲過濾與檢核能力確保產製成果品質。



(a)點雲編修人員分布圖 (b)點雲檢核人員分布圖 圖 4.36 點雲編修與檢核人員分布圖
工作總報告

				11.1240111		
		點雲緣	扁修紀錄表	t		
圖幅位	置	臺東縣	航線標	號	6,7,8,9,10,235,236	
圖號		96184043	總點雲	數	53,548,258	
資料產製	人員	董旻	完成日	期	2023/07/19	
圖幅審查	人員	王 瑜	審查日	期	2023/08/01	
1.不合理黑	出雲檢?	查與濾除				
A. 雲	塊	B. 低點	C. ■系	統錯誤點	E. ₩缺航線	
2.地面點非	<b>毕地</b> 面默	貼人工編修	地面	點點數	5,095,106	
A.	建物	已濾除	G. 🗖	非永久性堆 (土推、垃圾	፤積物已濾除 及、工程、地基)	
В.	堤防. (含土	或實心道路未濾除 堤、魚塭及土梗等)	H. 🗖	地面點確實 穿透率良好	「分類(分類成果良好或 F)	
С.	橋梁	、涵洞已濾除(含高架)	I.	無接邊線		
D.	不合理點雲已濾除(高點或低 點)		J.	無平差問題	無平差問題、點雲完整(無雲洞)	
Е.	地面點編輯完整(足以表現地 形)		K.	水域點雲分	水域點雲分類正確	
F.	植被	已濾除	L.	墳墓與大石	頭編輯完整	
3.地面點統	音圖		4.地形渲	染圖		
				the part of the second se		

表	4.9	點雲編修自檢紀錄表範例
~~		

備註:無

## 4-5-3 數值高程模型成果

根據內政部「高精度及高解析度數值地形模型測製規範(草案)」,數值 地形模型可分為下列二種,其定義如下(內政部,2003):

1. 數值高程模型(Digital Elevation Model, DEM)

描述不含植被及人工建物之地表自然地貌起伏的數值模型。此模型是 以規則網格式離散點所組成。為了便於資料的管理及後續應用,在此我們 定義離散點是等間距的方格點。

2. 數值地表模型(Digital Surface Model, DSM)

表示地表可見光無法穿透的最上層覆蓋物的數值模型。與數值高程模型不同之處,乃在表示建物及長年生植被的最上層覆蓋物。此模型亦是以 規則網格式離散點所組成,在此我們同樣定義離散點是等間距的方格點。

經過分幅、分類與編輯處理後之地表面與地形面點雲資料,藉由記錄 的高程資料,依實際需求產製 1×1 公尺整數網格的 DEM/DSM 資料,以 TerraScan 及 TerraModeler 軟體,將地面點與地表覆蓋資訊分別組成地面高 程與地表覆蓋面,再利用 SCOP++內插模式進行成果產製,並進行作業區 內部接邊,軟體介面如圖 4.37,第2作業區共 287 幅 1/5000 正射影像如圖 4.38,1/5000 圖幅成果如圖 4.39 所示。



圖 4.37 SCOP++軟體介面圖

於各作業區成果產製後進行外部接邊,依契約規定因掃瞄時間差距造成地形明顯變遷(如:河谷、崩塌地等),無法製作一致之地形成果,應將不一致範圍圈選成向量檔案,經認定合理後,保留該處範圍存查,如高程落差過大地區將不強制接邊。第2作業區責任接邊圖幅共96幅,分布如章節 5-5。







(d) DSM 平地成果(96184096)圖 4.39 DEM/DSM 山地及平地成果圖

## 4-5-4 大地起伏化算

全球定位系統提供的坐標,其高程為橢球面起算的橢球高(Ellipsoid Height),但一般民生用途所需的高程資料是以大地水準面起算的正高 (Orthometric Height),故需要將橢球高轉為正高以提供與其他資料的整合應 用。本計畫採用內政部公告之 103 年大地起伏模式(Geoid model),由監審 方統一進行正高化算。

## §4-6 檢核點蒐集與作業

## 4-6-1 测量作業方式

透空良好之檢核位置採用 e-GNSS 定位系統進行 VBS-RTK 即時動態定 位,有效率地測量出每個檢核點三維坐標。可以省下靜態測量所需的內業 計算時間,且可以達到公分級的精度。於透空不良之檢核位置,例如林地 或是密林,使用傳統測量方式進行導線測量。導線點上擺設全測站經緯儀 並後視一已知方向,以全測站經緯儀測角、測距方式,測量附近的檢核點 角度及距離並記錄之。將所記錄得的資料利用角度、距離的相對關係,可 以反算出各檢核點的坐標。以此類推,直到測區內所有的地物皆已施測完 畢並解算出坐標。供後續雷射點雲或 DEM 高程精度檢核使用。本次計畫 DEM 檢核作業檢核點分布如圖 4.40,檢核點內容如後說明。

本次計畫地形包含低海拔及中高海拔測區,需分別對兩種地形進行 DEM 檢核作業。依據契約要求,每種土地覆蓋分區至少要有 30 個地面測 量檢核點,各檢核點應儘可能均勻分布於各圖幅,地面檢核點為平坦坡度, 並避開地形斷線特徵處1公尺以上。檢核點蒐集區域於測區平均選取9區 進行 DEM 檢核。沿路針對可測得的地物增加測點數量,增加點位數量。並 於測量時記錄選測檢核點所在位置之地形類別及平均植物高度,供計算高 程精度標準參考。

另外也需分別對兩種地形進行橫互航線的橫斷面(cross section)檢核 測量,低海拔及河川洪泛溢淹測製地區:檢核剖面至少有 60 個檢核點,剖 面長度總和需超過 40 公里。中高海拔山區測製地區:需施行橫互航線的地

面檢核剖面,檢核剖面至少有40個檢核點,剖面長度總和需超過30公里。 橫斷面檢核點於測區平均選取15條透空平坦地進行大剖面檢核,共挑選低 海拔橫斷面7條及高海拔橫斷面8條,沿道路避開地形斷線特徵處沿途進 行選點。地形類別與土地覆蓋分區如表4.10及表4.11,各檢核點施測範例 如圖4.41。



圖 4.40 檢核點分布圖表 4.10 地形類別列表

地形分類	分類編碼	定義
平地	Р	地表坡度在5度以下的地區
丘陵	Н	地表坡度在5度~15度之間的地區
山地	М	地表坡度在15度~30度之間的地區
陡峭山地	С	地表坡度在 30 度以上的地區

低海拔及河川洪	泛溢淹地區	中高海拔山區					
分類名稱	分類編碼	分類名稱	分類編碼				
裸露地	В	裸露地	В				
矮植被	L	矮植被	L				
植生地	V	植生地	V				
林地	F	林地	F				
都會區	U	密林地	D				
濕地	W	橫斷面	MS				
橫斷面	PS						
	説	 」 明					

表 4.11 土地覆蓋分區列表

裸露地-以任一點為中心,半徑在10個網格間距的範圍內其受植被覆蓋之面積少於25 %者。

植生地-以任一點為中心,半徑在10個網格間距的範圍內其受植被覆蓋之面積介於25 %~50%者,則該範圍內視為植生地。其中周圍植生高度不超過1公尺之草生地、矮樹 群、茶區...等土地覆蓋分類

林地-以任一點為中心,半徑在10個網格間距的範圍內其受樹木覆蓋之面積介於50% ~75%者。

密林地-以任一點為中心,半徑在10個網格間距的範圍內其受植被覆蓋之面積大於75 %,且範圍內樹冠平均高度達 DEM 或 DSM 規範中誤差之4倍以上者。





(a)裸露地-B



(c)植生地-V

(d)密林-D

(e)林地-F



(f)濕地-W

(g)都會區-U 圖 4.41 各類別檢核點實測照片



(h)橫斷面-PS.MS

#### 4-6-2 精度評估標準與作業

本計畫規範取高程精度之 95% 信心水準 (E95) 為高程容許誤差,高程 精度以基本精度加上地形類別及地表植被覆蓋情形之精度調整參數而得, 計算公式如下:

 $\sigma^2 = a^2 + b^2 + c^2 \cdot t^2 \quad (\text{if } 4.1)$ 

式中 $\sigma$ 為高程精度; a 為平坦裸露地區可達到的精度; b 為地形類別調整參數; c 為地 表植被覆蓋情形調整參數; t 為地表植被平均高度。

規範訂定高程精度 a 為 0.18 公尺。地形類別調整參數 b(公尺)及地表植 被覆蓋情形調整參數 c(無單位),如表 4.12 矮植被之地表植被覆蓋情形調整 參數 c 比照密林地;都會區及濕地之地表植被覆蓋情形調整參數 c 比照裸 露地。

地形類	別 b	植被覆蓋類別c		
平地	0.0	裸露地	0.0	
丘陵	0.2	植生地	0.2	
山地	0.5	林地	0.3	
陡峭山地	1.0	密林地	0.5	

表 4.12 地形類別與地表植被覆蓋類別調整參數對照表

#### 4-6-3 精度評估與分析

1. 基本精度分析

對於點雲成果進行基本精度分析,利用檢核點附近之三個最鄰近地面 網格點內插其高程後與此檢核點高程比較而得出其較差值(即成果高程減

檢核高程)。輸出資訊有「平均高差」為所有用以計算點高差量平均值;「最 大、最小高差」分別指所有計算的點位中高差量之最小與最大值;「平均絕 對高差」為用以計算點高差絕對值的平均值;標準偏差公式(式 4.2)如下:

$$S_{D} = \sqrt{\frac{\sum (D_{i} - \overline{D})^{2}}{n-1}} \quad (\text{$\ddagger$ 4.2$)}$$

而誤差分佈的離散程度之均方根誤差所使用之公式為式4.3:

$$\sigma = \sqrt{\frac{\sum (D_i)^2}{n}} \quad (\ddagger 4.3)$$

其中σ為規範值,而Di為檢定值Xi與擬真值Yi之差值。

透過了解測區內檢核點的最大高差、最小高差以及均方根誤差,可以知道資料離散程度及準確度。此種初步檢驗考慮到每個樣本在統計上都具有代表性,基本精度評估之描述性統計值如下表。

表 4.13 低海拔各類土地覆蓋分區基本精度分析表(單位:公尺)

土地覆	檢核	亚均古关	旦上古关	旦儿古关	平均絕對	標準	均方根
蓋類型	點數	十均向左	取入向左	取小向左	高差	偏差	誤差
裸露地	35	0.016	0.126	-0.115	0.053	0.062	0.063
矮植被	30	0.077	0.202	-0.063	0.085	0.070	0.103
植生地	31	0.162	0.304	0.020	0.162	0.075	0.178
林地	34	0.010	0.246	-0.281	0.081	0.107	0.106
都會區	33	0.023	0.095	-0.056	0.031	0.032	0.039
濕地	35	-0.013	0.246	-0.779	0.101	0.170	0.168
橫斷面	61	-0.017	0.147	-0.148	0.058	0.068	0.070

表 4.14 中高海拔各類土地覆蓋分區基本精度分析表(單位:公尺)

土地覆 苦類刑	<b>檢核</b> 點對	平均高差	最大高差	最小高差	平均絕對 高差	標準偏差	均方根 誤差
裸露地	33	0.006	0.126	-0.117	0.047	0.063	0.062
矮植被	32	0.151	0.443	-0.052	0.154	0.103	0.182
植生地	30	0.163	0.333	-0.115	0.174	0.107	0.194
林地	31	0.008	0.365	-0.228	0.087	0.121	0.119
密林	33	0.033	0.446	-0.152	0.109	0.142	0.143
橫斷面	43	-0.026	0.121	-0.165	0.062	0.071	0.074

*數值皆取到小數點以下3位,第4位以四捨五入計算,唯標準偏差與均方根誤差取到 小數點下2位,第3位以四捨五入計算

透過圖 4.42~圖 4.54 呈現不同土地覆蓋類型之高程較差都符合精度規

範,圖表縱軸為成果高程(Z2)與檢核高程(Z1)之較差單位為公尺,橫軸為檢 核點流水編碼,藍色折線即為各點高程較差,各點對應之精度規範區間為 紅色折線以及綠色折線。而藍色折線皆位於紅色折線與綠色折線之間,顯 示高程差值在精度規範(σ)內,皆可通過σ檢驗,不合格點數為零,高程較 差之均方根誤差通過σ檢驗。

於橫斷面圖表橫軸為斷面流水號碼,由序號小至大分別對應自東到西 之各橫斷面,各橫斷面檢核點精度成果由北往南依序排列。本計畫檢核點 於嚴苛之地形如矮植被、林地及密林皆表現良好。







工作總報告









#### 圖 4.47 低海拔之濕地(W)精度成果圖





工作總報告



#### 圖 4.49 中高海拔之裸露地(B)精度成果圖







#### 圖 4.51 中高海拔之植生地(V)精度成果圖





-0.05 -0.1 -0.15 -0.2





圖 4.53 中高低海拔之密林(D)精度成果圖

-----精度規範on

→ 精度規範on

## 2. 中央集中趨勢分析(Central Tendency)

→ 高程較差Dz=Z2-Z1(m)

集中趨勢顯示一組資料中某種特性共同趨勢之量數,因其可反映資料 觀測值之集中位置,故又稱位置量數(location measure)。在無誤差之下,資 料會呈現對稱的常態分布(即平均值等於中位數,樣本分布偏度為零),故通 常可採用平均數、中位數作為衡量指標。而依據高程較差的平均數和中位 數之誤差大小可發現,算數平均數大者,則可能存在系統性誤差。根據表 4.15 數值精度中央集中趨勢表分析,了解測區內高海拔與低海拔之各種土 地覆蓋的高差值,其算數平均值與中位數雖不相等,但其差量皆在4公分 內,唯有高海拔植生地之誤差量較大,以統計意涵而言,雖然中央集中趨 勢在於初步檢驗是否可能存在系統性誤差問題,以實務之經驗,此點雲之 成果誤差量已為低誤差,甚至在部分類別其誤差大小幾近為0,代表此測 量值已近乎真值。為理解其誤差分布的統計意涵,最後在使用獨立檢核檢 地抽樣評估瞭解其誤差在統計上的表現。

圖 4.54 中高低海拔之橫斷面(S)精度成果圖

土地覆蓋類型	平均值(M1)	中位數(M2)	較差大小(M1-M2)
裸露地	0.053	0.033	-0.017
矮植被	0.085	0.085	-0.008
植生地	0.162	0.176	-0.014
林地	0.081	0.016	-0.006
都會區	0.031	0.026	-0.003
濕地	0.101	0.016	-0.029
橫斷面	0.058	-0.023	0.006

表 4.15 低海拔數值精度中央集中趨勢分析表(單位:公尺)

註:數值皆取到小數點以下3位,第4位以四捨五入計算

表 4.16	中高海拔數值精度	中央集中趨勢分析表(	單位:公尺)

土地覆蓋類型	平均值(M1)	中位數(M2)	較差大小(M1-M2)
裸露地	0.047	0.002	0.004
矮植被	0.154	0.145	0.005
植生地	0.174	0.182	-0.019
林地	0.087	-0.019	0.027
密林	0.109	-0.012	0.045
橫斷面	0.062	-0.022	-0.004

註:數值皆取到小數點以下3位,第4位以四捨五入計算

3. 數值精度偏態(Skewness)檢驗

在使用一組資料分析與統計前,應對資料特性有充分足夠瞭解,以確 認數據資料能滿足基本假定,才能確保統計的推論正確性,當假定不成立 時(資料的偏態異於常態時),將致使參數估計之標準偏差(standard error)與 顯著性檢定(t-value)造成偏誤,嚴重時會導致估計結果的顯著性檢驗失敗 (Hu & Bentler, 1995; West, Finch, & Curran, 1995)。

依「內政部 LiDAR 測製數值高程模型及數值地表模型標準作業程序(草 案)」中,所要檢查之偏態重點為測量誤差是否導致在直方圖上出現嚴重的 雙峰圖形。本測區偏態檢驗各由高海拔與低海拔之不同土地覆蓋區域組成, 其高程較差的數值之偏態如表 4.17,由結果顯示研究區內皆未出現較大偏 態現象,且經由了解各種土地覆蓋類型的誤差直方圖(圖 4.55 及圖 4.56)中 並未發現有雙峰圖形出現,可知此部分結果亦符合內政部草案所要求合理 檢驗範圍內。

工作總報告

	低海拔		中高海拔					
上山贾芝粨刑	檢核	偏態	上山西芝松川	檢核	偏態			
工地復益规卫	點數	(skewness)	工地復益效空	點數	(skewness)			
裸露地	32	-0.199	裸露地	33	-0.148			
矮植被	32	-0.071	矮植被	31	0.693			
植生地	30	-0.095	植生地	33	-0.710			
林地	31	-0.006	林地	30	1.215			
都會區	32	-0.855	密林	30	1.043			
濕地	31	0.075	橫斷面	40	-0.074			
橫斷面	65	0.135						















73





(g)橫斷面 圖 4.55 低海拔測區之各土地覆蓋類型之直方圖(單位:公尺)



d舌

Chung Hsing Surveying Co.,Ltd.





## 4. 檢驗值與被檢驗值假設檢定

除了敘述性統計的呈現,類別變項的資料可進一步使用卡方檢驗 (chi-square test)來進行推論統計檢定,其檢驗原理在於檢驗樣本觀察次數與 理論母群體的次數(或百分比)之間是否有顯著的差異。而卡方檢驗可針對不 同群體或不同變項其分配、兩變項關聯性、同質性等關係,進行不同方法 之檢驗。本研究在此使用規範內之卡方分配進行假設檢定,以了解檢驗值 與被檢驗值之間的關係。

本測試區 DEM 精度評估,對其測區內每種土地覆蓋施測內容之檢核高 程和成果高程進行卡方分布的檢定,以了解其成果的數值是否可視為擬真 值。以內政部空載測製數值地形模型標準作業規範(101 年)之檢定方式進 行。

計算由檢定值與被檢定值的差值計算差值變方的估值(式 4.3)

$$S_D^2 = \frac{\sum (D_i - \overline{D})^2}{n-1}$$
 (£ 4.3)

由檢定值中誤差 σ_c (若無理論值,則只得用估值)及被檢定值規範的中 誤差 σ,依誤差傳播計算差值標準偏差的理論值 σ_D (式 4.4)

$$\sigma_D^2 = \sigma_C^2 + \sigma^2 \quad (\ddagger 4.4)$$

其中因檢核點係由 VBS-RTK 測設,因此設定檢定值中誤差 σ。為高程 精度 20 公分,其中 σ 為內政部規範容許精度值。則可對下列運算式(式 4.5) 進行檢定, α 為檢定的顯著水準(內政部規範中之 95% 信賴水準區間)。

$$\frac{(n-1)S_D^2}{\sigma_D^2} < \chi^2_{n-1,\alpha}$$
 (式 4.5)

基於上述數學運算式,目的是為了對差值的標準偏差進行檢定,對於 檢定值(檢定值與被檢定值的差值計算之差值變方的估值)與被檢定值(差值 標準偏差理論值)之研究假設如下:

H0: 
$$S_{D}^{2} \le \sigma_{D}^{2}$$
  
H1:  $S_{D}^{2} > \sigma_{D}^{2}$  (式 4.6)

經由(式 4.5)進行最後檢驗,其結果如上式表示 $\frac{(n-1)S_D^2}{\sigma_D^2} \le \chi^2_{n-1,\alpha}$ ,則代表接受 H0,也就是檢定值與被檢定值的差值計算之差值變方的估值( $S_D^2$ )與其理論值( $\sigma_D^2$ )沒有太大顯著性差異。

根據卡方檢定結果(表 4.18),可發現各種土地覆蓋類型之檢核高程本身的誤差以及檢定值中的誤差相較,皆為接受 H₀,代表本測區之高海拔與低海拔之不同土地覆蓋類型之 DEM 具有良好的精度。

工作總報告

土地覆蓋類型	$S_D^2$	$\frac{(n-1)S_D^2}{\sigma_D^2}$	$\chi^2_{n-1,lpha}$	檢驗
裸露地	0.004	3.591	21.664	接受 H ₀
矮植被	0.006	4.414	17.708	接受 H ₀
植生地	0.006	2.440	18.493	接受 H ₀
林地	0.011	0.052	20.867	接受 H ₀
都會區	0.001	1.029	20.072	接受 H ₀
濕地	0.002	2.084	19.281	接受 H ₀
橫斷面	0.005	7.601	43.188	接受 H ₀

## 表 4.18 低海拔 DEM 數值適合度檢驗

表 4.19 中高海拔 DEM 數值適合度檢驗

土地覆蓋類型	$S_D^2$	$\frac{(n-1)S_D^2}{\sigma_D^2}$	$\chi^2_{n-1,lpha}$	檢驗
裸露地	0.004	0.890	20.072	接受 H ₀
矮植被	0.011	1.057	18.493	接受 H ₀
植生地	0.011	0.966	17.708	接受 H ₀
林地	0.013	0.049	18.493	接受 H ₀
密林	0.020	0.030	20.072	接受 H ₀
橫斷面	0.005	5.589	27.326	接受 H ₀

# 第五章 正射影像製作

本計畫採用空載光達掃瞄作業搭配數位相機同時拍攝,達成高效率拍 攝進度,產製地形資料以協助後續運用與製作,針對本次攝影之作業規範 需求及前述針對各作業區域特性所規劃之飛航航線,進行航空攝影工作, 正射影像製作流程如下。



圖 5.1 正射影像製作流程圖

## §5-1 作業區航拍工作

按航線規劃於光達掃瞄同時進行作業區域航拍工作,本計畫採用 Phase One iXU-RS-1000 數位相機,規格符合規範要求(如表 2.1 及表 5.1)。校正飛 航已於 112 年 3 月 29 日執行,並於同年 4 月 20 日通過中像幅像機校正(報 告編號 F202302140201),校正報告書如附件三所示。飛航規劃即考量航拍 攝影參數,使航攝像片時航向重疊大於 85%,側向重疊大於 50%,影像地 面解析度優於 25 公分,皆符合契約規範。攝影設備藉由 GNSS/IMU 的輔

助,機上操控人員可隨時掌握飛航情形,評估蒐集之資料品質及影像重疊 率等資訊,面對任何突發狀況,都能立即應變。為獲得最大的掃瞄面積和 最多有效之航拍影像,航線規劃時掃瞄時間參考中央氣象局天後預報資料。 飛航待命期間,監看測區即時影像和搭配天氣雲圖把握天氣晴朗能見度佳 之天氣進行掃瞄。

項目	說明
數位式攝影機類型	採用精密測圖用之數位式攝影機
攝影機感應器尺寸	應大於 24 mm × 36 mm
影像成果位元深度	24 位元自然彩色影像(紅、綠、藍各波段均為8 位元)
校正報告品保參據	具有最近2年內 TAF 認證

表 5.1 相機相關規範

本計畫累積航拍 35 架次,合計使用影像為 23,115 張進行後續處理,以 航空攝影涵蓋圖展示各單張像片於測區位置如圖 5.2。



## §5-2 航拍影像處理

原始影像為壓縮影像檔,透過 PHASE ONE 公司發展之 CaptureOne 軟

體進行影像處理,可執行影像轉檔、影像增揚與色調調整等功能,繼而轉 出成可見光影像,使正射影像顯示之地物與原本天然色彩一致,並減少不 同拍攝時間影像色調不一致的現象。後續以 CaptureOne 軟體及 Photoshop 軟體進行色調處理,供正射影像製作使用,操作示意圖如圖 5.3。同時於此 步驟時依監審方提供之樣張調整色調,降低不同測區間色調差異。

單一架次影像調整時,由於陽光照射方向或航線等因素影響,無法以 相同參數一次調整所有影像,須以分區方式進行以下調整,追求色調調整 最佳結果,同理亦運用於不同架次間。

- (1) 白平衡處理—選取影像中灰色像元,利用 CaptureOne 軟體平衡 RGB
   強度功能,重新轉出影像。
- (2) 亮度與對比度設定-針對同區域不同航帶之影像進行參數調整,使 各影像間亮度與對比接近一致。
- (3) 飽和度與色彩調和-以影像色調將影像分區,批次以適用之參數調整飽和度與色度。
- (4) 色調參數—若色調經以上步驟調整後仍與理想有偏差,再針對其特 性利用其他色調參數修正之。



圖 5.3 影像色調調整情形

## §5-3 空中三角测量

以 GNSS 與 IMU,搭配數位量測相機,利用記錄啟動快門時所送出的 脈衝信號事件(Event mark)之瞬間,並分別利用 GNSS 求得拍攝瞬間的飛機 位置坐標及 IMU 資料求得拍攝瞬間的姿態參數,此可作為數位影像投影中

心點外方位參數資料來源,配合裝機後之安置角率定以去除攝影中心與 IMU 之系統性角度偏差,如此利用 GNSS/IMU 資料可直接求得影像外方位 元素。此精確之影像外方位為初始值進行空中三角測量作業,可加速及應 用航標為檢核點進行成果精度評估,並據以獲得良好及可靠之空三成果以 進行後續作業。

#### 5-3-1 空三分區

因測區面積廣闊飛航架次涵蓋約6個月之久,為能階段性進行影像內 業,故採分區方式配合飛航進度進行空三作業,共分為11個空三分區,各 測區四角均有漆標全控點,且分區重疊至少二組像對或一條航線,以確保 各分區空三計算成果一致性。於各分區內均勻布設檢核點共15點,不加入 空三平差計算僅用於檢核空三成果符合契約規範。本計畫空三分區與控制 點分布如圖 5.4 所示。



圖 5.4 空三分區與航空標控制點分布圖

## 5-3-2 空中三角平差作業

空中三角测量採用 Intergraph ISAT (ImageStation Automatic Triangulation)軟體執行光束法平差,採自動化匹配影像特徵點,特徵點均 匀分布於各影像,剔除匹配不佳之特徵點後,萃取出每張影像之連結點(Tie Point 與 Pass Point)。若有連結點分布不均形成網形不足區(Weak Area),再以人工匹配特徵點的方式補足。

以網形均勻之連結點進行空三平差計算,過程中可根據統計報表中, 連結點向量殘差值判斷其是否為正確匹配特徵點,新增或刪除連結點。反 覆進行上述偵錯程序,直至所有點的殘差值都在要求精度範圍內,完成自 由網平差。接著加入航測標地面控制點約制網形進行強制附合平差,完成 空三,輸出所有影像之外方位參數,空三成果與觀測量統計表如表 5.2 所 示,其中因各分區航帶有重疊,相片數加總會略大於空三成果總張數。全 數檢核點計算得到之平面及高程坐標均方根誤差值並依像片比例尺換算至 像片坐標上,小於連結點中誤差的 3 倍。並於外方位成果解算後實際上機 檢查立體像對模型正確,如圖 5.8 所示。



圖 5.5 測區連結點匹配示意圖

Chur

工作總報告





Image         Notifie         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V       V        V         V<	hotos (2	(528 Total)																				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ship Id	Photo Id	×	Y	2	Omega	Phi	Карра	Status	Given X	Given Y	Given 2	Given Om	Given Phi	Given Kap	VX	WY	VZ	VOmega	VPhi	Wiappa X-S	RdD Y-StdD
District	501	230528-177525 cd	255337.088387	2510604 059670	2253.120741	-1.551311	3,418791	-101 352549	Used	255937 079000	2516603 994000	2253 157000	4.562110	-3416050	-101.354360	0.009997	0.095620	0.036259	0.010799	0.002741	0.001911	
Bit         Statis         Statis <td>1501</td> <td>230529-177527 cal</td> <td>255946.097220</td> <td>2518907.813234</td> <td>2254.315672</td> <td>-4.380,294</td> <td>0.716495</td> <td>-100.663899</td> <td>Uped</td> <td>255946.079000</td> <td>2518907 719000</td> <td>2254.250000</td> <td>-6.202370</td> <td>0.718850</td> <td>-100 661050</td> <td>0.012280</td> <td>0.094234</td> <td>0.059062</td> <td>0.000913</td> <td>-0.002355</td> <td>-0.002849</td> <td></td>	1501	230529-177527 cal	255946.097220	2518907.813234	2254.315672	-4.380,294	0.716495	-100.663899	Uped	255946.079000	2518907 719000	2254.250000	-6.202370	0.718850	-100 661050	0.012280	0.094234	0.059062	0.000913	-0.002355	-0.002849	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0501	230529-177528_cal	255951.365749	2519065.246009	2228.767563	-3.063668	0.458208	-182.249180	Used	255951.366000	2519065.162000	2228.652000	-3.071120	0.461820	-102 246500	0.000251	0.084009	0.115563	0.007452	0.003612	0.002680	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9501	230529-177529_cal	255958.666325	2519225.002188	2218.196692	-2.556800	0.094217	-103.203706	Used	255958.629000	2519224,884000	2218.092000	-2.574610	-0.091320	-103.203520	0.038925	0.118188	0.104632	0.007810	-0.002897	-0.000186	
m         bit	3501	230529-177530_cal	255964 849506	2519392.157997	2209.084359	-4.034301	4.790408	-100.438824	Used	255964 836000	2519392.059000	2209.071000	-4.0411E0	4.787480	-100.43E210	0.012506	0.098997	0.013359	0.006859	-0.002928	0.000614	
$\mathbf{x}  \mathbf{y}  $	1501	2305/9177531_CB 2305/9177532_cal	255365.712203	2513005.001317	2195 661406	-2.237015	2 336342	-33.360367	lined	255365.652600	2513555.673000	2195 595000	-2.304610	2 333040	-98.496300	0.0002432	0.122317	0.066486	0.007535	0.007000	0.001503	
ms       ms <th< td=""><td>2501</td><td>230529-177533_cal</td><td>255960.543434</td><td>2519887.319152</td><td>2194.350710</td><td>-1.212951</td><td>-0.166868</td><td>-87.673452</td><td>Used</td><td>255960 533000</td><td>2519887.189000</td><td>2194.293000</td><td>-1.219880</td><td>-0.160840</td><td>-97.674170</td><td>0.010434</td><td>0.130152</td><td>0.057710</td><td>0.006919</td><td>-0.006028</td><td>0.000718</td><td></td></th<>	2501	230529-177533_cal	255960.543434	2519887.319152	2194.350710	-1.212951	-0.166868	-87.673452	Used	255960 533000	2519887.189000	2194.293000	-1.219880	-0.160840	-97.674170	0.010434	0.130152	0.057710	0.006919	-0.006028	0.000718	
$\mathbf{x}  \mathbf{y}  \mathbf{y}  \mathbf{y}  \mathbf{y} = \mathbf{y}  $	9501	230529-177534_cal	255957.489653	2520054.054346	2193.566265	0.609410	3.760294	-98.850470	Used	255957.473000	2520053.977000	2193,583000	0.604810	3.764470	-98.955230	0.016653	0.077346	-0.016734	0.004600	-0.004176	0.884760	
$ \frac{\mathbf{v}}{\mathbf{v}}  \frac{\mathbf{v}}{v$	2501	230529-177535_cal	255959.463213	2520211.717657	2195.761991	0.715811	0.221259	-100.045636	Used	255959.439000	2520211.645000	2195.772000	0.712110	0.227270	-100.052420	0.024213	0.072657	-0.010009	0.003701	-0.006011	0.006794	
ms         ms<	9501	230529177536_cal	255364,130676	2520571.561203	2133.664306	0.356503	4.462094	-100.710530	tired	255564 155000	2520371.456000	2205.080000	0.059600	4.490730	-100.722300	0.022995	0.050607	0.002963	0.003163	0.005154	0.0044222	
ms       ms <th< td=""><td>1501</td><td>230529-177538.cal</td><td>255961 976349</td><td>2520677 791820</td><td>2211 934539</td><td>0.255765</td><td>-3.251662</td><td>-98 152523</td><td>Used</td><td>255961 932000</td><td>2520677 759000</td><td>2211 932000</td><td>0.253900</td><td>3.245100</td><td>-98 159570</td><td>0.044349</td><td>0.032920</td><td>0.002539</td><td>0.001965</td><td>-0.005562</td><td>0.007047</td><td></td></th<>	1501	230529-177538.cal	255961 976349	2520677 791820	2211 934539	0.255765	-3.251662	-98 152523	Used	255961 932000	2520677 759000	2211 932000	0.253900	3.245100	-98 159570	0.044349	0.032920	0.002539	0.001965	-0.005562	0.007047	
ms         ms<	2501	230529-177539_cal	255056.432707	2520825.531363	2216.782662	-2.523604	2.175961	-97.662569	Used	255956.340000	2520825.491000	2216.730000	-2.526110	2.183970	-97.669310	0.092707	0.040363	0.052662	0.002506	-0.008009	0.006741	
ms         ms<	3501	230529-177540_cal	255954.098474	2520979.586333	2214.069345	-3.266995	-3.565319	-100.978055	Used	255954.061000	2520979.511000	2214.086000	-3.269890	-3.562150	-100.987520	0.037474	0.075333	-0.016655	0.002895	-0.003169	0.009465	
$ \mathbf{v} = \frac{\mathbf{v}}{\mathbf{v}} + \mathbf{$	1001	230529-17/541_6al	200903 19984/	2521130.609169	2208.162651	-3.8355568	0.838105	-99.610451	Used	200953 160000	2521130.550000	2208.158000	-3.842140	0.336640	-99.617770	0.056279	0.053163	0.004651	0.002152	-0.004/85	0.007319	
ms       for       mat       mat       for       mat       ma	2501	230529-177543 cal	255957.362921	2521444.617322	2195.083238	2.080335	-0.132504	-98.834192	Used	255957.341000	2521444 581000	2195.053000	-2.081560	0.125240	-98.842440	0.021921	0.036322	0.030238	0.001225	0.006264	0.006248	
ms       Lyb       State       Lyb       State       Lyb       State       State <td>1501</td> <td>230529-177544_cal</td> <td>255961.440756</td> <td>2521605.403055</td> <td>2192.727302</td> <td>0.498264</td> <td>0.675720</td> <td>-99.959650</td> <td>Used</td> <td>255361.399000</td> <td>2521605.374000</td> <td>2192.671000</td> <td>0.497150</td> <td>0.681240</td> <td>-99.968520</td> <td>0.041756</td> <td>0.029055</td> <td>0.056302</td> <td>0.001114</td> <td>-0.005520</td> <td>0.006870</td> <td></td>	1501	230529-177544_cal	255961.440756	2521605.403055	2192.727302	0.498264	0.675720	-99.959650	Used	255361.399000	2521605.374000	2192.671000	0.497150	0.681240	-99.968520	0.041756	0.029055	0.056302	0.001114	-0.005520	0.006870	
m       for	7501	230529-177545_cal	255966.064032	2521758.481829	2195 696150	-1.443123	4.365621	-99.584005	Used	255966.055000	2521758.439000	2195.629000	-1.443960	4.359660	-99.589930	0.009032	0.043829	0.067150	0.000837	0.005961	0.005925	
ms         for         mar         for	1501	230529177546_cal 220529177547_cal	255966.902600	2521910.763675	2198.168644	-0.722736	4.867828	-97.482249 -96.621245	Used	255366.839000	2521910 721000	2198.082000	0.725550	-4.083870	-97.488100	0.004600	0.042675	0.006644	0.002854	0.003958	0.005851	
Bit       Distribution       Distribu	1501	230529-177548 ~	255956 369517	2522218 009605	2205 239640	-2.120640	-5 964910	-95 381977	Used	295956 342000	2522217 956000	2205 163000	-2.120850	5.957110	-95 384090	0.026537	0.052605	0.075640	0.000210	-0.007800	0.002113	
ms       for       for<       for       for<	3501	230529-177549_cal	255942.750200	2522374.587893	2205.907476	-1.995170	3.116947	-93.043380	Used	255942.702000	2522374.560000	2205.891000	1.995310	3.123090	-93.047720	0.048200	0.027993	0.016476	0.000140	0.006143	0.004340	
ms       by       by<	1501	230529-177550_cal	255932.811678	2522525.858054	2205 112501	-0.085302	2.836170	-97.894286	Used	255932,767000	2522525.009000	2205.117000	-0.091040	2.841030	-97.900700	0.044678	0.049054	-0.004499	0.001738	-0.004860	0.006414	
ms       thy       them       them <t< td=""><td>0501</td><td>230529-177551_cal</td><td>255323.926577</td><td>2522681.557493</td><td>2205.900075</td><td>-0.952847</td><td>2.170549</td><td>-99.664602</td><td>Used</td><td>255329.857000</td><td>2522691.533000</td><td>2205.908000</td><td>-0.954130</td><td>2.178890</td><td>-99.667910</td><td>0.069577</td><td>0.024493</td><td>-0.007925</td><td>0.001283</td><td>-0.008341</td><td>0.003308</td><td></td></t<>	0501	230529-177551_cal	255323.926577	2522681.557493	2205.900075	-0.952847	2.170549	-99.664602	Used	255329.857000	2522691.533000	2205.908000	-0.954130	2.178890	-99.667910	0.069577	0.024493	-0.007925	0.001283	-0.008341	0.003308	
m       fw	1501	2305/29177552_08 220529177552_cal	255332.368475	2522830.947300	2206.350063	-0.814047	2.480085	-100.253/8/	Uped	2553322,303000	2522830.531000	2206.335000	-0.814870	2,48/100	-100.254980	0.059475	0.016300	0.015063	0.000823	-0.007015	0.001133	
B       272271700000000000000000000000000000000	1501	230529-177554 cal	255953 398035	2523132.007752	2206 623270	1.424682	-2.454517	-105.014885	Uned	255953 393000	2523131 975000	2206 597000	1.424470	2.451510	-105 015830	0.005035	0.032752	0.026270	0.000212	-0.003007	0.000945	
mail          mail<	0501	230529-177555_cal	255967 543308	2523284.764956	2205 860025	-2.633417	-4.476444	-103.216985	Used	255967.481000	2523284.726000	2206.766000	-2.630890	-4.465670	-103 216240	0.062308	0.038955	0.094025	-0.002527	-0.010774	-0.000745	
mol       by       by <t< td=""><td>9501</td><td>230529-177556_cal</td><td>255976.093949</td><td>2523433.350919</td><td>2206 303230</td><td>-2.121327</td><td>-6.464817</td><td>-100.638302</td><td>Used</td><td>255976.095000</td><td>2523433.288000</td><td>2206.251000</td><td>-2.120060</td><td>-6.456900</td><td>-100.638710</td><td>-0.001051</td><td>0.062919</td><td>0.052230</td><td>-0.001267</td><td>-0.007917</td><td>0.000408</td><td></td></t<>	9501	230529-177556_cal	255976.093949	2523433.350919	2206 303230	-2.121327	-6.464817	-100.638302	Used	255976.095000	2523433.288000	2206.251000	-2.120060	-6.456900	-100.638710	-0.001051	0.062919	0.052230	-0.001267	-0.007917	0.000408	
Bit 1000000000000000000000000000000000000	201	230529-177557_CB 230529-177558_cal	2003/7.731606	2523598.189089	2206.074588	-1.807639	4.7.360,23	-99.076053	Used	255377.732000	2523588.102000	2206.013000	1 691480	4.728500	-99.076930	0.000344	0.08/083	0.000088	0.000321	0.008025	0.000327	
Bit 1       Strate 1       St	2501	230529-177559 cal	255964 515657	2523894.759147	2207.190354	-0.853368	4.677205	-94,994812	Used	255964.457000	2523894,731000	2207.215000	-0.852890	4.668550	-94,994310	0.058657	0.028147	-0.024646	-0.000478	-0.008655	-0.000502	
Bit 252:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.2.       2021:172.1.	2501	230529-177560_cal	255349.488997	2524044.757063	2208 592749	-1.029584	-2.585119	-95 375854	Uned	255949.434000	2524044.747000	2209.563000	-1.029510	-2.580810	-95.372200	0.054997	0.010063	0.029749	0.000925	-0.004309	-0.003654	
m       200011701_0       200011701_0       200011701_0       200011701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001701_0       200001700000000000000000000000000000000	9501	230529-177561_cal	255932.162775	2524199.460294	2212.775470	-0.196907	1.571089	94.130180	Uped	255932.113000	2524199.445000	2212.731000	-0.198770	1.576900	-94.127250	0.049775	0.015294	0.044470	0.001963	0.005811	0.002930	
m       cycle       cy	2501	230529177562_cal	255313 192171	2524347.443372	2216.728742	-0.486553	1.494108	95,479134	Used	255919.166000	2524347.433000	2216.681000	-0.487740	2,991,000	95,477460	0.026171	0.010372	0.047742	0.000187	0.003712	-0.001674	
000000000000000000000000000000000000	9501	230529177564 nal	255910.039556	2524643.629681	2223 393160	0.206118	4.901455	100.463743	Used	255908 981000	2524643.620000	2223 308000	0.205130	4,809600	100 463750	0.068964	0.009681	0.085160	0.000382	0.000004	0.000007	
0       20021 77162       20021 800.00       20010 800.00       20000 0       20140 0       0.04400       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       00000 0       000000 0       00000 0       00	0501	230529-177565_cal	255915.013477	2524786.295107	2227.880665	-0.796682	1.298985	-101.557146	Used	255915.793000	2524786.251000	2227.803000	-0.798360	1.303280	-101.556790	0.020477	0.044107	0.077665	0.001678	-0.004295	0.000356	
000000000000000000000000000000000000	9501	230529-177566_cal	255827.277732	2524933.699249	2231.917845	-2.849039	2.926968	-101.265275	Used	255927.255000	2524933.636000	2231.840000	-2.850680	2.921940	-101.264470	0.022732	0.063249	0.077846	0.001641	0.004928	-0.000805	
000000000000000000000000000000000000	3501	230529-177567_cal	255835.521748	2525077.652199	2232.478497	-3.266983	-4.089417	-101.189226	Used	255935.469000	2525077.601000	2232.401000	-3.267590	-4.081350	-101.192910	0.052748	0.051199	0.077497	0.000607	-0.008067	0.003584	
Display         Display <t< td=""><td>1501</td><td>230529177568_cal</td><td>255932.634262</td><td>2525223.485364</td><td>2230 827951</td><td>3529148</td><td>-5.345053</td><td>-101.105299</td><td>Used</td><td>255937.612000</td><td>2525223.431000</td><td>2231.636000</td><td>-1530030</td><td>2 996930</td><td>-101.161630</td><td>0.051315</td><td>0.054364</td><td>0.002222</td><td>0.002042</td><td>0.005003</td><td>0.006331</td><td></td></t<>	1501	230529177568_cal	255932.634262	2525223.485364	2230 827951	3529148	-5.345053	-101.105299	Used	255937.612000	2525223.431000	2231.636000	-1530030	2 996930	-101.161630	0.051315	0.054364	0.002222	0.002042	0.005003	0.006331	
1000000000000000000000000000000000000	1501	230529-177570 cal	255933.425622	2525535 659256	2226 371017	-1.881401	0.817080	-101.277851	Used	255933 325000	2525535.611000	2226.327000	-1.883730	0.822360	-101.282010	0.100622	0.048256	0.044017	0.002329	-0.005280	0.004159	
000000000000000000000000000000000000	0501	230529-177571_cal	255831.054475	2525687.851802	2224.238035	-1.686674	2.437185	-100.099077	Used	255930 958000	2525687.797000	2224,184000	-1.687410	2,445190	-100 105110	0.096475	0.054902	0.054036	0.000736	-0.008005	0.007033	
0         0.0001 / 0001 / 0000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 00000 / 000000	9501	230529177572_cal	255834.294758	2525845.978737	2222.790281	-0.485321	6.440759	-102.218981	Used	255934.209000	2625845.953000	2222.729000	-0.485000	6.447360	102 223440	0.065758	0.025737	0.061281	-0.000321	-0.006601	0.004459	
Display         <	2501	23052917/573_c8	255347.215651	2525396.584832	2223.772105	-0.353503	3.966640	-104.617192	Used	255947.125000	2525356.542000	2223.714000	-0.3555/U	3.3/3880	-104.619860	0.090651	0.042852	0.056109	0.002467	-0.007248	0.002568	
000000000000000000000000000000000000	2501	230529-177575 cal	255391 551057	2526299 970059	2227 877549	-1.847935	1.753986	-107 054654	Uped	255991 495000	2526298 902000	2227.803000	-1.846840	1.761330	-107.054360	0.056057	0.068059	0.074549	-0.001095	-0.007344	0.000294	
01 2025/177/2 4 2023 2772 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2023 2727 4 2	9501	230529-177576_cal	256019.680276	2526454.141195	2227 258381	-5.433515	8.113024	108 509831	Used	256019.670000	2526454.055000	2227.236000	-5.492760	8.106200	-108.509110	0.010276	0.086195	0.022381	-0.000755	0.006824	-0.000721	
2012/17/21_1_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_4         2011/17/21_	1501	230529-177577_cal	256038.275828	2526608.072745	2223.021267	-6.410550	-11.082445	-104.099785	Used	256038.306000	2526607.999000	2223.011000	6.411930	11.076480	104.095980	-0.030172	0.073745	0.010257	0.001380	-0.005965	0.002905	
00 0005717962_0 00001102 007160000 00000 00000 00000 00000 00000 00000	2501	230529-177578_cal	256041.794785	2526774.074570	2216.555422	-4.053999	-5.985106	-99.241950	Used	256041.734000	2526774.053000	2216.491000	-4.056550	-5.877490	-99.242730	0.060795	0.021570	0.064422	0.002551	-0.007616	0.000780	
D205117961_G         B0042293         B2744 40064         0.19910         0.02917         B004293         B2744 19900         0.19910         0.02917         B004293         B000493         B004293         B004293 </td <td>1501</td> <td>230529-177575_CB 230529-177580_cal</td> <td>256036.000033</td> <td>2520337 244639</td> <td>2211.674436</td> <td>0.269697</td> <td>0.206221</td> <td>-96 506296</td> <td>Used</td> <td>256036.819000</td> <td>2520337 210000</td> <td>2211.567000</td> <td>0.266160</td> <td>-1.333630</td> <td>-36.555650</td> <td>0.060229</td> <td>0.073998</td> <td>0.167689</td> <td>0.002535</td> <td>0.004010</td> <td>0.000257</td> <td></td>	1501	230529-177575_CB 230529-177580_cal	256036.000033	2520337 244639	2211.674436	0.269697	0.206221	-96 506296	Used	256036.819000	2520337 210000	2211.567000	0.266160	-1.333630	-36.555650	0.060229	0.073998	0.167689	0.002535	0.004010	0.000257	
01         205517782_circle         200101 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 2002         20110 20	2501	230529-177581_cal	256024 223975	2527264 140694	2214.583428	0.758983	0.543477	-96.935433	Used	256024 153000	2527264 105000	2214,497000	0.756100	0.552470	-96.936510	0.070975	0.043694	0.086428	0.002883	-0.008993	0.001077	
mini         2021/1784_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4         2021/184_1/4	0501	230529-177582_cal	256019.754152	2527420.300511	2218.863560	0.091234	-2.010142	-97.508923	Uped	256019702000	2627420.273000	2218.761000	0.089640	-2.002840	-97.509510	0.052152	0.027511	0.102560	0.002594	-0.007302	0.000587	
n 2000/1001 00 2000/0002 2017/2010 00 2000 00/002 90/1020 00/002 90/1020 00/002 90/1020 00/002 90/1020 00/002 00/002 00/0020 00/0020 90/1020 00/0020 90/1020 00/0020 00/0020 90/1020 00/0020 00/0020 90/1020 00/0020 00/0020 90/1020 00/0020 00/0020 90/1020 00/0020 00/0020 90/1020 00/0020 00/0020 90/1020 00/0020 00/0020 00/0020 00/0020 90/1020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/000 00/0020 00/0020 00/0020 00/0020 00/0020 00/0020 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00/0000 00000 00/0000 00/0000 00/000000	2501	230529-177583_cal	256013.836000	2527579.575267	2223.666412	-1.044937	4.461121	-37.572710	Used	256013742000	2527579.537000	2223.560000	-1.047400	-4.451780	-97.575560	0.094000	0.038267	0.106412	0.002463	-0.009341	0.002950	
Without         Beinname         Desken         Biolection	2001 C	230529-17/584 cal	200003-040622	eser/ 32 03//16	eccr 3418/1	0.251906	0.229537	34.013666	Cloed	200004 361000	2021122/018000	2221 246000	0.2004.00	0.240320	-34 01 3420	0.0/9622	0.013/16	0.0056/1	0.001536	-0.010083	0.000246	>
International         Description         Description <thdescription< th=""></thdescription<>					a E																	
pione. Cognd. Graphe. Feator Distribution. Impose graph Repet Graphe. OK Cancel B		<u></u> 6	Moes He	nstate Dei	619																	Headings
Booth Booth Period Carlos Carlos B	Options	Cogtrol.	Groups. F	Reports. Exterio	v Orientation																	
jongula gaphy Repet Graphics. DK Carcel 19						11																
	Comput	e Apply	Reset G	rephice Of	Cancel																	t

#### 圖 5.7 空三後外方位改正數示意圖



圖 5.8 空中三角測量成果上模自我檢核

工作總報告

	分區		AT01	AT02	AT03	AT04	AT05	AT06	AT07	AT08	AT09	AT10	AT11
	2 重點		113	33	325	3	6	4	8	0	236	2	14
	3 重點		217	574	612	42	66	304	442	45	485	62	54
航	4 重點		236	661	632	20	63	273	378	46	595	49	73
测	5 重點		259	587	519	18	106	254	381	35	536	93	60
觀	6重點		320	627	604	24	95	226	279	46	521	308	71
測	7 重點		369	591	627	31	84	151	239	66	555	142	72
值	8重點以	上	7629	6557	6142	2637	4621	2125	4540	3442	7091	4265	5309
統	總觀測數		330162	284486	228970	198892	278320	114823	220510	191295	279364	190568	316433
計	總未知數		27384	29148	28992	8280	15090	9993	18414	11019	30030	14118	16917
	多餘觀測	量	357546	313634	257962	207172	293410	124816	238924	202314	309394	204686	333350
	影像張數		2898	2834	2992	1714	2527	1614	2272	1699	2102	1920	2848
控		點數	15	14	18	15	11	6	10	7	9	9	10
制	全控點	RMS X	0.293	0.161	0.171	0.139	0.128	0.153	0.143	0.127	0.215	0.170	0.118
點		RMS Y	0.172	0.122	0.238	0.189	0.145	0.187	0.190	0.185	0.155	0.083	0.187
中		點數	1	1	2	2	2	1	1	1	1	1	2
誤	檢核點	RMS X	0.471	0.045	0.307	0.101	0.164	0.278	0.330	0.048	0.030	0.106	0.069
差		RMS Y	0.013	0.127	0.269	0.315	0.213	0.400	0.245	0.162	0.221	0.077	0.095
X	連結點量浿	小中誤差	0.247	0.026	0.185	0.052	0.115	0.110	0.109	0.152	0.185	0.165	0.154
Y	連結點量浿	小讲误差	0.111	0.107	0.187	0.066	0.088	0.078	0.064	0.231	0.155	0.137	0.087
自由	網中誤差		2.1	1.9	2.1	2.1	2.1	2.6	2.4	2.4	2.4	2.3	2.0
強制	網中誤差		2.5	2.4	2.3	2.6	2.7	2.9	3.0	2.7	2.7	2.7	2.6
平均	多餘觀測婁	≿(≧0.7)	0.923	0.907	0.920	0.960	0.949	0.920	0.922	0.946	0.903	0.931	0.949
連結	點平均光約	象數(≧7)	19.659	16.198	19.743	39.360	29.386	18.936	19.103	27.797	15.454	21.707	29.983
連結	點強度指標	₹(≧0.3)	0.834	0.674	0.780	0.950	0.917	0.637	0.724	0.935	0.708	0.905	0.939

表 5.2 空三平差成果統計表

## §5-4 彩色無縫鑲嵌正射影像製作

1. 正射影像產製

(1) 單張影像正射糾正

影像經過色調調整後,搭配空三解算之影像外方位參數,以及光達資料產製之數值高程模型(DEM),便可針對所拍攝的影像作進行單張影像正射糾正,使影像具有絕對坐標資訊。

(2)正射影像鑲嵌

再以全區方式進行鑲嵌作業,維持每個正射影像像元位置精確。確實 的色調調整,可避免鑲嵌作業時圖幅間產生明顯之接痕如圖 5.9。





(a)色差調整前鑲嵌處色差大 (b)色差調整後鑲嵌處色調一致 圖 5.9 色差調整前後示意圖

(3) 圖幅分割

於單幅正射影像圖適當邊界進行裁切,此步驟需保持單張圖幅邊緣像 元之完整性,達到無縫鑲嵌正射影像圖之目標。

2. 重要意義的基礎建設高差位移糾正

正射影像連續地物合理性要求,除以往地貌地物完整性且無扭曲變形 外,對地圖判讀有重要意義的基礎建設必須糾正高差位移,如鐵、公路和 橋梁。於高差位移區域需使用光達資料產製之數值地表模型(DSM),進行 影像正射糾正。於糾正後藉由點雲強度圖確認正射糾正成果符合實際位置, 包含邊緣線與標線位置都需正確。





(a) 橋樑高差位移比對(強度圖)
 (b) 橋樑高差位移比對(正射)
 圖 5.10 橋樑高差位移糾正示意圖

3. 正射影像编修

利用上述之作業方法產出正射影像後,逐圖幅方式進行正射影像編修, 排除鑲嵌線設計不佳、局部色調偏差、陰影區過大以及正射糾正後地物扭 曲或錯移之情形圖 5.11。由作業人員填寫自主檢查表方式進行品管,經過 修正後再由專案負責人複驗,確保正射影像品質。完成之正射影像如圖 5.12 和圖 5.13 所示,第2作業區共 287 幅 1/5000 正射影像如圖 5.14。



(a)房屋扭曲修正前



(a)道路錯移修正前



(b)房屋扭曲修正後



(b)道路錯移修正後

圖 5.11 正射影像編修示意圖

工作網





正射影像精度檢核 4.

糾正成果再利用點雲強度值影像,對於明顯之標線進行平面位置比對,

確保影像平面坐標無明顯系統偏差,檢核示意圖如圖 5.15。並可再次藉影 像檢核點(靜態 GNSS 控制點)進行精度檢核,經量測後偏差量皆小於 0.5 公 尺,檢核示意圖與控制點差值如圖 5.16 與表 5.3。



(a)正射影像標線數化(紅線)



數化(紅線) (b)點雲強度影像標線數化(黃線) 圖 5.15 正射影像點雲強度檢核示意圖



圖 5.16 影像檢核點檢核示意圖 表 5.3 平面控制點檢核影像差值表(單位:公尺)

町上山市	空三	平面控制	刘點坐標	影像量测	屋角點坐標	E方向	N方向	平面
志山 幼心	分區	Е	Ν	Е	Ν	差量	差量	差量
22-0102C	AT03	216129.052	2499330.018	216128.658	2499329.921	0.394	0.097	0.405
22-0103C	AT04	257570.219	2512363.927	257570.225	2512363.886	-0.006	0.041	0.042
22-0104C	AT04	263818.566	2515002.388	263818.523	2515002.055	0.043	0.333	0.336
22-0105C	AT06	271599.069	2529359.185	271598.732	2529358.838	0.337	0.347	0.484
22-0106C	AT05	259078.923	2525446.822	259078.974	2525446.546	-0.051	0.276	0.281
22-0107C	AT11	286456.717	2558898.303	286456.823	2558898.310	-0.106	-0.007	0.107

-	- 11-	lute	-	14
	_1′F	郗	敦	Ē

明時	空三	平面控制	制點坐標 影像量測		]屋角點坐標	E方向	N方向	平面	
赤山 幼儿	分區	Е	Ν	Е	N	差量	差量	差量	
22-0108C	AT11	289793.219	2561675.785	289793.210	2561675.715	0.009	0.070	0.071	
22-0109C	AT09	268068.319	2554847.702	268068.323	2554847.515	-0.004	0.187	0.187	
22-0110C	AT10	267900.714	2543527.497	267900.367	2543527.353	0.347	0.144	0.376	
22-0111C	AT08	277178.891	2543055.416	277178.866	2543055.325	0.025	0.092	0.095	
22-0112C	AT10	274409.476	2560717.295	274409.445	2560717.236	0.031	0.059	0.067	
22-0113C	AT05	260066.762	2529865.732	260066.865	2529865.545	-0.103	0.187	0.213	
22-0114C	AT01	214963.443	2511983.396	214963.108	2511983.395	0.335	0.001	0.335	
22-0115C	AT03	244842.593	2499107.155	244842.560	2499106.832	0.033	0.323	0.325	
22-0116C	AT02	246046.740	2505461.070	246046.694	2505460.925	0.046	0.145	0.152	
22-0102C	AT03	216129.052	2499330.018	216128.658	2499329.921	0.394	0.097	0.405	
22-0103C	AT04	257570.219	2512363.927	257570.225	2512363.886	-0.006	0.041	0.042	
22-0104C	AT04	263818.566	2515002.388	263818.523	2515002.055	0.043	0.333	0.336	
22-0105C	AT06	271599.069	2529359.185	271598.732	2529358.838	0.337	0.347	0.484	
22-0106C	AT05	259078.923	2525446.822	259078.974	2525446.546	-0.051	0.276	0.281	
22-0107C	AT11	286456.717	2558898.303	286456.823	2558898.310	-0.106	-0.007	0.107	
22-0108C	AT11	289793.219	2561675.785	289793.210	2561675.715	0.009	0.070	0.071	
22-0109C	AT09	268068.319	2554847.702	268068.323	2554847.515	-0.004	0.187	0.187	
22-0110C	AT10	267900.714	2543527.497	267900.367	2543527.353	0.347	0.144	0.376	
22-0111C	AT08	277178.891	2543055.416	277178.866	2543055.325	0.025	0.092	0.095	
22-0112C	AT10	274409.476	2560717.295	274409.445	2560717.236	0.031	0.059	0.067	
22-0113C	AT05	260066.762	2529865.732	260066.865	2529865.545	-0.103	0.187	0.213	
22-0114C	AT01	214963.443	2511983.396	214963.108	2511983.395	0.335	0.001	0.335	
22-0115C	AT03	244842.593	2499107.155	244842.560	2499106.832	0.033	0.323	0.325	
22-0116C	AT02	246046.740	2505461.070	246046.694	2505460.925	0.046	0.145	0.152	
平i	面差量最	大值	0.4	184	平面差量標準	0.141			
平市	面差量最	小值	0.0	)42	平面差量均2	0.	269		
平面差量平均值			0.2	0.232					

## 5. 水線產製

空載光達點雲因雷射光被水體吸收之特性,於水體區域記錄非正確之 高程資訊,屬不合理之點雲,需加以排除不列入後續內插產製數值地形模 型所用。本計畫利用產製之25公分解析度正射影像成果,進行人工數化水 體邊緣線、沙洲線及海岸線,將水體區域內之地面點雲分類為水體類別, 水域線成果示意如圖 5.17 所示。

Chung Hsing Surveying Co.,Ltd.





6. 正射影像詮釋資料製作

正射影像產製完成後需依照詮釋資料標準(NGISTD-ANC-002-2011.12) 進行詮釋資料產製,紀錄案名、生產目的、坐標系統、影像格式、品質檢 查報告及相關權責機關和生產單位等相關資料,並分別詳述正射影像圖號、

圖名、涵蓋之縣市鄉鎮、範圍、影像獲取時間等圖幅基本資料。

査詢 ▼ 詮釋資料線	編輯 ▼ 様版編輯 ▼ 批	次匯入 👻	使用說明 👻					關閉單機系統
TG	。 S 詮釋資	料編輯	系統 2.0 - 單機版 (	v1.0.4)		載行	上一次查迦	Search
註釋資料編輯								
社委員會行編書 <b>注釋資料資訊</b> 空間展示資訊 空間展示資訊 資料品質 展示目錄資訊 <u>排</u> 売資訊 <u>XML</u>	上一分類     下一分 日注釋資料資訊 電家議別碼 註釋資料語言 字元集 父類別識別碼 描述層級え 描述層級え 描述例 電数名稱 日達釋資料聯絡資訊 角色 日注釋資料聯絡資訊 角色 日注釋資料聯絡資訊 御命載話 日注釋資料聯絡資訊 角色 日始編 御務資訊 四略給資訊	題 fe34 Crit Big Dat 内政部調 Custod	0201-4f2d-41ca-9ab3-40t nese(Other) 5(台湾、香港或其他地區 aset (資料集賀訊) 回士問緒中心地形及湾岸測 ian (檀婁単位) 同士問緒中心測練賀訊課	5687de72dc 「新使用2繁體中文字元集) 「 「 「 「 「 二 」 、 、 、 、 、 、 、 、 、 、 、 、 、	· 雪谷 · 甘	★皮 備交	<ul> <li>畫面顯示設定</li> <li>圖示屬性英之名稱</li> <li>顯示屬性文紀4稱</li> <li>國示應性XML名稱</li> <li>國示源性XML名稱</li> <li>國示第 TWSMP 20 之項目</li> <li>動點該約到集設約</li> <li>請先選擇欲查询之項目</li> </ul>	
	角色。	Distribu	itor (流通單位)	~				

圖 5.18 TGOS 詮釋資料編輯系統 2.0 操作畫面

## 7. 原始影像遮密

正射影像與原始影像成 果通過監審方審核繳交至貴 中心後,依據契約要求派員 攜帶相關設備至貴中心依提 供之密區向量檔進行原始影 像遮密,因原始影像不具地 理坐標,採用人工方式進行 密區模糊化作業。



圖 5.19 原始影像遮密作業

## §5-5 正射影像外部接邊

經工作會議討論責任接邊分配,本作業區主要負責 112 年度第2 作業 區與 105-109 年測區資料,共96 幅之責任接邊,範圍如圖 5.20,需接邊之 圖幅成果包含 DEM、DSM 和正射影像,數值地形網格成果接邊做法參考 章節 4-5-3。於各作業區正射影像產製完成,且經監審方判定合格後交換相 鄰圖幅予負責廠商。正射影像接邊以保持地形連續為原則調整接邊線,並 於色調調整後重新鑲嵌正射影像,接邊示意圖如圖 5.21。

工作總報告



(a)影像外部接邊前示意 (b)

(b)影像外部接邊後示意

圖 5.21 正射影像接邊成果示意圖

## §5-6 成果外業驗收

本案於第2及3階段完成成果繳交後,須會同中心及監審方至測區現 場進行外業作業的抽驗,目的為抽驗 DEM/DSM 成果精度及正射影像地物 平面精度,其抽驗數量為各階段抽查至少4個圖幅,挑選至少20個點進行 施測,本案於第2階段(第1子測區)及第3階段(第2子測區)之抽驗圖幅分 布及點位如圖 5.22 所示,現場作業狀況如圖 5.23 所示。



圖 5.22 112 年度驗收圖幅及點位分布



圖 5.23 112 年度驗收現場狀況(左:第2 階段、右:第3 階段)
# 第六章 成本分析

依計畫期程逐期完成之工作項目,包含空載光達掃瞄飛航規劃、控制 測量、空載光達掃瞄及航空攝影施測資料獲取、空載掃瞄點雲資料處理、 數值地表模型(DSM)與數值高程模型(DEM)製作、人工檢核與編修及圖幅鑲 嵌處理、正射影像製作等工作,成本分析如表 6.1,各項成本說明如下所述, 近年來基本工資逐年的調漲,以及油價的浮動,進而影響了各工作項目及 飛航的成本單價。

1. 空載光達掃瞄飛航規劃

為確保航線成果符合本計畫規範,本測區依地形高度變化規劃不同飛 航掃瞄參數設計進行作業,透過嚴密的航線規劃與整體完善作業計畫,方 可有效率完成飛航掃瞄。

2. 控制測量

本公司為符合解算高精度軌跡,執行案件前確保基站與航線在20公里 內,本測區採用既有連續站進行資料申購與整理。針對本案所需之航帶平 差控制點經過嚴謹計算後獲得平差控制點坐標。

3. 空載光達掃瞄及航空攝影施測資料獲取

本項目除了需要專人待命飛航執行費用外,涵蓋飛航載台租賃費、空 載雷射掃瞄儀及相機設備折舊費與資料獲取費,其中資料取得費用考量飛 航作業受到天氣與管制影響,且須滿足點密度與重疊率等規範需求,因近 年的基本工資調整及油價的浮動,對本工項之成本影響最為顯著。

4. 空載掃瞄點雲資料處理

資料處理包含各架次軌跡解算、點雲原始資料處理與航帶平差等工作, 此工作需要專業人力且富有地形編修經驗之能力。點雲編修則需具地形編 修經驗專業人力投入。

5. DEM、DSM 製作(含圖幅接邊)

產製 DEM 及 DSM 前須進行點雲品管,亦需具地形編修經驗專業人力

投入,透過檢核確認處理無誤方可進行圖幅接邊處理及成果產製。

6. 正射影像製作(含空中三角測量及水線繪製)

正射影像製作包含空中三角測量及水線繪製,皆需專業人力投入,並透過檢核確認處理無誤方可進行分幅產製成果。

7. 各項報告書

本公司為達成案件順利進行,投入具經驗與協調之專任工程師作為甲 丙方聯繫窗口,並配合參與不定期會議與文書撰寫與說明。

工作項目			單位	數量	單價
-	空載光達測製數值地形模型作業				
1	空載光達掃瞄飛航規劃	人月	0.5	\$72,000	\$36,000
2	控制測量				
2.1	地面 GPS 基地站勘選.維護.收集.處理	人月	0.5	\$72,000	\$36,000
2.2	平差控制點選點與測量	人月	12	\$72,000	\$864,000
3	空載光達掃瞄及航空攝影施測資料獲取	架次	35	\$425,000	\$14,875,000
4	空載掃瞄點雲資料處理				
4.1	點雲資料前處理.解算.平差	人月	12	\$72,000	\$864,000
4.2	點雲資料過濾分類	人月	94	\$72,000	\$6,768,000
5	DEM、DSM 製作(含圖幅接邊)				
5.1	點雲品管及整合 DEM、DSM 製作	人月	35	\$72,000	\$2,520,000
5.2	圖幅接邊處理	人月	10	\$72,000	\$720,000
6	正射影像製作(含空中三角測量及水線繪製)	人月	41	\$72,000	\$2,952,000
-	各項報告書、工作總報告等(含行政管理)	人月	18	\$120,000	\$2,160,000
		總金額(新台幣			\$31,795,000

表 6.1 各項作業成本統計分析表

另外本計畫作業過程中遵守性別工作平等法,執行期間作業投入人數 統計如下表,落實性別平等。

作業項目	計畫管理與 監督	資料收集	資料處理	品管檢核	報告撰寫與行 政
男女作業 人員統計	2:2	8:5	9:11	5:2	3:3

表 6.2 作業人員性平等資訊統計

# 第七章 機敏資料管制

本公司對於資料和作業人員皆備有保全管制設備,除一般公司保全系統外,入口設有人員管制。資料處理之辦公環境有電腦機房、作業人員門 禁系統和錄影監視系統,如圖 7.1 所示。



圖 7.1 工作環境照片

本公司遵守本案規範,關於機敏向量或影像資料,設立機敏資料室並 由專人負責造冊保管及存放於具安全防護功能之金屬箱櫃,確實依據內政 部「測繪成果申請使用辦法」、機關「機敏測繪成果資料使用及管理注意事 項」、「國家機密保護法」等規定妥善使用。

機敏資料室具備門禁管制設備、監視器及無連接網路之作業專用電腦 及工作站。且使用機敏資料應填寫紀錄表,並於每月將相關記錄資料函送 貴中心,監視器影像資料留存至保固期結束。於工作完成後消除機敏資料, 並由貴中心派員確認,原交付之機敏資料儲存媒體則送回貴中心銷毀。



●標示不可網路連線警語

⊙ 作業電腦無連接網路線

<section-header><text><text><text><text><text><text><text><text><text><text>

核抗: 低白来用:

圖 7.2 機敏作業電腦

圖 7.3 機敏資料使用記錄函文

### 第八章 檢討與建議

#### 1. 結論

依計畫期程逐期完成之工作項目,包含空載雷射掃瞄飛航計畫規劃與 申請、地面 GNSS 基地站控制測量、空載雷射掃瞄施測資料獲取、雷射掃 瞄點雲資料處理、數值地表模型(DSM)與數值高程模型(DEM)製作、正高改 算、人工檢核與編修及圖幅鑲嵌處理、空三計算、正射影像製作等工作。 本團隊計畫範圍為第2作業區,共287幅1/5000圖幅成果,計畫之初為確 保航線成果符合本計畫規範,將本測區依地形分布規劃不同飛航掃瞄參數 設計進行作業。

- (1)為確保計畫使用之控制系統一致選擇基站與航線範圍應小於20公里之 連續追蹤站,採申購測區附近既有GNSS追蹤站及一自架移動站,委 由監審方計算三日觀測量確保坐標成果一致性。此計畫中為提升點雲精 度,分別於航帶上施測平差高程控制點為116點(包含航帶高程控制點 101點與檢核點15點);平差平面特徵控制點32點,作為光達點雲平 差計算作業使用,另有空三測點66點提供輔助點雲平差檢核。
- (2)累積飛航架次合計為35架次,飛航涵蓋面積約達1,794平方平方公里。 共執行約340條航線(含補飛),其點雲重疊率經檢核近50%,點雲密度 合格比例第1及第2子測區分別為98.8%及98.2%,達本計畫規範所需 之成果要求。
- (3)於航帶平差部分,透過 TerraMatch 進行分區航帶平差,於重疊航帶之 平均絕對差量,第1及第2子測區分別為0.124公尺及0.130公尺,點 雲經分類編修後,以SCOP++內插模式製作1公尺解析度 DEM/DSM 成 果。
- (4) 土地類別檢核成果均能符合契約規定之高程精度標準:在 DEM 成果精度檢核部分,利用 VBS-RTK 及全測站經緯儀兩種方式,對不同土地覆蓋分區類型之現地實測高程進行 DEM 精度評估,其中地海拔共施測 259點,裸露地類別平均高差為0.053公尺,矮植被類別平均高差為0.085 公尺,植生地類別平均高差為0.162公尺,林地類別平均高差為0.081

公尺,都會區類別平均高差為 0.031 公尺,濕地類別平均高差為 0.101 公尺,橫斷面類別平均高差為 0.058 公尺,中高海拔共施測 202 點,裸 露地類別平均高差為 0.047 公尺,矮植被類別平均高差為 0.0154 公尺, 植生地類別平均高差為 0.174 公尺,林地類別平均高差為 0.087 公尺, 密林類別平均高差為 0.109 公尺,橫斷面類別平均高差為 0.062 公尺。

- (5) 第2作業區使用23,115張彩色影像,空三計算成果綜合各AT分區報表, 其檢核點 X 及 Y 方向 RMS 平均為 0.177 及 0.194,多於觀測數平均為 0.93,連結點光線數平均為 23.393 以及連結點強度指標平均為 0.818, 符合契約規範並以指定格式繳交。正射影像成果均為與雷射點雲掃瞄同 時拍攝之成果,並製作成 25 公分解析度之正射影像,其中對於鐵路、 公路及橋梁進行點雲高程正射微分糾正,以消除高差移位影響。
- (6) 工作效率提升與努力
  - 確保航帶平差最佳品質

本計畫中為了確保航帶平差所採用的高程平差點精度優於光達系統高 程誤差,所有可測之點位均採用靜態測量方式,即使山路不易進入也堅持 耗時耗力的前往擺設,以期採用靜態測量方式提升平差控制點精度,少部 分山路無法進入處,則使用空三成果,藉人工選取連結點方式,其類似航 拍影像立體測量,取得特徵位置坐標值作為平差控制點以供後續光達點雲 航帶平差檢核使用。

● 空中三角測量依規範執行

因應本案新增之空三工項,規劃各空三分區四角設置航空標控制點,並 將一般高控點皆漆方塊標,採靜態 GNSS 測設方式,提供精度良好之控制 點約制。空三作業依規範執行並檢核各項標準,包含連結點強度標準、殘 餘誤差均方根、最大殘餘誤差標準等,並實際上機確認立體影像對組模正 確,最後將空三成果專案以及相關報表依指定格式提交。

● 鐵路、公路及橋樑等基礎建設進行正射微分糾正

因應本案新增之正射影像工項,參考臺灣通用電子地圖相關圖層(鐵路、 公路及橋樑),針對非平坦地表面之高架路段進行點雲過濾,產製細緻高架

98

區域數值地表模型進行正射微分糾正,並利用點雲強度圖檢核正射糾正成 果,才進行最後的鑲嵌作業。此流程乃參考監審方檢核方式,確認高架路 段正射微分糾正成果符合電子地圖,橋梁邊界與點雲資料相符,最後邊線 和標線與點雲強度影像對比無明顯偏移。

● 地面點空間分布檢查

因應本案監審廠商新增點雲孔洞分析,更進一步要求點雲於植被覆蓋地 區之穿透率。而本公司於各單位空載光達案件,除符合一般密度與航帶重 疊率規範外,皆自我要求點雲穿透率,提供品質良好之高精度高解析度地 形模型,因此於本測區飛航任務開始後,即將解算之點雲交由監審方進行 孔洞分析,確認植被密集區孔洞值小於監審方建議值,即飛航規劃符合期 待,再續執行往後之飛航任務。

第2作業區孔洞分析有效檢核圖幅,檢核成果大孔洞比例皆小於第一門 檻 10%標準,皆為合格,其中小於 1%之圖幅合計更高達 216 幅(孔洞統計 圖幅之 75%),孔洞表現多數優於既有光達資料。不需參與既有成果孔洞比 例浮動門檻比對,不通過圖幅數為0,小於契約規範 1/10。

● 穩定且良好的 DEM 品質

歷年來光達技術產製及更新數值地形案本公司皆有參與,對於資料產製 各階段檢查皆有成熟之程式和方法,而產製流程中牽涉最多人力的點雲編 修,為將缺失降至最低採逐幅人工檢核,監審方亦以人工方式全數檢查。 本年度點雲過濾初驗僅6幅不合格圖幅,主因為航帶平差失誤,地面點雲 編修能力無虞,可見目前機制有效管控編修人員能力品質,並藉由回饋滾 動式更新檢核流程,復驗時所有圖幅皆為合格。

第2作業區 112 年度測區山區為主,山區地形複雜,於點雲編修時人員 判斷需仰賴經驗,參考正射影像以及周遭地形變化進行判斷,盡量保留地 面點濾除植被等非地面點雲。而都市區地物複雜,於點雲編修時人員判斷 較為繁複,必要時需搭配街景或其他資訊進行判斷,如是否為需保留之實 心橋梁、地下車道斜坡、水利設施,或為建物、空心橋梁、臨時性土堆需 要進行濾除等等。

99

本公司於產製 DEM 前依據內政部規範進行點雲分類之正確性檢查,確 保產製之 DEM 成果為良好並且是可供後續應用分析,此外透過上述 DEM 檢核評估,可發現其 DEM 品質皆符合規範。

● 配合期程安排進行趕工

今年度期程受惡劣天氣影響,雖本測區於5月即開始即準備好開始飛航 工作,但礙於載具及儀器問題,盡速排除問題後積極待命,把握晴朗空檔 進行飛航任務。而測區部分山區常年有雲,且起雲迅速,本公司以多次補 雲航線完成完整測區資料獲取,最後架次直至11月上旬才完成。無飛航天 氣及載具問題之因素造成資料獲取延宕,造成多項工作期程無法依規劃執 行,本測區後期以趕工方式完成本年度測區成果產製。

2. 檢討與建議

- (1)目前各家廠商目前穿透率皆能符合孔洞分析建議值,建議往後隨蒐集區 域累積後適度調整,以期逐步提升數值地形模型品質。依據目前各作業 區成果穿透度表現,建議可微調降不通過圖幅孔洞門檻於 10%調整至 8%或不合格圖幅數佔比 1/10 調整為 1/15,來見證各工作夥伴於本案成 果之努力。
- (2)本案較大之風險在於飛航的掌握,為使計畫符合時程,必須確保飛航順 利進度如預期,本作業區於5月初開始實行飛航待命,先後因載具及儀 器問題,延誤起始作業時間,於5月底開始進行第1架次飛航,順利於 7月中旬完成第1子測區飛航作業,而於後續作業中,因天候影響,飛 航作業較不如預期,雖於8月中完成約略80%之飛航作業,但因剩餘 測區多為軍事管制區域,於平日無法進行飛航作業,且搭配航空公司因 載具有其他配合需求,最後與之協調後更動為載具配合周末期間進行飛 航待命,並於11月初完成最後20%之飛航作業,晚於預期之作業期程。 而在載具協調過程中,除作業區域面臨軍事管制為考量之一,其飛航待 命之成本也為一大要點,因近年基本工資的調漲及國際油價的浮動,其 飛航待命成本已遠高於早期單價,在其成本與時程之間的考量,最後選 擇了此作業方案,由此也建議應因應現今政策調整相關費用,符合目前 人事成本來提高作業之效率。

- (3) 另外為自我要求點雲品質,因應地形之適宜飛航規劃,不會因歷來穿透 率表現遠優於監審方孔洞標準,就降低成本減少航線或採用其他符合規 範但成果較差之替代飛行方案。本公司了解成果良莠與外業收集之資料 品質絕對相關,今年度為維持一貫點雲植被穿透率表現,依據飛航經驗 維持約正負 20 度之 FOV,並依測區地形高度變化詳細分區規劃航線且 確實執行。
- (4) 根據監審方查核重要意見進行工作項目執行調整,例如點雲編修方面本 計畫為後續光達點雲成果加值利用順利,對於類似雜點之高低點,分類 到非地面點類別十分要求,本公司已於人工編修前安排程式自動濾除過 高和過低之離群點程序,以減少此類錯誤;正射影像編修方面對於高架 路面之錯誤如高差移位過大、扭曲錯移、接邊色差,滾動式更新工作流 程,並加強檢核機制,降低成果產製缺失。
- (5) 去年度首度遮密都市區原始影像,因涉及密區眾多,派員至貴中心進行 人工遮密處理時間冗長。後續若執行測區機敏圖幅數較多,考慮以自行 開發程式輔助遮密,增加工作效率。
- (6)考量本案影像空三成果供後續製圖廠商使用,為避免正射影像鑲嵌來源 不易辨識,本作業區正射影像鑲嵌線以 GIS 軟體對應最鄰近之影像中 心,提供具原始影像片號屬性向量檔供製圖參考使用。

# 第九章 参考文獻

- 1. 內政部(2003)高精度及高解析度數值地形模型測製規範(草案)。
- 2. 內政部(2005)LiDAR 測製數值高程模型及數值地表模型標準作業程序(草案)
- 3. 內政部(2011) 詮釋資料標準,文件編號:NGISTD-ANC-002-2011.12。
- 4. 內政部(2012)空載光達測製數值地形模型標準作業(草案)
- 內政部(2019)107年度LiDAR技術更新數值地形模型成果測製工作案第一作業區期 末報告書。
- 林志交、張坤樹、鄭鼎耀(2004)雷射掃瞄資料於潮間帶地形及城市區航帶平差之初 探,第六屆 GNSS 衛星科技研討會,台南國立成功大學。
- 高玉惠(2010),空載光達應用於不同地形環境之演進與分析,高解析度光達數值地 形測製與應用成果研討會,中央地質調查所期末發表會。
- 金俊雄(2004)空載光達系統誤差分析與航帶平差方法之探討碩士論文,國立成功 大學測量及空間資訊學系。
- 9. Appanix (2021), POSMMS User Manual.
- Axelsson, P. (2000). Processing of laser scanner data- algorithms and applications, ISPRS JPRS, 54: pp. 138-147.
- Baltsavias, E.P (1999). Airborne Laser scanning: Existing Systems and Firms and Other Resources, ISPRS Journal of Photogrammetry & Remote Sensing, Vol.54, pp. 164-198.
- 12. Hu, L.-T., & Bentler, P. (1995). Evaluating model fit. In R. H. Hoyle (Ed.), Structural Equation modeling. Concepts, Issues, and Applications (pp. 76-99). London: Sage.
- 13. Optech(2018), Lidar Mapping Suite User's Guide.
- 14. TerraSolid, TerraScan, TerraModeler, and TerraMatch User's Guide (2021).
- Vosselman, G. (2000). Slope based filtering of laser altimetry data. ISPRS Vol. XXXIII, Amsterdam
- West, S. G., Finch, J. F., & Curran, P. J. (1995). Structural equation models with non-normal variables: Problems and remedies. In R. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 56–75). Thousand Oaks, CA: Sage.