

以微震量測探討鋼筋混凝土構造 建築物之基本振動周期

- 計畫主持人:葉祥海
- 共同主持人: 呂良正

楊永斌

- 研究助理: 黃仲偉
 - 劉醇宇
 - 周俊杰

李肇豪

研究單位:內政部建築研究所 計畫編號:MOIS A32090 執行期程:八十八年十月至八十九年九月 中華民國八十九年九月三十日

內政部建築研究所研究計畫成果報告

以微震量測探討鋼筋混凝土構造 建築物之基本振動周期

≐∔	聿	\pm	t÷ J	ι.	甘	送治
Π	国	工	ゴオノ	ς.	- 朱1	1千/均

- 共同主持人: 呂良正
 - 楊永斌
- 研究助理:黃仲偉
 - 劉醇宇
 - 周俊杰
 - 李肇豪

研究單位:內政部建築研究所

計畫編號: MOIS A32090

執行期程:八十八年十月至八十九年九月

ARCHITECTURE & BUILDING RESEARCH

INSTITUTE

MINISTRY OF INTERIOR

RESEARCH PROJECT REPORT

A Study on the Fundamental Period of Reinforced Concrete Buildings Using Ambient Vibration Measurement

ΒY

SHAING-HAI YEH LIANG-JENQ LEU YEONG-BIN YANG CHANG-WEI HUANG CHUEN-YU LIU JIUN-JIE CHOU JA-HAW LEE

June 30, 1999

以微震量測探討鋼筋混凝土構造建築物之基本振動周期 內政部建築研究所

八十九年

以微震量測探討鋼筋混凝土構造建築物之基本振動周期

出版機關:內政部建築研究所

電話:(02)27362389

地址:台北市敦化南路二段 333 號 13 樓

網址:http://www.abri.gov.tw

出版年月:八十九年十月

版(刷)次:第一版

工本費:新台幣壹佰伍拾圓整

GPN :

ISBN :

統一編號

0022444890367

以微震量測探討鋼筋混凝土構造建築物之 基本振動周期

葉祥海¹ 呂良正² 楊永斌³ 黃仲偉⁴ 劉醇宇⁴ 周俊杰⁵李肇豪⁵

摘要

關鍵字:微震量測、鋼筋混凝土構造建築物、基本振動周期、系統識別

結構物之基本振動周期為影響設計地震力之重要參數,所有的耐震規範皆依周期來 求得設計地震力。現行建築物耐震設計規範中有關建築物基本振動周期之計算可分為經 驗公式法及其他結構力學分析方法(如利用 ETABS 動力分析),但另外規定結構分析所得 之值必須小於經驗公式之 1.4 倍才可,以免設計者用太長的周期而導致設計不保守。一 般認為經驗公式法過保守;而 ETABS 所用之結構模型是否吻合實際建築物之動力特性 也常有疑問。經驗公式法乃沿襲國外規範,但由於設計與施工方式因地方仍有不同,此 公式之正確性實有檢討之必要。

微震量測係指量測結構物由環境因素造成之振動,量測出之記錄利用系統識別之技 巧可求取結構物之動力特性如自然振動周期、阻尼比等。本研究以微震儀量測大台北地 區四十五棟鋼筋混凝土建築物之基本振動周期,從而迴歸水平及扭轉基本振動周期之計 算公式,迴歸之參數除建築物高度外,對於水平基本振動周期,也將平面尺寸納入考慮, 此可反應兩向基本振動周期不同之事實。比較迴歸公式與現行規範經驗公式,發現目前 法規高估水平基本振動周期有 2.1 倍之多;若考慮實際地震時可能因結構受損造成勁度 衰減,基本振動周期增加 1.4 倍,則目前法規仍高估結構物實際水平基本振動周期達 1.5 倍。

¹內政部建築研究所工程技術組組長

²國立台灣大學土木工程研究所副教授

³國立台灣大學土木工程研究所教授兼工學院院長

⁴國立台灣大學土木工程研究所博士班研究生

⁵國立台灣大學土木工程研究所碩士班研究生

A study on the fundamental period of reinforced concrete buildings using ambient vibration measurement

Shaing-Hai Yeh¹, Liang-Jenq Leu², Yeong-Bin Yang³, Chang-Wei Huang⁴, Chuen-Yu Liu⁴, Jiun-Jie Chou⁵, Ja-Haw Lee⁵

Abstract

Keyword: ambient vibration measurement, reinforced concrete building, fundamental vibration period, system identification

The fundamental vibration period of a building is an important parameter in the determination of design base shear. According to the present building code, the fundamental vibration period of a building can be calculated using the empirical formulas or structural analysis method such as the commercial software ETABS. However, the fundamental period calculated from the structural analysis method must be less than that from the empirical formula multiplied by one point four to avoid the case that the designers misused the long fundamental vibration period that may lead to a non-conservative design. Generally speaking, the empirical formula is too conservative and it is suspicious whether ETABS can predict very accurately the dynamic characteristics of buildings. The empirical formula in Taiwan building code is mainly based on that of the Uniform Building Code (UBC). However, given that the design and construct methods are different between Taiwan and US, it is necessary to review the accuracy of the empirical formula of the fundamental vibration period in Taiwan building code.

The ambient vibration test is the measurement of the structural dynamic response resulting from the surrounding factors. In conjunction with the system identification technique, the ambient vibration measurement can be used to determine the structural dynamic properties such as natural period and damping ratio. The present study uses the ambient vibration measurement technique to obtain the fundamental vibration periods and damping ratios for 45 reinforced concrete buildings located in Taipei. Regressive formulas are proposed for both the horizontal and torsional vibration periods by fitting the measured data to height. In addition, another formula for the horizontal vibration period is given, where both height and planar dimensions are used as the fitting parameters. This formula can reflect the fact that the periods are different in the x- and y- directions. It is found that the period predicted by the proposed formula is 2.1 times in average longer than that predicted by the code formula. Considering that the period may increase 40 percent, the current code still overestimates the period by 50 percent.

¹ Director, Engineering Technology Department, Architecture & Building Research Institute, Ministry of Interior ² Associate Professor, Department of Civil Engineering, National Taiwan University

³ Professor, Department of Civil Engineering and Dean, College of Engineering, National Taiwan University

⁴ Doctoral Student, Department of Civil Engineering, National Taiwan University

⁵ Master Student, Department of Civil Engineering, National Taiwan University

誌謝

本計劃執行期間,承蒙下列單位及人員惠予協助提供研究計劃量測所需之建築物 (以下依姓氏筆劃排列):王世昌建築師、永峻工程顧問公司甘錫瀅副總經理、寶成建 設沈育正主任、達新工程顧問公司邱顯樹總經理、臺北市政府國宅處第二科吳軍教科長 及李屏生正工程司、達因建設公司吳錫文總經理、潤弘工程公司吳子良技師、力麒建設 林錫監先生、基泰營造施義烈總經理、聯邦工程顧問公司陳家慶經理、超偉土木結構技 師事務所陳福松經理、東華建設張嘉益經理、台安工程公司張有恆副總經理與大興工程 管理顧問公司楊慕忠技師,特此一併致謝。

本計劃實地量測所需之微震儀器承蒙國家地震工程研究中心羅俊雄主任及林憲忠 先生慷慨協助提供,在此致謝。

附錄 A

建築物基本資料及量測結果表

附錄 B

建築物富利葉振幅圖

附錄 C

期中報告學者專家意見處理情形

目次

第一章	前言1
第二章	建築物周期經驗公式
2.1	各國規範周期經驗公式
	2.1.1 美國規範經驗公式
	2.1.2 日本規範經驗公式4
	2.1.3 台灣現行耐震規範經驗公式4
2.2	各國周期經驗公式比較5
2.3	文獻相關研究5
第三章	微震理論及分析模式
3.1	微震理論7
3.2	頻率域分析原理9
3.3	時間域分析原理10
第四章	微震量測及分析
4.1	微震儀器簡介及配置20
4.2	範例實驗分析簡介20
4.3	大台北地區實驗分析21
第五章	結果與討論23
第六章	結論
參考文	默

表目錄

表 4.1	台中遠東百貨樓頂與九樓各項物理量富利葉轉換尖峰頻率	31
表 4.2	台中遠東百貨樓頂與九樓各項物理量所求得周期	31
表 4.3	已量測之建築物名稱及量測日期	32
表 4.4	建築物各振態對應頻率(Hz)識別結果比較	34
表 4.5	建築物各振態周期(sec)識別結果比較	36
表 4.6	建築物阻尼比(%)識別結果比較	38
表 5.1	迴歸公式(5.9)之估計周期、實際量測周期與規範經驗公式之比	較40

圖目錄

圖 4.1	遠東百貨頂樓感應子佈置示意圖41
圖 4.2	遠東百貨九樓感應子佈置示意圖41
圖 4.3	遠百頂樓扭轉之富利葉振幅圖42
圖 4.4	遠百頂樓扭轉之富利葉振幅圖42
圖 4.5	頂樓質心 X 向富利葉振幅圖42
圖 4.6	頂樓質心 Y 向富利葉振幅圖42
圖 4.7	遠百九樓扭轉之富利葉振幅圖43
圖 4.8	遠百九樓扭轉之富利葉振幅圖43
圖 4.9	遠百九樓 X 向速度之富利葉振幅圖43
圖 4.10	遠百九樓 Y 向速度之富利葉振幅圖43
圖 5.1	所有建築物水平向最短基本周期與高度之關係圖44
圖 5.2	規則型建築物水平向最短基本周期與高度之關係圖44
圖 5.3	所有建築物扭轉基本周期與高度之關係圖45
圖 5.4	規則型建築物扭轉基本周期與高度之關係圖45
圖 5.5	所有建築物扭轉基本周期與水平向最短基本周期之關係圖(一)46
圖 5.6	所有建築物扭轉基本周期與水平向最短基本周期之關係圖(二)46
圖 5.7	規則型建築物扭轉基本周期與水平向最短基本周期之關係圖(一)47
圖 5.8	規則型建築物扭轉基本周期與水平向最短基本周期之關係圖(二)47
圖 5.9	建築物水平向基本周期與平面尺寸、高度之關係圖48

圖 5.10	建築物水平向周期與高度關係之上限公式與下限公式圖48
圖 5.11	本文建議之經驗公式與現今規範之經驗公式比較圖49

照片目錄

照片 4.1	微震感應子	50
照片 4.2	微震記錄器	50
照片 4.3	遠東百貨南面(靠中正路)	50
照片 4.4	遠東百貨西面(靠自由路)	.50
照片 4.5	遠東百貨頂樓微震量測佈線圖	51
照片 4.6	遠東百貨頂樓微震量測圖	.51

附錄

附錄 A 建築物基本資料及量測結果表

表 A.1	達因大樓基本資料及量測結果表	52
表 A.2	技嘉新店基本資料及量測結果表	53
表 A.3	敦品大樓基本資料及量測結果表	54
表 A.4	星雲大樓基本資料及量測結果表	55
表 A.5	高湯屋基本資料及量測結果表	56
表 A.6	龍騰社區基本資料及量測結果表	57
表 A.7	淡水新春基本資料及量測結果表	58
表 A.8	森保大樓基本資料及量測結果表	59
表 A.9	文心大樓基本資料及量測結果表	60
表 A.10	陽光天廈基本資料及量測結果表	61
表 A.11	北市忠誠路一段 62 號基本資料及量測結果表	62
表 A.12	北市中山北路六段 252 巷 2 號基本資料及量測結果表	63
表 A.13	青島東路國宅基本資料及量測結果表	64
表 A.14	新齊家基本資料及量測結果表	65
表 A.15	寶鑽基本資料及量測結果表	66
表 A.16	富保大樓基本資料及量測結果表	67
表 A.17	四四東村國宅基本資料及量測結果表	68
表 A.18	北縣新店市中央五街 80 號基本資料及量測結果表	69
表 A.19	北縣新店市中興路一段 282 號基本資料及量測結果表	70
表 A.20	MIT 大樓基本資料及量測結果表	71
表 A.21	親水河畔基本資料及量測結果表	72
表 A.22	整治二期國宅 A22 棟基本資料及量測結果表	73
表 A.23	整治二期國宅 D3 棟基本資料及量測結果表	74
表 A.24	整治二期國宅 A1 棟基本資料及量測結果表	75
表 A.25	永和國中路 104 巷 13 弄 1 號基本資料及量測結果表	76
表 A.26	捷和創世紀基本資料及量測結果表	77
表 A.27	敦南莊子基本資料及量測結果表	78

表 A.28	北市南港區重陽路 316 號基本資料及量測結果表	79
表 A.29	東湖國宅基本資料及量測結果表	80
表 A.30	北安社區國宅基本資料及量測結果表	81
表 A.31	北市中山區錦州街 26 號基本資料及量測結果表	82
表 A.32	敦南 225 基本資料及量測結果表	83
表 A.33	新店市達觀路 40 號基本資料及量測結果表	84
表 A.34	新店市達觀路 41 號基本資料及量測結果表	85
表 A.35	台安大樓基本資料及量測結果表	86
表 A.36	華固奔騰基本資料及量測結果表	87
表 A.37	寶成河畔基本資料及量測結果表	88
表 A.38	皇家學苑基本資料及量測結果表	89
表 A.39	紫藤樓基本資料及量測結果表	90
表 A.40	日光大廈基本資料及量測結果表	91
表 A.41	內湖捷豹基本資料及量測結果表	92
表 A.42	健軍新村國宅基本資料及量測結果表	93
表 A.43	內湖民權東路六段 207 號基本資料及量測結果表	94
表 A.44	內湖全毅基本資料及量測結果表	95
表 A.45	延平社區國宅基本資料及量測結果表	96

附錄 B 建築物富利葉振幅圖

圖 B.1	達因大樓富利葉振幅圖	97
圖 B.2	達因大樓富利葉振幅圖	97
圖 B.3	達因大樓 X 向速度富利葉振幅圖	97
圖 B.4	達因大樓 X 向速度富利葉振幅圖	97
圖 B.5	技嘉新店扭轉富利葉振幅圖	98
圖 B.6	技嘉新店扭轉富利葉振幅圖	98
圖 B.7	技嘉新店 X 向速度富利葉振幅圖	98
圖 B.8	技嘉新店 Y 向速度富利葉振幅圖	98
圖 B.9	敦品大樓扭轉富利葉振幅圖	99

圖 B.10	敦品大樓扭轉富利葉振幅圖
圖 B.11	敦品大樓 X 向速度富利葉振幅圖99
圖 B.12	敦品大樓 Y 向速度富利葉振幅圖99
圖 B.13	星雲大樓扭轉富利葉振幅圖100
圖 B.14	星雲大樓扭轉富利葉振幅圖100
圖 B.15	星雲大樓 X 向速度富利葉振幅圖100
圖 B.16	星雲大樓 Y 向速度富利葉振幅圖100
圖 B.17	高湯屋扭轉富利葉振幅圖101
圖 B.18	高湯屋扭轉富利葉振幅圖101
圖 B.19	高湯屋 X 向速度富利葉振幅圖101
圖 B.20	高湯屋 Y 向速度富利葉振幅圖101
圖 B.21	龍騰社區扭轉富利葉振幅圖102
圖 B.22	龍騰社區扭轉富利葉振幅圖102
圖 B.23	龍騰社區 X 向速度富利葉振幅圖102
圖 B.24	龍騰社區 Y 向速度富利葉振幅圖102
圖 B.25	淡水新春扭轉富利葉振幅圖103
圖 B.26	淡水新春扭轉富利葉振幅圖103
圖 B.27	淡水新春 X 向速度富利葉振幅圖103
圖 B.28	淡水新春 Y 向速度富利葉振幅圖103
圖 B.29	森保大樓扭轉富利葉振幅圖104
圖 B.30	森保大樓扭轉富利葉振幅圖104
圖 B.31	森保大樓 X 向速度富利葉振幅圖104
圖 B.32	森保大樓 Y 向速度富利葉振幅圖104
圖 B.33	文心大樓扭轉富利葉振幅圖105
圖 B.34	文心大樓扭轉富利葉振幅圖105
圖 B.35	文心大樓 X 向速度富利葉振幅圖105
圖 B.36	文心大樓 Y 向速度富利葉振幅圖105
圖 B.37	陽光天廈扭轉富利葉振幅圖106
圖 B.38	陽光天廈扭轉富利葉振幅圖106

圖 B.39	陽光天廈 X 向速度富利葉振幅圖	.106
圖 B.40	陽光天廈 Y 向速度富利葉振幅圖	.106
圖 B.41	北市忠誠路一段 62 號扭轉富利葉振幅圖	.107
圖 B.42	北市忠誠路一段 62 號扭轉富利葉振幅圖	.107
圖 B.43	北市忠誠路一段 62 號 X 向速度富利葉振幅圖	.107
圖 B.44	北市忠誠路一段 62 號 Y 向速度富利葉振幅圖	.107
圖 B.45	北市中山北路六段 252 巷 2 號扭轉富利葉振幅圖	.108
圖 B.46	北市中山北路六段 252 巷 2 號扭轉富利葉振幅圖	.108
圖 B.47	北市中山北路六段 252 巷 2 號 X 向速度富利葉振幅圖	.108
圖 B.48	北市中山北路六段 252 巷 2 號 Y 向速度富利葉振幅圖	.108
圖 B.49	青島東路國宅扭轉富利葉振幅圖	.109
圖 B.50	青島東路國宅扭轉富利葉振幅圖	.109
圖 B.51	青島東路國宅 X 向速度富利葉振幅圖	.109
圖 B.52	青島東路國宅 Y 向速度富利葉振幅圖	.109
圖 B.53	新齊家扭轉富利葉振幅圖	.110
圖 B.54	新齊家扭轉富利葉振幅圖	.110
圖 B.55	新齊家 X 向速度富利葉振幅圖	.110
圖 B.56	新齊家 Y 向速度富利葉振幅圖	.110
圖 B.57	寶鑽扭轉富利葉振幅圖	.111
圖 B.58	寶鑽扭轉富利葉振幅圖	.111
圖 B.59	寶鑽 X 向速度富利葉振幅圖	.111
圖 B.60	寶鑽 Y 向速度富利葉振幅圖	.111
圖 B.61	富保大樓扭轉富利葉振幅圖	.112
圖 B.62	富保大樓扭轉富利葉振幅圖	.112
圖 B.63	富保大樓 X 向速度富利葉振幅圖	.112
圖 B.64	富保大樓 Y 向速度富利葉振幅圖	.112
圖 B.65	四四東村國宅扭轉富利葉振幅圖	.113
圖 B.66	四四東村國宅扭轉富利葉振幅圖	.113
圖 B.67	四四東村國宅 X 向速度富利葉振幅圖	.113

圖 B.68	四四東村國宅 Y 向速度富利葉振幅圖	113
圖 B.69	北縣新店市中央五街 80 號扭轉富利葉振幅圖	114
圖 B.70	北縣新店市中央五街 80 號扭轉富利葉振幅圖	114
圖 B.71	北縣新店市中央五街 80號 X 向速度富利葉振幅圖	114
圖 B.72	北縣新店市中央五街 80 號 Y 向速度富利葉振幅圖	114
圖 B.73	北縣新店市中興路一段 282 號扭轉富利葉振幅圖	115
圖 B.74	北縣新店市中興路一段 282 號扭轉富利葉振幅圖	115
圖 B.75	北縣新店市中興路一段 282 號 X 向速度富利葉振幅圖	115
圖 B.76	北縣新店市中興路一段 282 號 Y 向速度富利葉振幅圖	115
圖 B.77	MIT 大樓扭轉富利葉振幅圖	116
圖 B.78	MIT 大樓扭轉富利葉振幅圖	116
圖 B.79	MIT 大樓 X 向速度富利葉振幅圖	116
圖 B.80	MIT 大樓 Y 向速度富利葉振幅圖	116
圖 B.81	親水河畔扭轉富利葉振幅圖	117
圖 B.82	親水河畔扭轉富利葉振幅圖	117
圖 B.83	親水河畔 X 向速度富利葉振幅圖	117
圖 B.84	親水河畔 Y 向速度富利葉振幅圖	117
圖 B.85	整治二期國宅 A22 棟扭轉富利葉振幅圖	118
圖 B.86	整治二期國宅 A22 棟扭轉富利葉振幅圖	118
圖 B.87	整治二期國宅 A22 棟 X 向速度富利葉振幅圖	118
圖 B.88	整治二期國宅 A22 棟 Y 向速度富利葉振幅圖	118
圖 B.89	整治二期國宅 D3 棟扭轉富利葉振幅圖	119
圖 B.90	整治二期國宅 D3 棟扭轉富利葉振幅圖	119
圖 B.91	整治二期國宅 D3 棟 X 向速度富利葉振幅圖	119
圖 B.92	整治二期國宅 D3 棟 Y 向速度富利葉振幅圖	119
圖 B.93	整治二期國宅 A1 棟扭轉富利葉振幅圖	120
圖 B.94	整治二期國宅 A1 棟扭轉富利葉振幅圖	120
圖 B.95	整治二期國宅 A1 棟 X 向速度富利葉振幅圖	120
圖 B.96	整治二期國宅 A1 棟 Y 向速度富利葉振幅圖	120

置	B.97	永和國中路 104 巷 13 弄 1 號扭轉富利葉振幅圖	121
置	B.98	永和國中路 104 巷 13 弄 1 號扭轉富利葉振幅圖	121
置	B.99	永和國中路 104 巷 13 弄 1 號 X 向速度富利葉振幅圖	121
置	B.100	永和國中路 104 巷 13 弄 1 號 Y 向位移富利葉振幅圖	121
围	B.101	捷和創世紀扭轉富利葉振幅圖	122
置	B.102	捷和創世紀扭轉富利葉振幅圖	122
置	B.103	捷和創世紀 X 向速度富利葉振幅圖	122
置	B.104	捷和創世紀 Y 向速度富利葉振幅圖	122
置	B.105	敦南莊子扭轉富利葉振幅圖	123
置	B.106	敦南莊子扭轉富利葉振幅圖	123
置	B.107	敦南莊子 X 向加速度富利葉振幅圖	123
置	B.108	敦南莊子 Y 向加速度富利葉振幅圖	123
置	B.109	北市南港區重陽路 316 號扭轉富利葉振幅圖	124
置	B.110	北市南港區重陽路 316 號扭轉富利葉振幅圖	124
置	B.111	北市南港區重陽路 316號 X 向速度富利葉振幅圖	124
置	B.112	北市南港區重陽路 316 號 Y 向速度富利葉振幅圖	124
置	B.113	東湖國宅扭轉富利葉振幅圖	125
置	B.114	東湖國宅扭轉富利葉振幅圖	125
置	B.115	東湖國宅 X 向速度富利葉振幅圖	125
置	B.116	東湖國宅 Y 向速度富利葉振幅圖	125
置	B.117	北安社區國宅扭轉富利葉振幅圖	126
置	B.118	北安社區國宅扭轉富利葉振幅圖	126
置	B.119	北安社區國宅 X 向速度富利葉振幅圖	126
置	B.120	北安社區國宅 Y 向速度富利葉振幅圖	126
置	B.121	北市中山區錦州街 26 號扭轉富利葉振幅圖	127
置	B.122	北市中山區錦州街 26 號扭轉富利葉振幅圖	127
置	B.123	北市中山區錦州街 26 號 X 向速度富利葉振幅圖	127
置	B.124	北市中山區錦州街 26 號 Y 向速度富利葉振幅圖	127
置	B.125	敦南 225 扭轉富利葉振幅圖	128

圖 B.126 敦南 225 扭轉富利葉振幅圖	128
圖 B.127 敦南 225X 向速度富利葉振幅圖	128
圖 B.128 敦南 225Y 向速度富利葉振幅圖	128
圖 B.129 新店市達觀路 40 號扭轉富利葉振幅圖	129
圖 B.130 新店市達觀路 40 號扭轉富利葉振幅圖	129
圖 B.131 新店市達觀路 40號 X 向速度富利葉振幅圖	129
圖 B.132 新店市達觀路 40號 Y 向速度富利葉振幅圖	129
圖 B.133 新店市達觀路 41 號扭轉富利葉振幅圖	130
圖 B.134 新店市達觀路 41 號扭轉富利葉振幅圖	130
圖 B.135 新店市達觀路 41 號 X 向速度富利葉振幅圖	130
圖 B.136 新店市達觀路 41 號 Y 向速度富利葉振幅圖	130
圖 B.137 台安大樓扭轉富利葉振幅圖	131
圖 B.138 台安大樓扭轉富利葉振幅圖	131
圖 B.139 台安大樓 X 向速度富利葉振幅圖	131
圖 B.140 台安大樓 Y 向速度富利葉振幅圖	131
圖 B.141 華固奔騰扭轉富利葉振幅圖	132
圖 B.142 華固奔騰扭轉富利葉振幅圖	132
圖 B.143 華固奔騰 X 向速度富利葉振幅圖	132
圖 B.144 華固奔騰 Y 向速度富利葉振幅圖	132
圖 B.145 寶成河畔扭轉富利葉振幅圖	133
圖 B.146 寶成河畔扭轉富利葉振幅圖	133
圖 B.147 寶成河畔 X 向速度富利葉振幅圖	133
圖 B.148 寶成河畔 Y 向速度富利葉振幅圖	133
圖 B.149 皇家學苑扭轉富利葉振幅圖	134
圖 B.150 皇家學苑扭轉富利葉振幅圖	134
圖 B.151 皇家學苑 X 向速度富利葉振幅圖	134
圖 B.152 皇家學苑 Y 向速度富利葉振幅圖	134
圖 B.153 紫藤樓扭轉富利葉振幅圖	135
圖 B.154 紫藤樓扭轉富利葉振幅圖	135

圖 B.155 紫藤樓 X 向速度富利葉振幅圖	135
圖 B.156 紫藤樓 Y 向速度富利葉振幅圖	135
圖 B.157 日光大廈扭轉富利葉振幅圖	136
圖 B.158 日光大廈扭轉富利葉振幅圖	136
圖 B.159 日光大廈 X 向速度富利葉振幅圖	136
圖 B.160 日光大廈 Y 向速度富利葉振幅圖	136
圖 B.161 內湖捷豹扭轉富利葉振幅圖	137
圖 B.162 內湖捷豹扭轉富利葉振幅圖	137
圖 B.163 內湖捷豹 X 向加速度富利葉振幅圖	137
圖 B.164 內湖捷豹 Y 向加速度富利葉振幅圖	137
圖 B.165 健軍新村國宅扭轉富利葉振幅圖	138
圖 B.166 健軍新村國宅扭轉富利葉振幅圖	138
圖 B.167 健軍新村國宅 X 向加速度富利葉振幅圖	138
圖 B.168 健軍新村國宅 Y 向加速度富利葉振幅圖	138
圖 B.169 內湖民權東路六段 207 號扭轉富利葉振幅圖	139
圖 B.170 內湖民權東路六段 207 號扭轉富利葉振幅圖	139
圖 B.171 內湖民權東路六段 207 號 X 向速度富利葉振幅圖	139
圖 B.172 內湖民權東路六段 207 號 Y 向速度富利葉振幅圖	139
圖 B.173 內湖全毅扭轉富利葉振幅圖	140
圖 B.174 內湖全毅扭轉富利葉振幅圖	140
圖 B.175 內湖全毅 X 向速度富利葉振幅圖	140
圖 B.176 內湖全毅 Y 向速度富利葉振幅圖	140
圖 B.177 延平社區國宅扭轉富利葉振幅圖	141
圖 B.178 延平社區國宅扭轉富利葉振幅圖	141
圖 B.179 延平社區國宅 X 向速度富利葉振幅圖	141
圖 B.180 延平社區國宅 Y 向速度富利葉振幅圖	141

附錄 C	期中報告學者專家意見處理情形	142
附錄 D	期末報告學者專家意見處理情形	144

第一章 前言

台灣位在環太平洋之地震帶上,大小地震發生頻繁。尤其在九二一地震後, 結構物之耐震能力成為大眾最關切的話題。基本上,結構物耐震能力之強弱在於 其耐震設計是否恰當;而結構物基本周期為影響設計地震力最重要的結構參數, 所有的耐震規範皆依周期來求得相對的設計地震力。現行建築物耐震設計規範中 有關建築物基本振動周期之計算可分為經驗公式法及其他結構力學分析方法,但 另外規定結構分析所得之值必須小於經驗公式之1.4 倍,以避免設計者誤用太長的 周期而導致設計不保守。此外,台灣地區建造上以鋼筋混凝土為結構體者佔大多 數。此類高樓遭受大地震時是否安全,最為社會大眾所關切,因此分析鋼筋混凝 土建築物在強烈地震下的行為有其必要。

一般而言,建築物之基本振動周期的預測公式有兩種方法【1】。第一種為將 建築物予以適度的簡化其基本假設,利用勁度與質量間之關係,從而導出基本振 動周期的數學公式,此法之計算快速,但建築物的實際形態非常複雜,在分析時 無論如何予以模擬假設,都很難求得結構物的真正周期;第二種方法則是經由實 測的振動記錄,利用頻譜分析或系統識別等直接或間接的方法推算周期,再以迴 歸方式決定周期經驗公式。此法包括實測地震記錄識別、模擬地震記錄識別及微 動振測分析等。其中微震分析為利用人為干擾或常態風力等造成建築物產生微 動,並根據微動記錄訊號判讀基本振動周期。再利用分析迴歸結構物之周期,但 前題是須有足夠的建築物之地震反應記錄可供識別。

台灣因幅員較小,累積經驗慢,故歷次耐震規範的改進主要都是擷取美日之 經驗和規範。然而耐震規範仍應依國內環境加以修正。因有關地震震區的分佈, 耐震設計目標等與各地的經濟條件、自然地理條件與社會人情都有密切的關係, 各國的建築物也會因各項因素的集合效果不同而造成自然振動周期的差異。美國 與日本的耐震規範周期公式皆是由現有的建築物在經過數次的大地震後實測而得

1

之經驗公式,具有一定的可靠性。台灣目前未有足夠的實測數據以推導出周期公 式,故周期公式大抵採用美國之規定。故本文先探討中、美、日三國耐設計規範 所規定之周期迴歸公式;再利用微震儀實地測量鋼筋混凝土結構物之基本周期, 最後比較經驗公式與微震量測之結果。

第二章 建築物周期經驗公式

結構物基本周期為影響設計地震力最重要的結構參數,所有的耐震規範皆依 周期求得設計地震力。對單一自由度之彈性結構,其周期可由其勁度及質量之關 係求得;對多自由度之彈性結構亦可依結構動力原理求得基本振態周期。然而在 強烈地震下之結構物並不為彈性結構而無固定之周期可言,且一般規範也未對周 期作確切的定義讓設計者有所依循【2】。

2.1 各國規範周期經驗公式

對台灣而言,與美、日之耐震設計比較實為評估國內耐震設計之有效途徑之 一。因此本文先探討中、美、日三國之耐震設計規範中所規定之周期經驗公式。 周期公式為規範中影響設計地震力的最重要因子之一,對台北市中、長周期之建 築物而言,其設計地震力大約與其周期成反比。目前,台灣本土強震下所收集的 結構物周期資料仍不足以制定周期之經驗公式,故耐震設計規範之周期公式基本 上是採用美國規範(Uniform Building Code UBC)相似之公式。

2.1.1 美國規範經驗公式

美國規範(Uniform Building Code UBC)【3】大抵上每三年改版一次,其中關於結構物周期之經驗公式主要於 1970 年及 1994 年版修正,分述如下:

(1) 1970 年版:

$$T = \frac{0.05h_n}{\sqrt{D}} \tag{2.1}$$

上式中 h_n 代表結構物基面以上之高度, D 為結構物於沿地震力方向之平面尺寸, 兩者單位皆為英呎。若結構物為韌性立體抗彎構架(moment-resisting frame), 則結 構物周期可以下式計算:

$$T = 0.10N$$
 (2.2)

其中 N 值代表結構物樓層數。

(2) 1994 年版:

$$T = C_t (h_n)^{3/4}$$
(2.3)

其中 $C_t = 0.030$, 對鋼筋混凝土結構物及同心斜撐結構(RC MRF & EBF)。若考 慮混凝土剪力牆, 則 C_t 修正為下式:

$$C_t = \frac{0.1}{\sqrt{A_c}} \tag{2.4a}$$

$$A_{c} = \sum A_{e} [0.2 + (D_{e} / h_{n})^{2}]$$
(2.4b)

上式中: A_e 為所考慮方向中某剪力牆一樓之剪力面積(單位: ft^2),

 D_e 為其長度(單位:ft),

$$D_{e}/h_{n}$$
值不得超過 0.9。

2.1.2 日本規範經驗公式【2】

$$T = H(0.02 + 0.01\alpha) \tag{2.5}$$

其中 H 為建築物高度(單位:公尺), α 為鋼骨造樓層之合計高度與建築物高度 H 之比,對鋼筋混凝土結構而言, $\alpha = 0$ 。

2.1.3 台灣現行耐震規範經驗公式

對鋼筋混凝土建築物、鋼骨鋼筋混凝土及鋼造偏心斜撐建築物,其基本振動 周期公式如下:

$$T = 0.070 \left(h_n\right)^{3/4} \tag{2.6}$$

具有剪力牆之構造物亦可用下式計算:

$$T = \frac{0.075}{\sqrt{A_c}} h_n^{3/4}$$
(2.7a)

$$A_{c} = \sum A_{e} [0.2 + (D_{e} / h_{n})^{2}]$$
(2.7b)

上式中: A_e 為所考慮方向中某剪力牆一樓之剪力面積(單位: m^2),

 D_e 為其長度(單位:m),

D_e/h_n值不得超過 0.9。

2.2 各國周期經驗公式比較【1】

一般而言,日本結構的設計周期最短,美國最長,台灣則介於美日之間,台 灣的設計規範因與美國相近,故其設計周期亦較為相近。美國的設計周期為建築 物實測周期迴歸公式之下限值,設計周期常為周期經驗公式之1.4 倍所控制。鄭蘩 與黃守本【1】由實際的設計例中分析所得的彈性周期比較,台灣設計例之周期介 於美、日之間。

2.3 文獻相關研究

Goel and Chopra【4】收集 1971 年 San Fernando 地震和 1994 年 Northridge 地震中的 37 棟建築物在地震中的歷時紀錄進行迴歸分析,建議鋼筋混凝土周期經驗 公式如下:

$$T = 0.016 \left(h_n \right)^{0.90} \tag{2.8}$$

上式中 h_n 為建築物高度,單位為英呎。利用上式改善目前在 Uniform Building Code (UBC 1997)和美國加州結構工程師協會(Structural Engineers Association of California, SEAOC 1996)規範中建築物周期經驗公式在高樓層偏低的情形。值得注 意的是:上式為迴歸最適曲線的下邊界,故 Goel and Chopra 建議利用此公式時得 提高 1.4 倍。

黃偉倫【5】收集民國八十二年至八十五年間在台灣地區十九棟鋼筋混凝土建築物之地震歷時資料,以ARX (Auto Regressive eXogenous)模式遞迴法識別出結構系統之頻率轉換函數,再推訂長向和短向之基本振動周期,及迴歸之周期經驗公式如下:

 $T = 0.03 \left(h_n \right)^{0.80} \tag{2.9}$

從上述資料可發現:除早期 UBC 公式外,近年來建築物周期經驗公式都僅與

建築物高度相關,而與建築物平面尺度無關。本研究即擬利用微震量測所得各建築物周期,考慮建築物平面尺寸及高度,重新迴歸建築物周期公式。

第三章 微震理論及分析模式

3.1 微震理論

一般而言,幾乎所有結構物均因其周遭環境的影響,而受到一些經常性的動 態力。這些激振力的來源很多,諸如建築物受風力、交通、設備機器之作用等等。 上述這些作用力均非常微小,可視之為微震(Ambient Vibration),微震之振幅約為 10⁻⁵~10⁻³g。近年來,因為科技進步,高靈敏度的振動計(如速度計、加速度計等) 快速發展並廣泛被使用,可精確地量測一些極微弱之振動訊號。因此,微震實驗 (Ambient Vibration Test)亦較趨於普遍。歷年來以微震分析結構物之相關研究可見 參考文獻【6-19】。

微震量測出之記錄利用系統識別技巧可求取結構物之動力特性如自然振動頻 率、阻尼比等。由以上假設可知,利用微震試驗以識別建築物的動力特性應具有 以下優點【20】:

- 1. 記錄資料長度之擷取可長可短, 擷取長度越長及多次的頻譜平均可增進其 精確度(Resolution)。
- 建築物在微震之小振幅情況下,比其在地震狀況下更線性化,而且假設激振力為平穩過程,在單一量測記錄中表現為線性彈性行為,則只根據輸出反應記錄所求得之結構動力參數並不會因時間不同而改變。
- 3. 分析過程中,只需對輸出信號作分析而毋須探討輸入信號,因此可節省相 當多的人力與物力。
- 試驗過程中,不需要任何激振設備,因此並不影響建築物使用者之舒適感, 特別適合於已建築完成或使用中之建築物。

文獻中關於利用微震量測所求得的結構物基本周期與阻尼比,與在強震、強迫震動等振幅較大的情況下所求得的基本周期與阻尼相比【12-18】, 簡述如下: Boroschek and Yáñez【12】依據最大水平地表加速度 70gal 的地震侵襲建築物下的 歷時資料,與微震所量測到的基本周期相比,發現地震資料所識別的周期會比微 震資料所識別的周期長約 2%-9%;Celebi【13】,Celebi and Liu【14】利用 Loma Prieta 地震,最大水平地表加速度 90-210gal 侵襲下的歷時資料比較五棟建築物所識別的 基本周期,與在地震後微震資料所識別的基本周期,發現因為建築物有輕微的損 傷,因此地震資料所識別的周期會比微震資料所識別的周期長 14%-47%;Satake and Yokota【15】比較微震與地表加速度 1.7-10.0gal 的地震所示識別的建築物周期, 發現地震資料所識別的周期會比微震資料所識別的周期長 10%-16%;Littler【16】 利用量測橋樑在各種不同風速大小下的微震反應,識別橋樑各模態之周期,發現 平均風速 12.67m/s 下所識別的周期會比平均風速 1.34m/s 下所識別的周期長 0%-22%,差異甚大;Yamaguchi 等人【17】也對橋樑進行微震實驗、強迫振動實 驗與自由振動實驗,發現強迫振動實驗或自由振動實驗所識別的周期會比微震實 驗所識別的周期長 3%-8%;Loh and Wu【18】等人對翡翠水庫記錄了最大地表加 速度在 1-32gal 的強震歷時資料,比較在同一水位下,地震資料所識別的周期會比

綜上所述,我們可以大致了解,不論結構物的型式為何,外力擾動越大,則 所識別出的基本周期將會越長。對於 RC 建築物而言,其基本周期增長的原因可能 為【13】:

- 1. 土壤與結構物的互制,尤其建築物的搖動行為(rocking),在外力越大時越 容易被激發。
- 結構元件或非結構元件的非線性行為,例如梁柱的幾何非線性行為、梁柱 的微裂縫、牆壁的龜裂等、甚至梁柱的損傷等等。

利用微震量測資料識別結構系統動態特性,概可分為頻率域與時間域分析兩 大類。頻率域分析發展較早也較簡便,但其對高阻尼及模態干擾較嚴重之系統識 別能力較差。因此,本研究除採用快速富利葉轉換分析外,另採用時間域分析方 法交互驗證,各法之原理分述如下。

8

3.2 頻率域分析原理【19】

一般來說,利用微震資料求取結構系統動態特性的最簡單方法為頻譜分析 (Spectral Analysis)。本文之研究即採用頻譜分析中之單一輸入/輸出模式(Single Input / Output),根據自相關能量譜(Auto-correlation Spectrum)的關係式,

$$S_{yy} = |H|^2 S_{xx}$$
(3.1)

其中 *S_{yy}*為頂樓某量測物理量的自相關能量譜,*S_{xx}*為所有外力與擾動的自相關 能量譜,*H*為系統轉換函數。設在量測過程中,所有的外力與擾動為一白噪(White noise),即 *S_{xx}*在每一個頻率之下均為常數值,因此 *S_{yy}*與*H*為倍數關係。只要能找 到觀測物理量的自相關能量譜,就等於找到了系統的轉換函數。並可藉由轉換函 數的尖峰,找出水平向模態、扭轉向模態所相對應的頻率。再利用半功率法(Half Power Method)求得各模態阻尼比。

然而由自相關能量譜與富利葉轉換(Fourier Transformation)的關係

$$S_{yy} = \lim_{T \to \infty} E[\frac{1}{T} YY^*] = \lim_{T \to \infty} E[\frac{1}{T} |Y|^2]$$
(3.2)

其中 E 代表取期望值, Y 代表 y(t)的富利葉轉換, Y^{*}代表 Y 的共軛複數。由此 可知自相關能量譜可以由富利葉轉換的振幅近似之。

因此本研究資料分析的程序如下:首先記錄位移、速度、加速度之歷時資料, 然後對記錄之位移(速度、加速度)歷時資料作快速富利葉轉換(Fast Fourier Transformation, FFT),以求得富利葉振幅。假定系統沒有雜訊的干擾,則快速 富利葉轉換的振幅圖之尖峰值所對應之頻率即代表結構物之自然振動頻率。

離散化的富利葉轉換是可寫成下列形式:

$$F(n) = \sum_{k=0}^{N-1} h(k) e^{-(2\pi k n)i/N} \qquad n = 0, 1, \dots, N-1$$
(3.3)

其中 N 值可以有很多種選法,而最常選取的方法即為 $N = 2^{\gamma}$,其中 γ 為正整數。 在本研究中,取樣點之時間間距 t=0.01 sec,每次量測時間為 5.5 分鐘,故每次量 測可得到 33000 筆資料。在 N 值的選取方面,當 N 取 1024 時,代表每 1024 筆資 料即為一個周期,則 33000 筆資料可以視為可以視為 32 個周期的組合;當 N 取 2048 時,則可以視為 16 個周期的組合,依此類推。但依據頻譜分析的誤差理論可知, 當我們利用上述方法來求的自相關能量譜時,其正規化平方誤差(Normalized mean square error)可表示為

$$\varepsilon^2 \approx \frac{1}{B_e T_r} + \left(\frac{B_e^2 G_{xx}^{"}}{24G_{xx}}\right)^2 \tag{3.4}$$

其中 B_e 為自相關能量譜在頻率域上的解析度(resolution bandwidth),與 N 值大 小有關,即 $B_e=1/N\Delta t_o \Delta t$ 為採樣間隔時間,本研究均固定為 0.01 秒;而 T_r 為實驗 總量測時間,本研究均固定為 330 秒。當 N 值過小, B_e 會過大。從(3.4)可以看出, 此時第一項的隨機誤差(random error)雖然會減小,但第二項的偏見誤差項(bias error)會隨之擴大;反之, N 值過大則會使第一項的隨機誤差過大,因此 N 值的選 取必須折衷。在本研究中, N 值均選取為 2048。

另外,使用快速富利葉轉換時,必須注意避免在轉換過程中發生 aliasing 的現 象。假設時間域函數為 h(t),經過富利葉轉換可以得到 H(f),若想要使頻率 f_c 以內 的 H(f)均為可靠的,則在時間域 h(t)取點離散化的時候, t 必須小於 $1/(2f_c)$ 。以本 實驗而言, t=0.01 sec,經富利葉轉換後 50Hz 以內的訊息應該都屬於可以信賴 的,換言之,結構物周期只要在 0.02sec 以上,均可以透過快速富利葉轉換後在頻 率域清楚的看到尖峰值。這個範圍已經可以涵蓋 RC 建築物的基本周期。

3.3 時間域分析原理

本文所使用的時間域識別方法為時間序列法中的 ARV(Auto-regressive vector) 模式【21】。其數學模式為

$$\{X\}_{t} = \sum_{i=1}^{n} [\Phi_{i}] \{X\}_{t-i} + \{A\}_{t}$$
(3.5)

其中 ${X}_{t-i}$ 為一組觀測於(t-i)時間所量得之反應向量; ${A}_{t-i}$ 為一組白噪過程於(t-i)時刻之輸入向量; $[\Phi_i]$ 為 AR 部分之係數矩陣。(3.5)式所表示之 ARV 模式可記為 ARV(n;l),其中 n 代表 AR 部分之階數,而 l 則代表 ${X}_{t}$ 之維數。 ${A}_{t}$ 為滿足

$$E[\{A\}_t] = \{0\}$$
(3.6)

$$E\left[\left\{A\right\}_{t-i}\left\{A\right\}_{t-i}^{T}\right] = \delta_{ij}\left[W\right]$$
(3.7)

10

其中 E[]代表取其平均值, δ_{ij} 為 Kronecher delta。 [W]為{A}_t之方差矩陣 (variance matrix)。將(3.5)式兩端各乘 {X}^T_{t-k}, 再取平均值, 得

$$R(-k) = \sum_{i=1}^{n} [\Phi_i] R(i-k)$$
(3.8)

其中 $R(k) = E[{X}_{t} {X}_{t+k}^{T}]$,為相關函數矩陣。推導上式時,吾人利用了(3.6)式與 (3.7)式之關係,及當 $k \neq 0$ 時, $E[{A}_{t} {X}_{t-k}^{T}] = [0]$ 。利用 $R(0) = R^{T}(0)$ 及 $R(-k) = R^{T}(k)$, (3.5)式可表示成

$$R^{T}(k) = \sum_{i=1}^{n} \left[\Phi_{i} \right] R^{T}(k-i)$$
(3.9)

(3.9)式可整理成

$$\left[\hat{R}\right] = \left[\widetilde{R}\right] \left[\widetilde{\Phi}\right] \tag{3.10}$$

其中 $[\hat{R}] = [R^T(k_i+1) \quad R^T(k_i+2) \quad \cdots \quad R^T(k_i+m)]^T$

$$\begin{bmatrix} \widetilde{R} \end{bmatrix} = \begin{bmatrix} R(k_i) & R(k_{i-1}) & R(k_{i-2}) & \cdots & R(k_{i+1-n}) \\ R(k_{i+1}) & R(k_i) & R(k_{i-1}) & \cdots & R(k_{i+2-n}) \\ \vdots & & & & \\ R(k_{i+m-1}) & R(k_{i+m-2}) & \cdots & \cdots & R(k_{i+m-n}) \end{bmatrix}$$
(3.11a)
$$\begin{bmatrix} \widetilde{\Phi} \end{bmatrix} = \begin{bmatrix} \Phi_1 \end{bmatrix} \begin{bmatrix} \Phi_2 \end{bmatrix} \cdots \begin{bmatrix} \Phi_n \end{bmatrix} \end{bmatrix}^T$$
(3.11b)

 $[\hat{R}]$ 為一 $mN_m \times N_m$ 之矩陣, $[\tilde{R}]$ 為一 $mN_m \times nN_m$ 之矩陣, $[\tilde{\Phi}]$ 為一 $nN_m \times N_m$ 之矩陣, N_m 為量測自由度數。

為求(3.10)式中之係數矩陣 $[\tilde{\Phi}]$,利用最小平方差法得

$$[\widetilde{R}]^{T}[\widetilde{R}][\widetilde{\Phi}] = [\widetilde{R}]^{T}[\widehat{R}]$$
(3.12)

為求較高精度之解,在此不用傳統直接求逆矩陣,而配合 QU 分解法求解。(3.11) 式與傳統常用的估算法之不同在於 k_i 。當 k_i 為零時,則(3.11)式回復至傳統估算法。 而本研究中吾人取 $k_i > n-1$,其原因是為了應用相關函數矩陣R(k)(當 $k \ge 0$)與結構 系統自由衰減反應之對應關係。文獻中已證明在白噪之輸入下,速度或位移反應 相關函數矩陣之每一列函數均對等於該結構系統自由衰減反應;而對加速度反應 相關函數矩陣,該對等關係則不成立於k = 0處。為利用此對等關係,因此,必須 要求(3.11)式中之 $k_i > n-1$ 。也因為此對等關係,雖然 ARV 模式並未對等於受白噪 輸入下之結構動力反應模式,但經相關函數矩陣運算式,(3.9)式對等於結構系統自 由衰減反應,因此,使得利用(3.9)式所求得係數矩陣 $[\Phi_i]$ 能代表結構系統本身之特 性。

故(3.11)式中之相關函數矩陣,由量測值直接估算之。其常用之估算公式為

$$\overline{R}(k) = \frac{1}{\overline{n} - k} \sum_{i=1}^{\overline{n} - k} \{X\}_{i} \{X\}_{i+k}^{T}$$
(3.13)

或

$$\overline{R}(k) = \frac{1}{\overline{n}} \sum_{t=1}^{n-k} \{X\}_t \{X\}_{t+k}^T$$
(3.14)

其中 \bar{n} =每一測點之量測數據點數,此兩估算式僅差異於分母。(3.13)式之估算為 R(k)之無偏差估算。而(3.14)式之估算為漸近無偏差估算,且具有相容性,漸近正 態分佈等特性。基本上,當 $\bar{n} \rightarrow \infty$ 時,兩式之估算值一致。在實際應用上,吾人 要求 $k < \bar{n}/4$ (通常取 $k = \bar{n}/10$)以確保估算值之準確性。本計畫利用(3.14)式估算之。

此外,在模型適用性檢驗方面,為決定 ARV 模式之階數,此處利用 FPE 準則作為檢驗 ARV(*n*;*l*)模式適當性之參考。

$$FPE(n) = \frac{\overline{n} + \ln}{\overline{n} - \ln} |W|$$
(3.15)

其中 \bar{n} 為數據點數,|W|為[W]之行列式。依[W]之定義,於(3.5)式兩端乘以 $\{X\}_{i}^{T}$, 且等號右端之 $\{X\}_{i}$ 以(3.5)式之表示式代入,再取平均值,可得

 $[W] = R(0) - \left[\widetilde{\Phi}\right]^T \left[\widetilde{R}\right]_{k=n} \left[\widetilde{\Phi}\right]$ (3.16)

利用 ARV 模式來描述微震反應量測只是過程,最終目標乃為識別結構系統之 動態特性,即結構系統之自然振動頻率、振態及模態阻尼比。以下即闡述如何利 用以建立之 ARV 模式係數矩陣,求取該系統動態特性。以往之做法,乃利用 AR 之係數矩陣構建一特徵矩陣多項式,求取該矩陣多項式行列式為零之根,然後計 算系統之自然振動頻率及阻尼比。在估算振態時,則需先求取頻率反應函數 (frequency response function),然而此種方法並不具效率。在此吾人將借用亞伯 拉罕(Ibrahim)時間域識別法推導直接識別程序。

亞伯拉罕(Ibrahim)識別法對於自由衰減振動反應, 令{γ(t)}表-N維自由度 線性系統之自由衰減振動位移反應向量,其滿足

$$[M]\{\dot{\gamma}\} + [C]\{\dot{\gamma}(t)\} + [K]\{\gamma(t)\} = \{0\}$$
(3.17)

上式亦可表成

$$\begin{bmatrix} \begin{bmatrix} C \\ \end{bmatrix} \begin{bmatrix} M \end{bmatrix} \begin{cases} \dot{\gamma} \\ \ddot{\gamma} \end{bmatrix} + \begin{bmatrix} \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} 0 \\ \end{bmatrix} \begin{bmatrix} \gamma \\ \dot{\gamma} \end{bmatrix} = \{0\}$$
(3.18)

其解可表成

$$\begin{cases} \gamma \\ \dot{\gamma} \end{cases} = \sum_{j=1}^{2N} q_j \left\{ \phi \right\}_j e^{\lambda_j t} = \sum_{j=1}^{2N} \left\{ \Psi \right\}_j e^{\lambda_j t}$$
(3.19)

其中 λ_j = (3.18)式之特徵值; { ϕ }_j = (3.18)式之特徵向量; q_j = 待定係數,決定於初始 條件。理論上,若欲利用(3.19)式識別系統特性,吾人需有 2N 個測站。但在實際 應用上,吾人無法設置如此多之測站(尤其當 N 較大時)。在此情況下,可利用時間 平移法。假設有 N_m 個測站($N_m \le N$),吾人可依(3.19)式建立如下之關係式

$$\begin{bmatrix} \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1S} \\ \gamma_{21} & \gamma_{22} & & \gamma_{2S} \\ \vdots & \vdots & & \vdots \\ \gamma_{2N,1} & \gamma_{2N,2} & \cdots & \gamma_{2N,S} \end{bmatrix} = \begin{bmatrix} \Psi_{11} & \Psi_{12} & \cdots & \Psi_{1,2N} \\ \Psi_{21} & \Psi_{22} & & \Psi_{2,2N} \\ \vdots & \vdots & & \vdots \\ \Psi_{2N,1} & \Psi_{2N,2} & \cdots & \Psi_{2N,2N} \end{bmatrix} \begin{bmatrix} e^{\lambda_{1}t_{1}} & e^{\lambda_{1}t_{2}} & \cdots & e^{\lambda_{1}t_{s}} \\ e^{\lambda_{2}t_{1}} & e^{\lambda_{2}t_{2}} & & e^{\lambda_{2}t_{s}} \\ \vdots & \vdots & & \vdots \\ e^{\lambda_{2N}t_{1}} & e^{\lambda_{2N}t_{2}} & \cdots & e^{\lambda_{2N}t_{s}} \end{bmatrix}$$

其中下標 s 為任意整數,代表所取點數,而 γ_{ii} 之取法依如下所述:

(1) 當 $i \leq N_m$,

 $\gamma_{ij} = \gamma_i(t_j)$

 $\Psi_{ij} = \{\Psi\}_i$ 之第 *i* 個元素

(2) 當 $N_m < i \le N$,
$$\gamma_{ij} = \gamma_k (t_j + \Delta t_2)$$
 , $k=i-N_m$
 $\Psi_{ij} = \Psi_{kj} e^{\lambda_j \Delta t_2}$, $k=i-N_m$
(3) 當 $N < i \le 2N$

$$\begin{split} \gamma_{ij} &= \begin{cases} \gamma_k(t_j + \Delta t_3) & k = i - N < N_m \\ \gamma_k(t_j + \Delta t_2 + \Delta t_3) & k = i - N < N_m > 0 \end{cases} \\ \Psi_{ij} &= \begin{cases} \Psi_{kj} e^{\lambda_j \Delta t_3} & k = i - N < N_m \\ \Psi_{kj} e^{\lambda_j (\Delta t_2 + \Delta t_3)} & k = i - N < N_m > 0 \end{cases} \end{split}$$

以上∆t2和∆t3 為不同時間平移量。上式可化簡表示成

$$\left[\gamma\right]_{2N\times2S} = \left[\Psi\right]_{2N\times2N} \left[\Omega\right]_{2N\times2S} \tag{3.20}$$

同理,我們可以把[γ]中所對應之時間平移 Δt_1 (不等於 Δt_2 和 Δt_3),則吾人得

$$[\hat{\gamma}]_{2N\times 2S} = [\hat{\Psi}]_{2N\times 2N} [\Omega]_{2N\times 2S}$$
(3.21)

其中
$$\hat{\gamma}_{ij} = \hat{\gamma}_i(t_j) = \gamma_i(t_j + \Delta t_1)$$
 (3.22a)

$$[\hat{\Psi}] = [\Psi][\lambda] \tag{3.22b}$$

$$[\lambda] = diag. \langle e^{\lambda_1 \Delta t_1}, \cdots, e^{\lambda_{2N} \Delta t_1} \rangle$$
(3.22c)

從(3.20)式可得

$$[\Omega] = [\Psi]^{-1}[\gamma] \tag{3.23}$$

而從(3.21)式則可得

$$[\Omega] = [\hat{\Psi}]^{-1}[\hat{\gamma}] \tag{3.24}$$

結合(3.23)和(3.24)式,再經矩陣運算得

$$[\hat{\gamma}] = [\hat{\Psi}][\Psi]^{-1}[\gamma] = [A][\gamma]$$
(3.25)

其中 $[\gamma]$ 和 $[\hat{\gamma}]$ 均為一(2N×s)之矩陣,而為[A]一(2N×2N)之矩陣。可利用最 小二乘方法由已知之 $[\gamma]$ 和 $[\hat{\gamma}]$ 求得[A]

$$[A] = [\hat{\gamma}][\gamma]^{T} ([\gamma][\gamma]^{T})^{-1}$$
(3.26)

[A]稱為系統矩陣。從(3.20)、(3.21)和(3.25)式可整理得

$$[\hat{\Psi}] = [A][\Psi] \tag{3.27}$$

將(3.22b)式和(3.22c)式代入上式,整理得

$$[A] \{\Psi\}_i = e^{\lambda_i \Delta t_1} \{\Psi\}_i \tag{3.28}$$

因此,系統矩陣之特徵值與特徵向量是與吾人欲識別結構系統之動態特性相關。

從 ARV 模式中, 吾人知其去掉白噪項之 AR 部分即代表系統之自由衰減振動 反應。其表示式為

$$\{X\}_{t} = \sum_{i=1}^{n} [\Phi_{i}] \{X\}_{t-i}$$
(3.29)

其中 ${X}_i$ 為一 N_m 階向量, 且 $N_m \times n = 2N$ 。由於 $[\Phi_i]$ 已知, 因此可直接利用 $[\Phi_i]$ 矩陣, 一次求得系統動態特性。依(3.29)式可得

$$\{Y\}_{t} = [G]\{Y\}_{t-1}$$
(3.30)

$$\{Y\}_{t} = \begin{cases} \{X\}_{t-n+1} \\ \{X\}_{t-n+2} \\ \vdots \\ \{X\}_{t} \end{cases}$$
(3.31)

$$[G] = \begin{bmatrix} 0 & \mathbf{I} & 0 & 0 & \cdots & 0 \\ 0 & 0 & \mathbf{I} & 0 & \cdots & 0 \\ \vdots & & & & & \\ [\Phi_n] & [\Phi_{n-1}] & & & [\Phi_1] \end{bmatrix}_{2N \times 2N}$$
(3.32)

上式代表{*Y*},於相鄰兩時刻之關係。因此[*G*]可稱為一傳遞矩陣(Transfer Matrix)。 從(3.30)式可容易推得

$$\{Y\}_{t+s-1} = [G]^s \{Y\}_{t-1}$$
(3.33)

另外,從(3.29)式亦可得

$${X}_{t+1} = \sum_{i=1}^{n} [\Phi_i] {X}_{t+1-i}$$

$$= \sum_{i=1}^{n-1} \left(\left[\Phi_{1} \right] \left[\Phi_{i} \right] + \left[\Phi_{i+1} \right] \right) \left\{ X \right\}_{t-i} + \left[\Phi_{1} \right] \left[\Phi_{n} \right] \left\{ X \right\}_{t-n}$$

$$= \sum_{i=1}^{n} \left[\widetilde{\Phi}_{i}^{1} \right] \left\{ X \right\}_{t-i}$$
(3.34)

其中 $\left[\widetilde{\Phi}_{n}^{1}\right] = \left[\Phi_{1}\right]\left[\Phi_{n}\right]$; 當 $i \neq n$ 時, $\left[\widetilde{\Phi}_{i}^{1}\right] = \left[\Phi_{1}\right]\left[\Phi_{i}\right] + \left[\Phi_{i+1}\right]$ 。同理可得

$$\{X\}_{t+s} = \sum_{i=1}^{n} \left[\widetilde{\Phi}_{i}^{s}\right] \{X\}_{t-i}$$
(3.35)

其中,當1≤*i*≤*n*−*s*, $[\tilde{\Phi}_{i}^{s}] = \sum_{j=1}^{s} [\Phi_{j}] [\tilde{\Phi}_{i}^{j-1}] + [\Phi]_{i+s}$;當*i*>*n*−*s*, $[\tilde{\Phi}_{i}^{s}] = \sum_{j=1}^{s} [\Phi_{j}] [\tilde{\Phi}_{i}^{j-1}]$ 在上式表示式中, $[\tilde{\Phi}_{i}^{0}] = [\Phi_{i}]$ 。從上式,吾人可得任何時刻*t*+*s*之反應均可用*t*以前之*n*步內反應表示之。因此,在 Ibrahim 時間域識別法中,利用時間平移技巧以 量測反應填補並虛擬未量測自由度之反應,可表示成

$$\{Z\}_{t} = [A_{p}]\{Y\}_{t}$$
(3.36)

其中
$$\{Z\}_{t} = \begin{cases} \{X\}_{t+p_{1}} \\ \{X\}_{t+p_{2}} \\ \vdots \\ \{X\}_{t+p_{n}} \end{cases} \end{cases}_{2N\times 1}$$
 (3.37)

$$\begin{bmatrix} A_{p} \end{bmatrix} = \begin{bmatrix} \Phi_{n}^{p_{1}} \end{bmatrix} \begin{bmatrix} \Phi_{n-1}^{p_{1}} \end{bmatrix} \cdots \begin{bmatrix} \Phi_{1}^{p_{1}} \\ \Phi_{n-2}^{p_{2}} \end{bmatrix} \begin{bmatrix} \Phi_{n-1}^{p_{2}} \end{bmatrix} \cdots \begin{bmatrix} \Phi_{1}^{p_{2}} \\ \Phi_{1}^{p_{2}} \end{bmatrix}_{2N \times 2N}$$
(3.38)

從(3.33)及(3.36)式,可得

$$\{Z\}_{t+s} = [A_T]\{Z\}_t$$
(3.39)

其中

$$\left[A_{T}\right] = \left[A_{p}\right] \left[G\right]^{s} \left[A_{p}\right]^{-1}$$

$$(3.40)$$

由於(3.29)式所表示者為結構系統之自由衰減振動反應;依(3.19)式可得

$$\{X\}_t = \sum_{j=1}^{2N} q_j \{\overline{\phi}\}_j e^{\lambda_j t}$$
(3.41)

其中 { ~ }, 為對應量測自由度之系統複數振態。(3.41)式代入(3.37)式得

$$\{Z\}_t = \left[\Psi^*\right]\!\!\left\{e\right\}_t \tag{3.42}$$

其中

$$\left[\Psi^{*} \right] = \begin{bmatrix} \left\{ \overline{\Psi} \right\}_{1,1} & \left\{ \overline{\Psi} \right\}_{1,2} & \left\{ \overline{\Psi} \right\}_{1,2N} \\ \left\{ \overline{\Psi} \right\}_{2,1} & \left\{ \overline{\Psi} \right\}_{2,2} & \left\{ \overline{\Psi} \right\}_{2,2N} \\ \left\{ \overline{\Psi} \right\}_{n,1} & \left\{ \overline{\Psi} \right\}_{n,2} & \left\{ \overline{\Psi} \right\}_{n,2N} \end{bmatrix}$$

$$\left\{ e \right\}_{t} = \left(e^{\lambda_{1}t}, e^{\lambda_{2}t}, \cdots, e^{\lambda_{2N}t} \right)^{T} ;$$

$$(3.43)$$

$$\{\Psi\}_{j,i} = e^{\lambda_i (p_j - p_i)} \{\Psi\}_{1,i}$$
,下標之第二個數字代表對應之振模。

依(3.29)式可得

$$\{Z\}_{t+s} = \begin{bmatrix} \Psi^* \end{bmatrix} \begin{bmatrix} \ddots & & \\ & e^s & \\ & & \ddots \end{bmatrix} \{e\}_t$$
(3.44)

其中
$$\begin{bmatrix} \cdot & & \\ & e^{s} \\ & & \cdot & \end{bmatrix}$$
為對角線矩陣,其對角線元素為 $(e^{\lambda_{1}s\Delta t}, e^{\lambda_{2}s\Delta t}, \dots, e^{\lambda_{2N}s\Delta t})$ 。 Δt 為每

一時間步驟增量。

從(3.39)、(3.42)及(3.44)式可得

$$\begin{bmatrix} \Psi^* \end{bmatrix} \begin{bmatrix} \ddots & & \\ & e^s & \\ & & \ddots \end{bmatrix} \{e\}_t = \begin{bmatrix} A_T \end{bmatrix} \begin{bmatrix} \Psi^* \end{bmatrix} \{e\}_t$$
(3.45)

因此,

$$[A_T] \{\Psi^*\}_j = e^{\lambda_j s \Delta t} \{\Psi^*\}_j$$
(3.46)

其中 $\{\Psi^*\}_j$ 為 $[\Psi^*]$ 之第*j*行向量。(3.46)式即表示 $\{\Psi^*\}_j$ 與 $e^{\lambda_j \Delta t}$ 分別為 $[A_T]$ 之第*j* 個 特徵向量及特徵值。因此,若能建立 $[A_T]$,然後求取其特徵值與特徵向量,吾人即 可直接計算系統之動態特性。細觀(3.40)式可發現 $[A_T]$ 與 $[G]^s$ 互為相似轉換;因此, 此兩矩陣之特徵值與特徵向量互為相關。利用[G]之特徵值與特徵向量,將[G]表示成

$$[G] = \left[\widetilde{\Psi}\right] [\Lambda] \left[\widetilde{\Psi}\right]^{-1} \tag{3.47}$$

其中 $[\widetilde{\Psi}]$ 為[G]之特徵向量矩陣, $[\Lambda]$ 為對角線矩陣,其元素為[G]之特徵值。因此

$$[G]^{s} = [\widetilde{\Psi}][\Lambda][\widetilde{\Psi}]^{-1}$$
(3.48)

利用 $[A_T]$ 與 $[G]^s$ 互為相似轉換之關係,得 $[A_T]$ 之特徵值與特徵向量為

$$e^{\lambda_j \Delta t} = \Lambda_j \tag{3.49a}$$

$$\left\{\Psi^*\right\}_i = \left[A_p\right] \left\{\tilde{\Psi}\right\}_i \tag{3.49b}$$

其中 Λ_j 為 $[\Lambda]$ 之(j, j)元素,即為[G]的第j個特徵值; $\{\tilde{\Psi}\}_j$ 為 $\{\tilde{\Psi}\}$ 之第j行,即為 [G]的第j個特徵向量。

由於式(3.49b)中,尚需建構 $[A_p]$;因此希望進一步簡化(3.49)式。從(3.33)和(3.35) 式可知 $\left[\left[\tilde{\Phi}_n^s\right] \left[\tilde{\Phi}_{n-1}^s\right] \cdots \left[\tilde{\Phi}_1^s\right]\right]$ 為 $[G]^{s+1}$ 之最下面 N_m 列矩陣。因此,依(3.48)式

$$\left[\begin{bmatrix} \widetilde{\Phi}_{n}^{s} \end{bmatrix} \begin{bmatrix} \widetilde{\Phi}_{n-1}^{s} \end{bmatrix} \dots \begin{bmatrix} \widetilde{\Phi}_{1}^{s} \end{bmatrix} = \left[\begin{bmatrix} \widetilde{\Psi}_{D} \end{bmatrix} \begin{bmatrix} \Lambda \end{bmatrix} \begin{bmatrix} \Psi \end{bmatrix}^{-1} \right]$$
(3.50)

其中 $\left[\tilde{\Psi}_{D}\right]$ 為 $\left[\tilde{\Psi}\right]$ 之最下面 *m* 列矩陣。依 $\left[A_{p}\right]$ 之定義((3.38)式),將(3.50)式代入

$$\begin{bmatrix} A_p \end{bmatrix} = \begin{bmatrix} [\widetilde{\Psi}_D] & [\Lambda]^{p_1+1} & [\Psi]^{-1} \\ [\widetilde{\Psi}_D] & [\Lambda]^{p_2+1} & [\Psi]^{-1} \\ [\widetilde{\Psi}_D] & [\Lambda]^{p_n+1} & [\Psi]^{-1} \end{bmatrix}$$
(3.51)

代回(3.49b)式得

$$\begin{bmatrix} \Psi^* \end{bmatrix} = \begin{bmatrix} A_p \end{bmatrix} \begin{bmatrix} \widetilde{\Psi}_D \end{bmatrix} = \begin{bmatrix} [\widetilde{\Psi}_D] & [\Lambda]^{p_1+1} \\ [\widetilde{\Psi}_D] & [\Lambda]^{p_2+1} \\ [\widetilde{\Psi}_D] & [\Lambda]^{p_n+1} \end{bmatrix}$$
(3.52)

從(3.41)、(3.43)和(3.52)式可得

$$\left\{\phi\right\}_{j} = c^{*}\left\{\tilde{\Psi}_{D}\right\}_{j} \tag{3.53}$$

其中 $\{\tilde{\Psi}_{D}\}_{j}$ 為 $[\tilde{\Psi}_{D}]$ 之第j行向量,c為一常數。因此,結構系統振動模態即為 $[\tilde{\Psi}_{D}]_{c}$

在求得[G]之特徵值後,計算結構系統之自然振動頻率與模態阻尼比如下: 令[G]之第k個特徵值為 $a_k + ib_k$,從(3.49a)式得

$$e^{\lambda_k \Delta t} = a_k + ib_k \tag{3.54}$$

令
$$\lambda_{k} = \alpha_{k} + i\beta_{k}$$
,代入上式得

$$\alpha_{k} = \frac{1}{2\Delta t} \ln(a_{k}^{2} + b_{k}^{2})$$
(3.55a)

$$\beta_k = \frac{1}{\Delta t} \tan^{-1} \left(\frac{b_k}{a_k} + \overline{l} \,\pi \right) \tag{3.55b}$$

其中 \overline{l} 為整數, β_k 為所謂之阻尼自然振動頻率。擬自然振動頻率則定義為

$$\tilde{\beta}_k = \sqrt{\alpha_k^2 + \beta_k^2} \tag{3.56}$$

而模態阻尼比為

$$\xi_k = \frac{-\alpha_k}{\tilde{\beta}_k} \tag{3.57}$$

當結構系統為比例阻尼系統時, \tilde{eta} 即為該系統真正之自然振動頻率。

從上述之推導,可知結構之動態特性完全直接得自於 AR 部分之係數矩陣;故 稱此法為直接識別法。步驟綜合敘述如下:

1.由 AR 部分之係數矩陣 $\left[\Phi_{i}\right]$ (i=1,2,...,n), 依(3.32)式建立傳遞矩陣[G]。

2.求[G]之特徵值及特徵向量。

第四章 微震量測及分析

4.1 微震儀器簡介及配置

本試驗採用日本 Tokyo Sokushin Co. Ltd.製造,型號 VSE-15D 之微震感應子 (為一速度計,見照片 4.1),歷時記錄系統則採用型號 SPC-35F 之攜帶用記錄器 (見照片 4.2),上述之儀器由國家地震工程研究中心所提供。一般在鋼筋混凝土 建築物週期之微震量測上,取樣頻率設定為 100Hz(即每秒記錄 100 筆資料),高 頻慮波(High Pass Filter)0.1Hz,微震感應子最大刻度分別訂為位移 0.01cm、速 度 0.1kine(1 kine=1 cm/sec)及加速度 10gal。

4.2 範例實驗分析簡介

本研究以台中遠東百貨公司(見照片 4.3 與 4.4)量測作為範例實驗(見照片 4.5 與 4.6),建築物樓高為九層。首先於建築物樓頂與九樓分別測量位移、速度 與加速度三項物理量,各樓層感應子配置如圖 4.1 及 4.2。每次測量時間為十分鐘, 取樣頻率為 100Hz,即每個感應子每次記錄六萬筆資料。經快速富利葉轉換後,所 得圖形可參見圖 4.3 至圖 4.10。在圖 4.3 及圖 4.4 中,我們將感應子 No.1 和 No.3 以及感應子 No.2 和 No.4 所得結果分別相減再進行快速富利葉轉換,可得到結構 物扭轉之振頻。由兩圖中皆可觀察到在對應頻率 1.61Hz 及 3.17Hz 之處有尖峰值,故可判斷結構物之扭轉基本振頻(第一振頻)為 1.61Hz,第二振頻為 3.17Hz。由圖 4.5 及圖 4.6 中可觀察到於樓頂幾何中心所記錄之速度歷時經快速富利葉轉換後, 在 X 方向(結構物平面尺寸較長之方向)上對應頻率 1.27Hz、1.61Hz 之處有尖峰值;在 Y 方向(結構物平面尺寸較短之方向)上對應頻率 2.29Hz、2.49Hz、3.17Hz 之處有尖峰值。因前述扭轉振頻分別為 1.61Hz 及 3.17Hz,故我們判定 X 方向上之基本振頻則取 2.29Hz、2.49Hz 之平均值為 2.39 Hz。在此須注意的是頻率小於 0.2 Hz 之尖峰因對應之週期大於四秒,一般結構物

除高樓外,週期較少達到四秒,故將其視為雜訊而忽略不計。

同樣對九樓量測資料進行分析,在圖 4.7 和圖 4.8 中分別將感應子 No.1 和 No.3 所得歷時相減以及 No.2 和 No.3 所得歷時相加(因兩顆感應子方向相反)再進行快速 富利葉轉換,可得到結構物扭轉之振頻。由兩圖中皆可知在對應頻率 1.61Hz 及 3.17Hz 之處有尖峰值,故再次驗證結構物之扭轉基本振頻為 1.61Hz,扭轉第二振 頻為 3.17Hz。由圖 4.9(感應子 No.3)及圖 4.10(感應子 No.4)中可觀察到:九樓所記 錄之速度歷時經快速富利葉轉換後,在 X 方向上對應頻率 1.17Hz、1.32Hz 之處有 尖峰值,故 X 方向上之基本振頻我們可取其平均值為 1.25Hz;在 Y 方向上對應頻 率 2.54Hz 處有尖峰值,故 Y 方向上之基本振頻為 2.54Hz。餘量測資料轉換後所得 之基本振動頻率與對應之週期可見表 4.1 與 4.2。

由上述分析節結果可知:微震量測在樓頂及九樓進行所得數據經快速富利葉 轉換後顯示其結果差異並不大,故本實驗其後皆於結構物樓頂進行微震量測;其 次,由各物理量量測(位移、速度、加速度)所得之結構物週期差異亦不大,又 因實驗微震感應子為速度計之一種,故本實驗其後分析均以速度作為依歸。

4.3 大台北地區實驗分析

本實驗總計完成大台北地區四十五棟鋼筋混凝土建築物之微震量測,量測日 期及建築物名稱與住址見表 4.3。建築物相關基本資料及平面圖詳見附錄 A。各建 築物之富利葉轉換圖形可見附錄 B。量測所得建築物之基本振頻經富利葉頻率域分 析及 ARV 時間分析之結果見表 4.4。表 4.5 為對應之結構物基本振動週期。在此值 得注意的是:利用快速富利葉轉換求取建築物週期,我們可從感應子擺設方向及 前述求取扭轉效應方法,判斷建築物 X 向、Y 向及扭轉之週期;而利用 ARV 時間 域分析方法,我們僅能得到建築物前數個模態的週期值,至於各週期值是對應至 何種模態(平移或扭轉),因實驗僅在建築物頂樓進行,故無法判斷對應之模態。 此外,由表 4.4 及表 4.5 得知:富利葉頻率域分析及 ARV 時間域分析所得之結構 物基本振頻大致相同,兩者可相互驗證;但在第五及第六棟建築物分析上,則出

現不一致之結果: ARV 時間分析所得之頻率在富利葉轉換圖上並未出現對應之尖 峰值,而在第七棟建築物分析上,ARV 時間分析所得之頻率雖在富利葉轉換圖上 有相對應之尖峰值出現,然偏向於高頻而非結構物之基本振頻。但配合結構物週 期經驗公式,結構物週期不太可能小於 0.5 秒,故應以富利葉分析所得結果較為準 確;另外在第 24、25、29 棟建築的 ARV 分析,僅能識別出兩個基本週期,因此 在 T₃ 或 f₃ 處為空白。

利用微震量測所得資料識別建築物之阻尼比可見表 4.6。在此我們採用半功率 法(Half-power method)【22】配合富利葉轉換圖以及直接識別法兩種方法計算建 築物阻尼比。但若富利葉轉換圖上兩尖峰值相隔間距不大時,因無法區別出對應 半功率之頻率是屬於何尖峰值,此時半功率法會失效,例如第 8、12、13、23、30、 36、44 棟建築物。而利用 ARV 方法所識別出來的阻尼比,有時可能小於 0.5%或 大於 10%,例如第 19、24、25、29、34 棟建築物,明顯不合理,故不列入表 4.6 中。

第五章 結果與討論

本計劃完成大台北地區四十五棟鋼筋混凝土建築物結構周期實地量測,並以 台中遠東百貨作為對照實驗;加上多次以台大校園內建築物作為實測練習對象, 已為微震量測建立一套標準測量程序;同時並建立頻率域(快速富利葉轉換)及 時間域(Auto-regressive vector Method,簡稱 ARV)兩種分析模式及相關軟體程式, 可對測量之建築物分析其振動周期及阻尼比。

由完成量測的建築物資料經頻率域分析(快速富利葉轉換,簡稱 FFT)及時 間域分析(Auto-regressive vector Method,簡稱 ARV)後,所得之建築物周期與規 範中經驗公式相比較(見表 4.5)可知:經驗公式所得之結構物周期有高估的現象, 約為實際量測值之 1.4 至 3.0 倍(平均為 2.1 倍)。文獻中相關研究亦有相似的看 法:鄭蘩與黃守本【1】建議公式與規範相較約低 25%;Goel and Chopra【4】之建 議公式與現行 UBC 周期公式相比較,在五層樓約低 14%、十層樓約低 6%;黃偉 倫【5】以民國 82 年至 85 年間在台灣地區之十九棟鋼筋混凝土建築物地震歷時資 料,識別及迴歸所得之結構物實際周期約為經驗公式之 42%。

利用本實驗 45 棟建築物微震量測的識別結果,可以建立建築物基本周期的迴歸公式。本研究迴歸著重於以規則型建築物為主,因此迴歸公式將分為以全部實驗資料點迴歸與僅以規則型建築物共 33 棟之資料點迴歸兩種。其中被認為平面不規則或立面不規則的建築物共 12 棟為:第6、8、22、23、26、30、31、35、36、39、41、45 棟建築。本研究將針對水平向最短基本周期(簡稱 *T_h*)與高度的關係、扭轉基本周期(簡稱 *T_h*)與高度的關係、水平向基本周期與高度和尺寸的關係四個方面來討論:

(1) 水平向最短基本周期與高度的關係:

水平向最短基本周期的意義為 X 向與 Y 向基本周期當中,較短的周期。此周期所對應的設計地震力較大,比較保守。本研究針對所有資料點

$$T_h = 0.0180h^{0.915} \tag{5.1}$$

上述 *T_h*為對應水平向中之最短基本周期,單位是秒;*h*為建築物高度,單位是公尺。近似式的迴歸判定係數 R²(coefficient of determination)為 0.826,將所有資料點、本研究迴歸所得的公式與國內規範中的經驗公式 之比較,可參見圖 5.1。

另外,僅針對規則型建築物所做的迴歸公式為

 $T_h = 0.0178h^{0.922} \tag{5.2}$

上述近似式的迴歸判定係數 R²為 0.834, 其資料點、迴歸所得的公式與國 內規範中的經驗公式之比較, 見圖 5.2。

由圖 5.1 或圖 5.2 均可以明顯看出,規範所提出的經驗公式遠比實際 的周期長許多,顯示規範公式的不保守。

(2) 扭轉基本周期與高度的關係:

根據所有資料點,扭轉基本周期與高度的迴歸公式為

$$T_t = 0.0235h^{0.775} \tag{5.3}$$

上述 T_t為扭轉基本周期,單位是秒; h 為建築物高度,單位是公尺。實驗 資料點與迴歸公式繪於圖 5.3,迴歸判定係數 R²為 0.543。另外僅針對規 則型建築物所迴歸的公式為

$$T_t = 0.0249 h^{0.757} \tag{5.4}$$

其迴歸判定係數 R² 為 0.586, 資料點與迴歸公式繪於圖 5.4。

根據上述較低的迴歸判定係數可知,扭轉基本周期與高度的相關性並 不高。

(3) 扭轉基本周期與高度的關係:

根據所有資料點,扭轉基本周期與水平基本周期的迴歸公式為

$$T_t = 0.731 T_h^{0.901} \tag{5.5}$$

或

$$T_t = 0.769T_h$$
 (5.6)

上述 T_t 為扭轉基本周期,單位是秒; T_h 為水平向最短基本周期,單位是 秒; h 為建築物高度,單位是公尺。其中(5.5)式的迴歸判定係數 R^2 為 0.745, 資料點與迴歸公式繪於圖 5.5; (5.6)式的迴歸判定係數 R^2 為 0.613,資料 點與迴歸公式繪於圖 5.6。另外,僅針對規則型建築物所迴歸的公式為

$$T_t = 0.696T_h^{0.849} \tag{5.7}$$

或

$$T_t = 0.740T_h$$
 (5.8)

其中(5.7)式的迴歸判定係數 R^2 為 0.751,資料點與迴歸公式繪於圖 5.7;(5.8) 式的迴歸判定係數 R^2 為 0.595,資料點與迴歸公式繪於圖 5.8。

上述(5.5)與(5.7)式的迴歸判定係數 R² 值與(5.3)或(5.4)式 R² 值相較, 顯示扭轉基本周期與水平基本周期的相關性較與高度的相關性高。其中 (5.6)與(5.8)式與 Satake and Yokota 【15】對鋼結構建築所提出的關係式 $T_t = 0.84T_h$ 相比,顯示國內鋼筋混凝土建築物的扭轉周期較短,這可能與 國內建築物磚造隔間牆較多有關。。

(4) 水平向基本周期與高度和尺寸的關係:

本研究迴歸水平向基本周期與高度和尺寸,希望能使耐震設計中地震力的考量更加嚴謹。根據規則的建築物所迴歸的公式為

 $T = 0.02754h^{0.9135}D^{-0.1244} \tag{5.9}$

上式中 T 為水平向之基本周期 (T_X 或 T_Y),單位是秒;h 為建築物高度, 單位是公尺;D 為對應該方向 (X 向或 Y 向)之建築物平面尺寸,單位是 公尺;T 與 h、D 的關係圖繪於圖 5.9。另外,(5.9)式迴歸判定係數 R^2 為 0.766,顯示 X 向、Y 向的基本周期與尺寸的相關程度是不可忽視的。與 (5.1)式相較,(5.9)式允許建築物的長向與短向擁有各自的水平向基本周期,可以使得設計地震力不會過於保守。將(5.9)式所估計的水平向周期、 實際量測的周期與規範中周期經驗公式併列於表 5.1 比較,可發現利用(5.9) 式所估計的周期與實際量測值,其 X 向與 Y 向的誤差僅分別為 14%與 19 %;而利用規範中的周期經驗公式僅能計算單一方向,且與實際量測結構物 X 向與 Y 向的周期誤差卻各為 109%與 90%,顯示尺寸為建築物周期 之重要影響因素。

此外,建築物的使用性質亦可能其影響基本周期,因此本研究將所量測的建築物依使用性質區分為兩類,分別為住宅建築以及廠辦(含住商混合)。同樣迴歸基本周期與高度的關係,可得:

(1) 水平向最短基本周期與高度的關係:

住宅 $T_h=0.0197h^{0.881}$ R²=0.857 (5.10)

商業 $T_h=0.0204h^{0.910}$ R²=0.742 (5.11)

(2) 扭轉基本周期與高度的關係:

住宅 $T_t=0.0210h^{0.794}$ R²=0.587 (5.12)

商業 $T_t=0.0751h^{0.585}$ R²=0.290 (5.13)

根據(5.10)-(5.13)的迴歸式當中,我們可以比較建築物使用狀況對於基本周期 的影響。以水平向最短基本周期而言,在高度 20 公尺至 80 公尺的建築物中,住 宅建築比商業建築短 12%至 15%;以扭轉基本周期而言,在高度 20 公尺到 80 公 尺的建築物中,住宅建築比商業建築短約 16%。這些差異主要是隔間牆加勁的效 應所造成的;一般而言,住宅建築的隔間牆遠比商業建築的隔間牆多出許多。

5.2 建議規範經驗公式

由 5.1 節所有實驗結果知道,規範中的周期經驗公式對周期過度高估,此可能 造成對設計地震力的低估。而建築物尺寸對周期的影響,也經由實驗資料的迴歸 分析而獲得證實。在此根據本研究所(5.1)式的迴歸結果,可得建築物高度 12 到 80 公尺,在95%信心範圍下,其周期之上限公式為

$$T_h = 0.0264 h^{0.911} \tag{5.14}$$

其下限公式為

$$T_h = 0.0123 h^{0.920} \tag{5.15}$$

上下限公式與資料點之關係圖可見圖 5.10。然因為規範必須保守,絕對不可以高 估地震力,必須建立下限公式作為耐震規範經驗公式之基準。

耐震設計之經驗公式乃是基於在地震達 80-100gal,非結構元件已經有部分損 毀之情形下的結構物基本周期。根據文獻【1】,此情況下之周期與微震所識別出 來的基本周期長約 30%-40%。因此建議耐震規範經驗公式應為(5.15)式的 1.4 倍, 也就是

$$T_{h} = 0.0172h^{0.920} \tag{5.16}$$

而現今規範之經驗公式與根據本研究實驗資料所建議的經驗公式相去甚遠。如圖 5.11 所示,高度 20 公尺到 80 公尺的建築物,現今規範經驗公式所預測之周期, 為本研究建議經驗公式所預測之周期的 2.43 倍到 1.95 倍。

第六章 結論

本計劃利用微震儀量測大台北地區四十五棟鋼筋混凝土建築物之基本振動周期,不僅為微震量測建立一套標準測量程序;同時並建立頻率域(快速富利葉轉換)及時間域(Auto-regressive vector Method,簡稱 ARV 法)兩種識別方法及相關軟體程式,可對測量之建築物識別其振動周期及阻尼比。

由量測的建築物資料經識別後所得之建築物周期與規範經驗公式相比較得 知:規範經驗公式所得之結構物周期有高估的現象,約為實際量測值之 1.4 至 3.0 倍(平均為 2.1 倍),可能造成對設計地震力的低估。

本研究針對建築物水平向最短基本周期與高度的關係、扭轉基本周期與高度 的關係、扭轉基本周期與水平向基本周期的關係、水平向基本周期與高度和尺寸 的關係四個方面進行迴歸,顯示出建築物水平向基本周期除與建築物高度相關 外,亦應考慮建築物平面尺度效應;而扭轉基本周期與水平向基本周期的關係則 較扭轉基本周期與高度的關係明顯。最後考慮耐震設計之經驗公式乃是基於非結 構元件已經有部分損毀之情形下的結構物基本周期,此情況下之周期與微震所識 別出來的基本周期長約 30%-40%。因此根據迴歸結果的 1.4 倍提出本文所建議的 水平向周期公式。

近年來建築物之設計、施工等方式不斷的改進,代表結構物特性的基本振動 周期也隨著改變。尤其美國對鋼筋混凝土結構周期公式之最新研究結果【1、4】 在中短周期之建築物有下降趨勢,為能反應結構物之真實狀態,周期公式應能根 據最新量測數據調整,以符合實際狀況。

參考文獻

- 1.鄭蘩、黃守本,「鋼筋混凝土結構之地震反應及周期公式研究」,結構工程,第十 四卷,第一期,三月(pp.41~57),1999。
- 2.鄭蘩、陳生金、鄒本駒,「中美日建築結構耐震設計實務之比較探討」,內政部建 築研究所專題研究計劃成果報告,1996。
- 3.UBC(Uniform Building Code), International Conference of Building Officials, Whittier, CA., 1997.
- 4.Goel, R. K. and Chopra, A. K., "Period Formulas for Moment-Resisting Frame Buildings", *Journal of Structural Engineering*, pp. 1454-1461, 1997.
- 5.黃偉倫,「建築物基本振動周期與尺寸迴歸分析」,國立成功大學土木工程研究所 碩士論文,1997。
- 6.蔡益超、洪振銘,「台北市鋼筋混凝土高樓動力特性測析及應用」,國立台灣大學 土木工程學系科學發展月刊,第八卷,第十二期,九月(pp.1097~1112),1980。
- 7.葉超雄、翁作新、杜振宗、羅俊雄,「台北市區微動顯著周期之量測與分析」,國 立臺灣大學地震工程研究中心,GEER,R70-1,六月,1981。
- 8.清華大學土木工程學系,香港理工學院土木及結構工程系,「香港幾棟高層建築 的脈動實業」,清華大學出版社,1985。
- 9.Asmussen, J. C., Brincker, R. and Rytter, A., "Ambient modal testing of the Vestvej bridge using random decrement", Proceedings of the International Modal Analysis Conference – IMAC 2, pp. 922-928, 1998.
- 10. Bao, Z. W. and Ko, J. M., "Determination of modal parameters of tall buildings with ambient vibration measurements", *International Journal of Analytical and Experimental Modal Analysis*, **6** (1), pp. 57-68, 1991.
- 11. Farrar, C. R. and James, G. H., "System identification from ambient vibration measurements on a bridge", *Journal of Sound and Vibration*, **205**(1), pp. 1-18, 1997.
- Boroschek, R. L., Yáñez, F. V., "Experiment verification of basic analytical assumptions used in the analysis of structural wall buildings", *Engineering Structures*, 22, pp.657-669, 2000
- Celebi, M., "Comparison of damping in buildings under low-amplitude and strong motions", *Journal of Wind Engineering and Industrial Aerodynamics*, **59**, pp.309-323, 1996
- Celebi, M., Liu, H. P., "Before and after retrofit response of a building during ambient and strong motions", *Journal of Wind Engineering and Industrial Aerodynamics*, 77&78, pp.259-268, 1998
- 15. Satake N. and Yokota, H., "Evaluation of vibration properties of high-rise steel buildings using data of vibration tests and earthquake observations", *Journal of Wind*

Engineering and Industrial Aerodynamics, 59(2-3), pp. 265-282, 1996

- 16. Littler, J. D., "Ambient vibration tests on long span suspension bridges", *Journal of Wind Engineering and Industrial Aerodynamics*, **42** (1-3), pp.1359-1370, 1992.
- 17. Yamaguchi, H, Takano, H., Ogasawara, M., Shimosato, T., Kato, M., Okada, J., "Identification of dynamic chararistics of the Tsurumi Tsubasa bridge by field vibration tests", *Structural Engineering and Earthquake Engineering, JSCE*, **14**(2), pp.215-228, 1997
- Loh, C. H., Wu, T. S., "Identification of Fel-Tsui arch dam from both ambient and seismic response data", *Soil Dynamics and Earthquake Engineering*, 15, pp.465-483, 1996
- 19. Bendat, J. S., Piersol, A. G., *Random Data Analysis and Measurement Procedures*, 2nd Ed., John Wiley & Sons, New York, 1991.
- 20. 楊永斌、高健章、呂良正、張國緯、吳世雄、杜偉民,「模板倒塌預警系統研究-模板支撐架縮小模型自然頻率量測及理論分析」,行政院勞委會勞工安全衛 生季刊,1995年12月。
- 21. 楊永斌、蔡益超、高健章、陳振華、黃炯憲,「西藏大橋動力及靜力性之監測 及分析」,內政部營建署專題研究期末報告,2000年1月。
- 22. Clough R. W., Penzien, J., *Dynamics of Structures*, 2nd Ed., McGraw-Hill, New York, 1993.

		fx (X-translation)	fy (Y-translation)	ft (Torsion)
	位移	1.25	2.54	1.61
樓頂量測	速度	1.27	2.39	1.61
結果(Hz)	(Hz) 加速度 1.32		2.54	1.61
	平均	1.28	2.47	1.61
	位移	1.25	2.59	1.61
九樓量測	速度	1.25	2.54	1.61
結果(Hz)	加速度	1.25	2.59	1.61
	平均	1.25	2.57	1.61
兩樓層 平均值		1.27	2.52	1.61

表 4.1 台中遠東百貨樓頂與九樓各項物理量富利葉轉換尖峰頻率

表 4.2 台中遠東百貨樓頂與九樓各項物理量所求得周期

		Tx (X-translation)	Ty (Y-translation)	Tt (Torsion)
	位移	0.800	0.394	0.621
樓頂量測	速度	0.787	0.418	0.621
結果(sec)	加速度	0.758	0.394	0.621
	平均	0.782	0.402	0.621
	位移	0.800	0.386	0.621
九樓量測結果	速度	0.800	0.394	0.621
(sec)	加速度	0.800	0.386	0.621
	平均	0.800	0.389	0.621
兩樓層 平均值		0.791	0.396	0.621

表 4.3 量測建築物名稱及量測日期

量測日期	建築物編號	建築物名稱
10.09/1999	1	達因大樓 (臺北市中山區中山北路三段 31 號)
11.06/1999	2	技嘉科技新店廠(台北縣新店市北新路左轉寶強路)
12.23/1999	3	敦品大樓 (臺北市松山區健康路 15 巷)
01.08/2000	4	台北市內湖區星雲街 150 巷 46 號之三
01.08/2000	5	高湯屋(臺北市北投區大業路與泉源路交叉口)
01.08/2000	6	淡海新市鎮龍騰社區(台北縣淡水鎮崁頂三路 149 號)
01.08/2000	7	台北縣淡水鎮新春街 67 號
01.15/2000	8	台灣省森林保育大樓(臺北市南海路植物園對面)
03.24/2000	9	文心大樓(台北市中山區民生東路三段 21 號)
03.27/2000	10	陽光天廈(台北縣汐止市龍安路 28 巷 20 號)
04.15/2000	11	臺北市忠誠路一段 62 號
04.15/2000	12	臺北市中山北路六段 252 巷 2 號
05.22/2000	13	台北市青島東路6之1號(軍公教住宅)
07.05/2000	14	台北市重慶北路二段 13 號(新齊家)
07.05/2000	15	台北市重慶北路二段 48 號(寶鑽)
07.06/2000	16	台北市信義路 3 段 116 號(富保工地)
07.06/2000	17	台北市吳興街 260 巷 19 弄 2 號(四四東村)
07.07/2000	18	台北縣新店市中央五街 80號
07.07/2000	19	台北縣新店市中興路一段 282 號
07.12/2000	20	台北縣中和市立德街 152 號對面(MIT 工地)
07.12/2000	21	台北縣中和市橋和路 320 號(親水河畔工地)
07.13/2000	22	台北市中山區敬業三路 162 巷 23 號(整治二期)
07.13/2000	23	台北市中山區敬業三路 162 巷 198 號(整治二期)
07.13/2000	24	台北市中山區樂群二路 144 號(整治二期)
07.19/2000	25	台北縣永和市國中路 104 巷 13 弄 1 號
07.19/2000	26	台北縣新店市中興路三段 219 之 1 號 (捷和創世紀)
07.19/2000	27	台北市木柵路二段 109 巷 100 弄 11 號(敦南莊子)
07.20/2000	28	台北市南港區重陽路 316 號
07.20/2000	29	台北市內湖區康寧路三段 75 巷 120 號(東湖國宅)
07.20/2000	30	台北市中山區承德路四段 31 號(北安社區國宅)
08.03/2000	31	台北市中山區錦州街 26 號
08.03/2000	32	臺北市大安區敦化南路一段 225 號(敦南 225)
08.03/2000	33	台北縣新店市達觀路 40 號
08.03/2000	34	台北縣新店市達觀路 41 號
08.04/2000	35	臺北市內湖區基湖路、堤頂大道交叉口(台安大樓)

化 1.3 重点是不伤口情及重点口病(模)	表 4.3	量測建築物名稱及量測日期(續)	
-----------------------	-------	-----------------	--

量測日期	建築物編號	建築物名稱
08.04/2000	36	臺北市內湖區瑞光路 513 巷 26 號 (華固奔騰)
08.04/2000	37	臺北市松山區延壽街8號(寶成河畔)
08.05/2000	38	臺北市木柵區指南路一段 37 號(皇家學苑)
08.05/2000	39	臺北市木柵區新光路 66 巷 2 弄 8 號(紫藤樓)
08.07/2000	40	臺北市大安區安和路二段 63 號(日光大廈)
08.07/2000	41	臺北市內湖區瑞光路 188 巷底(內湖捷豹)
08.08/2000	42	臺北市中正區思源街 12 號(健軍新村)
08.08/2000	43	臺北市內湖區民權東路六段 207號
08.08/2000	44	臺北市內湖區(內湖全毅)
08.08/2000	45	臺北市士林區延平北路 5 段 1 巷 36 號(延平社區國宅)

建筑物编辑	F	FT 識別結果	果	ARV 識別結果			
建采初潮流	f_X	f_Y	f_T	f_1	f_2	f_3	
1	2.026	0.830	2.539	0.825	2.026	2.996	
2	1.318	1.269	1.660	1.276	1.350	1.649	
3	1.367	1.074	1.367	1.074	1.341	1.374	
4	1.904	1.660	2.100	1.673	1.913	2.126	
5	1.709	1.855	2.734	3.392	3.664	5.440	
6	1.660	1.172	1.9043	2.352	3.224	3.799	
7	2.979	2.539	5.420	5.045	5.810	5.939	
8	1.709	1.464	2.344	1.461	1.702	2.304	
9	1.416	1.221	2.002	1.244	1.429	1.982	
10	0.879	0.830	1.563	0.829	0.883	1.546	
11	1.221	1.367	1.953	1.220	1.344	1.960	
12	3.027	2.734	3.662	2.759	2.999	3.830	
13	2.881	2.686	4.443	2.654	2.786	4.400	
14	1.709	1.807	3.418	1.698	1.820	3.408	
15	1.074	1.025	1.660	1.029	1.103	1.688	
16	1.807	1.855	3.223	1.761	1.849	3.235	
17	4.126	2.930	3.516	2.948	3.544	4.082	
18	3.320	4.102	4.956	3.304	4.022	5.299	
19	0.977	0.781	1.660	0.779	1.003	1.645	
20	2.490	2.344	2.686	2.323	2.439	2.690	
21	2.246	1.465	1.758	1.444	1.741	2.277	
22	2.246	2.100	2.979	2.085	2.235	2.972	
23	2.930	3.174	3.320	2.868	3.156	3.208	
24	2.686	2.441	3.418	2.668	3.450	-	
25	4.248	5.469	7.520	4.245	5.498	-	
26	0.977	0.830	1.221	0.800	0.972	1.208	
27	2.637	2.783	3.662	2.627	2.757	3.647	
28	1.221	1.318	2.295	1.206	1.312	2.291	
29	3.955	4.346	6.152	3.958	4.356	-	
30	2.320	2.588	3.809	2.461	2.599	3.817	

表 4.4 建築物各振態對應頻率(Hz)識別結果比較

建筑物编辑	F	FT 識別結果	果	ARV 識別結果			
建未10 詞前 50	f_X	f_Y	f_T	f_1	f_2	f_3	
31	1.758	1.367	1.953	1.384	1.777	1.958	
32	2.393	1.953	3.125	1.925	2.418	3.112	
33	1.660	1.465	2.051	1.483	1.672	2.067	
34	1.123	1.172	1.563	1.110	1.160	1.467	
35	1.465	1.807	2.295	1.451	1.804	2.271	
36	1.416	1.221	1.074	1.082	1.233	1.397	
37	1.611	1.367	1.953	1.389	1.558	1.939	
38	1.660	1.221	2.148	1.230	1.672	2.143	
39	1.660	1.221	2.100	1.194	1.638	2.100	
40	1.611	1.074	1.270	1.046	1.259	1.612	
41	1.563	1.807	2.539	1.558	1.752	2.465	
42	2.808	2.051	3.076	2.047	2.816	3.065	
43	2.295	2.197	3.125	2.173	2.320	3.128	
44	3.320	2.783	2.930	2.755	2.894	3.323	
45	2.295	2.393	4.248	2.271	2.399	4.263	

表 4.4 建築物各振態對應頻率(Hz)識別結果比較 (續)

建筑物编辑	經驗公式	FF	T 識別結	果	ARV 識別結果			
建未初酬加	お生き数ムトレ	T_X	T_Y	T_t	T_1	T_2	T_3	
1	1.109	0.494	1.205	0.394	1.212	0.494	0.334	
2	1.150	0.759	0.788	0.602	0.784	0.741	0.606	
3	1.380	0.732	0.931	0.732	0.931	0.746	0.728	
4	1.280	0.505	0.602	0.476	0.598	0.523	0.470	
5	1.503	0.585	0.539	0.366	0.295	0.273	0.184	
6	1.437	0.602	0.853	0.525	0.425	0.310	0.263	
7	0.767	0.336	0.394	0.185	0.198	0.172	0.168	
8	1.293	0.585	0.683	0.427	0.684	0.588	0.434	
9	0.993	0.706	0.819	0.500	0.804	0.700	0.505	
10	1.909	1.138	1.205	0.640	1.206	1.133	0.647	
11	1.118	0.819	0.732	0.512	0.820	0.744	0.510	
12	0.599	0.330	0.366	0.273	0.362	0.333	0.261	
13	0.825	0.347	0.372	0.225	0.377	0.359	0.227	
14	1.155	0.585	0.553	0.293	0.589	0.549	0.293	
15	1.500	0.931	0.976	0.602	0.972	0.907	0.592	
16	1.202	0.553	0.539	0.310	0.568	0.541	0.309	
17	0.549	0.242	0.341	0.284	0.339	0.282	0.245	
18	0.684	0.301	0.244	0.202	0.303	0.249	0.189	
19	1.672	1.024	1.280	0.602	1.284	0.997	0.608	
20	0.799	0.402	0.427	0.372	0.430	0.410	0.372	
21	1.031	0.445	0.683	0.569	0.693	0.574	0.439	
22	1.035	0.445	0.476	0.336	0.480	0.447	0.336	
23	0.763	0.341	0.315	0.301	0.349	0.317	0.312	
24	0.899	0.372	0.410	0.293	0.375	0.290	-	
25	0.466	0.235	0.183	0.133	0.236	0.182	-	
26	1.784	1.024	1.205	0.819	1.250	1.029	0.828	
27	0.886	0.379	0.359	0.273	0.381	0.363	0.274	
28	1.492	0.819	0.759	0.436	0.829	0.762	0.436	
29	0.696	0.253	0.230	0.163	0.253	0.230	-	
30	0.923	0.431	0.386	0.263	0.406	0.385	0.262	

表 4.5 建築物各振態周期(sec)識別結果比較

建筑物编辑	經驗公式	FF	T 識別結	果	ARV 識別結果			
建未初酬加	が土河太 ム トレ	T_X	T_Y	T_t	T_1	T_2	T_3	
31	1.155	0.569	0.732	0.512	0.723	0.563	0.511	
32	0.932	0.418	0.512	0.320	0.519	0.414	0.321	
33	1.266	0.602	0.683	0.488	0.674	0.598	0.484	
34	1.570	0.890	0.853	0.640	0.901	0.862	0.682	
35	1.318	0.683	0.553	0.436	0.689	0.554	0.440	
36	1.069	0.706	0.819	0.931	0.924	0.811	0.716	
37	1.288	0.621	0.732	0.512	0.720	0.642	0.516	
38	1.508	0.602	0.819	0.466	0.813	0.598	0.467	
39	1.254	0.602	0.819	0.476	0.838	0.611	0.476	
40	1.003	0.621	0.931	0.787	0.956	0.794	0.620	
41	1.134	0.640	0.553	0.394	0.642	0.571	0.406	
42	0.954	0.356	0.488	0.325	0.489	0.355	0.326	
43	1.034	0.436	0.455	0.320	0.460	0.431	0.320	
44	0.771	0.301	0.359	0.341	0.363	0.346	0.301	
45	1.079	0.436	0.418	0.235	0.440	0.417	0.235	

表 4.5 建築物各振態周期(sec)識別結果比較(續)

建筑物编辑	F	FT 識別結果	果	ARV 識別結果			
建采初栅弧	ξx	ξ _Y	ξt	ξ1	ξ2	ξ3	
1	2.41	2.94	2.42	2.76	3.14	3.15	
2	5.45	5.66	4.35	2.16	3.13	2.19	
3	5.26	6.67	5.26	6.73	1.91	2.56	
4	2.99	3.64	2.75	2.46	2.32	1.97	
5	3.54	3.58	2.15	1.30	1.06	0.78	
6	4.17	3.84	2.85	1.35	1.74	0.93	
7	2.51	3.24	4.15	2.07	5.46	2.13	
8	-	5.18	3.85	5.48	5.16	3.82	
9	5.02	4.89	3.73	1.57	1.56	2.36	
10	5.44	6.07	3.20	4.94	5.30	2.04	
11	4.34	5.52	2.67	5.73	4.05	2.44	
12	-	5.72	-	5.40	7.93	3.44	
13	-	4.19	3.48	3.40	4.50	3.61	
14	4.34	4.20	4.68	2.00	3.33	3.14	
15	6.01	6.18	3.51	2.38	2.42	2.70	
16	5.46	6.77	2.81	2.74	2.51	2.27	
17	2.09	4.46	4.70	2.46	3.16	2.91	
18	4.21	4.84	2.63	3.21	5.89	2.19	
19	5.05	7.50	3.60	-	0.97	0.93	
20	7.54	4.39	4.68	4.93	6.64	4.58	
21	6.48	4.52	3.44	3.94	4.56	3.12	
22	7.17	3.81	1.96	3.92	5.06	1.86	
23	-	2.95	4.04	2.30	2.86	2.72	
24	4.90	6.01	2.46	4.22	1.57	-	
25	7.03	4.97	2.09	3.68	-	-	
26	4.99	6.55	3.97	3.01	2.72	2.70	
27	2.33	2.23	1.79	1.31	1.04	1.61	
28	5.21	4.62	2.67	2.70	2.55	1.17	
29	2.20	1.96	1.75	1.97	1.51	-	
30	-	5.32	2.13	6.97	6.38	1.57	

表 4.6 建築物阻尼比(%)識別結果比較

建筑物编辑	F	FT 識別結果	果	ARV 識別結果				
建未10 詞前 5元	ξx	ξ _Y	ξt	ξ1	ξ2	ξ3		
31	4.20	4.48	4.73	2.22	3.26	1.55		
32	5.78	3.12	1.90	1.06	6.68	1.36		
33	3.44	3.84	2.50	2.37	3.47	2.76		
34	4.77	4.66	3.22	1.24	1.18	-		
35	4.93	4.05	3.91	3.05	5.25	2.94		
36	6.43	-	6.22	2.00	3.79	1.85		
37	5.03	5.04	3.82	1.98	5.78	1.29		
38	3.43	4.07	2.25	1.41	2.05	2.65		
39	3.49	4.77	2.58	1.44	1.04	1.55		
40	4.10	5.38	4.48	3.55	1.69	2.56		
41	4.94	5.07	5.58	3.73	4.71	4.68		
42	3.48	3.31	4.18	1.76	2.78	2.16		
43	3.12	3.25	2.61	1.19	1.14	1.22		
44	-	5.19	-	4.13	4.95	1.97		
45	6.00	5.72	2.50	6.12	4.59	1.32		

表 4.6 建築物阻尼比(%)識別結果比較(續)

	實際量	量測值	規範經驗公式				(5.9)迴歸公式			
编號	T_x	T_y	T _x (割	吴差)	T _y (計	≹差)	T _x (誤差) T _y (誤差)			吴差)
1	0.494	1.205	1.109	125%	1.109	8%	0.500	1%	0.591	51%
2	0.759	0.788	1.150	51%	1.150	46%	0.521	31%	0.567	28%
3	0.732	0.931	1.380	89%	1.380	48%	0.659	10%	0.711	24%
4	0.505	0.602	1.280	153%	1.280	113%	0.626	24%	0.627	4%
5	0.585	0.539	1.503	157%	1.503	179%	0.769	31%	0.801	49%
7	0.336	0.394	0.767	128%	0.767	95%	0.356	6%	0.385	2%
9	0.706	0.819	0.993	41%	0.993	21%	0.460	35%	0.495	40%
10	1.138	1.205	1.909	68%	1.909	58%	1.030	9%	1.046	13%
11	0.819	0.732	1.118	37%	1.118	53%	0.528	35%	0.585	20%
12	0.330	0.366	0.599	81%	0.599	64%	0.253	23%	0.283	23%
13	0.347	0.372	0.825	138%	0.825	121%	0.367	6%	0.381	2%
14	0.585	0.553	1.155	97%	1.155	109%	0.573	2%	0.553	7%
15	0.931	0.976	1.500	61%	1.500	54%	0.769	17%	0.976	19%
16	0.553	0.539	1.202	117%	1.202	123%	0.584	6%	0.539	15%
17	0.242	0.341	0.549	127%	0.549	61%	0.202	17%	0.341	25%
18	0.301	0.244	0.684	127%	0.684	180%	0.290	4%	0.244	36%
19	1.024	1.280	1.672	63%	1.672	31%	0.902	12%	1.280	27%
20	0.402	0.427	0.799	99%	0.799	87%	0.307	24%	0.427	22%
21	0.445	0.683	1.031	132%	1.031	51%	0.448	1%	0.683	19%
24	0.372	0.410	0.899	142%	0.899	119%	0.408	10%	0.410	5%
25	0.235	0.183	0.466	98%	0.466	155%	0.202	14%	0.183	10%
27	0.379	0.359	0.886	134%	0.886	147%	0.421	11%	0.359	19%
28	0.819	0.759	1.492	82%	1.492	97%	0.775	5%	0.759	2%
29	0.253	0.230	0.696	175%	0.696	202%	0.290	14%	0.230	45%
32	0.418	0.512	0.932	123%	0.932	82%	0.426	2%	0.512	13%
33	0.602	0.683	1.266	110%	1.266	85%	0.631	5%	0.683	6%
34	0.890	0.853	1.570	76%	1.570	84%	0.813	9%	0.853	4%
37	0.621	0.732	1.288	107%	1.288	76%	0.600	3%	0.732	9%
38	0.602	0.819	1.508	151%	1.508	84%	0.774	29%	0.819	1%
40	0.621	0.931	1.003	62%	1.003	8%	0.448	28%	0.931	49%
42	0.356	0.488	0.954	168%	0.954	96%	0.412	16%	0.488	6%
43	0.436	0.455	1.034	137%	1.034	127%	0.467	7%	0.455	20%
44	0.301	0.359	0.771	156%	0.771	115%	0.302	0%	0.359	7%
平均				109%		90%		14%		19%

表 5.1 迴歸公式(5.9)之估計周期、實際周期與現今規範經驗公式周期之比較

圖 4.1 遠東百貨頂樓感應子佈置示意圖

圖 4.2 遠東百貨九樓感應子佈置示意圖

圖 4.3 遠百頂樓扭轉之富利葉振幅圖

圖 4.5 遠百頂樓 X 向富利葉振幅圖

圖 4.6 遠百頂樓 Y 向富利葉振幅圖

圖 4.7 遠百九樓扭轉之富利葉振幅圖 圖 4.8 遠百九樓扭轉之富利葉振幅圖

圖 4.9 九樓 X 向速度之富利葉振幅圖 圖 4.10 九樓 Y 向速度之富利葉振幅圖

圖 5.1 所有建築物水平向最短基本周期與高度之關係

圖 5.2 規則建築物水平向最短基本周期與高度之關係

圖 5.3 所有建築物扭轉基本周期與高度之關係

圖 5.4 規則建築物扭轉基本周期與高度之關係

圖 5.5 所有建築物扭轉基本周期與水平向最短基本周期之關係(一)

圖 5.6 所有建築物扭轉基本周期與水平向最短基本周期之關係(二)

圖 5.7 規則建築物扭轉基本周期與水平向最短基本周期之關係(一)

圖 5.8 規則建築物扭轉基本周期與水平向最短基本周期之關係(二)

圖 5.9 建築物水平向基本周期與平面尺寸、高度的關係圖

圖 5.10 建築物水平向周期與高度關係之上限公式與下限公式

圖 5.11 本文建議之經驗公式與現今規範之經驗公式比較圖

照片 4.1 微震感應子 照片 4.2 微震記錄器

照片 4.3 遠東百貨南面(靠中正路) 照片 4.4 遠東百貨西面(靠自由路)

照片 4.5 遠東百貨頂樓微震量測佈線圖 照片 4.6 遠東百貨頂樓微震量測圖

建築物基本資料 1 測量日期: 1999,10,09 2 建築物編號: 3 建築物名稱: 達因大樓 1 4 建築物地點: 台北市中山區中山北路三段三十一號 高:39.8 5 平面幾何(公尺): 長:42.66 寬:11 地上:11 地下:3 6 建築物層數: 屋突:1 學校 混合 7 建築物用途: 商業 住宅 其他 8 剪力牆有無: 有 無 9 隔間牆有無: 無 有 T = $0.07h^{(3/4)}$ = 1.109 秒 (經驗公式) 秒 T_y= 秒 10 建築物振動週期 (ETABS) $T_x =$ $T_{y}=1.205$ $T_x = 0.494$ 秒 秒 (實驗結果) 11 建築物平面、剪力牆及感測器擺設示意圖: 11m ≻ 42.66m 12 建築物照片:

表 A.1	建築物基本資料及量測結果表
-------	---------------

表 A.2 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	1999,12,10		
2 建築物編號:	2	3 建築物名稱:	技嘉科技新店廠
4 建築物地點:	台北縣新店市北新路		
5 平面幾何(公尺):	長:43	寬:21.8	高:41.75
6 建築物層數:	地上:10	地下:3	屋突:2
7 建築物用途:	商業 住宅	學校 廠辦	混合 其他
8 剪力牆有無:	有無	9 隔間牆有無:	有無
	(經驗公式)	$T = 0.07h^{(3/4)} = 1.150$ A	少
10 建築物振動週期	(ETABS)	$T_x = 1.459$ 秒	T _y =1.366 秒
	(實驗結果)	$T_x = 0.759$ 秒	T _y =0.788 秒
	4.3m 4 ♣ ⁵ 屋 突 43m		21.8m
12 建杂初照斤:			

表 A.3 建築物基本資料及量測結果表

建築物基本	資料								
1 測量日期	:	1999,1	12,23						
2 建築物編	號:	3			3 建築物	勿名稱	:	敦品大樓	
4 建築物地	點:	臺北市	「卜松山	」區健康調	路15巷			•	
5 平面幾何((公尺):	長:3	9.35		寬:21.	27		高:53.26	
6 建築物層	數:	地上:	: 17		地下:			屋突:1	
7 建築物用	途:	商う	É	住宅	學校	混乱		其他	
8 剪力牆有約	無:	有		無	9 隔間淵	嗇有無	•	有	無
		(經驗	魚公士	じ)	T=1.38	0秒		·	
10 建築物振	動週期	(ETA	ABS))	$T_x =$		秒	T _y =	秒
		(實驗	魚結果	₹)	$T_{x} = 0.7$	32	秒	$T_{y} = 0.931$	秒
11 建築物平	面、剪力	牆及感	測器	擺設示意	5圖:			•	
			1	←4				1 ▲	
	↑ 1	5.48n	n	† 3			2		
			*	5 					
		'						4	
								21.27m	
				屋突					
				39.35m				1	
12 建築物照	(片:								
			-		20	3			
)	-	-				
		-	-		-				
		-	11.10	A F E	1				
		1	F	and the second	-	1			
			-		-	2			
		100	22 AL	s IS set of		al and a second			

表 A.4 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	2000,01,08		
2 建築物編號:	4	3建築物名稱:	大湖優境
4 建築物地點:	台北市內湖區星雲街	5 150 巷 46 號之三	•
5 平面幾何(公尺):	長:28.14	寬:27.84	高:48.15
6 建築物層數:	地上:13	地下:1	屋突: 1
7 建築物用途:	商業 住宅	學校 混合	
8 剪力牆有無:	有無	9 隔間牆有無:	有無
	(經驗公式)	$T = 0.07 h^{(3/4)} = 1.280 $	少
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒
	(實驗結果)	T _x =0.505 秒	T _y =0.602 秒
12 建築物照片:	■ ■ ■ ■ ■ ■ ■ ■	10.0m 10.0m 7.64m ↓ 10.2m ↓ 10.2m	

表 A.5 建築物基本資料及量測結果表

建築物基本資料				
1 測量日期:	2000,01,08			
2 建築物編號:	5	3 建築物名稱:	高湯屋	
4 建築物地點:	台北市北投區北投力	大業路與泉源路交叉		
5 平面幾何(公尺):	長:26.15	寬:18.86	高:59.7	
6 建築物層數:	地上:17	地下:3	屋突:3	
7 建築物用途:	商業 住宅	學校 混合	其他	
8 剪力牆有無:	有無	9 隔間牆有無:	有無	
	(經驗公式)	$T = 0.07 h^{(3/4)} = 1.503 $	少	
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒	
	(實驗結果)	$T_x = 0.585$ 秒	T _y =0.539 秒	
11 建築物平面、剪刀				
$\begin{array}{c} 6.8m \\ 6.8m \\ 7.82m \\ 3.98m \end{array}$				
12 建築物照片:				

表 A.6 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	2000,01,08		
2 建築物編號:	6	3建築物名稱:	龍騰大樓
4 建築物地點:	淡海新市鎮龍騰社區		 頂三路 149 號)
5 平面幾何(公尺):	長:	寬:	高:56.2
6 建築物層數:	地上:18	地下:3	屋突:1
7 建築物用途:	商業 住宅	學校 混合	 其他
8 剪力牆有無:	有無	9 隔間牆有無:	有無
	(經驗公式)	$T = 0.07h^{(3/4)} = 1.437$	秒
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒
	(實驗結果)	$T_x = 0.602$ 秒	T _v =0.853 秒
	<u>下</u> 牆乃咸測器擺設示音	<u>」 ~~</u> 5 周・	, ,
□□ 建木彻干画、 577	加汉芯炽矿能攻小志		
	2	95 45m	
			► □ ⊼
	< 13.2m		
	屋突		9.15m
	5	1 5.3m	4
г		<u>_</u> 2	$\uparrow \downarrow$
12 建築物照片:			
	12/2/	C. In	
	1000	2.16	
	A P		
		1 N N	
		10 M	
		12 28	
	THE	The set	
		Tim tim	
	# 11	TATA A	
	There was	- • • • • • • • • •	
	B. SPAR	and the second	

表 A.7 建築物基本資料及量測結果表

表 A.8 建築物基本資料及量測結果表

建築物基本資料						
1 測量日期:	2000,01,23					
2 建築物編號:	8	3建築物名稱:	林業試驗所森林保育大樓			
4 建築物地點:	台北市三元街與南	海路口				
5 平面幾何(公尺):	長:47.3	寬:24.4	高:48.85			
6建築物層數:	地上:13	地下:2	屋突:2			
7 建築物用途:	商業住宅	學校 混合	其他 (辦公)			
8 剪力牆有無:	有無	9 隔間牆有無:	有無			
	(經驗公式)	$T = 0.07h^{(3/4)} = 1.293$	 秒			
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒			
	(實驗結果)	T _x = 0.585 秒	T _y = 0.683 秒			
11 建築物平面、剪力牆及感測器擺設示意圖: 11 建築物平面、剪力牆及感測器擺設示意圖: 12 建築物照片:						

建築物基本資料							
1 測量日期:	2000,03,24						
2 建築物編號:	9	3建築物名稱:	文心大樓				
4 建築物地點:	台北市中山區民生勇						
5 平面幾何(公尺):	長:28	寬:15.6	高:34.35				
6 建築物層數:	地上:12	地下:2	屋突:2				
7 建築物用途:	商業住宅	學校 混合	其他(辦公)				
8 剪力牆有無:	有無	9 隔間牆有無:	有無				
	(經驗公式)	T =0.07h ^(3/4) =0.993 ₹	少				
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒				
	(實驗結果)	T _x = 0.706 秒	T _v =0.819 秒				
11 建築物平面、剪力牆及感測器擺設示意圖: 6m 6m 7m 7m 15.6m 7m 13.5m 13.5m 12 建築物照片 :							

表 A.10 建築物基本資料及量測結果表

建築物基本資料							
1 測量日期:	2000,03,27	2000,03,27					
2 建築物編號:	10		3 建築物名	3稱:	陽光天廈		
4 建築物地點:	台北縣汐⊥	台北縣汐止市龍安路 28 巷 20 號					
5 平面幾何(公尺):	長:25.8		寬:22.9		高:82.08		
6 建築物層數:	地上:27		地下:4		屋突:2		
7 建築物用途:	商業	住宅	學校	混合	其他 (辦:	公)	
8 剪力牆有無:	有	無	9 隔間牆有	ョ無:	有	無	
	(經驗公五	ť)	$T = 0.07h^{(3/2)}$	⁽⁴⁾ =1.909 利	少 少		
10 建築物振動週期	(ETABS))	$T_x =$	秒	T _y =	秒	
	(實驗結界	艮)	$T_x = 1.138$	秒	T _y = 1.205	秒	
	(實驗結界	艮)	$T_x = 1.138$	秒	T _y = 1.205	秒	

11 建築物平面、剪力牆及感測器擺設示意圖:

12 建築物照片:

表 A.11 建築物基本資料及量測結果表

建築物基本資料							
1 測量日期:	2000,04,15						
2 建築物編號:	11	3 建築物名稱:					
4 建築物地點:	台北市忠誠路一段。	62 號	U				
5 平面幾何(公尺):	長:29.5	寬:13	高:40.23				
6 建築物層數:	地上:13	地下:3	屋突:1				
7 建築物用途:	商業 住宅	· 學校 混合	其他 (辦公)				
8 剪力牆有無:	有無	9 隔間牆有無:	有無				
	(經驗公式)	$T = 0.07h^{(3/4)} = 1.118$	少				
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒				
	(實驗結果)	T _x = 0.819 秒	T _y =0.732 秒				
11 建築物平面、剪力		5圖:	-				
	11 m 7.5	m 11 m	I				
 	►						
	3 🖛						
3.1 m			6 m				
6.8 m	1 ৰ						
•	▼ 2		▼ 5				
3.1 m	4 👞						
9	.8 m						
12 建築物照片:							
	0 m 10	1. 27 M					
		122					
	A A	13					
	A BE	13					
	asi	13					
	and the second s	Sec. B.					
	書言葉です						
	and the second	and the sea					
	the second s						

表 A.12 建築物基本資料及量測結果表

建築物基本資料				
1 測量日期:	2000,04,15			
2 建築物編號:	12	3建築物名稱:		
4 建築物地點:	台北市中山北路六戶	员 252 巷 2 號		
5 平面幾何(公尺):	長:24.2	寬:9.85	Ē	高:17.50
6 建築物層數:	地上:7	地下:2	<u>J</u>	室突: 2
7 建築物用途:	商業 住宅	學校 混合		其他(辦公)
8 剪力牆有無:	有無	9 隔間牆有無:		有 無
	(經驗公式)	$T = 0.07h^{(3/4)} = 0.59$	99秒	
10 建築物振動週期	(ETABS)	T _x = 利)	Γ _y = 秒
	(實驗結果)	$T_x = 0.330$	秒	Γ _y = 0.336 秒
11 建築物平面、剪力	 牆及感測器擺設示意	[圖:	1	-
11.35 m	1 ← 4 ← 12.9 m	5 4.1 m 屋突		2.1 m 2.1 m 3.2 m 4.55 m
12 建築物照片:	20.5 m		2.5 n	n ' 1.2 m

表 A.13 建築物基本資料及量測結果表

建築物基本資料					
1 測量日期:	2000,05,22				
2 建築物編號:	13	3建築物名稱:			
4 建築物地點:	台北市青島東路 6 🕇	こ1號(軍公教信	主宅)	
5 平面幾何(公尺):	長:28.1	寬:20.8		高:26.8	
6 建築物層數:	地上:9	地下:1		屋突: 1	
7 建築物用途:	商業住宅	學校 混合		其他 (辦公))
8 剪力牆有無:	有無	9 隔間牆有無:		有無	ť
	(經驗公式)	$T = 0.07h^{(3/4)} = 0.82$	25 利	۶ ا	
10 建築物振動週期	(ETABS)	$T_x = \mathbf{N}$	少	T _y =	秒
	(實驗結果)	$T_x = 0.347$	秒	$T_{y} = 0.372$	秒
11 建築物平面、剪力	牆及感測器擺設示意	L		, , , , , , , , , , , , , , , , , , ,	
		2			
8 m					
				14.9 m	
5 m	4				
0.C			ŧ		
	<u> </u> 3 	<u> </u>	1	<u> </u>	
7.2 m	6				
(.2 m					
	1.36	m . L.	ب		
	4.85 m 8.52 m	8.52 m 4.8	► 35 m		
٦ - ا	14.05 m				
12 建築物照片:					

表 A.14 建築物基本資料及量測結果表

建築物基本資料				
1測量日期:	2000.07.05			
<u>2</u> 建築物編號:	14	3建築物名稱:	新齊家	
4 建築物地點:	台北市重慶北路二段	 殳 13 號		
5 平面幾何(公尺):	長:21.2	寬:16.6	高:42.0	
6建築物層數:	地上:12	地下:2	屋突:2	
7 建築物用途:	商業住宅	學校 混合	 其他(辦公)	
8 剪力牆有無:	有無	9 隔間牆有無:	有無	
	(經驗公式)	$T = 0.07 h^{(3/4)} = 1.155$	吵	
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒	
	(實驗結果)	T _x = 0.585 秒	T _y =0.553 秒	
11 建築物平面、剪力	牆及感測器擺設示意	· 〔圖:		
		21.2 m		
	/ /.4	6.4 7.4 m	>	
1 1	↑	38.		
8	.3	5 m		
r	n			
16.6		10.6 m	→	
m	<u> </u>	5 m 1	4↓	
		2 4.9 5		
		屋突 <u>3</u> ▼ ^m		
		3.3		
▼ _		10.1 m		
12 建采彻照力,				

表 A.15 建築物基本資料及量測結果表

1 測量日期: 2000,07,05 2 建築物編號: 15 3 建築物名稱:) 算鑽 4 建築物地點: 台北市重慶北路二段 48 號 () 高: 59,53 5 平面幾何(公尺): 長: 25.6 寬: 20.3 高: 59,53 6 建築物層數: 地上:17 地下:3 屋突:1 7 建築物用途: 商業 住宅 學校 混合 其他() 辦公) () 8 剪力牆有無: 有 無 () 經驗公式) () 7-0.07h ⁽³⁴⁾ =1.500 秒 10 建築物振動週期 (() () () () () () () () () () () () ()	建築物基本資料			
2 建築物編號: 15 3 建築物名稱: 曹鑚 4 建築物地點: 台北市重慶北路二段 48 號 高: 59.53 6 建築物層數: 地上:17 地下:3 屋突:1 7 建築物用途: 商業 住宅 學校 混合 其他(辦公) 8 剪力牆有無: 有 無 9 隔間牆有無: 有 無 10 建築物振動週期 有 無 9 隔間牆有無: 有 無 (經驗公式) T =0.07h ⁽³⁴⁾ =1.500 秒 10 建築物振動週期 (ETABS) T _x = 砂 T _y = 秒 T _y = 0.976 秒 11 建築物平面、剪力牆及感測器擺設示意圖: 25.6 m 3.6 m 7.15 m 20.3 m	1 測量日期:	2000,07,05		
4 建築物地點: 台北市重慶北路二段 48 號 5 平面幾何(公尺): 長: 25.6 寬: 20.3 高: 59.53 6 建築物層數: 地上: 17 地下:3 屋突:1 7 建築物用途: 商業 住宅 學校 混合 其他(辦公) 8 剪力牆有無: 有 無 9 隔間牆有無: 有 無 9 時間牆有無: 有 無 9 隔間牆有無: 有 無 (經驗公式) T =0.07h ⁽³⁴⁾ =1.500 秒 10 建築物振動週期 (ETABS) T _x = 秒 T _y = 秒 (實驗結果) T _x = 0.931 秒 T _y =0.976 11 建築物平面、剪力牆及感測器擺設示意圖: 20.3 m 20.3 m 25.6 m 20.3 m 12 建築物照片: 12 建築物照片: 12 建築物照片: 12 建築物照片:	2 建築物編號:	15	3建築物名稱:	寶鑽
5 平面幾何(公尺): 長:25.6 寬:20.3 高:59.53 6 建築物層数: 地上:17 地下:3 屋突:1 7 建築物用途: 商業 住宅 學校 混合 其他(辦公) 8 剪力牆有無: 有 無 9 隔間牆有無: 有 無 10 建築物振動週期 (ETABS) $T_x = \mathcal{W}$ $T_y = \mathcal{W}$ (實驗結果) $T_x = 0.931$ \mathcal{W} $T_y = 0.976$ 11 建築物平面、剪力牆及感測器擺設示意圖: 20.3 m 2.7 m 3.6 m 20.3 m 2.7 m 2.7 m 3.6 m 12 建築物照片: 12 建築物照片: 12.8 m 12.8 m	4 建築物地點:	台北市重慶北路二戶	ۍ 2 48 號	
6 建築物層数: 地上:17 地下:3 屋突:1 7 建築物用途: 商業 住宅 學校 混合 其他(辦公) 8 剪力牆有無: 有 無 9 隔間牆有無: 有 無 (經驗公式) $T = 0.07h^{(3/4)} = 1.500$ 秒 10 建築物振動週期 (ETABS) $T_x = $ 秒 $T_y = $ 秒 (實驗結果) $T_x = 0.931$ 秒 $T_y = 0.976$ 秒 11 建築物平面、剪力牆及感測器擺設示意圖: 25.6 m 3.6 m 20.3 m (Image: Comparison of the second of t	5 平面幾何(公尺):	長:25.6	寬:20.3	高:59.53
7 建築物用途: 商業 住宅 學校 混合 其他(辦公) 8 剪力牆有無: 有 無 9 隔間牆有無: 有 無 10 建築物振動週期 (經驗公式) $T = 0.07h^{(3:4)} = 1.500$ 秒 (ETABS) $T_x = \frac{10}{7}$ $T_y = \frac{10}{7}$ 10 建築物振動週期 (ETABS) $T_x = \frac{10}{10}$ $T_y = 0.976$ 秒 11 建築物平面、剪力牆及感測器擺設示意圖: 25.6 m 7.15 m 3.6 m 20.3 m 27 m 27 m 9.55 m 20.3 m 27 m 27 m 9.55 m 12 建築物照片: 12 建築物照片: 12 建築物照片: 12 建築物照片:	6 建築物層數:	地上:17	地下:3	屋突:1
8 剪力牆有無: 有 無 9 隔間牆有無: 有 無 10 建築物振動週期 (經驗公式) T=0.07h ^(3/4) =1.500 秒 (百融結果) T _x = 0.931 秒 T _y = 秒 (丁=0.07h ^(3/4) =1.500 秒 (百融結果) T _x = 0.931 秒 T _y = 0.976 秒 11 建築物平面、剪力牆及感測器擺設示意圖: 25.6 m 9.55 m 3.6 m 20.3 m 2.7 m 2.7 m 9.55 m 12 建築物照片: 12 建築物照片: 12 建築物照片: 12 建築物照片:	7 建築物用途:	商業 住宅	學校 混合	其他 (辦公)
10 建築物振動週期 (經驗公式) T = 0.07h ^(3/4) =1.500 秒 (百融結果) $T_x = \frac{1}{7}$ $T_y = \frac{1}{7}$ (百融結果) $T_x = 0.931$ \overline{Y} $T_y = 0.976$ 11 建築物平面、剪力牆及感測器擺設示意圖: 25.6 m 9.55 m 20.3 m 2.7 2.5 m 3.6 m 20.3 m 2.7 2.5 m 3.6 m 20.3 m 2.7 2.5 m 3.6 m 12 建築物照片: 12.8 m 12.8 m 12.8 m	8 剪力牆有無:	有無	9 隔間牆有無:	有無
10 建築物振動週期 $(ETABS)$ $T_x = 秒$ $T_{y=} 秒$ (實驗結果) $T_x = 0.931 $ 秒 $T_y= 0.976 $ 秒 11 建築物平面、剪力牆及感測器擺設示意圖: 20.3 m 20.3 m 255 m 3.6 m 7.15 m 3.6 m 7.15 m 12 建築物照片:		(經驗公式)	$T = 0.07 h^{(3/4)} = 1.500 $	沙
(實驗結果) Tx = 0.931 砂 Ty=0.976 砂 11 建築物平面、剪力牆及感測器擺設示意圖: 25.6 m 9.55 m 9.55 m 20.3 m 2.7 m 9.55 m 3.6 m 10.15 m 10.15 m 7.15 m 12 建築物照片: 12 建築物照片: 12 建築物照片:	10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒
11 建築物平面、剪力牆及感測器擺設示意圖: 20.3 m 25.6 m 20.3 m 2.7 m 10.15 m 3.6 m 7.15 m 7.15 m 12 建築物照片: 10.15 m		(實驗結果)	$T_x = 0.931$ 秒	T _v =0.976 秒
12 建築物照片:	11 建築物平面、剪力	└ 牆及感測器擺設示意		
20.3 m 20.3 m 20.3 m 20.3 m 20.3 m 20.3 m 20.3 m 20.3 m 20.3 m 20.3 m 20.15 m 10.15 m 10.15 m 12.8 m 12.8 m 12 建築物照片 :		25.6	m	
20.3 m 20.3 m 20.3 m 20.3 m 20.3 m 20.3 m 2.7 m 3.6 m 7.15 m 12.8 m 12 建築物照片 :		▲	_	T
20.3 m 20.3 m 20.3 m 20.3 m 20.3 m 20.3 m 20.3 m 20.3 m 2.7 m 3.6 m 7.15 m 12.8 m 12.8 m 12.8 m 12.8 m 12.8 m	Ţ			Ţ
20.3 m 2.7 m 3.6 m 10.15 m 3.6 m 12.28 m				0.55
20.3 m 20.3 m 20.3 m 10.15 m 12.8 m 12 建築物照片: 12 建築物照片:		2.7	2.7 m	9.55 m
20.3 m 20.3 m 10.15 m 12.8 m 12 建築物照片:			* / • •	↓
12 建築物照片:	20.3 m			36 m
12 建築物照片:			│ │ ॑ ──┐ ┘	
12.28 m 12.建築物照片:				7.15
↓ ↓ ↓ 12.8 m 12 建築物照片:			m	m
12.8 m 12 建築物照片:	<u>↓</u>			▼
		◄ ──►		
12 建築物照片:		12.8 m		
	12 建築物照片:			
		- HART - HART		
			A THE R	
		THE PARTY NAME	THE R	
		STREET BREET		
			Part B	
		* = *		

表 A.16 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	2000,07,06		
2 建築物編號:	16	3建築物名稱:	富保大樓
4 建築物地點:	台北市大安區信義路	各3段116號	
5 平面幾何(公尺):	長:26.6	寬:17	高:44.3
6 建築物層數:	地上:13	地下:2	屋突:2
7 建築物用途:	商業住宅	學校 混合	其他(辦公)
8 剪力牆有無:	有無	9 隔間牆有無:	有無
	(經驗公式)	$T = 0.07h^{(3/4)} = 1.202$ ₹	少
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒
	(實驗結果)	T _x = 0.553 秒	T _y =0.539 秒
11 建築物平面、剪力		<u>-</u> 5圖:	
	26.8	m	>
		▶ 5	
	7.9 m 1	0.8 7.9 ı m	n P
8.3	7.		
m	m		
4	0.	•	3
17			
	$ \begin{array}{c c} m & 5 \\ \hline m & 5 \\ \hline m & m \\ \hline \end{array} \begin{array}{c} 2.8 \\ \hline m & m \\ \hline \end{array} \begin{array}{c} 0. \\ \hline 7 \\ \hline m \\ \hline \end{array} $	\times	
			7
	42.0 5 3.3 ★ 2.6		
<u>↓</u>	m $\mathbf{V}_{3.6}^{\mathbf{m}}$ m		
	m		
	The second	~	
	148-2-2	2 Trible	
	1		
	The second	I MAR DE PUIS	
	Dod	The second	
	ADD	THE REAL PROPERTY IN	
		THE REAL PROPERTY AND INCOME.	
		THE REAL PROPERTY OF	
	TSIG TO GO O		
	and an and the	the state of the second	

表 A.17 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	2000,07,06		
2 建築物編號:	17	3 建築物名稱:	四四東村國宅
4 建築物地點:	台北市吳興街 260 巷	き19弄2號	
5 平面幾何(公尺):	長:64.4	寬:9	高:15.58
6 建築物層數:	地上:5	地下:0	屋突:1
7 建築物用途:	商業 住宅	學校 混合	其他 (辦公)
8 剪力牆有無:	有無	9 隔間牆有無:	有無
	(經驗公式)	$T = 0.07 h^{(3/4)} = 0.549 $	少
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒
	(實驗結果)	$T_x = 0.242$ 秒	T _y =0.341 秒
11 建築物平面、剪力·			
9.4 m 3 m 4.3 m	64.4	m 3 m 18.3 m ◀ ► ◀	3 m 9.4 m
9 m J 3	2 ◀◀ ◀ 32.2 m	1 4 ▶	5
12 建築物照片:			

表 A.18 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	2000.07.07		
2 建築物編號:	18	3建築物名稱:	
4 建築物地點:	台北縣新店市中央日		
5 平面幾何(公尺):	長:29.8	寬:10.2	高:20.90
6 建築物層數:	地上:7	地下:1	屋突:2
7 建築物用途:	商業 住宅	 學校 混合	 其他(辦公)
8 剪力牆有無:	有	9 隔間牆有無:	有無
	(經驗公式)	T=0.07h ^(3/4) =0.684 希	少 少
10 建築物振動週期	(ETABS)	T _x = 秒	T _v = 秒
	(實驗結果)	$T_x = 0.301$ 秒	y Ty=0.244 秒
	牆及感測器擺設示意		- y on the
10.2 m 1 8.4	5.7 m 1.1 m 2 6 4 m 29.8	5.1 5 14.9 m 15.9 m m	3 3
12 建築物照片:			

表 A.19 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	2000,07,07		
2 建築物編號:	19	3 建築物名稱:	現代啟示
4 建築物地點:	台北縣新店市中興路	各一段 282 號	
5 平面幾何(公尺):	長:20.5	寬:15.8	高:68.78
6 建築物層數:	地上:22	地下:3	屋突:2
7 建築物用途:	商業 住宅	學校 混合	其他 (辦公)
8 剪力牆有無:	有無	9 隔間牆有無:	有無
	(經驗公式)	$T = 0.07h^{(3/4)} = 1.672$	Ŷ
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒
	(實驗結果)	T _x = 1.024 秒	T _y =1.280 秒
11 建築物平面、剪力	牆及感測器擺設示意		<u> </u>
	1	20.5 m	
	7.1 m	6.3 m 7.1 m	
	10.25 m		
4 m			
15.8 m 8.6	t f	5	3
	1	6	
			7.9 m
3.2	m		
	,	2	•
12 建築物照片:			
	-		
	H -		
	And and a second		
	1 mg		
		And In Concession	
	at and the second se		
	an mile	12	
	唐 月二月八千		

表 A.20 建築物基本資料及量測結果表

建築物基本	資料						
1 測量日期:	:	2000,07,12					
2 建築物編號	虎:	20		3 建築物名	3稱:	MIT	
4 建築物地點	占:	台北縣中利	市立德德		面	1	
5 平面幾何(公尺):	長:87.3		寬:45.7		高:25.70	
6 建築物層數	牧:	地上:8		地下:2		屋突:2	
7 建築物用道	金:	商業	住宅	學校	混合	其他(廠辦))
8 剪力牆有無	# :	有	無	9 隔間牆有	ョ無:	有	Щ.
		(經驗公式	ť)	$T = 0.07 h^{(3/2)}$	⁴⁾ =0.799 利	沙	
10 建築物振	動週期	(ETABS))	$T_x =$	秒	T _y =	秒
		(實驗結果	₹)	$T_x = 0.402$	秒	$T_{y} = 0.427$	秒
11 建築物平	面、剪力	牆及感測器	擺設示意			· ·	
	3		21.4			3	
2	₩		81.4 m	1			
3 m <u>▼</u>			2				
	3		4 A			1 ▲ 4.4	
35 m	3. 1 m	-	5 ~ 18. <u>≮ 4m</u> >	! ∢	34 .7 m		
		10.5		10.5	10.5	45.'	7
		m Z		u i i i i i i i i i i i i i i i i i i i	^m ↓		
	∢ a. y p m		9? n	2 17.5		∢ ۶. ₀ ► m	
7.7				m	7.7		
m 🔟	7.7			¥	m	<u>↓</u> _{7.7} ↓	
	∢ ^m ► ∢		72 m				
	◄		87.	4 m		→	
12 建築物照	片:						
			The second second	to the second			
	1.12	STATISTICS.	- California		25.0		
		atil Statut		Sector Martin	ALL	1	
		HEILEREN	HIBRI	HEHEBU		ale I	
		Personal de la companya de la compan	n en en sense	10110	and the	A DE	
	山縣	8)		A NOTES	
	++++					a la	
	In The	and the second	- And -		And the second second		
	- HILL VIEWS	State of the local division of the local div	.100 660	State of Concession, Name	-	- Arren	

表 A.21 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	2000,07,12		
2 建築物編號:	21	3 建築物名稱:	親水河畔
4 建築物地點:	台北縣中和市橋和路	络 320 號	
5 平面幾何(公尺):	長:50.3	寬:9.6	高:36.10
6 建築物層數:	地上:12	地下:2	屋突:2
7 建築物用途:	商業 住宅	學校 混合	其他(辦公)
8 剪力牆有無:	有無	9 隔間牆有無:	有無
	(經驗公式)	$T = 0.07h^{(3/4)} = 1.031$ f	少
10 建築物振動週期	(ETABS)	T _x = 秒	T _y =秒
	(實驗結果)	$T_x = 0.445$ 秒	T _y = 0.683 秒
$ \begin{array}{c} 5.5 \text{ m } 3.\\ 4.6 \text{ m } 4.6 \text{ m }$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m 15 m 3.2 m 4 4 2 25.2 m 0.3 m	7.5 m \rightarrow 9.6 m 3^{\checkmark} \rightarrow
12 建築物照片:			

表 A.22 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	2000,07,13		
2 建築物編號:	22	3建築物名稱:	基隆河整治二期國宅
4 建築物地點:	台北市中山區敬業王	三路 162 巷 23 號	
5 平面幾何(公尺):	長:27.7	寬:22.6	高:36.28
6 建築物層數:	地上:12	地下:2	屋突:2
7 建築物用途:	商業住宅	 學校 混合	其他 (辦公)
8 剪力牆有無:	有無	9 隔間牆有無:	有無
	(經驗公式)	$T = 0.07h^{(3/4)} = 1.035$	少
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒
	(實驗結果)	T _x = 0.445 秒	T _y =0.476 秒
	牆及感測器擺設示意		
	1 7.5 m		
		-	
		▲ 11. 3 m	→
	11. 3 m	2	
		5 6 3	7.5 m
22. 6 m			
	_ Î		
7.3	; m	8.7 m	11. 3 m
	↓ 	↓	
	→	5.1 m 4 ↓	
		7.5 m	
	∢ 27.7 m	n T	→
12 建築物照片:			
		11-1-	
		17 -	
		14	
		110 -	
	-	1 74	
		1 Cp - +	
		14	
		1	
	is alla	21/-	
	Summing and	11	
	A REAL PROPERTY AND		

表 A.23 建築物基本資料及量測結果表

建築物基本資料					
1 測量日期:	2000,07,13				
2 建築物編號:	23	3建築物名稱:	基隆河整治二期國宅		
4 建築物地點:	台北市中山區敬業日	三路 162 巷 198 號	•		
5 平面幾何(公尺):	長:27.7	寬:22.6	高:24.17		
6 建築物層數:	地上:8	地下:2	屋突:2		
7 建築物用途:	商業 住宅	學校 混合	其他 (辦公)		
8 剪力牆有無:	有無	9 隔間牆有無:	有無		
	(經驗公式)	$T = 0.07h^{(3/4)} = 0.763$	空		
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒		
	(實驗結果)	$T_x = 0.341$ 秒	T _y =0.315 秒		
11 建築物平面、剪力	牆及感測器擺設示意	5圖:	-		
27.7 m $27.7 m$ $11.3 m$ $9.57 m$ $4 5.1 m$ 6					
12 建築物照片:					

表 A.24 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	2000,07,13		
2 建築物編號:	24	3建築物名稱:	基隆河整治二期國宅
4 建築物地點:	台北市中山區樂群二	路 144 號	
5 平面幾何(公尺):	長:27.7	寬:18.8	高:30.09
6 建築物層數:	地上:10	地下:2	屋突:2
7 建築物用途:	商業住宅	學校 混合	其他 (辦公)
8 剪力牆有無:	有無	9 隔間牆有無:	有無
	(經驗公式)	$T = 0.07h^{(3/4)} = 0.899$	少
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒
	(實驗結果)	$T_x = 0.372$ 秒	T _y =0.410 秒
11 建築物平面、剪力	牆及感測器擺設示意	上	
11.3 m 7.5 m ↓ 12 建築物照片:	7.5 m 8.7 m 8.7 m 5.32 m 5.1 m 11.3 m 27.7 m		

表 A.25 建築物基本資料及量測結果表

建築物基本資料					
1 測量日期:	2000,07,19				
2 建築物編號:	25	3 建築物名稱	:		
4 建築物地點:	台北縣永和市國中路		1號		
5 平面幾何(公尺):	長:13	寬:13		高:12.53	
6 建築物層數:	地上:4	地下:0		屋突: 1	
7 建築物用途:	商業 住宅	學校 混	合	其他 (辦公))
8 剪力牆有無:	有無	9 隔間牆有無	:	有	Щ.
	(經驗公式)	$T = 0.07h^{(3/4)} = 0$).466 秒	少	
10 建築物振動週期	(ETABS)	$T_x =$	秒	T _y =	秒
	(實驗結果)	$T_x = 0.235$	秒	$T_{v} = 0.183$	秒
	<u></u> 牆及感測器擺設示意	<u></u> [圖:		5	
	13	m	I		
	▲ ▲	3←			
			6.5	m	
		4 ▲	2		
13 n	1	5 🖛	.↓		
		4			
		<u> </u>	→		
		4.27 m			
12 连来彻照月,					
		ELE			
			N		
	Contraction of the local division of the loc				
			26		
		- Person			

表 A.26 建築物基本資料及量測結果表

建築物基本資料					
1 測量日期:	2000,07,19				
2 建築物編號:	26	3建築物名稱:	捷和創世紀		
4 建築物地點:	台北縣新店市中興路	格三段 219 之 1 號			
5 平面幾何(公尺):	長:39	寬:18.5	高:75.02		
6 建築物層數:	地上:24	地下:4	屋突:3		
7 建築物用途:	商業 住宅	學校 混合(住	上 王商) 其他(辦公)		
8 剪力牆有無:	有 無	9 隔間牆有無:	有無		
	(經驗公式)	T =0.07h ^(3/4) =1.784 ₹	少		
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒		
	(實驗結果)	$T_x = 1.024$ 秒	T _y = 1.205 秒		
	牆及感測器擺設示意	<u></u> [] [] [] [] [] [] [] [] [] [] [] [] [] [<u> </u>		
		2m 8.8m 7m			
1	-		-		
8.5 m			6.24 m		
1.5 m 🎍	-	18.05			
5 m			8.76 m		
			_		
6.3 m	6 4 ↓	20 m 1	4.87 m 		
▼					
9 m					
5.8 m					
<u> </u>		4 →			
/m 6.77m 7.23m 2.13m 3.87m 11m 12 建築物照片:					
		and an an a lighter			
100 17 1000 ERT AN INC 40 100 ERT AND					
NAME OF TAXABLE PARTY AND PARTY AND PARTY AND PARTY AND PARTY.					
The second s					
Contraction of the second s					

表 A.27 建築物基本資料及量測結果表

建築物基本資料	n				
1 測量日期:	2000,07,19				
2 建築物編號:	27	3 建築物名稱:	敦南莊子		
4 建築物地點:	台北市木柵路二段:	109 巷 100 弄 11 號			
5 平面幾何(公尺):	長:18.6	寬:16.4	高:29.50		
6 建築物層數:	地上:10	地下:2	屋突:3		
7 建築物用途:	商業 住宅	學校 混合	其他 (辦公)		
8 剪力牆有無:	有無	9 隔間牆有無:	有無		
	(經驗公式)	$T = 0.07h^{(3/4)} = 0.886$	· 砂		
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒		
	(實驗結果)	T _x = 0.379 秒	T _v = 0.359 秒		
	牆及感測器擺設示意				
	6.9 m 5.1 m	6.6 m			
	-				
			4.7 m		
8.2 m	Ν				
1	6 1				
	5				
	/		 ↓		
			4.7 m		
	<u> </u>				
12 建築物照斤:		and think a little			
	- P - P	TATE TRACE			
THE REAL PROPERTY AND A PROPERTY AND					
ATT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
The second secon					
AT THE REAL PROPERTY.					
THE THE NEW PROPERTY AND					
		and the second second			
	the second s				

表 A.28 建築物基本資料及量測結果表

建築物基本資料				
1 測量日期:	2000,07,20			
2 建築物編號:	28	3建築物名稱:		
4 建築物地點:	台北市南港區重陽路			
5 平面幾何(公尺):	長:23	寬:23	高:59.12	
6 建築物層數:	地上:18	地下:2	屋突:2	
7 建築物用途:	商業 住宅	學校 混合	其他(辦公)	
8 剪力牆有無:	有無	9 隔間牆有無:	有無	
	(經驗公式)	$T = 0.07h^{(3/4)} = 1.492$	少	
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒	
	(實驗結果)	$T_x = 0.819$ 秒	T _y =0.759 秒	
11 建築物平面、剪力	牆及感測器擺設示意			
(實驗結果) Tx = 0.819 秒 Ty=0.759 秒 11 建築物平面、剪力牆及感測器擺設示意圖: 				

表 A.29 建築物基本資料及量測結果表

建築物基本資料					
1 測量日期:	2000,07,20				
2 建築物編號:	29	3建築物名稱:	東湖國宅		
4 建築物地點:	台北市內湖區康寧距	洛三段 75 巷 120 號			
5 平面幾何(公尺):	長:35.4	寬:11.2	高:21.36		
6 建築物層數:	地上:7	地下:1	屋突:3		
7 建築物用途:	商業住宅		其他(辦公)		
8 剪力牆有無:	有無	9 隔間牆有無:	有無		
	(經驗公式)	$T = 0.07h^{(3/4)} = 0.696$	砂		
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒		
	(實驗結果)	T _x = 0.253 秒	T _y =0.230 秒		
	牆及感測器擺設示意	」 話圖:			
7.3 m	I	20.8 m	7.3 m		
	2.86 m	2	.86 m		
		2			
		`	\backslash		
5.6 m 6.96	m X		XI		
11.2 m	6	◄ //			
3 -					
		ů – – – – – – – – – – – – – – – – – – –			
◄ 17.7 m ►					
12 建築物照片:					
	and the second	and the second se			

表 A.30 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	2000,07,20		
2 建築物編號:	30	3建築物名稱:	北安社區國宅
4 建築物地點:	台北市中山區承德路	各四段 31 號	
5 平面幾何(公尺):	長:22.8	寬:17.15	高:31.17
6 建築物層數:	地上:11	地下:2	屋突:2
7 建築物用途:	商業 住宅	學校 混合	其他(辦公)
8 剪力牆有無:	有無	9 隔間牆有無:	有 無
	(經驗公式)	$T = 0.07 h^{(3/4)} = 0.923$	秒
10 建築物振動週期	(ETABS)	T _x = 秒	T _v = 秒
	(實驗結果)	$T_x = 0.431$ 秒	T _v =0.386 秒
11 建築物平面、剪力		[圖:	
12 m 6.75 m 4.2 m 6.2 m 12 建築物照片:	t t t t t t t t t t t t t t t t t t t	4 4 ER 10.7 m 5 6 2.65 m 2 5.3 m 6.7 m	3.6 m 9.5 m 8.3 m

表 A.31 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	2000,08,03		
2 建築物編號:	31	3建築物名稱:	
4 建築物地點:	台北市中山區錦州街		
5 平面幾何(公尺):	長:34(35.95)	寬:12.3(15.2)	高:42.0
6 建築物層數:	地上:12	地下:1	屋突:2
7 建築物用途:	商業 住宅	學校 混合	其他 (辦公)
8 剪力牆有無:	有無	9 隔間牆有無:	有無
	(經驗公式)	$T = 0.07h^{(3/4)} = 1.155$ f	少 少
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒
	(實驗結果)	$T_x = 0.569$ 秒	T _v =0.732 秒
↓ 12.3m ↓ 12 建築物照片:	7.4 m 7.4 m ★ 10.6 m 10.6 m	16 m 3 4 5 + + + + + + + +	$\begin{array}{c c} & 10.1 \text{m} \\ \hline & 2 \\ \hline & 2 \\ \end{array}$

表 A.32 建築物基本資料及量測結果表

建築物基本資料					
1 測量日期:	2000,08,03				
2 建築物編號:	32	3建築物名	稱:	敦南 225	
4 建築物地點:	臺北市大安區敦化國	南路一段 225	號		
5 平面幾何(公尺):	長:28	寬:20		高:31.57	
6 建築物層數:	地上:9	地下:5		屋突:2	
7 建築物用途:	商業 住宅	學校	混合	其他(辦公))
8 剪力牆有無:	有無	9 隔間牆有語	無:	有無	¥
	(經驗公式)	$T = 0.07 h^{(3/4)}$	=0.932 利	· 少	
10 建築物振動週期	(ETABS)	$T_x =$	秒	T _y =	秒
	(實驗結果)	$T_x = 0.418$	秒	$T_{y} = 0.512$	秒
11 建築物平面、剪力	_ 牆及感測器擺設示意	5圖:			
_		_			
4 m		۴ 4			
			a L		
5. 5 m		$\boldsymbol{\succ}$		2	
		5	^`	,	
Î	()	6	k→		
10.5 m	1. 3 m		3. 3 m		
10. 5 m					
	← → ∢	16.0			
	5. 6 m	16. 8 m		5.0 m	
12 建築物照片:					

表 A.33 建築物基本資料及量測結果表

建築物基本資料				
1 測量日期:	2000,08,03			
2 建築物編號:	33	3建築物名稱:	達觀鎮	
4 建築物地點:	台北縣新店市達觀	路 40 號		
5 平面幾何(公尺):	長:24	寬:21	高:47.48	
6建築物層數:	地上:15	地下:2	屋突:2	
7 建築物用途:	商業 住宅	學校 混合	其他 (辦公)	
8 剪力牆有無:	有無	9 隔間牆有無:	有無	
	(經驗公式)	$T = 0.07h^{(3/4)} = 1.26$	6秒	
10 建築物振動週期	(ETABS)	T _x = 秒	Y T _y = 秒	
	(實驗結果)	$T_x = 0.602$ R	少 T _y = 0.683 秒	
11 建築物平面、剪力	牆及感測器擺設示			
	\uparrow	· · · · · · · · · · · · · · · · · · ·		
	0.2	5		
	9. 3 m			
		6 4 ▲	^	
			$\uparrow $	
	5.4 m			
		¥		
	A 2			
	9.5 m			
	<u> </u>	1 		
	← →		_ →	
10 建筑物昭片·	5.7 m	<u>9.6 m</u> 5.7 n	<u>a</u>	
	and the second	A CHICK SHO		
	- In	and the second		
	2 1 1 5 m	SAN		
	-1913A			
	6 1 8			
	122			
	1000			
	1 1.	- Andrews		

表 A.34 建築物基本資料及量測結果表

建築物基本資料	建築物基本資料				
1 測量日期:	2000,08,03				
2 建築物編號:	34	3建築物名稱:	達觀鎮		
4 建築物地點:	台北縣新店市達觀路	各 41 號			
5 平面幾何(公尺):	長:25.4	寬:24.4	高:63.23		
6 建築物層數:	地上:20	地下:	屋突:2		
7 建築物用途:	商業 住宅	學校 混合	其他 (辦公)		
8 剪力牆有無:	有無	9 隔間牆有無:	有無		
	(經驗公式)	$T = 0.07h^{(3/4)} = 1.570$	Ŷ		
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒		
	(實驗結果)	$T_x = 0.890$ 秒	T _y =0.853 秒		
11 建築物平面、剪力		[圖:			
。 12 建築物照片:	8.3 m 9.5 m 7.6 m 8.8 m	2 3 4 6.8 m 8.8 m 8.8 m			
表 A.35 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	2000,08,04		
2 建築物編號:	35	3建築物名稱:	台安大樓
4 建築物地點:	臺北市內湖區基湖路	。 格、堤頂大道交叉口	•
5 平面幾何(公尺):	長:45.6	寬:45.6	高:50.01
6 建築物層數:	地上:12	地下:3	屋突:2
7 建築物用途:	商業住宅	學校 混合	其他
8 剪力牆有無:	有無	9 隔間牆有無:	有無
	(經驗公式)	$T = 0.07h^{(3/4)} = 1.316$	· 少
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒
	(實驗結果)	T _x = 0.683 秒	T _y =0.533 秒
	牆及感測器擺設示意		, ,
	3.6 m 18 m	12 m 12 m	
36 m	★ → (→ →)	<> <> ▼	
5.0 m			12 m
16.8 m			
		\uparrow	8.4 m
3.6 m			
4.2 m		. ↓	
			21.6 m
13.8 m			
3.6 m			3.6 m
		•	
	3.6 m 13. 2 m 4.8	m 21.6 m 2.4 m	
12 建築物照片:			
	1:1:1		
	11		
	12.1	1.	
	1111		
		3.	
	1 P TIME		
		SIA LOS	

表 A.36 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	2000,08,04		
2 建築物編號:	36	3 建築物名稱:	華固奔騰大樓
4 建築物地點:	臺北市內湖區瑞光路	格 513 巷 26 號	-
5 平面幾何(公尺):	長:46.25	寬:37	高:37.88
6 建築物層數:	地上:9	地下:2	屋突:2
7 建築物用途:	商業 住宅	學校 混合	其他 (辦公)
8 剪力牆有無:	有無	9 隔間牆有無:	有無
	(經驗公式)	T=0.07h ^(3/4) =1.069 希	少
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒
	(實驗結果)	$T_x = 0.706$ 秒	T _y =0.819 秒
11 建築物平面、剪力	牆及感測器擺設示意		
	9.25 m 9.25 m 3 m 5.6 m 18.5 m 18.5 m	P.25 m 18.5 m	
12 建築物照片:			

表 A.37 建築物基本資料及量測結果表

2000,08,04		
37	3建築物名稱:	寶成河畔
臺北市松山區延壽街	。 釪 8 號	
長:42.3	寬:18.3	高:48.57
地上:13	地下:2	屋突:2
商業 住宅	學校 混合	其他(辦公)
有無	9 隔間牆有無:	有無
(經驗公式)	$T = 0.07 h^{(3/4)} = 1.288$	秒
(ETABS)	T _x = 秒	T _y = 秒
(實驗結果)	$T_x = 0.621$ 秒	T _y =0.732 秒
牆及感測器擺設示意	[圖:	
8 m	13.1 m	8 m
		—
	5.2 m	
	\checkmark $5 \rightarrow 2$	▲ ³
I		I
	4	
4.4 m 12 m	8.4 m	8 m 6.6 m
- march Red		
	2000,08,04 37 臺北市松山區延壽領 長:42.3 地上:13 商業 住宅 有 無 (經驗公式) (ETABS) (實驗結果) 檣及感測器擺設示意 8 m 4 1 1 1 1 1 1 1 1 1 1 1 1 1	2000,08,04 37 3 建築物名稱: 臺北市松山區延壽街 8 號 長:42.3 頁:18.3 地上:13 地下:2 商業 住宅 學校 混合 有 無 9 隔間牆有無: (經驗公式) $T=0.07h^{(3/4)}=1.288$ (ETABS) $T_x = $ 秒 (實驗結果) $T_x = 0.621$ 秒 墻及感測器擺設示意圖: $13.1 m$ $5 \xrightarrow{2}{6} \xrightarrow{6}{4}$ 4 4 4 4 4 4 4 4

表 A.38 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	2000,08,05		
2 建築物編號:	38	3 建築物名稱:	皇家學苑
4 建築物地點:	臺北市木柵區指南路	 洛一段 37 號	
5 平面幾何(公尺):	長:25.5	寬:14.6	高:59.95
6 建築物層數:	地上:19	地下:3	屋突:2
7 建築物用途:	商業 住宅	 學校 混合	其他(辦公)
8 剪力牆有無:	有無	9 隔間牆有無:	有無
	(經驗公式)	$T = 0.07h^{(3/4)} = 1.508$	沙
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒
	(實驗結果)	$T_x = 0.602$ 秒	T _v =0.819 秒
11 建築物平面、剪力	上 牆及感測器擺設示意	」 意圖:	·
		8.5 m	
	1	←	
6.5 m			
			-
1.6 m	4♥		2.6 m
			_
6.5 m	← 21.1	$\xrightarrow{6}$	
	_	3	
. ↓			
	25. 5 r	<u>n</u>	
12 建築物照片:			
		N	
	A DECEMBER OF THE OWNER OF	-	

表 A.39 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	2000,08,05		
2 建築物編號:	39	3建築物名稱:	紫藤樓
4 建築物地點:	臺北市木柵區新光路	8 66 巷 2 弄 8 號	-
5 平面幾何(公尺):	長:33.1	寬:12.16	高:46.87
6 建築物層數:	地上:14	地下:2	屋突:2
7 建築物用途:	商業 住宅	學校 混合	其他 (辦公)
8 剪力牆有無:	有無	9 隔間牆有無:	有無
	(經驗公式)	$T = 0.07 h^{(3/4)} = 1.254 $	沙
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒
	(實驗結果)	$T_x = 0.602$ 秒	T _y =0.819 秒
2.9 m $9.26 m$ $4.5 m$	7.68 m 4.12 n $4 \rightarrow 4 \rightarrow 4$ 6.6 m 1 2.6 m	n 5.4 m 5.4 m 2 m 2 4 6 5 4	10.5 m
12 建築物照片:			

表 A.40 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	2000,08,07		
2 建築物編號:	40	3建築物名稱:	日光大廈
4 建築物地點:	臺北市大安區安和距		-
5 平面幾何(公尺):	長:38.4	寬:22.5	高:34.80
6 建築物層數:	地上:12	地下:1	屋突:2
7 建築物用途:	商業住宅	學校 混合(作	主商) 其他
8 剪力牆有無:	有無	9 隔間牆有無:	有無
	(經驗公式)	$T = 0.07h^{(3/4)} = 1.003$	秒
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒
	(實驗結果)	T _x = 0.621 秒	T _v = 0.931 秒
11 建築物平面、剪力	└ 牆及感測器擺設示意	5圖:	,
	16.8 m	5.6 m <u>16 r</u>	n
	3 ◄		
	L		
10.1 m			
	6 ▲		
2	5 👞		4 n
	_		
			≜ 3.5 ∃
		6.6 3] _*
	1	<u> </u>	
12 建築物照片:			

表 A.41 建築物基本資料及量測結果表

1 測量日期: 2000,08,07 2 建筑物编辑・ 1 3 建築物名稱: 捷豹大樓
2.建筑物编辑· 11 3.建築物名稱: 捷豹大樓
4 建築物地點: 臺北市內湖區瑞光路 188 巷底
5 平面幾何(公尺): 長: 57.7 寬: 35 高: 41.0
6 建築物層數: 地上:10 地下:3 屋突:2
7 建築物用途: 商業 住宅 學校 混合 其他(廠辦)
8 剪力牆有無: 有 無 9 隔間牆有無: 有 無
(經驗公式) T=0.07h ^(3/4) =1.134 秒
10 建築物振動週期 (ETABS) T _x = 秒 T _y = 秒
(實驗結果) T _x = 0.640 秒 T _y = 0.553 秒
11 建築物平面、剪力牆及感測器擺設示意圖:
29.7 m 28 m
18.2 m
24.7 m
$ \qquad 4 \qquad 5 \qquad 16.8 \text{ m}$
14.85 m
12 建築物照片:
A SERVICE AND A
A DECEMBER OF THE OWNER OWNE
The second

表 A.42 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	2000,08,09		
2 建築物編號:	42	3 建築物名稱:	健軍新村國宅
4 建築物地點:	臺北市大安區汀洲距	洛三段 60 巷 2 衖 6 號	ក្នុ
5 平面幾何(公尺):	長:46.4	寬:7.2	高:32.56
6 建築物層數:	地上:11	地下:2	屋突:2
7 建築物用途:	商業 住宅	學校 混合	其他 (辦公)
8 剪力牆有無:	有無	9 隔間牆有無:	有無
	(經驗公式)	$T = 0.07h^{(3/4)} = 0.954$ f	少
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒
	(實驗結果)	$T_x = 0.356$ 秒	T _y =0.488 秒
	46.4 m		
			>
7.2 m 9 m 2	3	→ 6 → 5 →	4 4
▲ 12 建筑物昭长 ·	23.8 m		
12 /王 元10 .			

表 A.43 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	2000,08,09		
2 建築物編號:	43	3 建築物名稱:	
4 建築物地點:	臺北市內湖區民權	東路六段 207 號	
5 平面幾何(公尺):	長:36.6	寬:10.2	高:36.23
6 建築物層數:	地上:11	地下:2	屋突:2
7 建築物用途:	商業 住宅	學校 混合	其他(辦公)
8 剪力牆有無:	有無	9 隔間牆有無:	有無
	(經驗公式)	$T = 0.07 h^{(3/4)} = 1.034 $	少
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒
	(實驗結果)	T _x = 0.436 秒	T _y =0.455 秒
11 建築物平面、剪力		意圖:	
5.6 m 2.6 m 2 12 建築物照片:	6.6 m 7 m	n 6.6 m 2.	6 m 5.6 m

表 A.44 建築物基本資料及量測結果表

建築物基本資料			
1 測量日期:	2000,08,09		
2 建築物編號:	44	3建築物名稱:	全毅大樓
4 建築物地點:	臺北市內湖區	B	
5 平面幾何(公尺):	長:70.0	寬:30.0	高:24.50
6 建築物層數:	地上:6	地下:3	屋突:2
7 建築物用途:	商業 住宅	學校 混合	其他(廠辦)
8 剪力牆有無:	有無	9 隔間牆有無:	有無
	(經驗公式)	$T = 0.07h^{(3/4)} = 0.771$	·· 少
10 建築物振動週期	(ETABS)	T _x = 秒	T _y = 秒
	(實驗結果)	T _x = 0.301 秒	T _v =0.359 秒
3	01 m	31 m	>
	4.5 m	_	
	7.5 m		17.8 m
3		5 /	
30 m			
	14.7 m 6	> \	
		\mathbf{n}	
•	3.3 m		
	-	◀	
	I	34.6 m	Ι
12 建築物照片:			
		the s	
		and the second	
and the second se			
State (see			

表 A.45 建築物基本資料及量測結果表

1 測量日期: 2000,08,09 2 建築物編號: 45 3 建築物名稱: 延平社區國宅 4 建築物地點: 臺北市土林區延平北路 5 段 1 巷 36 號 5 5 平面幾何(公尺): 長:25.0 寬:25.1 高:38.35 6 建築物層數: 地上:13 地下:2 屋突:3 7 建築物層數: 地上:13 地下:2 屋突:3 7 建築物層數: 一 有 無 9 隔間牆有無: 有 無 9 隔間牆有無: 有 無 10 建築物振動週期 (經驗公式) T=0.07h ⁽³⁴⁾ =1.079 秒 10 建築物振動週期 (ETABS) T _x = 秒 (實驗結果) T _x = 0.436 秒 T _y = 0.418 11 建築物平面、剪力牆及感測器擺設示意圖: - - - 12 建築物照片: - - - -
2 建築物編號: 45 3 建築物名稱: 延平社區國宅 4 建築物地點: 臺北市土林區延平北路 5 段 1 巷 36 號 5 平面幾何(公尺): 長:25.0 寬:25.1 高:38.35 6 建築物層數: 地上:13 地下:2 屋突:3 7 建築物用途: 商業 住宅 學校 混合 其他(辦公) 8 剪力牆有無: 有 無 9 隔間牆有無:: 有 無 10 建築物振動週期 (經驗公式) T=0.07h ⁽³⁴⁾ =1.079 秒 () ((
4 建築物地點: 臺北市士林區延平北路 5 段 1 巷 36 號 5 平面幾何(公尺): 長:25.0 寬:25.1 高:38.35 6 建築物層數: 地上:13 地下:2 屋突:3 7 建築物用途: 商業 住宅 學校 混合 其他(辦公) 8 剪力牆有無: 有 無 10 建築物振動週期 (經驗公式) T=0.07h ^(3/4) =1.079 秒 10 建築物振動週期 (ETABS) T _x = 秒 T _y = 秒 (實驗結果) T _x = 0.436 秒 T _y =0.418 11 建築物平面、剪力牆及感測器擺設示意圖: 122m 4 4 12 建築物照片: 12 建築物照片: 12
5 平面幾何(公尺): 長:25.0 寬:25.1 高:38.35 6 建築物層數: 地上:13 地下:2 屋突:3 7 建築物用途: 商業 住宅 學校 混合 其他(辦公) 8 剪力牆有無: 有 無 9 隔間牆有無: 有 無 10 建築物振動週期 (經驗公式) T=0.07h ^(3/4) =1.079 秒 10 建築物振動週期 (ETABS) T _x = 秒 T _y = 秒 (實驗結果) T _x = 0.436 秒 T _y =0.418 11 建築物平面、剪力牆及感測器擺設示意圖: 11 f_{2m} </th
6 建築物層數: 地上:13 地下:2 屋突:3 7 建築物用途: 商業 住宅 學校 混合 其他 (辦公) 8 剪力牆有無: 有 無 9 隔間牆有無: 有 無 10 建築物振動週期 (經驗公式) T=0.07h ^(3/4) =1.079 秒 (百田島S) Tx = 秒 Ty= 秒 (10 建築物振動週期 (百融結果) Tx = 0.436 秒 Ty= 0.418 秒 11 建築物平面、剪力牆及感測器擺設示意圖: (11 建築物平面、剪力牆及感測器擺設示意圖: (11 建築物平面、剪力牆及感測器漏設示意圖: 12 建築物照片: (25 m) (25 m) (25 m)
7 建築物用途: 商業 住宅 學校 混合 其他 (辦公) 8 剪力牆有無: 有 無 9 隔間牆有無: 有 無 10 建築物振動週期 (經驗公式) T = 0.07h ^(3/4) =1.079 秒 (百融結果) T x = 秒 T y= 秒 10 建築物振動週期 (百融結果) T x = 秒 T y= 秒 11 建築物平面、剪力牆及感測器擺設示意圖: (百融結果) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 剪力牆有無: 有 無 9 隔間牆有無: 有 無 10 建築物振動週期 (經驗公式) T = 0.07h ^(3/4) =1.079 秒 (ETABS) Tx = 秒 Ty= 秒 (10 建築物振動週期 (ETABS) Tx = 秒 Ty= 秒 (10 建築物振動週期 (ETABS) Tx = 秒 Ty= 秒 (11 建築物平面、剪力牆及感測器擺設示意圖: (II 建築物平面、剪力牆及感測器擺設示意圖: (II 建築物平面、剪力牆及感測器擺設示意圖: (II 建築物平面、真力 (II 重要 (II 重a)
10 建築物振動週期 (經驗公式) T = 0.07h ^(3/4) =1.079 秒 (百臉結果) T _x = 秒 T _y = 秒 (百臉結果) T _x = 0.436 秒 T _y = 0.418 11 建築物平面、剪力牆及感測器擺設示意圖: 11 建築物平面、剪力牆及感測器擺設示意圖: 11 建築物平面、剪力牆及感測器擺設示意圖: 12 建築物照片: 12 建築物照片:
10 建築物振動週期 (ETABS) $T_x = $
(實驗結果) Tx = 0.436 沙 Ty=0.418 沙 11 建築物平面、剪力牆及感測器擺設示意圖: ************************************
11 建築物平面、剪力牆及感測器擺設示意圖:
12.2 建築物照片:
11.3m 11.3m 72m 6.6m 6.6m 9.7m 9.7m 9.85m 9.85m 9.85m 9.85m 9.85m 9.85m 9.85m 9.85m 9.85m 9.85m 9.85m
11.3 m 11.3 m 72 m 5 72 m 5 6.6 m 2 9.7 m 8.8 m 12 建築物照片:
11.3 m 11.3 m 72 m 5 6.6 m 2 9.7 m 8.8 m 12 建築物照片:
12建築物照片:
12建築物照片:
72m 72m 1 1 9.85m 6.6m 2 2 4 9.7m 12 建築物照片: 10 10 10
72m 1 6.6m 2 9.85m 9.85m 12 建築物照片:
● ●<
6.6 m 6.6 m 9.5 m 9.5 m 9.5 m 9.5 m 12 建築物照片:
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
▲
12 建築物照片:
The second division of

圖 B.1 達因大樓扭轉富利葉振幅圖

圖 B.3 達因大樓 X 向速度富利葉振幅圖 圖 B.4 達因大樓 Y 向速度富利葉振幅圖

圖 B.5 技嘉新店扭轉富利葉振幅圖

圖 B.7 技嘉新店 X 向速度富利葉振幅圖 圖 B.8 技嘉新店 Y 向速度富利葉振幅圖

圖 B.9 敦品大樓扭轉富利葉振幅圖

圖 B.11 敦品大樓 X 向速度富利葉振幅圖 圖 B.12 敦品大樓 Y 向速度富利葉振幅圖

圖 B.13 星雲大樓扭轉富利葉振幅圖

圖 B.15 星雲大樓 X 向速度富利葉振幅圖 圖 B.16 星雲大樓 Y 向速度富利葉振幅圖

圖 B.17 高湯屋扭轉富利葉振幅圖

圖 B.19 高湯屋 X 向速度富利葉振幅圖

圖 B.20 高湯屋 Y 向速度富利葉振幅圖

圖 B.21 龍騰社區扭轉富利葉振幅圖

圖 B.23 龍騰社區 X 向速度富利葉振幅圖 圖 B.24 龍騰社區 Y 向速度富利葉振幅圖

圖 B.25 淡水新春扭轉富利葉振幅圖

圖 B.27 淡水新春 X 向速度富利葉振幅圖 圖 B.28 淡水新春 Y 向速度富利葉振幅圖

圖 B.29 森保大樓扭轉富利葉振幅圖

Frequency (Hz)

圖 B.31 森保大樓 X 向速度富利葉振幅圖 圖 B.32 森保大樓 Y 向速度富利葉振幅圖

圖 B.33 文心大樓扭轉富利葉振幅圖

4

5

圖 B.35 文心大樓 X 向速度富利葉振幅圖 圖 B.36 文心大樓 Y 向速度富利葉振幅圖

圖 B.37 陽光天廈扭轉富利葉振幅圖

圖 B.39 陽光天廈 X 向速度富利葉振幅圖 圖 B.40 陽光天廈 Y 向速度富利葉振幅圖

圖 B.41 北市忠誠路一段 62 號 扭轉富利葉振幅圖

圖 B.42 北市忠誠路一段 62 號 扭轉富利葉振幅圖

圖 B43 北市忠誠路一段 62 號X 向速度富利葉振幅圖

圖 B.44 北市忠誠路一段 62 號Y 向速度富利葉振幅圖

圖 B.45 北市中山北路六段 252 巷 2 號 扭轉富利葉振幅圖

圖 B.46 北市中山北路六段 252 巷 2 號 扭轉富利葉振幅圖

圖 B.47 北市中山北路六段 252 巷 2 號 X 向速度富利葉振幅圖

圖 B.48 北市中山北路六段 252 巷 2 號 Y 向速度富利葉振幅圖

圖 B.49 青島東路國宅 扭轉富利葉振幅圖

圖 B.50 青島東路國宅 扭轉富利葉振幅圖

圖 B.51 青島東路國宅 X 向速度富利葉振幅圖

圖 B.52 青島東路國宅 Y 向速度富利葉振幅圖

圖 B.53 新齊家扭轉富利葉振幅圖

圖 B.55 新齊家 X 向速度富利葉振幅圖

圖 B.56 新齊家 Y 向速度富利葉振幅圖

圖 B.57 寶鑽扭轉富利葉振幅圖

圖 B.59 寶鑽 X 向速度富利葉振幅圖

圖 B.60 寶鑽 Y 向速度富利葉振幅圖

圖 B.61 富保大樓扭轉富利葉振幅圖

圖 B.63 富保大樓 X 向速度富利葉振幅圖 圖 B.64 富保大樓 Y 向速度富利葉振幅圖

圖 B.65 四四東村國宅扭轉富利葉振幅圖

圖 B.66 四四東村國宅扭轉富利葉振幅圖

圖 B.67 四四東村國宅 X 向 速度富利葉振幅圖

圖 B.68 四四東村國宅 Y 向速度富利葉振幅圖

圖 B.69 北縣新店市中央五街 80 號扭轉富利葉振幅圖

圖 B.70 北縣新店市中央五街 80 號 扭轉富利葉振幅圖

圖 B.71 北縣新店市中央五街 80 號 X 向速度富利葉振幅圖

圖 B.72 北縣新店市中央五街 80 號Y 向速度富利葉振幅圖

圖 B.73 北縣新店市中興路一段 282 號 扭轉富利葉振幅圖

圖 B.74 北縣新店市中興路一段 282 號 扭轉富利葉振幅圖

圖 B.75 北縣新店市中興路一段 282 號 X 向速度富利葉振幅圖

圖 B.76 北縣新店市中興路一段 282 號 Y 向速度富利葉振幅圖

圖 B.77 MIT 大樓扭轉富利葉振幅圖

圖 B.78 MIT 大樓扭轉富利葉振幅圖

圖 B.79 MIT 大樓 X 向速度富利葉振幅圖 圖 B.80 MIT 大樓 Y 向速度富利葉振幅圖

圖 B.81 親水河畔扭轉富利葉振幅圖

圖 B.82 親水河畔扭轉富利葉振幅圖

圖 B.83 親水河畔 X 向速度富利葉振幅圖 圖 B.84 親水河畔 Y 向速度富利葉振幅圖

圖 B.85 整治二期國宅 A22 棟 扭轉富利葉振幅圖

圖 B.86 整治二期國宅 A22 棟 扭轉富利葉振幅圖

圖 B.87 整治二期國宅 A22 棟X 向速度富利葉振幅圖

圖 B.88 整治二期國宅 A22 棟 Y 向速度富利葉振幅圖

圖 B.89 整治二期國宅 D3 棟 扭轉富利葉振幅圖

圖 B.90 整治二期國宅 D3 棟 扭轉富利葉振幅圖

圖 B.91 整治二期國宅 D3 棟 X 向速度富利葉振幅圖

圖 B.92 整治二期國宅 D3 棟 Y 向速度富利葉振幅圖

圖 B.93 整治二期國宅 A1 棟 扭轉富利葉振幅圖

圖 B.94 整治二期國宅 A1 棟 扭轉富利葉振幅圖

圖 B.95 整治二期國宅 A1 棟 X 向速度富利葉振幅圖

圖 B.96 整治二期國宅 A1 棟 Y 向速度富利葉振幅圖

圖 B.97 永和國中路 104 巷 13 弄 1 號 扭轉富利葉振幅圖

圖 B.98 永和國中路 104 巷 13 弄 1 號 扭轉富利葉振幅圖

圖 B.99 永和國中路 104 巷 13 弄 1 號 X 向速度富利葉振幅圖

圖 B.100 永和國中路 104 巷 13 弄 1 號 Y 向位移速度富利葉振幅圖

圖 B.101 捷和創世紀扭轉富利葉振幅圖

圖 B.102 捷和創世紀扭轉富利葉振幅圖

圖 B.103 捷和創世紀 X 向速度富利葉振幅圖

圖 B.104 捷和創世紀 Y 向速度富利葉振幅圖

圖 B.105 敦南莊子 扭轉富利葉振幅圖

圖 B.106 敦南莊子 扭轉富利葉振幅圖

圖 B.107 敦南莊子 X 向加速度 富利葉振幅圖

圖 B.108 敦南莊子 Y 向加速度 富利葉振幅圖

圖 B.109 北市南港區重陽路 316 號 扭轉富利葉振幅圖

圖 B.110 北市南港區重陽路 316 號 扭轉富利葉振幅圖

圖 B.111 北市南港區重陽路 316 號 X 向速度富利葉振幅圖

圖 B.112 北市南港區重陽路 316 號 Y 向速度富利葉振幅圖

圖 B.113 東湖國宅扭轉富利葉振幅圖

圖 B.114 東湖國宅扭轉富利葉振幅圖

圖 B.115 東湖國宅 X 向速度富利葉振幅圖 圖 B.116 東湖國宅 Y 向速度富利葉振幅圖

圖 B.117 北安社區國宅扭轉富利葉振幅圖 圖 B.118 北安社區國宅扭轉富利葉振幅圖

圖 B.119 北安社區國宅 X 向速度富利葉振幅圖

圖 B.120 北安社區國宅 Y 向速度富利葉振幅圖

圖 B.121 北市中山區錦州街 26 號 扭轉富利葉振幅圖

圖 B.122 北市中山區錦州街 26 號 扭轉富利葉振幅圖

圖 B.123 北市中山區錦州街 26 號 X 向速度富利葉振幅圖

圖 B.124 北市中山區錦州街 26 號 Y 向速度富利葉振幅圖

圖 B.125 敦南 225 扭轉富利葉振幅圖

圖 B.126 敦南 225 扭轉富利葉振幅圖

圖 B.127 敦南 225X 向速度富利葉振幅圖 圖 B.128 敦南 225Y 向速度富利葉振幅圖

圖 B.129 新店市達觀路 40 號 扭轉富利葉振幅圖

圖 B.130 新店市達觀路 40 號 扭轉富利葉振幅圖

圖 B.131 新店市達觀路 40 號 X 向速度富利葉振幅圖

圖 B.132 新店市達觀路 40 號 Y 向速度富利葉振幅圖

圖 B.133 新店市達觀路 41 號 扭轉富利葉振幅圖

圖 B.134 新店市達觀路 41 號 扭轉富利葉振幅圖

圖 B.135 新店市達觀路 41 號 X 向速度富利葉振幅圖

圖 B.136 新店市達觀路 41 號 Y 向速度富利葉振幅圖

圖 B.137 台安大樓扭轉富利葉振幅圖

圖 B.138 台安大樓扭轉富利葉振幅圖

圖 B.139 台安大樓 X 向速度富利葉振幅圖 圖 B.140 台安大樓 Y 向速度富利葉振幅圖

圖 B.141 華固奔騰扭轉富利葉振幅圖

圖 B.142 華固奔騰扭轉富利葉振幅圖

圖 B.143 華固奔騰 X 向速度富利葉振幅圖 圖 B.144 華固奔騰 Y 向速度富利葉振幅圖

圖 B.145 寶成河畔扭轉富利葉振幅圖

圖 B.146 寶成河畔扭轉富利葉振幅圖

圖 B.147 寶成河畔 X 向速度富利葉振幅圖 圖 B.148 寶成河畔 Y 向速度富利葉振幅圖

圖 B.149 皇家學苑扭轉富利葉振幅圖

圖 B.150 皇家學苑扭轉富利葉振幅圖

圖 B.151 皇家學苑 X 向速度富利葉振幅圖 圖 B.152 皇家學苑 Y 向速度富利葉振幅圖

圖 B.153 紫藤樓扭轉富利葉振幅圖

圖 B.154 紫藤樓扭轉富利葉振幅圖

圖 B.155 紫藤樓 X 向速度富利葉振幅圖 圖 B.156 紫藤樓 Y 向速度富利葉振幅圖

圖 B.157 日光大廈扭轉富利葉振幅圖

圖 B.158 日光大廈扭轉富利葉振幅圖

圖 B.159 日光大廈 X 向速度富利葉振幅圖 圖 B.160 日光大廈 Y 向速度富利葉振幅圖

圖 B.161 內湖捷豹扭轉富利葉振幅圖

圖 B.162 內湖捷豹扭轉富利葉振幅圖

圖 B.163 內湖捷豹 X 向 加速度富利葉振幅圖

圖 B.164 內湖捷豹 Y 向 加速度富利葉振幅圖

圖 B.165 健軍新村國宅扭轉富利葉振幅圖 圖 B.166 健軍新村國宅扭轉富利葉振幅圖

圖 B.167 健軍新村國宅 X 向加速度富利葉振幅圖

圖 B.168 健軍新村國宅 Y 向加速度富利葉振幅圖

圖 B.169 內湖民權東路六段 207 號 扭轉富利葉振幅圖

圖 B.170 內湖民權東路六段 207 號 扭轉富利葉振幅圖

圖 B.171 內湖民權東路六段 207號X 向速度富利葉振幅圖

圖 B.172 內湖民權東路六段 207 號 Y 向速度富利葉振幅圖

圖 B.173 內湖全毅扭轉富利葉振幅圖

圖 B.174 內湖全毅扭轉富利葉振幅圖

圖 B.175 內湖全毅 X 向速度富利葉振幅圖 圖 B.176 內湖全毅 Y 向速度富利葉振幅圖

圖 B.177 延平社區國宅 扭轉富利葉振幅圖

圖 B.178 延平社區國宅 扭轉富利葉振幅圖

圖 B.179 延平社區國宅 X 向速度富利葉振幅圖

圖 B.180 延平社區國宅 Y 向速度富利葉振幅圖

附錄 C: 期中報告學者專家意見處理情形

意見	處理情形
1.建築物的週期與建築物的 K 值有關,	建築物內部實際梁柱及隔間牆數目不易
故柱子大小、隔間多寡對此均有影	取得報告中僅就建築物使用性質加以分
響,請再加以檢討。	類探討。
2.本案量測之建物樣本宜加以分類,並	已增加建築物數量,期末報告中另有討
增加量測樣本數量。	論建築物使用性質對週期之影響。
3.本案量測之建築,宜針對其性質予以	已遵照辦理。針對建築物使用性質區分
分類,研究回歸其經驗公式,例如將	為住宅及廠辦(含住商混合)兩類,探
建築物分類為住宅、辦公室、大飯店、	討週期經驗公式與實際量測值之差異。
學校等;或輕隔間、重隔間等;或韌	此外,建築物高度與平面尺寸均有納入
性立體剛構、含剪力牆立體剛構等。	迴歸分析之考慮因素中。
並探討以建築物平面形狀及高度為參	
數之振動經驗公式。	
4.因不經動力分析直接使用規範規定之	已遵照辦理。
週期經驗公式者都屬低層建築物,故	
宜追加一些低層建築的基本振動週期	
的量測,例如學校建築(約五層) 住	
宅(約十層)等。	
5.建議將強震時之基本振動週期(國內	已遵照辦理,於期末報告中增加文獻中
或國外既有資料)與微震時之差異性	關於利用強震與微震量測建築物週期之
作探討比較。並應述明建物概況供參	差異。
考。	
6.建議本案以後所量測之對象應涵蓋不	已遵照辦理。
同高度之建築物。	
7.在微震實測時,建築物之結構勁度除	牆量多寡,可初步應用不同建築物用途
結構構材外也包括隔間構材,而在設	分類之差異,見第三點。
計之電腦分析並未含隔間構材之勁	
度,以致實測建築物之週期當然小於	
│ 設計值 , 且隔間愈多其差距愈大。因	
此建議將外牆及隔間牆於分析時予以	
適當考量,則其差距應可縮小。	
8.一般隔間在 80-100 gal 時應容許裂紋	微震實驗之振動源強度約在 0.1~1gal 之
產生,此時隔間勁度降低,建築物週	間,此時結構處於彈性階段,隔間勁度
期增長,與規範公式所得者相當,此	均充分發揮,故量測所得之週期較短。
為功能性及經濟性之考量,亦即功能	
設計法之精神所在,於修訂規範時宜	
予考量。	

9.在每一微震量測中請順便量測第一週	已遵照辦理。
期之阻尼係數供參考	
10.有關本案實測之建築物週期 T _x 與 T _y	已遵照辦理。對於規則型建築物,量測
相差甚多乙節,依建築技術規則之精	時均依主軸方向實測建築物 T _x 與 T _y 。
神理應找出主軸方向,尋找其基本振	
動週期,再與法規經驗公式加以比較。	
11.建築週期之量測不應以建物用途分	因建築物實際隔間牆與外牆使用之材質
類,而應以隔間牆與外牆為 RC 或非	資料不易取得,故僅針對建築物用途分
RC 分類。故建議找一棟 RC 構造,內	類。
為輕質隔間牆,外牆採帷幕牆的建物	
量測後,再與經驗公式作比較。	
12.本土鋼筋混凝土建築,依用途不同	已遵照辦理。
(辦公大樓或住宅)常有不同的隔間	
牆、隔戶牆的配置方式(帷幕牆、場	
鑄 RC 牆)。建議統計迴歸分析時分類	
進行,以免原屬不同體的樣本互相干	
擾混淆造成誤差偏大。	
13.建物微動特性是否會與土層條件有	文獻中未對此點有明確之研究;而本研
關?一般大型夠造物之設計才會考慮	究對於所量測建築物之土層特性並不完
土壤結構互制(SSI),但小型建築物的	備,尚待進一步研究與分析。
微動是否會因土層的不同,而有不同	
的微動特性?	
14.本研究計劃之目的在檢討現行建築	建築物已依功用分類,場址特性目前資
物設計規範中有關建築物基本振動週	料並不完備,尚待進一步研究與分析。
期經驗公式之可靠性。除了正確的微	
震訊號分析技巧之探討外,對於建築	
物基本資料之建立,應將場址特性納	
入考量,建物物構造型式(如 RC 構	
造、鋼構造等)則可參考 HAZ-Taiwan	
所歸納之建築物形式予以探討。	

附錄 D: 期末報告學者專家意見處理情形

意見	處理情形
1.微震量測值與規範及動力分析之結果	通常 ETABS 等動力分析程式,對於非結
差距相當大,係由質量或勁度造成,	構牆的模擬均予以簡化或省略,而實際
有待更進一步分析。	上非結構牆仍然會提供部分勁度,因此
	動力程式常會低估勁度,高估周期。
2.本研究係利用微測探討鋼筋混凝土結	理論上以微測來探討建物之受損程度與
構物之周期,以評估建築現況。此技	修復成效應是可行,但本計畫之重點在
巧是否亦應針對受損結構物或修復建	於以微震量測探討大台北地區現有 RC
築物發展成可判斷受損程度及修復成	建物之振動周期,因此對於此部分未有
效之用。	著墨,有待進一步之研究。
3.建議利用地震中心已有之鋼結構進行	曾有文獻*利用實際 1/2 縮尺之鋼造結構
微震量測,再以系統識別方法求得結	進行微震量測,與一般動力分析之結果
構自然振動周期,最後將此周期與一	相比,其前三個模態振動周期之誤差均
般動力分析所得結果之一致性作比	在 3% 以下,足以證明利用微震量測求得
較。	結構物基本周期為可行之工具。
4.在規範之修訂上,對於其他非主結構	在修訂規範時,若考慮非結構體對周期
體,除考慮其對周期造成的影響,必	的影響,的確也必須考慮其對地震力的
須也同時考慮其對地震力的承擔能	承擔能力,然本研究計畫主要目的在探
力。	討周期,尚未到修訂規範之層次,尚待
	進一步之分析研究。
5.震動源之取得可否由一樓產生,並於	動力放大效應的瞭解雖有其物理意義,
一樓及屋頂各設置偵測器,以瞭解震	但對於本研究的目標而言,並不能幫助
動源進入建物後之放大情形。	瞭解現有建物振動周期,因此並未執行。
6.是否可繼續研究將本方法用於建物補	如第2點之回答,未來應用於補強效果
強效果的評估上。	評估之研究相當可行。。
7.針對輕隔間、磚牆、RC 牆等對於建物	可行。一般而言,鋼結構常使用輕隔間,
周期的影響是否應進行後續研究。	RC 建築物常使用磚牆或 RC 牆,因此鋼
	結構的周期相對而言會比較接近現行規
	範的經驗公式,但缺乏各種隔間對周期
	影響之量化數據。若能蒐集足夠齊全的
	資料,對此一問題作一量化之分析,將
	對於未來規範之修訂更有助益。

*ERA 及 SRIM 系統識別技巧之研究, 簡士爵, 2000, 國立台灣大學土木工程學 研究所碩士論文。