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ABSTRACT: For the purpose of the national landuse mapping launched in 2006 with a scale of 
1:5000, a scheme combining manual interpretation of orthorectified images and intensive field 
checks is adopted. The aerial photographs or satellite images required for this study are limited 
to those originally taken with a ground resolution better than 3m and with a time after 2004. A 
classification framework with three levels of classes was established in the beginning of the 
program. Manual interpretation is adopted for orthophotos, whereas automated supervised and 
unsupervised classifications are adopted for satellite images. Results of the 1:5000 landuse maps 
show that lands used for agriculture, forestry, hydrology, and transportations can be visually 
interpreted and classified with an accuracy of 95~98%. However, Building-up areas require 
ancillary information in GIS format to improve the classification to achieve the level 3 
requirements. Satellite images can give an accuracy of about 70~85% for level 1 and level 2 
classification for lands used for agriculture, forestry, hydrology, and transportations. In this study, 
classes of building-up areas in level three are not achieved by automated classification. 

1. INTRODUCTION 

Ground resolution of aerial photographs generally is as high as submeter. Details of ground 
features such as landcover types can be recognized on such images, especially for discrimination 
of crop types. However, for classification of up to level 3, features required to reveal include 
various landuse of buildings and recreation features which may not be recognized solely on 
basis of aerial photographs. Supplementary information may be required for further 
discrimination in a higher level of classification. In addition, high resolution satellite images can 
explicit more detailed ground features as compared to medium to low resolution images. 
However, they cannot fulfill the requirements for level 3 classification. In this study, 
pansharpened images of SPOT-5 are used in both supervised and non-supervised classification 
for attempting to know the suitability of these images for national landuse inventory. 

Multi-temporal images are usually available for obtain the information of ground covers, 
especially for agricultural lands. If ancillary data such as land parcels and phenological 
information are available, the classification accuracy will be improved significantly. Therefore, 
experiment with multi-temporal images complimentary with parcel data and phenological 
information is also carried out in this study to evaluate the suitability for the purposes of national 
landuse survey.   



2. THE STUDY AREA AND IMAGES USED UN THE STUDY 

The study area covers the map with map number designated as 95204096 and map name as 
Ping-Ding in 1/5000 national base map series. This area cover a variety of land cover types 
including hills, plains, rivers, farm lands, forestry and villages. Thus, it becomes a suitable area 
for testing the capability of automated landcover classification. The pansharpened SPOT images 
have a resolution of 2.5 m by 2.5 m (Fig. 1). For the study of multi-temporal images, the study 
area is located in Jia-Yi Plain in middle Taiwan with images of Formosat-2 (Fig. 2). 

 

 
Fig. 1 Pan-sharpened 

SPOT5 images 
Fig.2 Multi-temporal Formosat-2 images 

3. CLASSIFICATION METHODS 

3.1 Aerial Photograph Interpretation 

Geo-referenced orthophotos of the study areas are used for visual interpretation. Boundaries of a 
landcover type are on-screen digitized and saved as GIS layers. In addition, field surveys are 
conducted to verify the attributes within landtype boundaries. The result of this map is then used 
as a basis for accuracy validation for automated classification (Fig. 3). 
 

 
(a) Level 1classes 

 
(b) Level 2 classes 

 
(c) Level 3 classes 

Fig. 3 Ground truth obtained by visual interpretation of orthophotos 

3.2 Automated image classification 

First, spectral discriminant analysis is carried out for various landcover types. Stratified random  

 

sampling strategy is used with 70 
samples representing level 3 classes 
(Fig. 4). Fig.5 shows the means, 
maxima, minima, and standard 
deviations of each class. The 
variations of each class in different 
spectral bands can be readily 
observed. 

Fig. 4 Sample distribution Fig.5 Spectral features for 
level 1 classes 

(a) unsupervised classification 



Unsupervised classification is statistically a clustering analysis which is to separate image 
pixels into groups of similar spectral characteristics. A pixel is classified on basis of the value of 
itself. The processes include: (i) designation of total class numbers N to be grouped; in this study, 
27 classes are given to catering for level 3 classification scheme; (ii) N seeds are generated to 
initialize the grouping process; (3) the pixel with a value similar to the seed will be grouped into 
the class of the seed; (4) class mean is computed for all the pixels belonging to the same class; 
(5) iteration between step 3 and 4 until no significant change taking place. Finally, the 27 classes 
are compared with the ground truth to obtain the attribute of each class. Some of the classes are 
merged together on basis of the knowledge of ground truth. Some minor classes are deleted. 

 (b) supervised classification 

Supervised classification is statistically a discriminant analysis. Training samples are taken to 
obtain statistics of known classes. The most popular classifier is Maximum Likelihood 
classification. The premise of this approach is the normality of the spectral distribution of pixel 
values for each landcover type. A priori probably is applied for each class. First, conditional 
probability (i.e. the discriminant function) of the vector of a pixel is computed by following 
equation: 

P（ωi│x） i＝1, 2, …, m   whereωi represents class i, m is total number of classes 

If P（ωi│x）> P（ωj│x） j≠i, j＝1, 2, …, m  

Then the conditional probability of x│ω can be computed by following Bayesian equation:  

 
where p（ωi） is the probability of class ωi. Prior probability can be set by known 

information or presume all classes are equal. Thus, p（x│ωi）is the distribution of probability of 
classωi. Because a normal distribution is assumed for maximum likelihood classification, 
therefore, the following equation can be deducted: 

 
where N is the number of feature space or spectral bands, Mi is mean vector,Σi is the 

covariance matrix of class i. The estimator of Mi becomes:  

 
ni is the pixel number of classωi, j is the label, T is the transpose matrix, Mi andΣi can be 
obtained by pixel values. 

 (c) Multi-temporal Bayesian classification 

Multi-temporal Bayesian classification is applied for rice paddy binary classification. On basis 
of NDVI and their differences, the Bayesian probability is calculated to assign a certain pixel to 
either a rice paddy pixel or not. And, then they are verified by ground truth obtained by visual 
interpretation. 



For single time of image, the binary classification with NDVI, the conditional probability 
function can be expressed as P(Ai|VI). With Bayesian theorem, this can be expanded as:  

P(Ai|VI) = P(VI|Ai) * P(Ai) / Σ [ P(VI | Aj) * P(Aj) ] 
=P(VI|Ai)*P(Ai)/{P(VI|A1)*P(A1)}+P(VI|A2)*P(A2)}} 

where, P(Ai|VI): the probability of parcel Ai  when NDVI = VI; A1: attribute 1=paddy rice; A2: 
attribute 2= non-paddy rice; P(VI|Ai): the parcel # when NDVI=VI and attribute is Ai divided by 
the parcel number when attribute is Ai; P(Ai): the probability that the attribute of a parcel is Ai. 

If expanded to a multi-temporal classification, the equation becomes: 

P(Ai| VI1, VI2, … VIn)  =  P(VI1|Ai)*P(VI2|Ai)*…* P(Vin|Ai) * P(Ai)  /  
 [ P(VI1|A1)* P(VI2|A1)*…* P(Vin|A1) * P(A1) ] + 

  [ P(VI1|A2)* P(VI2|A2)*…* P(Vin|A2) * P(A2) ] +  ……… 
 [ P(VI1|Aj)* P(VI2|Aj)*…* P(Vin|Aj) * P(Aj) ]  

4. CLASSIFICATION RESULTS 

4.1 Results of unsupervised classification 

The result of unsupervised classification is shown in Fig.6. It shows that the landuse features of 
telecommunication and hydraulic facilities can not be identified, where as some of the features 
in agricultural and forestry areas are merged. When the result of Fig. 6 is compared with ground 
truth, the commission error for hydraulic and forestry classes are 0.252 and 0.275, respectively. 
However, the commission errors for roads, utilities, creation, minerals, etc are more than 0.8. 
The omission error for hydraulic and forestry features are 0.221 and 0.353, respectively. 
Similarly, the omission errors for roads, utilities, creation, minerals, etc are more than 0.8. There 
are many pixels of agricultural classes are wrongly assigned to forestry, recreation, and 
hydraulic classes. The mean error for unsupervised classification is 0.4358. Kappa indices are 
shown in Table 1. The sequence of kappa indices is forestry, hydraulic, building, agricultures, 
others, minerals, roads, utilities, and recreation facilities. In general, all classes except forestry 
and hydraulic classes are subject to serious errors. 

Table 1 Error matrix of unsupervised classification 

Class Classification KIA Class ClassificationKIA 
1-agriculture 0.1993 6-utilities 0.0200 

2-forestry 0.5487 7-recreation 0.0016 
3-roads 0.0589 8-minerals 0.0942 

4-hydraulic facilities 0.6611 9-others 0.1087 
5-buidings 0.3428 Overall Kappa0.4032 

4.2 Results of supervised classification 

Fig. 7 and Fig. 8 are classified results using 80 training samples. The errors for level 2 
classifications are too enormous and thus error matrix analysis is not conducted. For level 1 
classification, both equal probability and prior probability are applied. The prior probability is 



given by using the proportion of each landcover classes. The results are similar to those obtained 
from unsupervised classification. Both commission and omission errors are relatively low for 
forestry and hydraulic features. However, the omission errors for other classes are generally 
from 0.8 to 0.9, the commission errors from 0.7 to 0.8. The error of equal probability is the same 
as that of prior probability. Or the mean error with equal probability is 0.4265 which is a little bit 
better than 0.4530 with prior probability. 

Table 2 shows the error matrix of supervised classification. Relatively low errors are for forestry 
and hydraulic utilities. The worst results are for recreation, utilities, minerals, roads, and others. 
The complexity of each class dominates the accuracy of classification. Agriculture features 
include crops, pastures, ancillary agricultural facilities which possess different spectral 
properties. Thus, the classification accuracy is not so high as expected. 
 

  
Fig. 6 Level 1 unsupervised 

classified map 
Fig. 7 Level 1supervised 

classified map 
Fig. 8 Level 2 supervised 

classified map 
 

Table 2 Kappa analysis for supervised classification 

Class Kappa By equal 
probability 

Kappa by prior 
probability Class Kappa By equal 

probability 
Kappa by prior 

probability 
1-agriculture 0.3564 0.1614 6-utilities 0.0290 0.0274 

2-forest 0.6049 0.5132 7-recreation facilities 0.0042 0.0049 
3-roads 0.0997 0.0998 8-minerals 0.0827 0.1128 

4-hydraulic utilities 0.6876 0.7326 9-others 0.1109 0.0984 
5-buildings 0.5341 0.2823 Overall Kappa 0.4299 0.3833 

4.3 Results of multi-temporal Bayesian classification 

For the interpretation of multi-temporal images of rice paddies, factors that should be taken into 
account include (a) the phenological stages, (2) the reflectance of rice in mature stage, (3) the 
diagram of reflectance versus seasons change, (4) the registration of GIS parcels with image 
parcels (Lau et al., 2002; Hsiao et al., 2004). The result of multi-temporal image classification 
for Jia-Yi area in 2004 with Bayesian classifier is shown in Table 3. The overall accuracy and 
kappa index are 91.55% and 0.81, respectively. The classification result is shown in Fig. 9, 
which can be compared to the ground truth in Fig. 10. The producer’s accuracy and user’s 
accuracy are 87.66% and 86.21%, respectively. The overall accuracy is 91.55% (Hsiao et al., 
2005).  



  

Fig. 9 Classification result of Jia-Yi area Fig. 10 Ground truth for Jia-Yi area 
 

Table 3 Classification result with Formosat-2 images 

Class Rice Non-rice Total 
(Hectares)

Producer’s 
Accuracy 

Rice 7,803.09 1,098.90 8,901.99 87.66 % 
Non-rice 1,248.02 17,639.24 18,887.26 93.39 % 

Total 9,051.11 18,738.14 27,789.25  

Ground 
Truth 

User’s accuracy 86.21 % 96.14 %   

Overall accuracy: 
91.55 % 
Average accuracy: 
90.52 % 

k̂  index: 0.8069 

5. CONCLUSIONS AND SUGGESTIONS 

In this study, pansharpened SPOT5 images are employed for both supervised and unsupervised 
classification to evaluate the suitability of these images for national landuse inventory. The map 
number 95204096 in one of the 1/5000 national base map series is selected as a study area. 
Results of unsupervised classification for agricultural, forestry, hydraulic and communication 
facilities are rated as a capability of level 1 to level 2. The overall accuracy is 70~85%. However, 
if all 9 classes are considered, the overall accuracy is only 56.42% and kappa is 0.40. The result 
of supervised classification with equal probability has an accuracy of 57.35% and kappa of 0.43; 
whereas, with prior probability, the overall accuracy is 54.705% and kappa is 0.38. These results 
cannot fulfill the requirements of a national landuse inventory. In addition, for forestry, 
hydraulic, and agricultural lands, the accuracy is far below the requirement of 90%. The 
transformation processes of the original spectral bands to the pansharpened bands can cause 
some loss in spectral information. The problem whether this is the major issue posed by using 
SPOT5 for the classification purpose remains to be further explored.  
With multi-temporal images, the ancillary information from GIS parcels, and the knowledge of 
phenological information, the classification accuracy can be better than 91.5%. If prior 
knowledge of crops is accurately known, the accuracy can be further improved. National land 
inventory for specific crop area can adopt this approach.  
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