水泥基材塗裝材料加速劣化之紅外線熱像 特性檢測分析

內政部建築研究所自行研究報告 中華民國 98 年 12 月

PG9803-0258 098301070000G2007

水泥基材塗裝材料加速劣化之紅外線熱像 特性檢測分析

研究人員:林谷陶 研究員

內政部建築研究所自行研究報告

中華民國 98 年 12 月

表次Ⅲ
圖次······V
摘要
第一章 緒 論
第一節 研究緣起與背景
第二節 研究目的
第三節 研究內容與方法4
第二章 文獻分析
第一節 紅外線熱影像在非破壞性檢测的應用領域6
第二節 紅外線熱影像建築物非破壞性檢测的介绍7
第三節 紅外線熱影像在土木建築實驗研究的介紹11
第三章 紅外線理論與技術
第一節 紅外線基礎
第二節 紅外線熱影像技術
第三節 紅外線熱像儀的選用
第四章 實驗規劃與檢測方法
第一節 紅外線熱像儀介紹
第二節 水泥基材塗裝後耐候性能
第三節 實驗規劃
第四節 試體設計與製作40
第五章 實驗結果與分析
第一節 實驗數據檢視47
第二節 降温微分方程式分析及繪圖49
第三節 試體降溫能力之比較分析
第六章 結論與建議
第一節 結論
第二節 建議

水泥基材塗裝材料加速劣化之紅外線熱像特性檢測分析

参考文獻 ·····	57
附錄 A 期初簡報會議紀錄	•59
附錄 B 常用外牆飾面層材料的輻射率	•61
附錄 C 詞彙······	•63
附錄 D 紅外線熱像儀影像溫度紀錄彙整表	•69
附錄 E 影像紀錄表(部分)	•73

表 次

表 2.1.1	紅外線熱影像檢測項目	·7
表 4.3.1	紅外線熱像儀 B660 建議参數值	39
表 4.4.1	水泥砂浆配比表	41

圖 2.2.1 外牆滲水的熱影像圖8
圖 2.2.2 屋內插座接線不良的熱影像圖
圖 2.2.3 屋内保險老化過熱的影像圖
圖 2.2.4 建築物隔熱缺陷熱影像圖
圖 2.3.1 土木工程脈衝式熱影像實驗裝置的概要圖12
圖 2.3.2 整體實驗裝置及位置的照片
圖 2.3.3 鋼筋混凝土樑支承及千斤頂受力配置圖15
圖 2.3.4 施加 45-55 Kn 反覆載重時之熱影像16
圖 2.3.5 試體破壞瞬間的熱影像
圖 2.3.6 1.2 公尺 GFRP 補強的混凝土樑破壞後的實體照片17
圖 2.3.3 儀器高度、牆面距離及整體儀器架設
圖 3.1.1 電磁頻譜
圖 4.3.1 實驗規劃構想
圖 4.3.2 實驗配置圖
圖 4.4.1 細骨材粒徑分佈圖41
圖 4.4.2 試體測溫配置圖42
圖 4.4.3 實驗室夜間較佳位置44
圖 4.4.4 紅外線熱像儀未受外部溫度輻射干擾44
圖 5.1.1 N 列前 25 筆資料分佈及配適擬合 2 次曲線圖48
圖 5.1.2 N 列後 38 筆資料分佈及配適擬合 2 次曲線圖49
圖 5.2.1 水泥基材未塗裝素面未劣化之降温曲線
圖 5.2.2 水泥基材未塗裝素面已經劣化試片之降温曲線51
圖 5.2.3 水泥基材塗裝環氧樹脂未經劣化試片之降溫曲線51
圖 5.2.4 水泥基材塗裝環氧樹脂已經劣化試片之降温曲線52
圖 5.3.1 四種試片降溫曲線

摘要

關鍵詞:紅外線熱影像、非破壞性檢測、塗裝材料、劣化實驗

紅外線熱像分析檢測技術之試驗研究於歐美、日本地區,除 了於大型工廠、電力設備、半導體等電子電路等方面為成熟之檢 測應用外,建築領域相關研究亦進行多年,已可運用於建築結構、 外牆飾材、節能、防災等等之非接觸、非破壞性之檢測應用。

為熟悉紅外線熱像儀設備之操作及相關實驗需注意事項,本 年度將首先嘗試與本年度「塗裝材料對水泥質基材耐候性能改善 之試驗研究」協同研究案配合,藉由其水泥基材試體之耐久耐候 劣化實驗後,進行本案紅外線熱影像之特性偵測,以比對試體劣 化試驗後降溫特性,分析水泥基材塗裝材料劣化之耐候性質。本 案年度實驗研究成果為:

- 一、熟悉新式儀器之操作,累積相關整體實驗設備整合操作經驗, 對耐候耐久、非破壞性檢測實驗室建置與營運有所助益。
- 二、收集各國紅外線熱影像技術方展及應用現況,並探討分析國內 在非破壞性檢測領域可能之應用研究方向。
- 三、獲得水泥基材素面、耐候塗料之加速劣化試驗之紅外線熱影像, 並比對分析水泥基材塗裝材料之耐候性質與溫度降溫特性,其 實驗結果分析:
- 比較水泥基材素面劣化前後,可知劣化後材料降溫較快,保溫效 能較差;塗裝環氧樹脂漆後進行之劣化前後比較,其劣化後試 體降溫較快,保溫效能較差。
- 水泥基材塗裝後,不論是否已進行劣化試驗均具有較佳的保護作用,具有較高之保溫效果。
- 四、紅外線熱像儀具有全面快速檢測物體表面溫度,並即時影像顯現的功能,建議持續累積大量實驗數據,建立建築材料受熱之 升降溫特性資料庫,應可用來進行建築物非破壞性之老化檢測。

第一章 緒 論

第一節 研究緣起與背景

當物質的溫度高於絕對溫度零度(即-273.15℃)時,由於物 質內部分子或原子的熱運動,而持續不斷地向外放射輻射能量, 即使我們認為很冷的冰塊也是如此。物體在不同的溫度下,物體 都會放射出不同波長的輻射能量。

因此利用高敏感度的熱輻射感測器,偵測來自物體表面放射 出的紅外線輻射強度,透過計算機高速運算,就可用以不必直接 接觸到物體。以非接觸的方式得知物體表面的溫度,這就是利用 紅外線測量溫度的技術。

建築物在整個生命週期中,猶如人體一般經常需要進行身體 健康檢查,儘早發現問題儘早醫治。而身體健康檢查也分非侵入 式檢查及侵入式採取檢體的化驗方式,而正常一般都是先進行非 侵入的檢查。例如X光照相、核磁共振、超音波掃描等等,於發 現不正常現象及位置後,得以評估傷害最小的方式檢體採樣及化 驗分析。

既有建築物亦復如是,尤其建築工程更為非破壞性檢測需求 的趨勢,因此除了原有耐候耐久實驗室外,即積極建議增設非破 壞性檢測實驗設備,希望引進便利、穩定的方法與技術,發展建 築工程領域的身體健康檢查。

為能熟悉本項設備之軟硬體操作及相關實驗需注意事項,將 首先嘗試與本年度「塗裝材料對水泥質基材耐候性能改善之試驗 研究」協同研究案配合,藉由其水泥基材試體溫度之紅外線特性 偵測,比對協同研究案試體之劣化試驗後紅外線熱影像特性,以 分析水泥基材塗裝材料之耐候性質與溫度輻射之關係。

1

第二節 研究目的

紅外線熱像分析檢測技術之試驗研究於歐美、日本地區,除 了於大型工廠、電力設備、半導體等電子電路等方面為成熟之檢 測應用外,建築領域相關研究亦進行多年,已可運用於建築結構、 外牆飾材、節能、防災等等之非接觸、非破壞性之檢測應用。

因為國內建築物大多以鋼筋混凝土構造為主,其外牆又幾乎 都以磁磚為表面裝修材料,於施工方式多以人工方式鋪貼,其品 質本來就參差不齊,加上台灣地區高溫多濕及日照老化影響,都 市地區大樓往往隱藏磁磚掉落的安全性隱憂。事實上日本早就導 入紅外線熱影像技術進行外牆檢測,國內也有研究生以紅外線熱 影像儀(Infrared camera)拍攝磁磚表面溫度熱影像圖(Infrared images),觀察溫度分佈差異處而找出黏貼不完整的範圍及位置, 其判斷結果準確且快速,且可現場檢測較大範圍之磁磚。甚至目 前大陸已訂出紅外線熱像儀檢測外牆工程品質的「技術規程」。

本研究先選擇外裝塗料方面進行實驗,主要是目前相關研究 只見於汽車、木材有利用紅外線光譜進行相關研究,尚未有建築 物外裝塗料之相關紅外線熱影像應用研究。因此,本研究除可與 協同研究案「塗裝材料對水泥質基材耐候性能改善之試驗研究」 相輔相成外,亦可首先以紅外線熱影像進行建築物塗料方面之檢 測研究。

為發展此一紅外線熱影像的非破壞性檢測領域,相關紅外線 物理知識,及專門操作及分析技術必不可少,並必須配合嚴謹的 實驗步驟,逐漸建立相關的基本能力。因此期望藉由實際參與本 所年度協同研究案的實驗研究,學習相關材料、耐候耐久、劣化 等相關實驗技能,並利用相同之水泥基材試體、外牆塗料塗裝劣 化實驗後,再模擬太陽曝曬後之溫度紅外線熱影像特性偵測,比

2

對協同研究案試體之劣化試驗前後紅外線熱影像特性,以分析水 泥基材塗裝材料之耐候性質與溫度輻射之關係。

第三節 研究內容與方法

本研究除將收集國內外有關紅外線熱像檢測技術之發展及研 究現況,在建築物非破壞性檢測領域之可能應用,並收集此一領 域研究試驗文獻,吸取實驗經驗,及環境、試體等條件及參數設 定。

並與協同研究案合作,在其塗裝材料對劣化環境中的水泥質 材料耐候性能改善之機理與成效試驗研究過程中,進行溫度對水 泥質材料耐候性質的改變。以及不同塗料於加速環境下水泥砂漿 基材的防護效果的比較研究。

主要進行步驟如下:

- 一、題目確認-水泥基材塗裝材料加速劣化之紅外線熱像特性檢測
 分析
- 二、文獻蒐集及實驗變數訂定
- 三、試體製作與養護、儀器採購與操作
- 四、水泥基材受熱後紅外線熱影像檢測及特徵分析。
- 五、水泥基材塗料塗裝後,受熱之紅外線熱影像檢測及前後特徵分析。
- 六、水泥基材塗料塗裝,並試體加速劣化實驗後,受熱之紅外線熱 影像檢測及前後特徵分析。
- 七、水泥基材塗料塗裝,並試體加速劣化實驗後,受熱之紅外線熱 影像檢測及前後特徵分析。
- 八、紅外線熱影像檢測特徵與加速劣化機理(透水性能與氯離子侵入 評估試驗)試驗結果之關係探討。

第二章 文獻分析

紅外線熱像儀作為一種紅外線熱影像攝取的儀器,不但在軍 事應用中。佔有很重要的地位,在產業方面也有很大的發揮空間, 它除了具有非接觸、快速、能對運動目標和微小目標測溫等優點 之外,還具有下列優點:

以直觀方式顯示物體表面的溫度場:紅外線測溫儀可以顯示物體表面某一區域內各點的實際溫度值。並以影像方式呈現出來,很容易判定溫度分佈情形。

1. 溫度辨識度高

由於各種因素影響,紅外線熱影像儀很難分辨 0.1℃以下的 溫度差異,而紅外線測溫儀則以較高準確度計算出物體表面的真 正溫度值,所以能夠更精確分辨很小的溫度差,有些可達到 0.01 ℃。

2. 可採用多種顯示方式:

紅外線熱像儀輸出的視頻訊號中,包括大量的訊息,可用多 種方式顯現出來。例如,對視頻訊號進行假色處理,便可用不同 顏色標示不同溫度,使得熱影像更容易辨識物體或溫差,或將視 頻訊號經由溫度換算公式,用數字顯示物體各點的溫度值。 3. 可進行數據儲存與計算機處理:

紅外線熱像儀輸出的視頻訊號,經由個人電腦的影像擷取卡 轉換成數位影像,紀錄於電腦的資料儲存裝置內,可長期保存又 可用電腦作後續運算處理。

近幾年來,紅外線熱像儀由軍事用途逐漸擴大應用民生用途,在工業界熱診斷與分析、製程監視、產品研發或產品檢驗, 甚至應用在醫療診斷方面,日益受到各界重視,司時具有溫度分

5

佈及影像書面的熱影像設備而言,準確、快速、簡單、易用及非 破壞等特性是被廣泛應用的主要原因。紅外線熱像儀被廣泛應 用,其基本的特性在於:

1. 屬於非破壞性檢測。

- 2. 是非接觸式的遙測技術。
- 3. 操作簡單,單人即可操作。
- 4. 提供整個畫面的熱分佈結果,而非單點溫度數值。
- 量測過程即時顯示連續畫面,以及統計分析結果。
- 熱影像畫面上,每一個像素皆對應一個溫度值,根據需求,可 設定正常的操作溫度範圍,監視危險場所是否有溫升現象。

第一節 紅外線熱影像在非破壞性檢測的應用領域

紅外線熱影像儀分為固定及手持兩種,固定式的設計方式是 將熱像儀固定在監視塔台或建築物的支架上,利用旋轉平台來移 動熱像儀,在鏡頭可掃瞄到的範圍內,重複來回監視相關的危險 場所。固定式監測系統的優點,在於可以長時間密集監視危險場 所,透過熱像儀本身的測溫功能,設定溫度容許上限值,並連接 警示系統,或是將影像輸入電腦,利用電腦進行影像辨識及溫升 記錄,並連接警示系統,來達到工安連續自動監視的功能。

在工業生產中,許多設備處於高溫、高壓和高速運行狀態, 應用紅外線熱像儀對這些設備進行檢測與監控,不僅保證設備的 安全運轉,也能夠早期發現異常狀況,以便及時預先排除。同時, 利用紅外線熱像儀也可以進行工業產品的品質確保與管制。

表 2.1.1 紅外線熱影像檢測項目

▼紅外線熱影像檢測項目

電力輸配電系	輸電系統:絕緣礙子、電纜接續套管、跳接線、夾板
	配電系統:配電盤、匯流排、斷電器、接觸器、變壓器、電力熔絲
^{۳۷} ۵	變電系統:變壓器、空斷開關、隔離開關、斷路器、匯流排、比壓 器、比流器、合成器、電容器、電抗器、接觸器、避雷器
轉動機械系統	軸承、馬達、馬達冷卻埠、發電機渦輪葉片、壓縮機、齒輪
輸送儲存系統	泵浦、管路、漏斗、桶槽、球形槽、輸送帶
加熱冷卻系統	壁爐、爐管、爐火、鍋爐、冷凍櫃、管路、冷卻水塔、洩壓閥
建築物系列	鋼筋、屋頂、壁內暗管、混凝土壁、磁磚、門窗、外牆、大型建築 物、混凝土路面、瀝青路面

資料來源:鄭益志、林明洲,《紅外線熱影像檢測技術應用》工安環 保報導 NO.7,2002.04

第二節 紅外線熱影像建築物非破壞性檢测的介紹

一、濕氣和水損害

使用紅外線熱像儀通常可以偵測房屋中的濕氣和水損害。原 因之一是受損害的區域具有不同的導熱特性,而另一個原因則是 這些的區域與周圍的區域相比,具有不同的儲熱熱容量。

在決定濕氣或水損害是如何出現在紅外線影像上的原因時, 許多因素都有影響。例如,根據材料和一天中的時間不同,這些 部分的受熱和冷卻過程在以不同速率發生著。由於這個原因,在 進行濕氣和水損害的檢查時,必須考慮其他檢測方式併行採用。 下面的影像顯示了在外牆上的大面積水損害,由於窗框的安 裝不當,水已經穿透外牆表面。

圖 2.2.1 外牆滲水的熱影像圖

資料來源:FLIR B660 中文使用手册

二、插座接觸不良

根據插座的連線類型不同,連接不當的電線可能造成局部的 溫度升高。這樣的溫度升高是由於插入線與插座之間的接觸面積 減小所致,並可能導致電氣火災。插座的結構因製造廠商不同可 能有很大的差別。由於這個原因,不同的插座故障可能導致紅外 線影像上,有著相同的典型特徵。

局部的溫度升高還可能是由於電線與插座之間的不良接觸和 負載的差異造成的。圖下面的影像顯示的纜線與插座之間的連線 狀況,由於連線的接觸不良造成了局部的溫度升高。

圖 2.2.2 屋內插座接線不良的熱影像圖

資料來源:FLIR B660 中文使用手册

三、插座老化(接觸銅片的氧化)

根據插座的類型不同以及插座的安裝環境不同,氧化可能發 生在插座的接觸表面上。當插座處於加載狀態時,這些氧化可能 導致局部的電阻增加,表現出的是紅外線影像上就是局部的溫度 升高。插座的結構因製造廠商不同而可能有著很大的差異,局部 的溫度升高還可能是由於電線與插座之間的不良接觸和負載的差 異造成的。下面的影像顯示了一系列的保險絲,其中的一根在與 保險絲支架的接觸表面上出現了溫度升高。由於保險絲支架為裸 露金屬,溫度增加不在於此,而是表現在保險絲所連接的陶瓷部 分。

圖 2.2.3 屋內保險老化過熱的影像圖

資料來源:FLIR B660 中文使用手册

四、建築物隔熱缺陷

建築物隔熱缺陷會隨著時間的流逝導致隔熱層體積的減小, 從而無法填滿構架牆中間的空間。由於這些缺陷與正確安裝的隔 熱層相比要麼有著不同的導熱特性,因此空氣可以穿透建築的構 架的區域。當檢視一棟建築時,內外側的溫差應該至少有 10°C (18 °F)。而立柱、水管、水泥柱以及類似的構件可能在紅外線影像上 非常類似於隔熱缺陷。微小的差別可能也會自然發生。

在下面的影像中,屋頂構架的隔熱層不足,空氣在氣壓的作 用下會進入屋頂結構,這個區域因此在紅外線影像上表現出不同 外觀特徵。

圖 2.2.4 建築物隔熱缺陷熱影像圖

資料來源:FLIR B660 中文使用手册

第三節 紅外線熱影像在土木建築實驗研究的介紹

因為建築物結構體,如混凝土本身具有很低的傳導性,紅外 線熱影像應用在土木工程依大部分就被應用在建築物外殼隔熱性 能的被動式調查方面。而更進一步的土木工程領域的發展及應 用,通常是利用太陽為天然的熱源,例如檢查橋梁的版面及鋪面。 不過,最近幾年的案例,已經開始運用主動式熱影像技術至土木 工程,而其紅外線熱影像技術應用也有文獻案例,成為土木工程 上量化非破壞性檢測方法。例如,紅外線熱影像在定位橋梁版脫 層的應用已有 ASTM 標準的規定。

另外,這項技術也被引伸應用於檢測典型建築物結構的各種 表層不均勻性,及一般表層附近的缺陷。實務上,例如定位混凝 土中的裂縫及蜂窩、混凝土及圬工構造面層砂漿剝離、混凝土砂 漿粘著面磚下隱藏的裂縫及剝離、碳纖強化積層黏結混凝土,以 及鋼骨瀝青填縫劑剝離的分析。

11

 一、數值模擬進行土木工程主動式紅外線熱影像定量分析(Active Infrared Thermography in Civil Engineering -Quantitative Analysis by Numerical Simulation)

在非破壞性檢測的許多領域,主動式紅外線熱影像技術是一 項快速建立且可予信賴的工具,並且在一些產業的材料試驗分項 的裂縫及脫層檢測上,已經被熟知。因為"熱波"的低滲透深度 和緩慢擴散的特性,通常被應用在薄型及具高溫度傳導性的材料 (例如金屬板)。

德國聯邦材料研究暨試驗研究所(BAM,柏林)2003年,進行 了一項建築結構於外部輻射加熱後的冷卻過程中,以紅外線熱影 像及雷達探測混凝土內部及表面下的不同裂縫尺寸及深度的數值 分析,並以 BAM 開發的有限差分程式比較了實驗與數值模擬結果。

圖 2.3.1 土木工程脈衝式熱影像實驗裝置的概要圖

資料來源:Non-Destructive Testing in Civil Engineering 2003

圖 2.3.2 整體實驗裝置及位置的照片,詳細說明如下。 資料來源:Non-Destructive Testing in Civil Engineering 2003

本研究案例所示的量測方法,是以外部熱源加熱試體表面, 並於冷卻過程進行相關的研究。加熱脈衝產生的不穩定熱流,可 描述為熱波的擴散及衰減,而熱波的擴散,與材料特性如熱傳導、 比熱、質量密度等極為相關。因為結構構件內不均值性的不規則 溫度性質,而影響了熱流及表面溫度分布的均勻性。當以紅外線 熱像攝影機觀察短暫的表面溫度分布變化,表層的不均質會被偵 測出來。其差異是因為未損壞區域的表面溫度瞬變曲線,與損壞 參數如深度、橫向尺寸及材料類型等不均質的資訊所產生。

溫度加熱模組包含三組遠紅外線加熱器,每組功率 2400W。 加熱程序通常會在試體表面動態的移動加熱器,俾能平均加熱。 因此,加熱器架設成一直排,並且自然地平行排列於試體表面 15 公分處。

觀察試體表面冷卻的過程,是以商品化的紅外線照相機 (Inframetrics SC1000)。照相機具有 256X256 焦點平面陣列、矽 化鉑半導體檢知器,可以檢測試體表面 3~5mm(?)範圍波長。所測 到輻射強度值,就可以由灰階或彩色階層圖對照表轉換為溫度值 (溫度紀錄圖)。當在資料擷取中,溫度影像資料傳輸至電腦的最 大畫面更新率(框速、格率)為 50Hz,儲存波形深度為每像素 12 位元,資料傳送完成後,再於電腦內以特定軟體進行分析。

本案研究證實脈衝式(遠紅外線加熱方式)熱影像作為土木工 程的良好非破壞性檢測工具,可以成功找出混凝土表面 10 公分內 的缺陷。它是快速有效的非破壞性方法,也不需接觸就可獲得表 面影像,也能進行實驗資料的量化分析。

數值模擬對環境狀態影響及材料參數的研究是有用的,並且 藉著比較模擬與量側值(逆向問題),可以決定真正空洞深度。而 更深入的脈衝式熱影像研究也顯示這個方法,可以應用於偵測表 面脫層現象(混凝土或石牆面的灰漿、碳纖強化水泥面層、磁磚 嵌入混凝土表面砂漿的剝離),以及找出過度潮濕的表面區域。

因此本研究案例主要證實並推薦主動式紅外線熱影像技術的 應用,就是藉著快速傅立葉轉換完成了頻率域代替時間域的實驗 數據分析,即脈衝式熱影像技術。

二、混凝土樑受到反覆載重試驗的破壞預測

本研究案例為英國 University of Glamorgan, Pontypridd, Mid Glamorgan C W Hu, J K C Shih+, R Delpak*, D B Tann 等 人的研究。為紅外線熱影像在 FRP 混凝土補強構件中氣泡及裂縫 擴張之檢測應用其中的一部分,旨在探討鋼筋混凝土樑破壞初期 之裂縫形成及延伸預測等二項的檢測應用。

因為關心基礎公共建設的維護已經成為 21 世紀全世界關鍵 的,同時也是這一世代的主要挑戰課題。公共建設工程上使用的 材料,通常被認為是在不同階段的結合與破壞,這是因為:(i)

14

過長的使用期間,(ii)超過負荷或是使用限制,(iii)設計錯誤, (iv)施工或是監造錯誤,(v)環境因素或是化學物品侵蝕;本文也 引述一份由美國土木工程學會所做有關美國公共建設的報告指 出,估計矯正及翻修的費用高達1.3兆美元(約915億英鎊),ASCE (2001)。英國的調查也指出在公共建設的類似耗費,每年逾50億 英鎊,NCE (2001)

本研究試體為 100 x 200 x 1200 mm 玻璃纖維複合材料組成 薄片的鋼筋混凝土樑並三根 10mm 直徑鋼筋加勁。其中 GFRP 薄片 以兩層環氧樹脂上黏結,另外,鋼筋混凝土樑支承及千斤頂受力 如下圖

圖 2.3.3 鋼筋混凝土樑支承及千斤頂受力配置圖

資料來源:《Detection of air blisters and crack propagation in FRP strengthened concrete elements using infrared thermography》, inframation 2002

實驗逐漸加載至極限載重,然後反向逐漸減輕載重,以週期 性加載至設定的時間次數。本研究中加載的高峰至高峰幅度,設 定為靜載重的上下 20%。振動頻率設定為 3Hz。樑中間的位移依每 5Kn 的靜載重及反覆載重反應紀錄。併同紅外線熱影像系統量測, 量測精確度為±1°C, ±1%, 而其溫度靈敏度為工作環境 25°C 下 0.02°C。

在監測每個加載階段時拍攝一系列的紅外線熱像圖,作為鑑 別潛在破壞的區域。以記錄到破裂時摩擦及磨損所產生的熱能, 因此採納被動式熱影像法(PTA)進行研究。期望這個區損區域自然 產生的熱能存在,因此就不用外部刺激的方式產生。

圖 2.3.4 施加 45-55 Kn 反覆載重時之熱影像

資料來源:《Detection of air blisters and crack propagation in FRP strengthened concrete elements using infrared thermography》, inframation 2002。

連續的反覆載重行為預計加速裂縫的形成,也因此形成了該 不連續區域,並產生摩擦及熱能。如上圖為施加 45-55 Kn 反覆載 重時之熱影像,其中白色圈圈標示出來的三角形,為破裂尖端摩 擦的游離能量。由此影像就可斷定這個溫度較高的區域將會是破 壞發生的地方,而破壞也會沿著三角形的 45°斷面。施加 67.5-82.5 Kn 反覆載重破壞瞬間之熱影像

圖 2.3.5 試體破壞瞬間的熱影像

資料來源:《Detection of air blisters and crack propagation in FRP strengthened concrete elements using infrared thermography》, inframation 2002。

其實體破壞斷面,幾乎如圖 2.3.4 所標示出來預期的預測圖 示。

圖 2.3.6 1.2 公尺 GFRP 補強的混凝土樑破壞後的實體照片

資料來源:《Detection of air blisters and crack propagation in FRP strengthened concrete elements using infrared thermography》, inframation 2002。 本研究範例經由幾個控制條件下的實驗,獲致的結論為紅外 線熱影像的辨識功能,可以做為結構破壞當時預警功能。主要原 因有:

- 游離能量(因為延滞作用的關係,如反覆載重的影響),在可能 的破壞面,可由很明顯的紅外線熱像技術出來,而可以在工程 維護方面應用,提供結構損壞狀態的質及量方面資訊。
- GFRP 補強混凝土樑的部位,在反覆載重下之破壞前可立即由紅 外線熱影像偵測出來。
- 建議因應科技的進步,有機會進行更深入的研究,協助眼睛進 行不可見潛在破裂部位的檢測。

三、應用紅外線攝溫影像術檢測磁磚黏貼完整性

磁磚在國內為廣受青睞的牆面裝修建材。台灣地處亞熱帶, 屬於海島型氣候,溫度與濕度之變化導致磁磚、黏著層與牆面結 構體界面的破壞,加上施工品質不良,常造成磁磚剝落的情形。 磁磚剝落不僅對建築物外觀造成影響外,甚至可能危害他人的安 全。因此,陳俊菁(朝陽科技大學,2003,碩論)研究應用紅外線 熱像技術檢測磁磚黏貼完整性,係使用紅外線熱像儀拍攝磁磚表 面溫度熱影像圖,觀察溫度分佈差異處而找出黏貼不完整的範圍 及位置,其判斷結果準確且快速,且可現場檢測較大範圍之磁磚。

其實驗檢測方法為利用紅外線熱影像儀與石英鹵素燈搭配使 用以縮短檢測時間。石英鹵素燈產生人為入射熱源,照射磁磚表 面使溫度上升(吸熱),關閉鹵素燈使磁磚溫度下降(放熱),以 紅外線熱影像儀偵測磁磚表面吸熱及放熱溫度分佈情形。再依據 其他實驗案例制訂檢測時間為12分鐘,包括石英鹵素燈照射磁磚 表面10分鐘,紅外線熱像儀每隔2分鐘拍攝一張熱影像圖共5 張; 關閉石英鹵素燈停止照射磁磚表面2分鐘, 紅外線熱像儀每 隔1分鐘拍攝一張熱影像圖共2張。

因為當石英鹵素燈產生人為入射熱源造成熱傳遞從牆面磁磚 表面向內流動時,由於磁磚黏貼不完整處內含有空氣,而空氣之 熱導率較低因此會降低牆面吸收熱傳遞之能量,所以磁磚黏貼不 完整處之表面溫度會較磁磚黏貼完整處溫度高,本研究案例即根 據此準則來判斷磁磚黏貼不完整處。

圖 2.3.3 儀器高度、牆面距離及整體儀器架設

資料來源:陳俊菁,《應用紅外線攝溫影像術檢測磁磚黏貼完整性》, 朝陽科技大學,2003,碩士論文。

第三章 紅外線理論與技術

第一節 紅外線基礎

一、溫度量測方式

依照陳國杰先生的整理(陳國杰,2004),溫度量測方式有以 下幾種:

- 接觸式:常見的溫度量測方式,是將感測器接觸待測物表面, 經由熱傳導方式,感應物體表面的熱量,轉換成溫度顯示,以 得知物體表面溫度。
 - a. 玻璃溫度計
 - b. 熱電耦(TC, Thermo couple)
 - c. 電阻式溫度感測器(RTD, Resistance Thermal Detector)

這些測量溫度的方法,都必須使感測器接觸待測物的表面, 並且需要一段時間進行熱傳遞,使感測器的溫度與待測物一致(達 到熱平衡)後,感測器的讀數才是真正的溫度。

非接觸式:許多移動中或溫度變化較快的待測物,缺乏足夠的時間進行熱傳導。而無法精確重測其溫度,此外有些是無法接觸待測物表面的情況,就必須採用非接觸式溫度量測技術。目前常見的非接觸式溫度量測技術,是量測物體表面發射的紅外線熱輻射,將輻射強度換算成為溫度值。

二、紅外線物理

自然界一切溫度高於絕對零度的物體(物質),無時無刻都在 產生發射著紅外線輻射,且每種物體所發出輻射都有著不同的特 徵信息,這就提供了檢測和識別各種目標或物體的理論基礎。

自從英國天文學家赫謝耳(Hershel)在1800年發現紅外線以來,隨著紅外輻射理論、紅外探測器、紅外光學以及紅外探測及

追蹤系統等的發展,紅外線檢測技術在民生經濟、國防和科學研究中,均有大量而廣泛的應用,並成為現代光電子科技的重要發展項目。(張建奇,2004)

在光譜上,紅外線的波長介於可見光與微波之間,通常在可 見光區中的紅光,波長超過 0.75μm 之後的不可見光開始,稱為 紅外線(Infrared),而繼續延伸到波長 1000μm 的遠紅外線,之 後才是微波(Microwave)的部份,在紅外線涵蓋的波長範圍內,依 照應用領域的不同,有各種不同的分段方式。

通常光譜學上,將紅外線區分為三個波段:0,75~2.5μm 稱為近紅外線(near IR),2.5~25μm稱為中紅外線(middle IR), 超過25μm部份,則稱為遠紅外線(far IR)。

在熱影像應用上,將波長範圃分為 3~-5μm 及 8~12μm 兩個 波段,通常將檢測波長 3~-5μm 的熱影像系統,稱為短中波段(SW) 紅外線熱像儀;而接收波長 8~13μm 的熱像儀,則稱為長波段(LW) 紅外線熱像儀。不論按用何種分段方式,採用紅外線作為工作光 源的儀器。目前已廣泛應用在化驗室或廠房的各個角落。幾個常 見的應用包括:

圖 3.1.1 電磁頻譜(①:X 光;②:UV;③:可見光;④:紅外線; ⑤:微波;⑥:無線電波。)

- 近紅外線方面:包括以近紅外線為工作光源的近紅外線氣體分 析儀、應用可見光及部份近紅外線光源間低照度電耦合裝置 (Charge Couple Device CCD)攝影機、點對點式移動感應偵檢 器、火焰偵測器及各種光纖傳輸與遙控裝置。
- 中紅外線方面:以紅外線氣體分析儀及紅外線熱影像儀為兩個 主要應用領域。
- 遠紅外線部份:除了加熱用途之外,及少部份應用在氣體分析 方面。至日前為止、遠紅外線之應用及重要性,都不如近、中 紅外線來得的廣泛。

紅外線之所以如此重要。是因為許多自然界物質的運動現象 (分子的轉動與振動),所釋放或吸收的輻射線,都在紅外線的區 域內,因此常用紅外線來探測待測物存在種類、數量甚至外觀形 像等。

將紅外線光譜的整個波長範圍細分為許多微細的子波段(波 段的寬窄即解析度),根據每個子波段內紅外線光源被吸收的多 寡,即可用來分析待測物的濃度。由吸收波段的位置(波長),即 反應待測物的結構。相反地,不將紅外線分光或細分波段,這就 是熱影像系統之應用方式。

三、紅外線測溫原理

當物質的溫度高於絕對溫度零度(即-273.15℃)時,由於物 質內部分子或原子的熱運動,而持續不斷地向外放射輻射能量, 即使我們認為很冷的冰塊也是如此。物體在不同的溫度下,物體 都會放射出不同波長的輻射能量。

普朗克黑體輻射公式:

 $M_{\lambda}(T) = \frac{2\pi hc^{2}}{\lambda^{5}} \frac{1}{e^{hc/\lambda KT} - 1} \left(\frac{W}{cm^{2} \mu m}\right)$

根據普朗克定律 (Plancks Law)及偉恩位移定律 Wiens Displacement Law),物體的總輻射能量是波長與溫度的函數,當 溫度愈高則輻射能量愈大,而且在輻射能量最大的峰值波長會隨 著溫度的上升而縮短。輻射能最大的峰值波長入與絕對溫度 T 的 關係,可以用入T=2898 表示,即物質表面輻射能最強的波長與物 體絕對溫度成反比。當溫度愈高,則峰值波長愈短。在室溫(~27 °C)下的物體。其熱輻射的峰值波長入位於 10 μ m,分佈範圍從 5.5 μ m 至 23 μ m 左右,當物體溫度昇高至 200°C,峰值波長則移至 7 μ m 附近。

此外根據史蒂芬波茲曼定律 (Stefan-Boltzmann Law),物體 的總輻射能量與其放射率(Emissivity)及物體絕對溫度的四次方 成正比。因此在已知物體放射率的前提之下,只要能夠量測特定 波長範圍內物體的總輻射能量,根據上述理論,就可以推算得到 物體的表面溫度。
以人體為例,正常人的體溫為 37℃,由偉恩位移定律可以計 算出幅射能量最大的波長為 9.3438µm,而皮膚是一個良好的輻 射體,其放射率約為 0.99。非常接近理想黑體(放射率=1),根據 以上所述的人體輻射特性,選擇對涵蓋峰值波長範圍內具有相當 敏感度的熱輻射感測器,測量從人體皮膚放射的輻射量。已知輻 射量及已知放射率,就能根據史蒂芬波茲曼定律推算出體溫,這 就是耳溫槍或額溫槍運作的原理。

同樣的道理·利用高敏感度的熱輻射感測器,偵測來自物體 表面放射出的紅外線輻射強度,透過計算機高速運算,就可用以 不必直接接觸到物體。以非接觸的方式得知物體表面的溫度,這 就是利用紅外線測量溫度的技術。

第二節 紅外線熱影像技術

一、紅外線熱影像原理

將許多紅外線感測器排列成方陣的形式,同時偵測物體表面 上不同位置所發射的輻射強度,將輻射源平面座標對應到感測器 的相對位置,即構成所謂的「熱影像」。紅外線熱像儀就是同時偵 測物體表面不同位置的輻射能,產生熱影像,結合影像處理技術, 以各種方式呈現熱影像的儀器。由於熱像儀偵測的是紅外線而非 可見光,理論上熱影像與色彩並無直接關係,但是為了凸顯物體 表面溫度分佈的差異,常以人為方式將熱影像的溫度值,對應到 一系列的色彩,稱為虛擬顏色(pseudo Color),使人更易於分辨 物體表面的溫度分佈情形。(陳國杰,2004)

二、紅外線感測器

紅外線感測器是紅外線系統的核心組件,紅外線熱影像技術 發展的重要關鍵。每一次性能更好的新型紅外線感測器的研發, 都代表著紅外線技術的進步。20世紀50年代中期,由於高靈敏 度硫化鉛紅外線感測器的出現,使得紅外線空對空飛彈的實現, 並且在實戰中得到應用;60年代初期,應用長波紅外線感測器的 飛行掃瞄儀出現在高空飛機偵察的應用;60年代中期,戰鬥機配 備了紅外線前視裝置,並且在越戰中使用;70年代初期,由於碲 鎬汞等三元系化合物製作的半導體紅外感測器的出現和其他技術 的發展,使得紅外線技術在衛星預警、偵察、民用遙感探測等各 種領域大量應用。此後,軍事紅外線裝備,如紅外線夜視鏡、機 載紅外線前視、紅外線追蹤飛彈、紅外線偵察等成為現代軍事裝 備的重要部分。

近 30 年來, 紅外線感測器技術已從第一代的單元和線陣列發 展到了第二代的二維掃瞄和 InSb 凝視陣列。目前紅外線感探測器 技術正在由第二代陣列技術向第三代微型化高密度和高性能紅外 線焦平面陣列技術方向發展。目前紅外探測器具有如下特點: 1. 高度集成的焦平面感測器元件

像可見光 CCD 之類的攝像陣列一樣,要提高系統成像的分辨 率和目標識別能力,大幅度地提高系統焦平面紅外線感測元件的 集成度是一種重要的途徑。

2. 高性能

採用諸如微機械加工技術及 CMOS 這樣的大型或特大型積體 電路傳輸元件,實現了如 1024X1024 元、2048X2048 元這樣的大 型二維凝視紅外線焦平面陣列的高速大容量的信號處理,而且獲 得了高度均勻性的陣列焦平面響應特性,進一步提高了陣列的性 能。

3. 高密度小像素尺寸

目前的紅外線焦平面陣列由於採用次微米加工技術,像素感 測尺寸大為縮小,實現了小像素高密度的紅外線焦平面集成的發 展。

4. 多色工作

目前先進的紅外線焦平面陣列技術正處在從第二代向第三代 更為先進的陣列技術發展的轉變時期。世界各國正在加緊確定第 三代紅外焦平面陣列技術的概念,各有關公司和廠家機構的注意 力已轉向第三代紅外線焦平面陣列傳輸器的發展。第三代紅外線 焦平面陣列技術要滿足以下幾種要求(張建奇,2004):

a. 焦平面上感测器元件的集成技術提高,至少雙色工作。

- b. 高的工作温度,以便實現低功耗和小型輕量化的系統應用。
- c. 非致冷工作紅外線焦平面陣列傳感器的性能達到或接近目前 第二代致冷工作紅外集乎面陣列傳感器的水準;
- d. 必須是極低成本的微型傳感器,甚至是一次性應用的傳感器。

紅外線熱影像技術發展已有三十幾年。已從當初的機械掃瞄 機構發展到了目前的固體小型化全電子自掃瞄聚焦攝影,特別是 非致冷技術的發展使紅外線熱影像技術從長期的主要軍事目的擴 展到諸如工業監控測溫、執法緝毒、安全防範、醫療衛生、遙感、 設備先期故障診斷與維護、海上救援、天文探測,以及車輛、飛 行器和艦船的駕駛員夜視增強觀察等廣泛的民生用途上。

第三節 紅外線熱像儀的選用

依照應用特性區分,一般紅外線熱橡儀可分為兩大類: 1. 熱影像測溫儀:

27

作為非接觸式遠距檢測物體的表面溫度的測溫儀器,高靈敏 度是基本要求,要求的是具備高準確度,因此影像像畫面上每一 個像素點都要經過嚴格的校正,而且儀器本身也要具備能隨著使 用環境的溫度,而進行自動調整的能力,以維持量測溫度的準確 性,選擇高品質且100%良好的紅外線感測元件成為此類儀器機構 設計的重要關鍵,有些系統採用單一個焦點陣列式感測器,搭配 複雜的旋轉鏡機構掃描鏡面上各點,並將熱輻射線投射到單一的 感測器,再重組成完整的熱影像畫面,因此這類測溫儀都非常昂 貴。

2. 熱影像儀:

大部分常見的紅外線熱像儀都是屬於這類,重點在於熱影像 的清晰度,講求的是高靈敏度,並不特別要求溫度量測的準確度, 因此一般都未作溫度校正。通常採用相當於偵測紅外線 CCD 的焦 點陣列式感測器(Focal array detector),利用積體電路製程, 將許多微小的感測元件排列方陣形式,透過電路掃描以讀取各感 測器的輻射量,由於在複雜的生產過程中,許多因素都會造成各 個感測元件之間性能的差異,而未逐一對各個感測元件進行校 正,所讀取的溫度值多少存在許多誤差,以致此類儀器的整體準 確度相當有限。若用來估算溫度,其得到的讀值的準確度都不高。 此外,由於不要求準確地量測實際溫度,其內部並沒有自動溫度 補償的機制,因此當環境溫度變化時,所推估的溫度便會出現較 大的誤差。

目前市售紅外線熱像儀波段分為 3~5μm 及 8~12μm 二種,根 據感測器的操作溫度再分為室溫與非室溫二種。以目前的技術水 準,基本上 3~5μm 或 8~12μm 在熱診斷方面的應用上,待測物處 於室溫或比室溫略高的環境下,皆可作為檢測工具,兩者並無明 顯的差異;但是待測物在高溫的狀況下,3~5μm 波段熱像儀成像 性較佳,反之若處於低溫條件下,則應選用 8~12μm 波段者,其

28

影像清晰度較佳。在價格方面,通常 3~5 µm 波段之熱像儀應用的 材料比採用 8~12 µm 波段者便宜。

在室溫與非室溫方面,因設計上的考量,目前只有 8~12μm 在熱波段之室溫型熱影像儀,數年前,室溫型熱像儀的最小感應 溫差遠不及非室溫型熱像儀,在實際應用上受到相當大的限制, 但是近幾年來,經過不斷改良後的室溫型感測器,其敏感度已經 大幅提昇,接近非室溫型 PtSi 感測器,成像的效果也相對清晰許 多。

目前室溫型與非室溫型的差異,幾乎只在於感測器像素大小 的差別,一般室溫型感測器的像素大小約 50 µm 左右,而非室溫 型感測器的像素大小約在 30 µm 左右,在近距離的熱診斷應用 上,二者差別不大,在較遠距離(大於 100m 以上)的觀測效果才會 有明顯的差異。

第四章 實驗規劃與檢測方法

第一節 紅外線熱像儀介紹

建築物維護檢查紅外線分析設施為本所材料實驗群非破壞性 檢測實驗室所規劃之主要設備之一。因此規格訂定除能因應實驗 研究的精密要求外,也能針對建築物外牆、管線、設備甚至結構 等等之日常保養維護延壽需求之現場檢測方便攜帶,以期探討本 土建築特性、居住行為及環境條件、紅外線非破壞性檢測應用與 其他實驗儀器設備的相互驗證,並探討相關應用的模式及程序。

經招標採購程序後為 FLIR B660 之紅外線熱像儀,其規格為: 熱影像性能:

- 視野/最小焦距:所附標準鏡頭之視野≥24°x18°,最小焦距≥
 0.3m,IFOV≤0.65mrad;另附廣角鏡頭(最小焦距≥0.1m,視野≥45°x34°)及望遠鏡頭(視野≥12°x9°,最小焦距≥0.9m)。
- 2. 溫度靈敏度:30℃條件下≦0.045℃
- 3. 影像頻率: 30 Hz 以上(含)非交錯
- 4. 調焦方式:1~8倍連續放大,具可選擇之自動或手動功能。
- 6. 偵測器型態:非致冷焦平面陣列(microbolometer Uncooled Focal Plane Array), 640x480 圖素。
- 6. 光譜波長範圍: 7.5 以下(含)~13μm以上(含)。
- 7. 可見光影像:
- (1) 可見光影像: 3.2M pixels(2048 x1536 全彩)/內建目標閃光燈/ 可替換鏡頭。
- (2) 可見光數位變焦:1~8倍 連續放大
- 8. 影像加強功能:
- (1)影像即時融合:本設備顯示螢幕應可於於光學影像中即時嵌入 紅外線影像並可即時調整 IR 尺寸、溫度範圍及解析度。

- (2) 畫面增強功能:具有多重影像顯示之"圖中圖"加強功能,具有自動全時增強之動態細部增強功能。
- (3)影像比對功能:螢幕可同時顯示一張紅外線即時影像及一張紅 外線參考影像,以做定期檢查比對。
- (4) 座標顯示功能:內建 GPS 定位器,座標值可直接顯示於顯示圖 像內。
- (5) 內建數位影音:可與影像同步錄音與紀錄文字。
- (6) 可同步拍攝全熱影像及可見光影像,即時融合顯示並可無段 調整範圍。
- 二、量测性能:
 - 温度量測範圍:-40℃以下(含)~120℃以上(含),並可擴充至 1500℃或2000℃以上(含)。
 - 2. 量測準確度:±2℃or ±2%(含)以下,但被測物溫度為+5以下(含)
 ~120℃以上(含)、環境溫度為+9以下(含)~35℃時以上
 (含),應可達±1℃或1%以下(含)之讀取精度。
 - 放射率調整:0.1~1(增量0.01),並可於內建標準材料放射率 表中自行選取。
 - 4. 重現性:±1℃或1%以下(含)。
- 三、影像分析功能:
 - (1) 中心熱像自動 10 測點以上(含)、5 區段以上(含)、自動 hot/cool 感應偵測。
 - (2) 熱像溫寬自動追蹤功能具有面積、單點、PPM、R&D、Medical 應用選項。
 - (3)5點以上(含)移動測溫顯示及標示。
 - (4) 可設定區域自動追蹤最高/低溫顯示及標示。
 - (5) 具有高/低溫 Alarm 預警顯示同時存檔功能及 Alarm Output。
 - (6) 可同時求得5個以上(含)放射率值,及其放射率補正、環境溫度自動及手動設定補正功能。

- (7) 具有彩虹色、彩虹漸層色、高溫鐵水色、鐵熱色、白黑及黑白 6種以上(含)溫度色盤選項及格點顯示。
- (8) 具有 Averaging、Isotherm、Freeze 功能。
- (9) 具有獨立快取鍵,如存檔按鍵、溫階自動調整按鍵及合成顯示 按鍵。
- (10)主機本體具有連續監測儲存熱像功能,可設定3秒~12小時以 上之週期儲存。
- (11)建築物潮濕區域檢查功能:內建結構體潮溼、結露點區域顯示功能及聲響警告,提供即時警告。
- (12)建物節能隔熱檢查功能:內建隔熱效益檢查、設定、區域顯示、警告顯示與聲響警告功能,提供即時警告。
- 四、主機顯示螢幕:
 - 內建可傾斜的、高解析度彩色影像觀景窗(≧800x480圖素)。
 - 可旋轉 5.6"(含)以上 TFT 背光增強之數位顯示螢幕 (≧ 1024x600 圖素)。
- 五、影像儲存:
 - 1. 主機儲存 1GB , 1000 幅以上(含)。
 - 2. 影像儲存格式: JPEG、14bit 紅外線影像格式等。
 - 3. 錄影儲存格式: 60 sec 以上(含), MPEG4
- 六、控制與調整
 - 1. 一般設定:具備日期/時間、℃/°F、語言、刻度、LCD 亮度調整 設定功能。
 - 2. 參數設定:具備放射率、環境溫度自動偵測或設定功能。
 - 3. 一般操作:具自動校正功能
 - 4. 螢幕指示: 電池狀態、目標物放射率、背景溫度、現在時間

七、工作環境

- 1. 工作溫度:-15以下(含)~50℃以上(含)
- 2. 儲存溫度:-40 以下(含)~70℃以上(含)

水泥基材塗裝材料加速劣化之紅外線熱像特性檢測分析

- 3. 工作及儲存溼度(IEC 68-2-30/24h): 95%RH 以上(含)
- 4. 保護等級(IEC 529): IP 54
- 5. 耐震盪/振動等級(IEC 68-2-29/6): 25G/2G
- 6. 主機重量(含電池): 2kg 以下(含)

八、其他

- 1. 輸出界面:USB、USB-mini、IEEE-1394、IrDA(無線傳輸)、 NTSC
- 2. 內建紅色雷射光點指引+LED 照明
- 3.使用電源:交流電AC110V以下(含)~220V以上(含),電池x2(具有自動關機及休眠省電裝置,智慧型鋰電池可連續操作3小時以上(含))。

第二節 水泥基材塗裝後耐候性能

本所協同研究案「塗裝材料對水泥質基材耐候性能改善之試 驗研究」係針對塗裝材料對劣化環境中的水泥質材料耐候性能改 善之機理與成效進行試驗研究。希望藉由力學分析試驗、孔隙結 構量測、透水性能與氯離子侵入評估試驗、色差與光澤度量測、 及接觸角量測等試驗結果,達到日曬溫度對水泥質材料耐候性質 改變的瞭解,以及塗料於加速環境下水泥砂漿基材的防護效果研 究。

研究於今年二月開始執行至今,已完成各種塗裝試片的製作 工作,並依設計之劣化期程,開始進行各種加速劣化試驗。目前 由已完成的劣化期程進行分析發現,試體添加海菜粉會將降低其 抗壓與抗拉強度。而未塗裝試體在溫度劣化下,抗拉強度有較明 顯的影響,抗壓強度則較不顯著。於日光模擬劣化方面,可以發 現色差與光澤度均隨著劣化時間的進行有所變化,於透水試驗過 程中發現在相同塗裝下,添加海菜粉的試體透水量均高於未添加 試體,表示添加海菜粉基材的抗透水性質較差。

再由 ACMT 試驗結果發現,溫度劣化後氯離子穩態傳輸係數會 增加 20%以上,然而力學強度的衰減程度均低於 10%。由此可說明 溫度劣化所導致試體微裂縫成長會對氯離子傳輸行為的影響較 大。但相關變化比較仍需較長時間的試驗結果加以進一步說明, 且後續工作仍有更長時間之加速劣化與性質分析工作,仍需賡續 進行。

第三節 實驗規劃

一、實驗構想

本研究實驗的想法,係從建築物非破壞性檢測領域,及前述 文獻探討中,發現紅外線熱影像技術具有遠距、非接觸及立即影 像化的檢測方式深具潛力;又未來新建建築數量越來越少,相對 既有建築物使用管理維護的重要性則越來越重要。因此實驗的構 想為如何借重本所材料實驗中心的實驗設備,促進不同實驗領域 的結合,探討開發新的檢測應用模式。如果得以持續建立足夠的 基本資料及實驗證明數據,而建立某種定性定量關係,紅外線熱 影像技術或可應用在遠距建築或土木結構、材料本身的劣化情形 判斷,而不只是表面缺陷或表層空洞的偵測而已。

圖 4.3.1 實驗規劃構想

資料來源:本研究繪製

此外,於年度進行的實驗研究案,彼此支援合作學習,資源 互用等等,甚至可能互相激發新構想創意。

實驗步驟:

- 水泥基材試體:於恆溫恆濕箱中加熱至50℃,取出後自然降溫 進行紅外線熱影像偵測。
- 水泥基材塗裝環氧樹脂漆(未經加速劣化試驗者):於恆溫恆濕 箱加熱至 50℃,取出後自然降溫進行紅外線熱影像偵測。
- 水泥基材塗裝環氧樹脂漆(已經加速劣化試驗者):於恆溫恆濕 箱加熱至 50℃,取出後自然降溫進行紅外線熱影像偵測。
- 進行水泥基材試體與塗裝後之已劣化、未劣化實驗試體之紅外 線熱影像特徵及降溫曲線比對。
- 交互進行各項試體之紅外線熱像儀偵測紀錄之降溫曲線與協
 同研究案劣化曲線比對分析。

二、實驗配置平面

圖 4.3.2 實驗配置圖

資料來源:本研究繪製

三、使用設備

1. 恆溫恆溼控制箱

使用時機:加熱試體,並控制於試驗時相同外部環境溼度。 2. 紅外線熱像儀

- A. 注意事項:
 - a. 為了獲得非常精確的結果,依據 FLIRB660 設被原廠建議在
 啟動熱像儀之後,在開始測量溫度之前,應先等待5分鐘。
 - b. 偵測前注意:為電池充電、安裝電池、插入 SD 記憶卡、模式設定、參數輸入、影像儲存位置,及是否要與電腦連線。
 - c. 量測設定:要測量單個像素的溫度,應使用點溫測量功能。 為了獲得正確的溫度,點溫內部的區域必須被目標物體所覆蓋。
 - d. 參數輸入:熱像儀可使用這些物件參數:
 - 放射率(或輻射率),即與同一溫度下理論參考物體(稱為「黑體」)的輻射量相比,某物體所放射的輻射量。與放射率相對的是反射率。放射率決定物體與其反射量相比所產生的輻射量。
 - 反射溫度:用於補償由試體反射進熱像儀的環境輻射。這 種物體屬性稱為反射率。
 - 試體距離:即熱像儀與試體之間的距離。
 - 大氣溫度:即熱像儀與試體之間(即所在環境)空氣的溫度。
 - 相對濕度:即熱像儀與試體之間(即所在環境)空氣的相對濕度。
 - 外部光學溫度:即在熱像儀與試體之間所設定之保護窗等 類裝置的溫度。如果沒有使用保護窗或保護盾,該值與其他 內容無關。
 - 外部光學穿透率:即在熱像儀與試體之間所設定之保護窗
 等類裝置的光學穿透率。
 - e. 建議值輸入:如果對輸入參數值不確定,則建議使用以下值:

表 4.3.1 紅外線熱像儀 B660 建議參數值

反射表象溫度 大氣溫度 放射率 相對濕度 距離 +20°C +20°C 0.95 50% 1.0米 資料來源:FLIR B660使用手冊(大多數建築材料的放射率都在 0.85 和 0.95 之間。將熱像儀的放射率值設定在 0.90,是一 個不錯的起點。)

- B. 試體偵測及攝影
 - a. 水泥基材試體:加熱至 50℃,取出後自然降溫,每隔約1分
 鐘進行紅外線熱影像偵測及攝影。
 - b. 水泥基材塗裝環氧樹脂漆(未經加速劣化試驗者):加熱至 50
 ℃,取出後自然降溫,每隔約1分鐘進行紅外線熱影像偵測
 及攝影。
 - c. 水泥基材塗裝環氧樹脂漆(已經加速劣化試驗者):加熱至 50
 ℃,取出後自然降溫,每隔約1分鐘進行紅外線熱影像偵測
 及攝影。
- 3. 其他

A.溫度計、濕度計、皮尺、照相機、試體固定座B.耗材:隔熱保麗龍、鋁箔紙(量測試體表面反射溫度)

- 4. 一般注意事項:
- A. 記錄日期、氣候狀況(如天氣、風力、氣溫、日照等情況)。
- B. 選擇適當位置安放儀器,並使儀器處於正常工作狀態。
- C. 設置正常部位基準點,下列部位應設置基準點。
 - a. 試體塗裝材料變質或顏色不同的部位。
 - b. 試體應不受室內光線、或陽光照射、陰影影響。
 - c. 檢測環境、試體距離、方位等的影響。
- D. 拍攝紅外圖像並保存, 拍攝時應符合下列要求:

- a. 拍攝距離宜控制在 10~50m 範圍內,在 50~200m 距離內拍攝 時可使用長焦鏡頭,在 5~10m 距離內拍攝時宜使用廣角鏡頭。
- b. 拍攝的仰角應控制在 45°以內,水平傾角宜控制在 30°以內。
- c. 在保證上述條件的情況下,對建築物各立面均應分區域進行 拍攝,上、下或左、右相鄰圖像之間應有重合部分。
- E. 使用紅外熱像儀拍攝時應同時對被檢測部位拍攝可視照片。

F. 記錄紅外照片和可視照片的編號。

第四節 試體設計與製作

本研究以水泥砂浆所製作之試體做為實驗對象,試體除了水 泥砂浆基材製作外,亦包含塗裝保護材料設計。相關試體設計如 下:

一、水泥基材

本計畫使用外牆常用的水泥砂浆,所使用的所使用之細骨材 為符合 ASTM C144 圬工用砂級配要求的「川砂」,相關級配分析如 圖 4.1 所示,圖中實線段為本研究使用川砂級配,虛線為規範級 配限制,細度磨數 (fineness modulus, FM)則為 1.83,面乾內 飽和比重為 2.55。所使用水泥亦為常用的波特蘭一型水泥,且以 市面上常用之砂浆設計為主,相關配比如表 4.4.1 所示。

圖 4.4.1 細骨材粒徑分佈圖

資料來源:內政部建築研究所98年協同研究案「塗裝材料對水泥質 基材耐候性能改善之試驗研究」期末報告

表 4.4.1 水泥砂浆配比表(Kg/m3)

水灰比 (w/c)	水	水泥	細骨材(川砂)
0.45	270	599	1326.9

資料來源:內政部建築研究所98年協同研究案「塗裝材料對水泥質 基材耐候性能改善之試驗研究」期末報告

二、塗裝材料

前述協同研究案中,塗裝設計以市面上常見的室外塗料為 主。分別為目前常用的有機塗料,以及符合健康與環保需求的綠 建材塗料進行。其中有機塗料採用以常見的壓克力樹脂漆與環氧 樹脂漆、綠建材塗料方面則採用無機塗料、矽素與壓克力樹脂混 合型的晴雨漆。因此協同研究案中共使用4種類型塗料。

本研究因進行初步紅外線熱影像之降溫過程特徵比對,先只 採常用環氧樹脂漆為試驗的塗裝材料。

三、試體取樣及編號

本案實驗試體取自年度協同研究製作之試體,計四種共11片 試片,包含:

- 水泥基材未塗裝素面未劣化者共3片,(圖4.4.2 中試片記號x),其中1片未加溫,做為降溫控制片(附錄E,編號M.控制片(未劣化之 CA45),測溫點SP12),另2片經恆溫恆濕櫃加熱至50℃為降溫實驗測試片(附錄E,編號B.C.控制片(未劣化之 CA45)測溫點SP1、SP2)。
- 水泥基材未塗裝素面共3片(圖4.4.2 中試片記號△),經恆溫 恆濕櫃加熱至50℃為降溫實驗測試片(附錄E,編號 D.E.F.控 制片(已劣化之 CA45)測溫點SP3、SP4、SP5)。

圖 4.4.2 試體測溫配置圖

- 水泥基材塗裝環氧樹脂漆,未經劣化試驗者之試片共2片(圖
 4.4.2 中試片記號○),經恆溫恆濕櫃加熱至 50℃為降溫實驗 測試片(附錄 E,編號 G. H. 控制片(未劣化之 EA45)測溫點 SP6、 SP7)。
- 水泥基材塗裝環氧樹脂漆,經劣化試驗者之試片共 3 片(圖
 4.4.2 中試片記號□),經恆溫恆濕櫃加熱至 50℃為降溫實驗 測試片(附錄 E,編號 I.J.K.控制片(未劣化之 EA45)測溫點 SP8、SP9、SP10)。

四、試體加熱方式

本案研究因受時間及預算限制,尚未及採購遠距加熱裝置,因此先以本所實驗室既有恆溫恆溼櫃為加熱裝置,加熱時初始設 定預訂加熱 1 小時至 50℃,惟因無法實際測量櫃中試體加熱狀況,並不確定取出恆溫恆濕櫃時,是否各試片均已達設定溫度 50 ℃。

五、測溫實驗操作

本實驗於恆溫恆濕試驗櫃中加熱之試體計10片,加熱1小時 後取出依序放置於試驗架時,雖已戴有手套隔熱絕緣,然溫度較 高時降溫較快,與實際按下紅外線熱儀像開關進行量測時已有實 際落差,因此勉強開始操作實驗,雖然各試片均於相對公平條件 測試溫度,但量測應有之初始溫度因此無法確定,只能取拍攝量 測時之溫度做為基準溫度(因受密閉加熱箱之影響,也未能測量其 加熱之升溫過程,因此操作過程強烈覺得,未來實驗應將試體致 於試驗架上,以外部加熱器加熱,較為妥適。除了可以監控量測 升溫狀態,並可避免操作失誤)。

本案實驗之紅外線熱像儀之量測環境,為避免環境溫度升降 偏差,及太陽、實驗室燈光光線影響,並實際以紅外線熱像儀尋 找實驗室不受干擾之最佳位置後,乃於夜間 10 時許進行,如圖 4.4.3。

圖 4.4.3 實驗室夜間較佳位置

圖 4.4.4 紅外線熱像儀未受外部溫度輻射干擾

本實驗使用紅外線熱像儀進行試體表面溫度遠距測量,於是 試體放置試驗架上開始量測,總計拍攝1小時28分鐘,每隔約1 分鐘拍攝,如附錄D紅外線熱像儀影像溫度紀錄彙整表,計量測 83次。自紅外線熱像儀,所獲得每張影像及各點資料,如附錄E影 像紀錄表。

第五章 實驗結果與分析

第一節、實驗數據檢視

本案實驗後,每一試體本身各有 83 筆資料,分析前經檢視紅 外線熱儀原始影像檔,發現部分影像資料,雖有紀錄溫度,然而 其記錄溫度均相同,時間停留於 2009/10/28 22:36:10 如 pic13~16、2009/10/28 22:46:11 如 pic22~36、2009/10/28 23:46:21 如 pic70 計 20 張影像紀錄明顯有問題(後續將再檢討實 驗操作程序問題),因此,製作資料匯整表(附錄 D),即先予踢除。

一、試體資料彙整平均

此一彙整資料中有4種加熱試體資料必須加以計算分析:

- 附錄 D 中編號 N. 列之未劣化之 CA45(SP1, SP2 平均)紀錄 0~62
 計 63 筆,初始平均溫度為 40.7℃,至 7080 秒後最終平均溫度為 25.5℃。
- 附錄 D 中編號 0. 列劣化後之 CA45(SP3, SP4, SP5 平均)紀錄
 0~62 計 63 筆,初始平均溫度為 37.63℃,至 7080 秒後最終平 均溫度為 25.5℃。
- 3. 附錄 D 中編號 P. 列未劣化之 EA45(SP6, SP7 平均)紀錄 0~62
 計 63 筆,初始平均溫度為 45.40℃,至 7080 秒後最終平均溫
 度為 25.55℃。
- 4. 附錄 D 中編號 Q. 列劣化後之 EA45(SP8, SP9, SP10 平均)紀錄
 0~62 計 63 筆,初始平均溫度為 42.57℃,至 7080 秒後最終平
 均溫度為 25.47℃。

觀察上述各試體初始資料可知於恆溫恆濕櫃加熱至一定溫度 後,再取出置於試驗架上測溫,有時間上的落差,尤其較高溫度 時,降溫較快,此為密閉加熱器無法監控試體本身受熱溫度,為 一設備重要限制缺陷。 二、試體資料配適擬合檢視

本案研究資料彙整表經 MathCAD 最小平方法 2 次多項式配適 擬合,無法針對全體資料進行分析,後將資料表進行分段切割, 先取之未劣化之 CA45(SP1, SP2 平均)紀錄平均 N. 列前 0~24 計 25 筆資料進行配適擬合,得最佳近似 2 次方程式:

$$y(x) := a + b \cdot x + c \cdot x^{2}$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} := geninv (AT) \cdot NTs = \begin{pmatrix} 39.083 \\ -2.498 \times 10^{-3} \\ -1.86 \times 10^{-7} \end{pmatrix}$$

圖 5.1.1 N列前 25 筆資料分佈及配適擬合 2 次曲線圖

N. 列後 25~62 計 38 筆資料進行配適擬合,得最佳近似 2 次方 程式:

$$\underline{\mathbf{x}}(\mathbf{x}) := \mathbf{a}\mathbf{n} + \mathbf{b}\mathbf{n}\cdot\mathbf{x} + \mathbf{c}\mathbf{n}\cdot\mathbf{x}^2$$

$$\begin{pmatrix} an \\ bn \\ cn \end{pmatrix} := geninv (ATn) \cdot NTsn = \begin{pmatrix} 29.101 \\ -1.032 \times 10^{-3} \\ 7.341 \times 10^{-8} \end{pmatrix}$$

48

圖 5.1.2 N 列後 38 筆資料分佈及配適擬合 2 次曲線圖

由上二圖觀察配適擬合曲線較符合後段資料之分佈,然而也 突顯前25筆資料曲線與資料分佈偏差過大,除應檢討資料紀錄操 作是否正確外,並透露出不適用進一步資料迴歸分析之用。

第二節 降温微分方程式分析及繪圖

由於本案實驗所得溫度資料與時間相關,因此由微分方程式 可得:

$$\begin{split} \frac{dT}{dt} &= k(T - R) \\ R: 試體最終溫度(理論上應降為常溫) \\ k: 為試體降溫常數 \\ 經同時積分及常數化後得 \\ ln(T - R) = k \cdot t + C \rightarrow T(t) = Ae^{kt} + R \\ A \cdot k : 視試體不同代入最初、中間、最終溫度可求得,可視 \end{split}$$

為不同試體之特徵常數。

一、N. 列資料之降溫方程式(水泥基材未塗裝素面未劣化者)及圖形

取出時間為 0 之初始溫度 40.70℃、中間 527 秒溫度 35.55 ℃、最終 7080 秒溫度 25.50℃,代入得:

 $Nf(t) := 15.2 \cdot e^{Nk \cdot t} + 25.5$

圖 5.2.1 水泥基材未塗裝素面未劣化之降溫曲線

二、0. 列資料之降溫方程式(水泥基材未塗裝素面劣化者)及圖形

取出時間為 0 之初始溫度 37.63℃、中間 527 秒溫度 33.03 ℃、最終 7080 秒溫度 25.43℃,代入得:

 $Of(t) := 12.2 \cdot e^{Ok \cdot t} + 25.43$

圖 5.2.2 水泥基材未塗裝素面已經劣化試片之降溫曲線

三、P. 列資料之降溫方程式(水泥基材環氧樹脂塗裝未劣化者)及圖形

取出時間為 0 之初始溫度 45.40℃、中間 527 秒溫度 39.55 ℃、最終 7080 秒溫度 25.55℃,代入得:

 $Pf(t) := 19.85 e^{Pk \cdot t} + 25.55$

圖 5.2.3 水泥基材塗裝環氧樹脂未經劣化試片之降溫曲線

同樣也呈現曲線外之水平溫度分佈異常情形。

四、Q. 列資料之降溫方程式(水泥基材環氧樹脂塗裝已劣化者)及圖形

取出時間為0之初始溫度42.57℃、中間527秒溫度37.0℃、 最終7080秒溫度25.47℃,代入得:

$$Qf(t) := 17.1 \cdot e^{Qk \cdot t} + 25.47$$

圖 5.2.4 水泥基材塗裝環氧樹脂已經劣化試片之降溫曲線

第三節 試體降溫能力之比較分析

由以上第三節之四種試片之微分方程式及溫度點散佈之圖形 觀察,降溫曲線上方於同樣時間拍攝量測的水平分佈溫度,應視 為異常。審視原始資料表,於第527秒至2770秒,N列平均溫度 由35.55℃降溫至26.9℃,歷經37餘分鐘,均停留於35.55℃, 明顯異常,有可能為拍攝時按鈕間隔時間太短,以致熱像儀未及 更新掃描資料之儀器操作失誤所致,而後段資料,反因間隔時間 大於1分鐘而成功紀錄。而四種試體之降溫微分方程式所得之整 體降溫曲線圖,符合降溫常理判斷。因此,此微分方程應可應用 於降溫圖形之比較分析。

圖 5.3.1 四種試片降溫曲線

其中 Nf(t)曲線為水泥基材未塗裝素面未劣化試片之降溫曲線, Of(t)曲線為水泥基材未塗裝素面已劣化試片之降溫曲線, Pf(t)曲線為水泥基材塗裝環氧樹脂漆未劣化試片之降溫曲線, Qf(t)曲線為水泥基材塗裝環氧樹脂漆已劣化試片之降溫曲線, 可 看出有塗裝之試體(Pf(t)、Qf(t),代表附錄 D 中 P、Q 列資料函數)較無塗裝試體(Nf(t)、Of(t),代表附錄 D 中 N、O 列資料函數)保溫能力較強,降溫較緩。

又可看出同質材料試體未經劣化者,較已劣化試體有較佳保 溫能力,降溫曲線較緩,如上圖未塗裝試體未劣化之 Nf(t)曲線 較已劣化之 Of(t)曲線,降溫較慢、塗裝試體未劣化之 Pf(t)曲線 較已劣化之 Qf(t)曲線,降溫較慢。

第六章 結論與建議

本案實驗研究雖因初次操作紅外線熱像儀,有部分資料未能 順利擷取,但仍由微分方程式建立降溫曲線,符合合理之溫度資 料分佈趨勢,成功進行比對。

第一節 結 論

本案實驗操作及分析之成果有下列幾項:

- 一、熟悉本所新購置之設備充分運用,獲取相關經驗,對耐候耐久、
 非破壞性檢測實驗室建置與營運有充分之助益。
- 二、收集各國紅外線熱影像技術方展及應用現況,並探討分析國內 在非破壞性檢測領域可能之應用研究方向。
- 三、獲得水泥基材素面、環氧樹脂塗料之加速劣化試驗之紅外線熱 影像溫度資料,比對分析水泥基材塗裝材料間之降溫溫度關 係,如第五章第四、五節之比較分析。
- 四、初步與本年度協同研究案比對,獲得材料劣化後各項性能均有 下降趨勢,與本案研究劣化後試體之保溫能力較差,有正向關 係,惟因本案溫度資料較不精確,尚不足以進行精確的數值比 較對應關係之建立。

第二節 建 議

一、短期建議:

執行機關:建築研究所

- 儘速熟悉實驗研究之精確操作要求,應重複實驗研究找出最佳 操作模式及方法,如加熱設備之檢討設計,比對建立實驗所需 各種參數。
- 應用紅外線熱像儀繼續進行容易受到天候影響之建築材料,尤 其外牆、屋頂之塗料、磁磚、防水隔熱材等之紅外線熱影像之 非破壞性檢測實驗研究。
- 結合建築研究所各個實驗研究案,進行結構實驗過程之紅外線 熱影像分析。
- 結合建築研究所 MEGA house 示範屋,進行氣密空調節能、防水等之紅外線熱影像檢測分析。
- 二、長期建議:

執行機關:建築研究所

- 建立各種建築材料紅外線熱影像特性,包含升降溫度曲線之常 數、放射率等之資料庫。
- 探討建築材料微觀性質與受熱後紅外線輻射、建築材料內部深 度與表面升降溫度之關係。
- 探討其他如機械、電機等領域之實驗研究及分析方法,研究導入建築結構、材料、空間等等之可能應用。
- 參考國外資料文獻探討紅外線熱影像非破壞性檢測之標準、規範、制度,供未來應用參考。

參考文獻

- G. Wedler, A. Brink, Ch. Maierhofer, 《Active Infrared Thermography in Civil Engineering -Quantitative Analysis by Numerical Simulation》, Non-Destructive Testing in Civil Engineering2003。
- ASTM Standard D4788-88 (reapproved 1997): Standard Test Method for Detecting Delaminations in Bridge Decks Using Infrared Thermography.
- 3. Infrarmation 2002~2008 研討會論文集。
- 4. 楊仲家、卓世偉、江慶堂、林谷陶,「塗裝材料對水泥質基材 耐候性能改善之試驗研究」內政部建築研究所 98 年協同研究 案期末報告,2009.10
- 陳俊菁,《應用紅外線攝溫影像術檢測磁磚黏貼完整性》,
 2003,朝陽科技大學碩士論文。
- 6. 張建奇、方小平,《紅外物理》,西安電子科技大學出版社, 2007.07(2版)
- 陳國杰,《紅外線熱像儀及其應用》,人纖加工絲會訊 NO.46, 2004.03
- 鄭益志、林明洲,《紅外線熱影像檢測技術應用》工安環保報
 導 NO.7,2002.04
- 9. 楊國隆、熊高生,《MathCAD 數學入門導引》,文魁資訊,2008。

附錄 A 期初簡報會議紀錄

- 本案實驗所需儀器設備之採購期程與實驗期程應妥善規劃配

 前並應有相關彈性調整措施。
- 實驗對象之外牆塗料種類應明確選定,於協同研究案進行各種 加速劣化實驗後之相關數據,應注意是否具比對分析之意義。
- 協同研究案之劣化實驗後,於本案實驗過程再予加熱進行紅外 線熱影像分析,是否有重複劣化之影響,建議予以探討澄清。
- 協同研究案之劣化實驗後,請注意其劣化現象是否止於表面塗 裝部分,基材若有劣化將可能影響紅外線熱影像偵測之結果。
- 本案實驗設定之偵測溫度,應與協同研究案劣化實驗設定及外 牆受熱後溫度配合方具意義。
- 布案實驗方法、程序及分析比對方法請再詳細規劃探討,並各 期比對分析前應先檢討協同研究案之劣化實驗數據之正確性。
- 建議期末成果報告,亦併予建議標準作業程序,供未來應用參考。
附錄 B 常用外牆飾面層材料的輻射率

材料	狀態	溫度(℃)	輻射率
粘土	乾燥	70	0.91
水泥砂浆	乾燥	常溫	0.54
石膏	乾燥	20	0.80~0.90
石灰	乾燥	常溫	0.30~0.40
购次	上釉、光滑	20	0.92
尚瓦	白色、發光	常溫	0.70~0.75
灰泥	灰白色、粗糙	10~90	0.91
r由	紅色、粗糙	20	0.88~0.93
和守	黄色、平滑耐火磚	20	0.85

資料來源:《中國工程建設標準化協會標準紅外熱像法檢測建築外牆 飾面層粘結缺陷技術規程 CECS 204:2006》,北京, 2006。

附錄 C 詞彙

- 1. FOV 視野:可以透過 IR 鏡頭檢視的水平角度。
- Laser LocatIR:熱像儀上用電力操作的光源,會放射出很窄、 集中的雷射輻射光束,指向熱像儀前物體的某些部分。
- 3. NETD 雜訊當量溫差:IR 熱像儀影像雜訊等級的測量。
- 4. 估計的大氣穿透率:取代計算值的穿透率,由使用者提供。
- 5. 傳導:讓熱傳播到材料上的過程。
- 6. 像素:代表影像元素,影像上的單一點。
- 四洞輻射體:瓶狀輻射體,內部有吸收力,從瓶頸處查看。
- 8. 参考温度:可以比較通常測量值的温度。
- 反射率:物體反射輻射量與接收輻射量的比,介於 0 和 1 之間的數字。
- 10.吸收率(吸收係數):物體吸收輻射量與接受輻射量的比。介於0和1之間的數字。
- 11. 對流:讓熱空氣或液體上升的過程。
- 12. 已計算的大氣穿透率:從溫度、空氣相對溼度和到物體距離計 算出的穿透率值。
- 影像修正(內部或外部):補償現場影像各種部分敏感度差異 和穩定熱像儀的方法。
- 14. 放射:物體單位時間、區域放射出的能量多寡(W/m2)
- 15. 放射率(放射係數):物體自體放射之輻射量與黑體輻射量的比。介於 0 和 1 之間的數字。
- 16. 溫寬: 溫度標的間隔, 通常用訊號值表示。
- 17. 溫差:這個值是兩個溫度值相減的結果。
- 18. 溫度標: IR 影像目前顯示的方式。用兩個限制顏色的溫度值 表示。
- 19. 溫度範圍: IR 熱像儀目前整體溫度測量的限制。熱像儀可以有 數個溫度範圍,用兩個顯示目前校準的黑體溫度表示。
- 20. 溫階:溫度標的中央值,通常用訊號值表示。
- 21. 濾鏡:僅對某些紅外線波長為透明的材料。
- 22. 灰體:對於每個波長,放射出與黑體輻射能量固定比例的物體。

63

- 23. 焦面陣列:一種 IR 感測器。
- 24. 熱像圖:紅外線影像。
- 25. 物件參數:說明測量物體情況和物體本身的一組值(例如,放 射率、環
- 境温度、距離等)。
- 26. 物件訊號: 非校準的值, 和熱像儀從物體收到之輻射量有關。
- 27. 相對濕度:空氣中水分的百分比,相對於物理上可能的百分比。和大氣溫度有關。
- 26. 瞬間視野: IR 熱像儀幾何解析度的測量。
- 27. 空氣:要測量的物體和熱像儀之間的氣體,一般是空氣。
- 28. 穿透率係數:氣體和材料可以增加或減少透明度。穿透率是透

過它們的 IR 輻射量,介於 0 和 1 之間的數字。

- 29. 等溫凹洞:瓶狀輻射體,從瓶頸處查看時有一致的溫度。
- 等溫線:醒目的連線標記,為影像落在一個或多個溫度間隔上面、

下面或之間的部分的功能。

- 30. 紅外線:不可見的輻射,波長約從 2-13 µm 開始。
- 31. 色譜:用來顯示 IR 影像的顏色組。
- 32. 輻射:電磁能量從物體或氣體放射的過程。
- 33. 輻射功率:物體每單位時間放射出的能量多寡(W)。
- 34. 輻射率:物體每單位時間、區域和角度放射出的能量多寡 (W/m2/sr)。
- 35. 輻射體: IR 輻射設備的一部分。
- 36.透明等溫線:顯示顏色線性散佈的等溫線,而不是涵蓋影像醒 目標記的部分。
- 37. 雙重等溫線: 等溫線有兩個色帶, 而不是一個。
- 38. 雜訊:紅外線影像中不希望得到的少許擾亂。
- 39. 頻譜(輻射): 放射物體每單位時間、區域和波長放射出的能量多寡(W/m2/μm)。
- 40. 顏色溫度:黑體顏色符合特定顏色的溫度。
- 44. 飽和色:包含目前溫階/溫寬設定外溫度的區域會用飽和色著色。飽和色包含'溢流'色和'潛流'色。也有第三個紅色飽

和色,會標記感測器飽和的每個項目,指出溫度範圍可能應該 變更。

- 45. 黑體:完全不反射的物體,所有的輻射都來自其溫度。
- 46. 黑體輻射體:用於校準 IR 熱像儀的 IR 輻射設備,有黑體的 屬性。

附錄 D 紅外線熱像儀影像溫度紀錄彙整表

		0	1	2	3	4	5	6	7	8	9
紅外線熱影像編號		pic01	pic02	pic03	pic04	pic05	pic06	pic07	pic08	pic09	pic10
拍攝時間	22:22:07	22:24:07	22:25:50	22:27:07	22:27:52	22:28:51	22:29:52	22:30:54	22:31:52	22:32:52	22:34:05
	測溫點	0:02:00	0:03:43	0:05:00	0:05:45	0:06:44	0:07:45	0:08:47	0:09:45	0:10:45	0:11:58
經過時間(UNIT:S)		120	223	300	345	404	465	527	585	645	718
A.環境溫度		25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3
B.未劣化之 CA45	SP1	42.5	42.5	42.5	42.5	38.6	38.6	37.2	37.2	37.2	37.2
C.未劣化之 CA45	SP2	38.9	38.9	38.9	38.9	35.2	35.2	33.9	33.9	33.9	33.9
D.劣化後之 CA45	SP3	36.7	36.7	36.7	36.7	33.2	33.2	32.1	32.1	32.1	32.1
E.劣化後之 CA45	SP4	36.2	36.2	36.2	36.2	32.9	32.9	31.8	31.8	31.8	31.8
F.劣化後之 CA45	SP5	40.0	40.0	40.0	40.0	36.4	36.4	35.2	35.2	35.2	35.2
G.未劣化之 EA45	SP6	44.0	43.7	43.9	44.0	39.9	39.8	38.2	38.3	38.3	38.1
H.未劣化之 EA45	SP7	46.8	46.8	46.8	46.8	42.8	42.5	40.9	40.9	41.0	40.9
I.劣化後之 EA45	SP8	41.1	41.1	41.2	41.1	37.0	37.1	35.6	35.7	35.6	35.7
J.劣化後之 EA45	SP9	44.0	44.0	44.0	44.0	39.7	39.7	38.1	38.2	38.1	38.3
K.劣化後之 EA45	SP10	42.6	42.6	42.6	42.6	38.8	38.7	37.3	37.4	37.4	37.3
L.反射用鋁箔	SP11	25.7	25.8	25.7	25.7	25.7	25.6	25.7	25.6	25.7	25.7
M.控制片(未劣化之 CA45)	SP12	26.0	26.0	26.0	25.0	26.0	26.0	26.0	25.9	26.0	26.0
N.未劣化之 CA45(SP1,SP2	平均)	40.70	40.70	40.70	40.70	36.90	36.90	35.55	35.55	35.55	35.55
O.劣化後之 CA45(SP3,SP4,S	SP5 平均)	37.63	37.63	37.63	37.63	34.17	34.17	33.03	33.03	33.03	33.03
P.未劣化之 EA45(SP6,SP7 Z	厗均)	45.40	45.25	45.35	45.40	41.35	41.15	39.55	39.60	39.65	39.50
Q.劣化後之 EA45(SP8,SP9,S	SP10平均)	42.57	42.57	42.60	42.57	38.50	38.50	37.00	37.10	37.03	37.10

10	11	12	13	14	15	16	17	18	19	20	21	22	23
pic11	pic12	pic17	pic18	pic19	pic20	pic21	pic37	Pic38	pic39	pic40	pic41	pic42	pic43
22:35:08	22:36:10	22:42:19	22:43:11	22:44:11	22:45:15	22:46:11	23:04:26	23:05:18	23:06:17	23:07:30	23:08:17	23:09:18	23:10:16
0:13:01	0:14:03	0:20:12	0:21:04	0:22:04	0:23:08	0:24:04	0:42:19	0:43:11	0:44:10	0:45:23	0:46:10	0:47:11	0:48:09
781	843	1212	1264	1324	1388	1444	2539	2591	2650	2723	2770	2831	2889
25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3
37.2	37.2	37.2	37.2	37.2	37.2	37.2	37.2	37.2	37.2	37.2	27.3	27.3	27.2
33.9	33.9	33.9	33.9	33.9	33.9	33.9	33.9	33.9	33.9	33.9	26.5	26.5	26.5
32.1	32.1	32.1	32.1	32.1	32.1	32.1	32.1	32.1	32.1	32.1	26.0	26.0	25.9
31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	26.2	26.2	26.2
35.2	35.2	35.2	35.2	35.2	35.2	35.2	35.2	35.2	35.2	35.2	26.7	26.7	26.6
38.0	38.2	38.2	38.0	38.2	38.2	38.2	38.2	38.2	38.2	38.2	27.5	27.5	27.3
40.8	40.9	40.9	40.6	40.9	40.9	40.9	40.9	41.1	40.9	40.9	28.6	28.6	28.4
35.6	35.5	35.7	35.7	35.6	35.6	35.7	35.7	35.6	35.7	35.7	26.8	26.8	26.7
38.1	38.2	38.1	38.2	38.2	38.2	38.2	38.1	38.1	38.0	38.2	27.5	27.5	27.3
37.2	37.3	37.3	37.4	37.3	37.3	37.4	37.3	37.3	37.2	37.4	27.2	27.2	27.1
25.7	25.7	25.7	25.7	25.7	25.6	25.8	25.7	25.7	25.7	25.7	25.6	25.6	25.4
26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.1	26.0	25.7	25.7	25.7
35.55	35.55	35.55	35.55	35.55	35.55	35.55	35.55	35.55	35.55	35.55	26.90	26.90	26.85
33.03	33.03	33.03	33.03	33.03	33.03	33.03	33.03	33.03	33.03	33.03	26.30	26.30	26.23
39.40	39.55	39.55	39.30	39.55	39.55	39.55	39.55	39.65	39.55	39.55	28.05	28.05	27.85
36.97	37.00	37.03	37.10	37.03	37.03	37.10	37.03	37.00	36.97	37.10	27.17	27.17	27.03

24	25	26	27	28	29	30	31	32	33	34	35	36	37
pic44	pic45	pic46	pic47	pic48	pic49	pic50	pic51	pic52	pic53	pic54	pic55	pic56	pic57
23:11:17	23:12:17	23:15:23	23:16:17	23:17:16	23:19:32	23:21:16	23:23:17	23:24:18	23:25:17	23:26:18	23:27:18	23:29:17	23:30:27
0:49:10	0:50:10	0:53:16	0:54:10	0:55:09	0:57:25	0:59:09	1:01:10	1:02:11	1:03:10	1:04:11	1:05:11	1:07:10	1:08:20
2950	3010	3196	3250	3309	3445	3549	3670	3731	3790	3851	3911	4030	4100
25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3
27.2	27.0	26.8	26.8	26.8	26.7	26.6	26.6	26.6	26.5	26.5	26.4	26.3	26.3
26.4	26.3	26.2	26.2	26.2	26.2	26.1	26.1	26.1	26.1	26.0	26.0	25.9	25.9
25.9	25.9	25.7	25.8	25.8	25.8	25.8	25.8	25.8	25.8	25.8	25.7	25.7	25.7
26.3	26.2	26.1	26.1	26.2	26.1	26.1	26.0	26.0	26.0	26.0	25.9	25.9	25.9
26.7	26.5	26.4	26.3	26.3	26.3	26.2	26.1	26.2	26.1	26.1	26.0	26.0	25.9
27.2	27.2	27.0	26.9	26.9	26.8	26.7	26.6	26.6	26.5	26.5	26.4	26.2	26.4
28.3	28.1	27.8	27.8	27.7	27.5	27.4	27.3	27.3	27.1	27.1	27.0	26.8	26.7
26.7	26.6	26.4	26.4	26.4	26.3	26.3	26.2	26.2	26.2	26.2	26.1	25.9	26.0
27.2	27.1	26.9	26.8	26.8	26.7	26.6	26.5	26.6	26.5	26.4	26.4	26.3	26.2
27.0	27.0	26.7	26.7	26.6	26.6	26.5	26.4	26.4	26.3	26.3	26.2	26.1	26.1
25.5	25.5	25.4	25.5	25.6	25.5	25.6	25.5	25.6	25.5	25.5	25.5	25.6	25.4
25.7	25.7	25.6	25.6	25.6	25.7	25.7	25.7	25.7	25.6	25.7	25.7	25.6	25.6
26.80	26.65	26.50	26.50	26.50	26.45	26.35	26.35	26.35	26.30	26.25	26.20	26.10	26.10
26.30	26.20	26.07	26.07	26.10	26.07	26.03	25.97	26.00	25.97	25.97	25.87	25.87	25.83
27.75	27.65	27.40	27.35	27.30	27.15	27.05	26.95	26.95	26.80	26.80	26.70	26.50	26.55
26.97	26.90	26.67	26.63	26.60	26.53	26.47	26.37	26.40	26.33	26.30	26.23	26.10	26.10

38	39	40	41	42	43	44	45	46	47	48	49	50	51
pic58	pic59	pic60	pic61	pic62	pic63	pic64	pic65	pic66	pic67	pic68	pic69	pic71	pic72
23:32:09	23:33:17	23:34:25	23:36:24	23:37:27	23:38:16	23:39:18	23:40:17	23:42:25	23:43:21	23:44:23	23:46:21	23:51:15	23:52:23
1:10:02	1:11:10	1:12:18	1:14:17	1:15:20	1:16:09	1:17:11	1:18:10	1:20:18	1:21:14	1:22:16	1:24:14	1:29:08	1:30:16
4202	4270	4338	4457	4520	4569	4631	4690	4818	4874	4936	5054	5348	5416
25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3
26.3	26.2	26.2	26.0	26.0	26.0	26.0	25.9	26.0	25.9	25.9	25.6	25.8	25.8
25.9	25.9	25.8	25.7	25.7	25.7	25.8	25.7	25.7	25.7	25.7	25.6	25.6	25.6
25.7	25.7	25.6	25.6	25.5	25.5	25.6	25.5	25.6	25.6	25.5	25.5	25.5	25.5
25.9	25.9	25.8	25.8	25.8	25.7	25.8	25.7	25.7	25.8	25.7	25.7	25.6	25.7
26.0	25.9	25.9	25.8	25.7	25.8	25.7	25.6	25.7	25.7	25.7	25.6	25.5	25.6
26.4	26.2	26.2	26.0	26.0	26.0	26.0	26.0	25.9	25.9	25.8	25.8	25.8	25.8
26.8	26.6	26.6	26.5	26.4	26.4	26.4	26.3	26.2	26.2	26.2	26.1	26.0	26.0
26.0	26.0	25.9	25.8	25.8	25.7	25.8	25.7	25.8	25.8	25.7	25.7	25.6	25.7
26.3	26.3	26.1	26.0	26.0	25.9	25.9	25.9	25.9	25.9	25.9	25.9	25.7	25.7
26.1	26.1	26.0	25.9	25.9	25.9	25.8	25.8	25.8	25.8	25.7	25.7	25.6	25.6
25.5	25.5	25.5	25.5	25.4	25.3	25.5	25.4	25.4	25.5	25.5	25.5	25.5	25.5
25.7	25.6	25.6	25.5	25.5	25.5	25.6	25.5	25.6	25.6	25.5	25.5	25.5	25.5
26.10	26.05	26.00	25.85	25.85	25.85	25.90	25.80	25.85	25.80	25.80	25.60	25.70	25.70
25.87	25.83	25.77	25.73	25.67	25.67	25.70	25.60	25.67	25.70	25.63	25.60	25.53	25.60
26.60	26.40	26.40	26.25	26.20	26.20	26.20	26.15	26.05	26.05	26.00	25.95	25.90	25.90
26.13	26.13	26.00	25.90	25.90	25.83	25.83	25.80	25.83	25.83	25.77	25.77	25.63	25.67

52	53	54	55	56	57	58	59	60	61	62
pic73	pic74	pic75	pic76	pic77	pic78	pic79	pic80	pic81	pic82	pic83
23:54:34	23:57:15	23:59:21	0:01:20	0:03:17	0:05:28	0:09:17	0:11:27	0:15:25	0:18:59	0:20:46
1:32:27	1:35:08	1:37:14	1:38:34	1:40:31	1:42:42	1:46:31	1:48:41	1:52:39	1:56:13	1:58:00
5547	5708	5834	5914	6031	6162	6391	6521	6759	6973	7080
25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3
25.8	25.7	25.7	25.7	25.7	25.6	25.5	25.5	25.5	25.4	25.5
25.6	25.5	25.6	25.6	25.6	25.5	25.4	25.4	25.4	25.4	25.5
25.4	25.4	25.5	25.5	25.5	25.3	25.3	25.2	25.2	25.3	25.3
25.6	25.5	25.6	25.6	25.6	25.6	25.5	25.5	25.5	25.5	25.6
25.5	25.5	25.5	25.5	25.6	25.4	25.4	25.4	25.3	25.3	25.4
25.8	25.7	25.7	25.7	25.7	25.6	25.5	25.5	25.4	25.4	25.5
25.9	25.8	25.8	25.8	25.8	25.7	25.6	25.5	25.5	25.4	25.6
25.6	25.6	25.6	25.7	25.6	25.4	25.4	25.4	25.3	25.3	25.5
25.6	25.6	25.7	25.7	25.7	25.6	25.5	25.4	25.4	25.4	25.5
25.6	25.6	25.6	25.6	25.6	25.4	25.5	25.3	25.3	25.3	25.4
25.4	25.4	25.5	25.4	25.6	25.3	25.3	25.3	25.3	25.2	25.4
25.5	25.4	25.4	25.5	25.5	25.4	25.3	25.3	25.3	25.3	25.4
25.70	25.60	25.65	25.65	25.65	25.55	25.45	25.45	25.45	25.40	25.50
25.50	25.47	25.53	25.53	25.57	25.43	25.40	25.37	25.33	25.37	25.43
25.85	25.75	25.75	25.75	25.75	25.65	25.55	25.50	25.45	25.40	25.55
25.60	25.60	25.63	25.67	25.63	25.47	25.47	25.37	25.33	25.33	25.47

矩陣編號	0		5		62		
影像編號	Pic01		Pic06		Pic83		
時間(秒)	0		527		7080		
紅外線熱影像	Sp1 Sp4 Sp6 S Sp2 Sp11Sp12 S Sp3 Sp5 Sp7 Sp	62.3 <u></u> 60 50 50 40 30 24.3	Sp1 Sp4 Sp6 S Sp2 Sp11 Sp12 S Sp3 Sp5 Sp7 Sp	62.3 <u></u> 60 50 50 40 30 24.3	Sp1 Sp4 Sp6 Sp8 Sp2 Sp11 Sp12 Sp9 Sp3 Sp5 Sp7 Sp10	27.5 蚵 - 27 - 26 - 25 - 24 23.5	
溫度紀錄表	Date Image Time Image Camera Type Emissivity Object Distance Reflected Apparent Temperature Atmospheric Temperature 1 溫度 Sp1 溫度 Sp12 溫度 Sp2 溫度 Sp4 溫度 Sp5 溫度 Sp6 溫度 Sp7 溫度 Sp8 溫度 Sp9 溫度	2009/10/28 10:24:07 下午 FLIR B660 0.95 2.8 m e 30.0 °C 25.3 °C 62.3 °C 42.5 °C 42.6 °C 25.7 °C 26.0 °C 38.9 °C 36.7 °C 36.2 °C 40.0 °C 44.0 °C 44.0 °C	Date Image Time Image Camera Type Emissivity Object Distance Reflected Apparent Temperature Atmospheric Temperature 1 溫度 Sp1 溫度 Sp12 溫度 Sp2 溫度 Sp4 溫度 Sp5 溫度 Sp6 溫度 Sp7 溫度 Sp8 溫度 Sp9 溫度	2009/10/28 10:30:54 下午 FLIR B660 0.95 2.8 m 30.0 °C 25.3 °C 62.3 °C 37.2 °C 37.3 °C 25.7 °C 26.0 °C 33.9 °C 32.1 °C 31.8 °C 35.2 °C 38.2 °C 40.9 °C 35.6 °C 38.1 °C	Date Image Time Image Camera Type Emissivity Object Distance Reflected Apparent Temperature Atmospheric Temperature 1 溫度 Sp1 溫度 Sp11 溫度 Sp12 溫度 Sp3 溫度 Sp4 溫度 Sp5 溫度 Sp6 溫度 Sp7 溫度 Sp8 溫度 Sp9 溫度	2009/10/29 12:20:46 上午 FLIR B660 0.95 2.8 m 30.0 °C 25.3 °C 28.3 °C 25.5 °C 25.4 °C 25.5 °C 25.5 °C 25.5 °C 25.6 °C 25.5 °C 25.6 °C 25.5 °C	

附錄 E 影像紀錄表(部分)