▲ 淮實驗 第 約 整 合 測 詳 整 ▲ 淮 性 能 驗 證 砰 究 (1)

队政部建筑研究所将后研究報告

▲ 淮實驗 第 約 整 合 測 詳 置 ▲ 淮 性 能 驗 證 砰 究 (1)

研 究 單位: 1 政部建築研究所

- 計畫主持人:葉組長祥海
- 共 后 主 持 人 : 首 教 授 未 易
- 研究 人員:鄭教授啟明、吴教授國昌、胡教授志忠

研究助理:陳技士子良、李信宏、蔡明樹

凡政部建築研究所協同研究報告

中華民國九十三年十二月

捕要

關鍵詞:庫源實驗館、性能驗證實驗

木計畫主要目的為協助 政部建研 所建置 属 湄寶 驗館, 包含建立 测试品,测试品截面分别落 4m×2.6m 及 6m×2.6m,最高速度可達 30m/s 以上,當從事煙霧擴散實驗時,該閉迎路庫非可切換為開放式 及儀器設借等,已於民國93年5月底完成驗收。隨後進行庫源基本 性能測試,測試項目包含:庫源運轉之穩定性測試、庫 扇變頻器特性 試驗、測試區流場之測試(測試區截面速度分佈不均勻度及 紊流強 度),以上基本性能測試由主持人甘素易教授負責。本計畫協戶主持 人鄭啟明教授製作完成一橋樑測試模型,使用所購量量測儀器設備, 在庫 师 第二 測試區 進行實際測試,以利未來從事實際的橋樑模型測試 工作。本計畫了一協戶主持人民國昌教授完成了煙流擴散實驗,得到 預期測試結果,為未來從事污染擴散的測試工作或定基礎。

ABSTRACT

Keywords : simulation of wind effects on bridges, validation program,

training course

The construction and calibration of the ABRI Building Aerodynamic Wind Tunnel Laboratory are scheduled to be completed by the spring of 2004. Following the calibration, a series of experiments, referred to as the validation program here, will be conducted out in the year of 2004, with the goal of validating the wind tunnel capabilities. The validation program will be implemented by comparing the experimental results obtained with those known in the literatures. Specifically, the validation program will be performed with the experiments on simulation of wind effects on bridges.

Moreover, in this project a set of training courses on operation and maintenance of the ABRI wind tunnel will be offered to the technicians of ABRI, to prepare them for future operation of the tunnel facility.

	I	ġ	鋖	
第一章	緒論	• • • • • • • • • • • •		1
1.1	前言	• • • • • • • • • • • • •	••••••	1
1.2	昭究 7 法	•••••	•••••	2
1.3	☆果凡容	•••••	•••••	2
第二章	匾 巅	• • • • • • • • • • • • •		4
2.1	前言	• • • • • • • • • • • • •	••••••	4
2.2	風氣験牧を基本	生能 测詳。	•••••	4
第三章	匾氧變填器			6
3.1	前言	•••••	••••••	6
3.2	匾 範變煩器目前:	工程進度。	••••••	6
第四章	压沛太魈	• • • • • • • • • • • • •		7
4.1	前言	• • • • • • • • • • • • •	••••••	7
4.2	脸 沛 木 體 工 程 進)	度	•••••	8
第三章	量测儀器採購	• • • • • • • • • • • • •		10
5.1	前言	• • • • • • • • • • • • •	••••••	10
5.2	目前追度說即	•••••	•••••	10
第六章	压沛基本性能测	詳實險	•••••	11
6.1	前言	• • • • • • • • • • • • •	••••••	11
6.2	测詳項日	• • • • • • • • • • • • •	••••••	11
	6.2.1 压沛逻辑之:	穩定性	••••••	11
	6.2.2 匾 寂變煩器言	≠駼		13

6.2.3 测詳區流場之測詳	13
6.2.4 流場偏向 &	14
6.2.5 测詳區軸向壓力梯度	16
6.2.6 测辞畐邊界屬厚度量测	16
6.3 量测儀器	17
6.4 压沛基本性能躁證初步結果	18
6.4.1 压滞逻辑之穩定性分析	18
6.4.2 压氧變填器特性實驗	20
6.4.3 测辞畐均钅度又紊沆强度	20
6.4.4 邊界屬量測結果	22
6.4.5 流場偏向毒	22
6.4.6 軸向壓力梯度	22
6.5 基本性能测詳結論	23
- 章 橋樑斷爾模型詳驗	24
7.1 前言	24
7.2 橋楔空棄動→基本理論	25
7.2.1 橋樑空棄動 # 穩定特性	25
7.2.2 担轉7 穏定	26
7.2.3 顛振	26
7.2.4 抖振反應	26
7.2.5 湄流颠振	27
7.2.6 基本っ程式	28

筣

7.3 压 1 係數 5 颠振 導數	29
7.3.1 压→ 除数	29
7.3.2 頭振導數	30
7.4 颠振奥抖振之評估方法	
7.4.1 颤振之临界压速之評估模式	
7.4.2 橋樑斷函模型製作	33
7.4.3 斷函模型使 3 之端恢放應	
7.4.4 實廠儀器介紹	35
7.5 橋標詳驗之匠 沛設計與規劃	37
7.5.1 端坂配置	37
7.5.2 橋樑斷西 模型詳驗-亚板斷西	37
7.5.3 橋探斷面模型詳驗-席屏溪橋斷面	
7.5.4 橋樑斷西 模型詳驗內容	38
7.6 斷函模型區 沛詳驗結果	
7.6.1 压 > 除数	38
7.6.2 颠振導数	
7.6.3 唐屏溪橋斷西之頭振臨界压速	41
7.7 橋探測詳實驗結論與建議	42
7.7.1 第二 詳驗段儀器設備使 # 心得	42
7.7.2 橋探測詳實驗結論	43
第八章 運流擴散	47
8.1 前言	47

8.2 理論背景47
8.2.1 〈棄運動之慎擬參數47
8.2.2 污染抑質之模擬參數49
8.2.3 《亲邊界屬內播靛之郑理棋擬詳驗50
8.2.3.1 對模擬參數之弓慮51
8.2.3.2 對 浑 向廢棄 ^二 流之考慮
8.3 實廠 > 法
8.3.1 压速量测
8.3.2 渾棄之模擬
8.3.3 釋女系統
8.3.4 採樣點之作設
8.3.5 示蹤軍體之採樣與分析
8.4 運流播散實驗結果60
第七章 教育訓練61
第→章 結話62
參考マ歑63

第一章 結論

1.1 前言

▶政部建研所於93年5月底在成功大學歸仁校區完成庫源設併驗 收[1, 2, 3],該庫源主要性能說明如下:其為一閉連路系統,具有兩 個測試區,測試區截面分別為4m×2.6m及6m×2.6m,最高速度可達 30m/s,該庫源之測試區位於建築物承,其餘部分則裸露於室外,整 體丙言該庫源本體之總長度為77.9m,最大寬度為9.12m,最大高度則 為15.9m。

該建築庫 沛實驗館將 m於探討建築物(含橋樑)外部庫環境及其受庫 1作 m 時之名項 系動 1 現象與反應,預期之研究工作項目 e 含建築物 庫環境研究、建築物承受庫 1 之研究、建築物受庫 1 作 m 之反應及公 共設 施耐庫性能研究等[4,5,6]。除建築物庫 工程研究外,該庫 沛實 驗室夏可與國 N 學術界 合作從事流體 1 學相關研究,由於該庫 沛之測 試區具有較大的截 m 積與空間,此一特點可以解決在一般小型庫 沛中 實驗量測上所遭遇的空間解析度不足的問題,因此該室之庫 涉將可等 國 N 流體 1 學實驗研究提供一個夏好的實驗環境選擇。

整個實驗館籌建過程中所涵蓋的工作項目包含:庫源本體及其它 組件的設計、發包、監造與組裝監工、庫源實驗館建物的規劃、儀器 設備規格研擬及採購等。截至目前為止該庫源實驗館主要硬體包含庫 源本體、庫與及變頻器等,均已於93年5月完成安裝驗收。

待庫 派 木體、庫 戽 變頻器等完成驗收後,即進行庫 派基本性能 測試,以確認庫 派基本性能可满足設計要求。測試項目 包含:庫 派運 轉之穩定性測試、庫 廚變頻器特性試驗、測試區流場之測試(測試區 截 庫 速度分 備 不 均 与 度 低於 0.5% 及 紊流 強度 低於 1%),基本性能測

試擬由 甘韦易教授 主持於該庫 源進行。本計畫將配合使 用製作完成之 橋樑測試模型, 卜時整合相關 的量測儀器設備, 日本計畫 另一 儲協 卜 主持人鄭啟明教授以進行實際測試, 並藉日實驗之進行來整合相關的 量測儀器設備, 以利未來從事實際的庫 源模型測試工作。

1.2 研究 考法

整體而言, 庫 源實驗館之籌建涉及許多不 际領域, 諸如建築學、 流體力學、設計、製造、監造、組裝、採購、驗收等, 為使名工作項 目能順利進行並相互協謀, 本計畫主持人將負責整個計畫的綜整管 理、進度協謀、工作調配等, 並定期舉行會議, 議法分工事項及討論 名工程之執行進度, 檢討籌建過程及驗收所發生之問題並專求解法方 法。

待庫 非 木體、庫 戽 慶 頻 器 驗 收 後, 即展開對該庫 非基本性能測 試, 以確認庫 非基本性能可 滿 足設計要求。 等了夏進一步建立庫 非 館 之試驗能量, 本計畫將配合使 用製作完成之橋 樑測試模型, 卜時整合 相關 的量測儀 器設備, 以進行實際測試。並於實驗過程中舉行會議, 解決該庫 非所遭遇相關問題。

▶時本計畫將培訓庫源實驗館操作與維護所需之技術人力,培訓 №容自含:庫源系統之操作與保養,及主要量測儀器之操作等。另外, 本計畫成員亦將協助 №政部建研所完成 93 年度的儀器設備採購。

1.3 成果内容

截至目前為止庫亦本體、庫扇及變頻器已於93年5月底分別完成驗收及相關教育訓練。此外庫涉性能驗證亦正在進行,因此日參與本計畫的成員帶領研究生及臨時工,分別負責執行不戶的實驗項目,

包括:庫 沛基本性能測試(甘素易教授)、橋樑試驗(鄭啟明教授)及煙 流擴散試驗(吳國昌教授)等,每一實驗項目將依91年之規劃於容 進行[3]。本報告將針對庫 沛本體、庫 扇、變頻器及量測儀器之採購 及驗收作一說明,此外庫 沛性能驗證實驗進度亦包含在本報告中。報 告於容分別等以下幾個主要章節:庫 扇、庫 扇變頻器、庫 沛本體、量 測儀器及庫 沛性能驗證實驗。

第二章 匾爵

2.1 前言

▶ 扇的主要功能除了供給棄流起始動能外,並補充棄流在庫 淨 迎 路中流動所產生之壓力損失;木庫 淨之庫 扇位於第二測試區後, 券 圓 形管路結構, 該庫 扇搭配尾罩(nacelle)、預轉片及平整片等, 構成庫 淨之驅動系統。

等了避免庫 扇馬達震動影響流場品質,該庫 扇主體座落於獨立一基礎與建築結構分開,此外庫 扇管道以軟質緩衝墊(compensator)與前後管路相接。該庫 扇目前於93年5月26日驗收完成,其基本性能簡述如下要求如下所述:

(1)型式:直接傳動軸流式風扇。

- (2) 庫速 部 整 方 式: 以 變 頻 器 (inverter) 控 制 馬 達 轉 速 (變 頻 器 於 下 章 詳 述)。
- (3) 庫 扇直徑為4.75m,庫 扇整體長度約7.62m,庫 扇中心體(center body) 自含驅動馬達及避免尾流形成之尾錐(tail cone)。

(4)最低穩定庫量不大於12m³/s。

(7) 庫 扇本 り具 有 強制 空 系 冷 卻 裝 置 。

2.2 压 新路收及基本性能测詳

庫 扇已於 92 年底完成組裝,德國豪頓公司於 93 年 3 月 22 日派 這原廠技師來台進行測試(圖 2),93 年 4 月 2 日會戶戶 政部建築研 究所代表、籌建小組代表、中錄公司代表及變頻器廠商代表完成試 車,並進行「庫源整體整合試車檢討會議」確認試車結果(附件一), 測試結果之最高轉速為 350rpm 時, 第一測試段所量得庫速已達 37.6m/s 超過台約規範 30m/s, 在此轉速下庫 駐性能為 87%亦台乎規 範中所要求 85%;規範中要求在庫 駐操作轉速範圍 M, 距離庫 駐 6 公尺位置處, 最大噪音為 85db(A), 實際測試結果為 80db 符合要求, 豪頓公司的測試結果數據如附件二。

因豪頓公司測試時 3300V 電源發生跳電,故只測試至轉速 350rpm,籌備小組於 93 年 4 月 29 日再次會戶豪頓公司代表進行測 試,此次轉速測試至最高轉速 390rpm,第一測試區所測得平均庫速 為 36.4m/s,最高轉速時庫 解所提供壓1升 1243Pa,籌備小組所測得 結果與德國豪頓公司相近,亦都台千台約中所要求,籌建小組測試報 告如附件三。

93年5月21日日台灣豪頓公司派代表對建研所相關人員進行教育訓練。

93年5月26日日建研所代表、籌建小組代表及廠商代表完成估驗(如圖1)進行驗收。

第三章 压氧變頻器

3.1 前言

日於木變頻器、庫派木體及庫 解採獨立發包,因此有意投標廠商 需配合庫 解得標廠商所採用馬達來設計木變頻器,此外木變頻器得標 廠商亦需配合庫派本體及庫 解安裝工程進度,以利變頻器的安裝、試 車及調整。變頻器基本規格如下:

輸出馬1:500KW

使用電壓:三相 3300VOLTS

使用馬達: 500KW 16P 3 PHASE 3300VOLTS 52 Hz

SPEED: 390 RPM

3.2 压 新變填器安裝進度

庫 扇變頻器已於 92 年 11 月底完成組裝估驗, 93 年 3 月 20 日變 頻器廠商仕太公司派遣美國原廠技師協助測試,於 93 年 3 月 26 日完 成變頻器部分測試,其測試結果與合約中所規範相符合(附件四)。 93 年 4 月 2 日會戶戶政部建築研究所代表、籌建小組代表及其化二 家廠商代表完成庫 浉整合試車(附件一)。

93年5月19日日仕大公司派代表對建研所相關人員進行教育訓練
93年5月26日日建研所代表、籌建小組代表及廠商代表完成估驗(如圖1)進行驗收。

第四章 屈胙木體

4.1 前言

本庫 準 林 體 万 根據庫 準 實 驗 室 籌建 小 組 所擬定之 規範 币 設計 [1],該庫 準基本上 等一閉 理路 系統,具有 兩 侮 測試區,此外 本庫 準 之設計亦 考慮到污染擴散實驗或 煙霧視流實驗對庫 準本體及工作系 體可能造成之污染,因此當從事 煙霧相關實驗時,該閉 理路庫 準可切 換 等開放式庫 準。該庫 準之 棄 流流動日 - 500kW (671HP) 馬達的庫 騎所驅動,此庫 騎日 - 變頻 器所控制,藉日庫 騎轉速 的改變 而 達到對 棄 流速度之控制, 棄 流經庫 騎 加壓 後 道 週 第三 及 第 四 轉 庫 區 進 入 整流 段。整流段 包 含 一 層 蜂 巢 鄉 格 及 三 層 整流 約 鄉,可有 放 的 消除流 場 中 之二 次流及降低 案 流發度,並使 速度 場 均 身 分 佈 [1]。

隨後流體通過一縮收比為4.71:1的收縮段,進一步降低流場中的 紊流擾動強度而得到均勻流分佈及低紊流強度之出口流場。實驗時可 於測試區中置入 spire及 trip等障礙物,以達到建築庫工程實驗要求之 邊界層厚度。

在第一測試區中配置有3個旋轉整(turn table),第一轉整直徑1m 安置於距測試區入口3m處,而第二及第三轉整直徑3m,其中心位置 分別距測試區入口約25.5m或31.5m處,並以機械控制使其可作旋轉及 上下運動,其中turn table 1處之流場速度分佈均年,遽合從辜一般流 體才學研究,而turn table 2與3則以建築物受庫才作用的空棄動才學研 究及污染擴散實驗等主。測試區中面對控制室的側壁由強化玻璃所構 成,此有利於實驗時對流場的監控及觀測,而可掀式側壁視穿則置於 測試區入口下游9~12m、18~21m及30~33m之兩側處。測試區中亦設 有移動機構,其採用整組手推方式移動,移動範圍涵蓋測試區所有軸 向距離,移至定位後,移動機構本體亦能做三軸運動並且電腦控制以 流體運過第一測試區後,經過2個轉 £ 段進 入 另一整流段,此整流段,含有3層整流輝,而後流體進入第二測試區。

在第二測試區中配置有1個旋轉盤,其中心位置距測試區入口為15m (稱為turn table 4),轉盤的直徑為3m,轉盤以手動方式作旋轉及上下 運動。Turn table 4 將以橋樑測試為主要用途,測試區中面對控制室的 側壁亦為可透視壁面,其可掀式側壁視窗置於測試區入口下游 3~6m、5~21m之雨側處。

該庫 派本體於民國 91 年 4 月 10 日已日 中國 鋤 鐵公司 得標,以下 說明庫 派本體目前工程進度。

4.2 ▲ 湄 本 體 工 程 進 度

中錄公司於92年10月3日開始進場組裝,於92年12月23日 完成庫 準本體組裝, 由建研所代表、庫 準籌建小組代表及中錄公司代 表完成估驗(附件五), 中錄公司隨即進行細部裝修及測試。籌建小 組測試過程發現部分設計上不足的部分, 因為會影響以後庫 準操作人 員不復, 由籌建小組內建研所反映後, 建研所陳瑞玲組長遂主持「建 築分動實驗設備庫 準本體部分」變更設計會議, 會中由籌備小組代表 向審 查委員提出變更之原因, 審 查委員亦 萨 意修改, 所增加費 唐 由 錄公司自行 吸收(附件六)。

中錄公司於93年3月26日前完成庫 源本體試車作業(附件七), 目於93年4月2日會 序建研所代表、籌建小組代表及其化廠商代表 完成庫 源整合試車(附件一),93年5月18日中錄公司完成合約中

教育訓練,93年5月26日日建研所代表、籌建小組代表及廠商代表 完成驗收(如圖1)。

第王章 量测儀器採購

5.1 前言

日於庫源實驗館主體硬體(建築物、庫源本體、庫 庫、變頻器及 量測儀器等)均於民國93年5月底完成庫源實驗館整體的系統建置及 整合,因此, 為配合庫源本體系統驗收後之性能實驗,庫源籌建小組 已於91年度規劃數個庫源性能實驗項目[3],包括:庫源基本性能測 試、區邊界層發展之庫源試驗、橋樑試驗、高層建築在平滑流場及邊 界層流場之實驗、煙流擴散特性之檢定等,本計畫將於93年庫源驗收 後優先完成庫源基本性能測試,以配合庫源之驗收,待基本性能測試 滿足設計要求後,隨即進行其它實驗項目。然為使後續其它已規劃之 實驗項目能順利進行不致中斷(於93年進行),本年度亦將配合完成區 邊界層發展之模型製作、橋樑測試模型製作及高層建築模型製作等。

因此落順利上述各項實驗之進行,本計畫將依據 91 年庫 派小組 成員所擬定之儀器需求及規格[2],偕 际成大航太科技研究中心負責 執行儀器設備的採購及驗收。

5.2 目前進度說即

93 年度所採購的量測儀器為新台幣捌佰壹拾蓴圓整(附件八), 木年所量測儀器採購需要招標共計有六項,於93年4月19日第一次 開標,有匹項順利完成招標,其餘2項因參標廠商不足流標,93年4 月30日辨理第二次招標均順利標出,量測儀器採購目前進度及結餘 如附件之。

第六章 压沛基本性能测辞實驗

6.1 前言

庫 非建構完成後,庫 非設計者所關心的不外乎庫 非性能是否符合 原先設計之要求,因此本實驗規劃之目的即針對本庫 非整體之基本性 能作一初步測試,待庫 非基本性能满足設計需求後,再進行其它驗收 實驗項目,意即該基本性能測試結果將作為其它更進一步驗收實驗項 目執行時之參考。

本計畫之工作項目包含庫 準本體(包含庫 扇、庫 扇變頻器) 試車 驗收、庫 準性能實驗之執行、數據比對、人員訓練及協助儀器設備採 購等, 等使各工作項目能依既定時程進行,本計畫主持人及共下主持 人將負責整個計畫的綜整管理、進度協認及工作認配等,並定期舉行 會議,議決分工事項及討論計畫執行進度,檢討計畫執行週程所發生 的問題並尋求解決方法(附件+)。

6. 2 基本性能测試實驗項目現劃

6.2.1 压 滞 運轉之穩定性

▶ 淨運轉之穩定性主要 募探討測試區 中平均速度 及 溫度對時間的變化關係。

日於庫源實驗一般均要求測試區入流流速須等定常流情況(非定 常流實驗除外),以探討在該定庫速條件下之相關流場特性,因此就 本庫亦而言,首先當使用者給予一設定速度後,測試區中速度隨時間 之變化即等本項測試重點之一,該測試結果將有助於了解本庫源測試 區速度到違設定速度所需之時間。除此之外,當測試區中的平均速度 到違設定速度後,該速度信號是否包含非定常擾動分量亦等本測試所

關切之問題,造成非定常擾動分量的主要來源包含[7,8]:(1)庫 崩運轉 性能不佳所造成之邊期性速度擾動,(2)庫 派本體本身設計不良,導 致管道 M 流場分離造成邊期性或非邊期性之速度擾動等。若測試結果 發現上述不預期之速度擾動現象,則庫 派設計書應設法尋找該速度擾 動源並解決之。

另一方面,庫源開始運轉時,運常溫度會隨時間逐漸上升,直到 與外界達成熱平衡後,庫源中的系流溫度才會達到穩定狀態。一般而 言,導致系體溫度上升或變化的主要原因包含:(1)日於系流運動與 庫源管壁摩擦所產生之熱源,(2)機械組件(如庫 與)運轉所產生之熱 源,(3)庫源外界環境溫度變化之影響等。日於庫源中所使用之量測 儀器,一般而言均無法完全避免系流溫度變化所造成之量測誤差,特 別是熱線測速儀夏是必須在受量測系流恆溫的情況下,才能有準確之 速度量測結果。基於上述原因,有必要了解庫源運轉週程,系流溫度 隨時間變化之特性,以作為量測儀器使用之參考。

速度及溫度變化量測將分別於第一測試區及第二測試區進行,庫 遠之量測點將選擇於測試區的中央位置,量測儀器可選擇使用皮托管 與薄膜式壓力感測器方式(圖3)或者使用熱線測速儀(圖4),由於本測 試之速度響應要求並非很高,主要為評估平均速度隨時間之變化,且 單一組測試時間甚至可能長達5個小時以上,因此為免去熱線測速儀 較為繁複之校正程序及受溫度影響所造成量測誤差,使用皮托管加薄 膜式壓力感測器方式會是較遽當之選擇。庫非中溫度之量測則可使用 一般熱電偶溫度感測器。

測試過程將戶時紀錄測試區中速度及溫度,測試時間將視實際情況以不調整,建議初始測試時,可將測試時間拉長至5小時,待檢視測試結果後,再可以斟酌調整。測試條件至少需包含:最低穩定庫速

(指測試區中之速度)、中等庫速及最高庫速情況下,分別進行。

6.2.2 压 新變頻器特性詳驗

本庫 源庫 扇之控制方 目變頻器所控制,經日 部整變頻器之頻率來 改變測試區中之速度,然而 值得一提的是,庫 源測試區中放置不 戶測 試模型時會造成不 戶壓損值,因此 假設測試區中要求之設定速度不變 時,則不 戶測試模型可能需 部整變頻器頻率。

因此本測試之目的僅在於初步測試變頻器之控制性能,測試万在空庫非情況下進行,主要探討:(1)庫 歸轉速與變頻器頻率之關係,(2) 測試區中平均速度及紊流強度與變頻器頻率的關係。後者可幫助使用 者了解該變頻器之最高及最低穩定轉速。

6.2.3 测辞再流場之量测

測試區流場之量測主要將探討在不戶速度下測試區不戶截面的 速度及紊流強度分佈。

▶ 準測試區流場品質之優劣,會直接影響到▶ 準實驗結果之可信度,因此設法改良或改善▶ 準流場品質直至某一可接受程度,為▶ 準 使用者所需爾臨約一嚴肅課題。一般而言,▶ 準流場品質力以▶ 準測 試區截爾平均速度分佈的不均勻度小於± 0.5%及測試區軸內 紊流強 度低於 1%來作為評判的標準。雖然本▶ 港將來之主要目的為從專建 築物相關空奮動力學研究(通常會以人為方式擾亂入流流場),然而該 ▶ 準 子一目的為提供國外研究學者從專一般流體力學研究,因此高品 質流場之要求仍是有必要的,且良好品質之流場,將有易於以人為方 式控制測試區№ 的流場型態。本▶ 準流場品質校驗將以上述之不均勻 度及 紊流強度為參考依據。 本實驗項目將在不戶速度下量測雨測試區不戶截面速度及紊流 強度分布。實驗將分別於庫源館第一測試區(2F)及第二測試區(B1F) 進行測試。預計在第一測試區進行3組流速(低速、中速及高速)試 驗,量測截面分別在第一迎轉盤中心(下游3m處)及下游取2個不戶 位置之截面共3處進行測試,每一截面量測20點;而第二測試區預 計進行2組流速(低速及高速)試驗,每組流速各量測兩個截面,分別 位於第二測試區入口處及唯一迎轉盤中心截面,每一截面估計量測 20點。量測週程中須待測試區中庫速及溫度均達穩定方可進行,量 測儀器主要以熱線測速儀(Hot-Wire)及反托管等主。 均勻度的兩倍標準差定義如下:

$$\left|\Delta U_{0_{2\sigma}}\right| = 2 \times \left(\frac{1}{n-1} \sum_{i=1}^{n} \left(U_i - \overline{U_0}\right)^2\right)^{\frac{1}{2}}$$

紊流強度(Turbulent Intensity)之定義:

$$T.I. = \frac{\overline{\left(u^{\prime^2}\right)^{\frac{1}{2}}}}{U_0}$$

6.2.4 流場偏向车

道常各項庫源實驗皆會假設流場為均勻流(Uniform flow),倘若 流場的偏向 產週大,會造成實驗上相當大的誤差,因此流場偏向 產 (Flow Angularity) d 是庫 源基本性能測試的一項重要課題。量測流場 偏向 產 有 許多的方法,如 3-D 熱線測速儀、五孔皮托管、雷射測速 儀(LDV)...等,而本次實驗測試吾人選擇三孔的 cobra probe 皮托管配 台壓力轉換器來量取流場偏向 產,速度 及量取截面的設定 下前一項測 試。

普遍所量測的偏向 產為上升流(Upflow)及 橫向流(Cross-flow),因

此三孔皮托管主要量取流場的α £(pitch angle)或β £(Yaw angle),透 週先前的校驗所求的修正係數 K₁ 及 K₂,與三 個壓 1 孔 的靜壓值比較 計算後 便能得到 Δα 及 Δβ。 偏向 £ 的师 倍標準差定義如下:

$$\left|\Delta\alpha_{2\sigma}\right| = 2 \times \left(\frac{1}{n-1}\sum_{i=1}^{n} \left(\alpha_{i} - \overline{\alpha_{0}}\right)^{2}\right)^{\frac{1}{2}}$$

如圖 5 所示量取 P₀、P₁ 及 P₂等壓力,利用 Eq.3-1 及 Eq.3-2 分別 探討偏向 產對於 K₁、K₂ 值及速度之影響,並以 Cobra Probe 三孔 P 徑和(2.31 mm)作為特徵長度 L; 0[°] 偏向 產之速度 為特徵速度,求得其 雷諾數。

$$\frac{1}{2}\rho_{air}U_{\infty}^{2} = K_{1}(P_{0} - \frac{1}{2}(P_{1} + P_{2}) \qquad (3-1)$$

$$\alpha = K_{2}\frac{P_{1} - P_{2}}{P_{0} - \frac{1}{2}(P_{1} + P_{2})} \qquad (3-2)$$

P0;P1;P2: Cobra probe 主壓與參考壓力之差(P_a) K1,k2: Cobra probe 之校驗係數

Cobra probe 的校驗

 1.將 Cobra probe 與量 承 器校正,使 Cobra probe 與量 承 器成一直線(若 Cobra probe 與自由流程一直線時,則 P1 與 P2 壓力值將會很接近)。
 2.將 Cobra probe 至於 康 涉中,注意其 Cobra probe 須位於 庫 涉測試段 中間位置。

3.改變庫 扇轉速,量取±50°之間 P0、P1 及 P2 壓力值記錄並分析。
6.2.5 測試品軸向壓→ 梯度

測試區小日於邊界層成長的效應,會造成測試區中心平均流速愈 往下游愈快,而產生一壓力梯度(壓力會沿下游方佈慢慢下降),因此 若要了解邊界層成長的情形,量取測試區中心軸佈壓力梯度即可得 知,此軸佈壓力梯度可作為未來進行於邊界層發展實驗的重要參考資 料。

道常量取中心壓力梯度會使用長靜壓管(Long Static Tube),從入 口處穿越測試區到出口處來測量,但日於庫 液實驗館的兩測試區 № 皆 設置有三維移動機構,因此只要在移動機構上架設一丈皮托管,即可 量取中心壓力梯度。兩 個測試區皆量測 七點,第一測試區軸 南長度約 36.5m,設定每隔 6m 量取一點;第二測試區軸 南長度等 21m,則設 定每隔 3.5m 量取一點。第一測試區設定 3 組流速,第二測試區設定 2 組流速進行實驗,如前所述。

6.2.6 测謚禹邊界屬厚度量测

測試區 A 的流場邊界層會隨流體運動 A 成長,造成測試區 A 自 流的流速越往下游有加速的現象,使流場壓力梯度的變化。 A 以皮 托管配合移動機構便可以量測出流場邊界層厚度,每 G 測試區預計量 取3 G 不 F 截 面 位置的邊界層厚度,進 B 與 文獻 H 所預測的邊界層厚 度作比較。 第一測試區 入 D 因原本預計要進行擴散試驗所以留有一 G 約 10 cm 的間隙,此次測試在量取入 D 邊界層時亦有 考慮其效應,在 入 D 截 面 實驗 過程分 為 間隙 有 無 以 膠帶 貼 平,以 比較 出 其 差異。

6.3 量测儀器

進行庫源基本性能測試所需之儀器設備,至少自含以下所述:

- 1. 壓力量測系統(pressure measurement system)
 - A. 皮托管(Pitot tube):目前所使用的有雨種形式,一等較常見90 度彎管型皮托管(圖3所示),目前使用在量取第一及第二測 試區之入口流速, F一等直線型式,可配合三維移動機構來 量取測試區各截面之速度均勻度及軸向速度分佈。
 - B. 壓力轉換器(pressure transducer): \$ Validyne DP-103 型薄膜式壓力轉換器(圖3所示),所量取兩端輸入之壓力差,以類比電壓形式輸出,輸出電壓在±10V 之間。正壓接在 pitot tube 的全壓口,而負壓則接在 pitot tube 的靜壓口,藉此得到動壓差,進而換算出平均速度。
 - C. cobra probe: 本次實驗預計使用三孔的 cobra probe (圖 5 所示)是日三丈外徑 1.07mm, 瓜徑 0.77mm 之不銹鐮圓管所構成,並排貼緊於垂直自身轉軸的平面上,尖端指向自由流方向,而兩側圓管對稱切削,與自由流來 45 度產。

2.速度/溫度量測系統(velocity/temperature measurement system)

本實驗使用 DANTEC 之定溫熱線測速儀(constant temperature hot-wire anemometer)從事流場瞬間流速量測,此儀器具 50Khz 高 頻響應能力,由於熱線測速儀之電子 甲授線路可能有飄移(drifting) 發生,所以每次使用之前都必須校驗以避免造成實驗誤差, Hot-Wire 每次校驗後約可維持兩個小時。熱線測速儀依其操作原 理不下,約可分為定電流熱線測速儀(CCA)及定溫測速儀(CTA) 币種,其量測原理万利用惠斯道電橋(Wheatstone's bridge)之平衡 作用,CCA 是利用保持通過感測器的電流等定值,而得到電阻與 熱散失的關係,等維持熱線溫度在一定值,當棄流通過此熱線表 雨帶走熱量使溫度降低時,必須補充相當的電流,因此流速越快 會得到越高的電壓值,CTA 是利用 甲授線路保持感測器的溫度(或 電阻)等定值,而且 甲授放大器的輸出電壓得到與熱散失間的關 係。

熱線材料是由 90%的自金(platinum)和10%的铑合金(rhodium) 組成,直徑為 5µm。在使用前,以校驗過的壓力轉換器校驗之。 日於熱線測速儀的靈敏度及特性隨流場溫度與本身電阻而有所 改變,因此校驗後之探針使用一段時間後,就必須重新校驗一 次,以得到較準確之校驗係數。

3. 數據收集 糸 統(data acquisition system)

實驗所量得之類比訊號先由 IOTech ADC-488/8SA 資料收集系 統作數位類比轉換(analog-digital converter),此系統共有八組輸 入端,最高取樣速率(sample rate) \$ 100KHz,具有 16bit 之解析 度,精確度(accuracy)達 0.02%。數位化的信號以大於 200kb/s 的 速率經由 IEEE-488 介爾傳卧電腦,再用 VB6.0 所撰寫好的程式 運算並儲存。

4.拍照攝影與錄影系統(photograph and video recording system)5.示波器、數據位電表、信號產生器等基本電子信號檢測儀器。

6.4 压沛基木性、證實、驗初步結果

6.4.1 脸 滞 運轉之 穩定性分析

本實驗主要在探討測試區中平均速度及溫度對時間的關係,即給 定一速度後,量取測試區中速度隨時間的變化,此測試結果將有助於 了解本庫 測試區到違設定速度所須之時間。再 書,庫 渾運轉後,整 體溫度會隨時間而逐漸上升,至到與外界達成熱平衡後,庫 浉 亦 部 系 流溫度 才 會 平 穩, 等 避 免 田 溫 度 上 升 币 產 生 量 測 上 的 誤 差, 有 必 要 了 解庫 浉 運轉 週 程, 系 流 溫 度 隨 時 間 變 化 之 特 性。

但與外界要達成熱平衡必須在外界之系溫變化不大(即穩定狀 態下),若外界的環境變化過大則無法在短時間必便達到熱平衡。早 期在庫源館進行實驗時,發現在白天正午或日夜交替的時候溫升非常 的大,曾經在庫湄運轉不到一小時的時間瓜溫度上升近 10℃,有鑑 於此,木實驗的量測時間在晚上23:00~01:00之間。 卜時使用皮托管 及温度感测器量取第一测試區之入口流速與溫度隨時間之變化關 係,速度設定在6.7m/s,基本上每隔3分鐘取一點共取120分鐘41 點,待庫 駐轉速 固定之後開始量測,測量位置不變,結果如圖 6 所示。 發現在此時段時間瓜的溫度上升並不大,速度幾乎維持在 24.7℃~24.8℃ 主古, 溫度變化的不確定度大約在± 0.58%。 而速度的 變化並無明顯的上升或下降,但隨時間的變化值則較大,速度改變的 不確定度約在±2.8%,初步判斷速度的改變值會偏高是因為入口皮托 管髓质源運轉而震動所造成,為了使人口參考速度的不確定度減低並

成為未來設定速度的參考值,有必要重新思考感測器安裝的方式及位 置,以增加實驗數據的可信度。

市圖7為庫 崩轉速與速度之關係,其中速度分別為第一測試區及 第二測試區之入口流速,庫 崩轉速與速度呈現線性之關係,所率定出 來之線性關係式如圖7所示,可作為日後設定速度的參考關係式。未 來改進儀器及感測器本身的誤差後,可再與此兩關係式做比對。

6.4.2 压 新變頻器特性實驗

木實驗主要之目的在於初步測試變頻器之控制性能,了解庫 員之 轉速是否會與變頻器呈現線性之關係。實驗主要在空庫 » 的時候進 行,庫 扇 由 低 貞荷(6rpm)運轉至 膏 貞荷(390rpm)共設定 13 個轉速, 日 控制台 面 板 上 記錄每一 轉速之 變頻器頻率,結果 如圖 8 所示。結果 顯示 出庫 扇轉速與變頻器頻率呈現正比 的線性關係,得知庫 扇變頻器 的性能頗佳,在 60rpm 至 390rpm 的範圍 序 皆 著庫 扇的操作範圍,不 需擔心庫 扇 因 為庫 阻的增加 而 使感 應馬 達的 扭矩降 低 而降 低速度。

6.4.3 测辞幂均争度及紊流强度

本實驗目前以第一測試區(2F) 黃主要 的測量範圍,所使用 的感測 器主要有 pitot tube 及熱線測速儀。圖9 黃軸向下游2.5m 所量測出的 平均速度分布圖,圖 10 黃平均速度剖雨圖,速度設定在 6.8m/s。 圖 6.可 看出 在離主 古壁雨 & 80cm 處,速度有突然降下來的趨勢,且 最高速度分布 在截雨 中心偏下 方處,初步判斷是受到三維移動機構所 造成的影響,未來將深入探討移動機構及其軌道所造成的阻塞效應與 洞流的影響。取中心截雨 20 點(如圖 10 所示)作均 集分析,所得到 的結果為±2.6%, 並非十分理想。

圖 11 及圖 12 著第一測試區下游 15m 之平均速度分布圖及下游 15m 之二維平均速度剖爾圖。可看出在 Y 軸中心點兩測約 120cm 仍 然會有速度驟降的趨勢,且速度依舊在截爾下方處較高,因此判斷造 成此影響的原因並非只存在入口處, F 外亦可發現日於邊界層成長的 關係, 使得 Z=30cm 處的速度下降許多。而取下游 15m 截爾中心 20 點(如圖 12 所示)作均身度分析, 所得到的結果 等± 2.2%。

圖13及圖14為使用 Hot-wire 所量測出來之下游25.5m 速度分佈 圖及剖爾圖,發現由於邊界層成長的關係使中心的速度比旁邊增快許 多, 而取截爾中心所得到的速度均勻度約為±2.2%。

市圖15募第一測試區下游25.5m之 案流強度分佈圖,圖16募第 一測試區下游25.5m之 案流強度剖 ω 圖16可 看出 Z=30cm 處, 日於邊界層長厚 市 使得 案流強度 變 木 違 1%~2.5%, 币 其餘未受邊界 層影響之範圍, 案流強度皆小於 0.7%, 符合我們先前所制定之規範。 入口流場的 案流強度目前 因電磁效應干擾下,所測得數據中因雜訊 太 木, 故無法估計算出入口的 案流強度。未來將解決在入口處所遇到的 雜訊 干擾問題, 確認入口處之 案流強度。而圖 17.中可 看出從下游 17m 至 30m 之 軸 φ 紊流強度 分佈, 每一點的 紊流強度皆小於 0.3%, 合乎 我們的 需求。

6.4.4 邊界層量測結果

空庫 $in 之邊界層\delta(\mathbf{x})$ 可ff 京流邊界層理論 <math>n in in in in in in in in item

δ(x) 善邊界層之厚度(m), Rex 善隨 X 改變之雪諾數。根據以上公式可推算出, X=2.5m 時邊界層厚度約 6cm, 丙 X=15m 時邊界層厚度約 24cm, 這與圖 17 及圖 18 使用皮托管所實際測量之結果, 十分接近。

6.4.5 流場偏向车

目前尚未將Cobra probe的校驗機構架設,將於後續計畫執行,並完成Cobra probe校驗,並進行流場偏倚產量測。

6.4.6 軸向壓 / 梯度

測試區區自於邊界層成長的效應,會造成測試區中心平均流速愈 往下游愈快,而產生一壓力梯度(壓力會慢慢下降),因此若要了解邊 界層成長的情形,量取測試區軸向中心的壓力梯度即可得知,軸向中 心壓力梯度可作為未來進行區邊界層發展實驗的重要參考資料。而目 前所測量的軸向壓力梯度等動壓梯度(即速度梯度), 日圖 19 可看出 而軸向中心之速度隨著往下游移動,速度d 隨著增加,3~23m 速度約 上升 0.43%,未來可調整上蓋板來使中心之速度夏均勻。

6.5 基本性能测辞實驗結論

第一章 橋際斷西模型詳驗

7.1 前言

著名的1940年 Tacoma Narrows 懸吊橋崩塌事件, 便是由於所採 唐 的橋雨版斷雨具有 高度空奮動力 不穩定性, 使得該橋在庫 達約略 幕 當時設計庫速一半的情況下, 因顫振雨崩毀。此後, 工程界開始重視 橋樑的空奮動力 不穩定性。週去數十年間, 橋樑空奮動力理論的演進 加上工程計算能力的太幅增強, 使得工程界得以逐步克服伴隨太跨徑 雨來的奮動力 不穩定現象。 國際上懸吊橋跨徑早已已超越 1000 公 尺, 最長的則是跨越瀨戶 [] 海, 連接 [] 國、本州的 Akashi-Kaikyo 橋, 其總長 3911 公尺, 中央跨徑長達 1991 公尺。斜張橋的發展較懸吊橋 曉, 但在 1956年瑞典的Strömsund meassurement Group 橋完成, 開 展現代斜張橋的先端以來, 發展極著迅速, 近年來已逐漸成著太跨徑 橋樑的主流, 主跨長度 d 已 逼近 1000 公尺。國正最長的斜張橋著南 二高跨越高屏溪的高屏溪橋, 全長 510 公尺, 主跨 330 公尺 等輝結構, 副跨 180 公尺 等預力混凝土結構。由於斜張橋具有特殊的美學外觀, 容易與自然環境結合而形成地標, 可以預見, 未來國 M 仍會出現跨徑 不一的斜張橋樑。

橋樑的棄動才現象基本上是流體與鈍狀彈性體之間的互制行 等,由於橋樑結構的複雜性,目前無法以純理論模式或數值方法解析 之。特別是庫與結構間的互制現象,必須依賴庫源物理模型實驗。橋 樑的庫源模型實驗、體可分等主橋模型實驗(Full Model)與斷庫模 型(Section Model)兩、類。斷庫模型則是採用主跨斷重的二維模型, 在均勻流場中量測橋樑斷重的庫才係數及顫振導數,提供振顫臨界庫 速與動態反應計算模式之用。除此之外,斷重模型的設計對於橋樑垂 重與在轉基本振態的質量與頻率做速當模擬時, 也可以量測橋樑的動

熊反應作為初期設計的參考。國本已有學習採用斷面模型試驗從事橋 探空棄動1穩定相關的研究工作[8,9,10]。主橋模型實驗是對於原型 橋樑儘可能的作完全縮尺模擬,直接以實驗方式水取橋樑的顫振臨界 庫速或是橋樑在一般庫速的動態反應。目於縮尺的限制,主橋模型實 驗所需的庫 湄試驗段斷面寬大多在 5.0m 以上,一般的大案邊界層庫 **〕**亚不遽於從事此類型實驗。過去限於實驗室條件不足,國外無法從 事此項研究工作,連帶的使得國於斜張橋工程的庫源實驗必須仰賴國 外實驗室。建築研究所規劃興建中的庫源實驗室第二試驗段斷面寬度 為 6 公尺, 雖然較之 國際間橋 探實驗 專 用之 庫 **沛**, 斷 庫 寬度 仍 屬 較 窄 **者**,然而且於台灣地區橋樑跨度有限,新建完成的庫源實驗室應滿足 國外絕大多數橋樑庫源實驗的需求。本計畫的目的在於使用建築研究 所新建庫 派 的第二 測試段,進行一個簡易的橋樑斷面 模型實驗,藉以 驗證該測試段的性能、實驗室所採購有關結構系動力及系彈力實驗的 相關儀器設備,並協助該實驗室建構橋樑斷面模型實驗的基本架構。 計畫中將應用斷面模型實驗量測橋探的各項系動1參數,再以數值方 法探討斜張橋的案動1特性,並與現有之實驗數據進行比對。未來國 ▶ 從事橋樑庫工程研究的學者,可使用此項庫 源設借從事橋樑之主橋 或斷面 模型試驗。

7.2 橋樑空棄動 基本理論

7.2.1 橋探空靠動 梯定特性[11]

橋樑所受的庫1作用可分募平均庫1所造成的靜1效應與擾動 庫1所產生的動態效應雨、類。橋樑的受庫靜1效應對於橋樑空棄動 1穩定性可能出現的影響是扭轉發散現象(torsional divergence)。橋樑 的庫1動態反應方面,較等顯著的棄動1效應可分募下列幾種:(1)

顫振(Flutter); (2) 渦致振動 (Vortex-induced vibration); (3) 抖振 (Buffeting)。以下就橋樑可能發生的空棄動力不穩定現象,逐一說明 於後。

7.2.2 社轉不穩定

挂轉不穩定現象為一單自日度運動;其發生之原因為挂轉佈庫1

隨庫攻庫的增加而遞增,當橋樑斷面承受庫1而產生挂轉位移時,意

謂 著庫攻庫已增加了 Δα,所造成的挂轉變鉅亦將隨之增加,此時橋

樑斷面必須以夏大的抵抗變矩來與之抗衡,如此反覆作用,當到違某

一庫速時,橋樑斷面所承受的挂轉變拒超週橋樑斷面所能抵抗的能1

時,將使橋樑結構產生不穩定之現象而破壞。此種不穩定現象類似結

構物之挫函破壞,故橋樑的設計庫速承,必須避免此種破壞的發生。

7.2.3 頭振

顫振是一種橋體振動引發的空棄彈力現象,橋體經日「結構--流 體」互制現象,由流場中汲取與結構運動正相關的能量,改變原橋樑 糸統的勁度與阻尼。當庫速到違某一臨界狀態時,橋體振動所引發之 棄動力阻尼會抵消結構之阻尼,而使結構產生發散現象,此時所對應 的庫速即是橋樑的顫振臨界庫速。顫振臨界庫速代表了橋樑空棄不穩 定的產生庫速處,設計懸索支撑橋樑時,必須要避免發生顫振現象。 換言之,顫振臨界庫速應明顯高於道常結構的設計庫速,一般採 500 年卧歸期庫速作著顫振臨界庫速的設計標準為宜。

7.2.4 抖振反應

抖振,是日於逼近流的擾動庫速對結構系統造成一不穩定載重而

產生的振動現象。由於目前並沒有強而有效的亂流解析模型,因此在 實際應用上等假設外才符合準穩定定理(Quasi-Steady theory)然後 使用散漫振動理論(Random Vibration theory)來分析。

一般抖振放應不僅與紊流特性有關, d 和橋樑斷爾之幾何形狀及橋樑 基本振態有關。橋樑的抖振放應通常不會導致橋體的破壞, 但在設計 庫速下, 若橋樑斷兩有太大的位移量, 會引起車輛和行人感到不違, 亦可能在長期作用下使得橋樑材料有疲乏 (fatigue) 之虞。

7.2.5 湄流顫振

洞流顫振發生的原因為流體流經鈍體產生分離後,使得結構體的 上下側交互產生進期性的渦漩,由於上下側的渦漩形成時間不一致, 造成結構體上下側壓力的不下,而導致結構物在垂直方向振動,即為 渦流顫振現象。當渦散頻率與橋樑結構體某一振態之頻率一致時,則 會造成共振 (resonance)現象,使得渦散頻率被鎖在結構物基本自然 頻率上,直到庫速增加至脫離棄流與結構體交互作用之影響。

渦散頻率一般以無因次化頻率表示即為史特赫數(Strouhal No.) 其定義為:

 $S_{t} = \frac{f_{s} \times D}{U} \tag{7-1}$

其中,fs: 渦散頻率、D: 結構特徵 R 度[11]。

渦散頻率(f_s)會隨無因次化庫速(U_r=U/f_rD)币改變,但渦散頻 率若與結構物的特徵頻率(eigen-frequency),或與強制振動頻率(f_r) 相近時,共振區形成;此時,渦散頻率受特徵頻率或強制振動頻率牽 制而不再隨無因次化速度改變,於共振區承有強烈的奮動才現象,即 為鎖值現象。鎖值現象會使結構物產生較大的位移反應,導致結構物
7.2.6 基本運動 7.2.6

橋探承受庫1作用時,其主操所承受之外1可分為橋體自激1和 亂流效應,運動方程式可寫為[12]:

$$m_x(x+2\xi_x\omega_x x+\omega_x^2 x) = D_f + D_b$$
 (7-2)

$$m_{y}(y+2\xi_{y}\omega_{y}y+\omega_{y}^{2}y) = L_{f} + L_{b}$$
(7-3)

$$I(\alpha + 2\xi_{\alpha}\omega_{\alpha} \alpha + \omega_{\alpha}^{2}\alpha) = M_{f} + M_{b}$$
(7-4)

式中
$$m_x, m_y, I$$
:順庫 ゆ、垂直 ゆ及 抂轉 ゆ之 質量,
 ξ_x, ξ_y, ξ_α :順庫 ゆ、垂直 ゆ及 抂轉 ゆ之 阻 尼 比,
 $\omega_x, \omega_y, \omega_\alpha$:順庫 ゆ、垂直 ゆ及 抂轉 ゆ之 自 然 頻 率,
 D_f, L_f, M_f :順庫 ゆ、垂直 ゆ及 抂轉 ゆ之 自 激 f ,

單位長度橋 雨 版之自激才 經忽略 案動 才 慣 性 以 及 其 化 次 要 項 後, 在 垂 直 向 L、 順 庫 向 D 及 抂 轉 向 M 的 分 量 可 寫 為:

$$D_{f}(t) = \frac{1}{2} \rho U^{2}(2B)(K) \left[P_{1}^{*}(K) \frac{\dot{x}(t)}{U} + P_{2}^{*}(K) \frac{B\dot{\alpha}(t)}{U} + KP_{3}^{*}(K)\alpha(t) \right]$$
(7-5)

$$L_{f}(t) = \frac{1}{2} \rho U^{2}(2B)(K) \left[H_{1}^{*}(K) \frac{\dot{y}(t)}{U} + H_{2}^{*}(K) \frac{B\dot{\alpha}(t)}{U} + KH_{3}^{*}(K)\alpha(t) \right]$$
(7-6)

$$M_{f}(t) = \frac{1}{2} \rho U^{2} \left(2B^{2} \right) \left(K \right) \left[A_{1}^{*}(K) \frac{\dot{y}(t)}{U} + A_{2}^{*}(K) \frac{B\dot{\alpha}(t)}{U} + KA_{3}^{*}(K)\alpha(t) \right]$$
(7-7)

式中 H₁^{*}, H₂^{*}, H₃^{*}代表了橋體振動時, 其垂直向速度、扭轉向 產速度 及 產 位移 在垂直 向 所引發 的自 激力 係數, A_j^{*}及 P_j^{*}則分別 著橋體振動 時, 在 挂轉向 以 及 順 庫 向 所引發 的自 激力 係數。 H_j^{*}、 A_j^{*}及 P_j^{*} 統稱 等 顫振 導數 (flutter Derivatives)。 各項 顫振 導數 著橋 聶 版幾 何 形狀、 無 因次化頻率(或無因次化庫速)及流場特性的函數; $K = \frac{B\omega}{U}$ 為無因 次化頻率, ω 為結構振動的圓脂頻率 = $2\pi n$; B 為橋雨版寬度; P 為 空系密度; U 為平均庫速。

亂流擾動才在忽略微量橋體運動的影響後,可表示為:

$$D_{b}(t) = \frac{1}{2} \rho U^{2} B C_{D}(\alpha_{0}) \frac{A}{B} \left(\frac{2u(x,t)}{U} \right)$$
(7-8)

$$L_{b}(t) = \frac{1}{2} \rho U^{2} B \left\{ C_{L}(\alpha_{0}) \frac{2u(x,t)}{U} + \left[\frac{dC_{L}}{d\alpha} \right]_{\alpha = \alpha_{0}} + \frac{A}{B} C_{D}(\alpha_{0}) \right] \frac{w(x,t)}{U} \right\}$$
(7-9)

$$M_{b}(t) = \frac{1}{2}\rho U^{2}B^{2}\left\{\left[C_{M}(\alpha_{0}) + C_{D}(\alpha_{0})\frac{Ar}{B^{2}}\right]\frac{2u(x,t)}{U} + \frac{dC_{M}}{d\alpha}\Big|_{\alpha=\alpha_{0}}\frac{w(x,t)}{U}\right\} \quad (7-10)$$

其中:附標b代表亂流效應; u、v分別等順庫 南、垂直 南之擾動 庫速; C_D,C_L,C_M分別等順庫 南、垂直 南 及 扭轉 南之庫 1 係數; α₀ 是平 均庫 攻 庫; A 是單 位長 度橋 面 版 在 垂直 南 占 的 投影 面積; r 等橋 面 版 質量 中 心 到 有 效旋轉 軸 之 距離。

7.3 压力係數及頭振導數

7.3.1 压 / 係數

▶ 1係數為結構物受到庫才作用大小的指標。斷面庫源試驗中的 庫才係數量測,主要利用應變計求取長時間的平均受力。主要量測托 电向 C_D、垂直向 C_L與抂轉向 C_M三方向之庫才係數。其量測流場為 平滑流場,在庫攻庫+10⁰至-10⁰且間距為 1⁰共 21 個庫度下,量測 其橋樑在各庫度下所承受之庫力。其三方向之庫才係數關係式如下:

$$C_{\scriptscriptstyle D} = \frac{\overline{F_{\scriptscriptstyle D}}}{0.5\rho U^2 DL} \tag{7-11}$$

$$C_{L} = \frac{F_{L}}{0.5\rho U^{2}BL}$$
(7-12)

$$C_{M} = \frac{\overline{F_{M}}}{0.5\rho U^{2}B^{2}L}$$
(7-13)

其中 F_D、F_L、F_M:分別為橋樑所受的庫1,平均拍电1、垂直1 及 抂轉1。B:橋樑斷庫寬。L:模型長度。

7.3.2 頭振導數

1971年 Scanlan 與 Tomko [13]根據即有的實驗模式與類似機翼的 相戶理論,建構出一系列橋樑斷爾扭轉命(A₁*、A₂*、A₃*)與垂直 命(H₁*、H₂*、H₃*)之顫振導數,其實驗方式至今仍被廣泛使用。 其所代表的物理意義如表 2 所示。

▶ 非試驗主要利用 短距雪 射測距儀量測斷 ● 受 ▶ 下 垂直 向 與 扫 轉 向 之 位 移 歷 時 反 應。橋 樑斷 ● 主要 分 別 量 測 等 扫 轉 向 與 垂直 向 之 顫 振 導 數。其 量 測 流 場 等 平 滑 流 場, 在 ▶ 攻 ♣ + 6⁰ 至 - 6⁰ 且 間 距 著 2⁰ 共 7 個 ♣ 度 下, 量 測 其 橋 樑 振 動 所 引 發 的 系 動 1 放應。

7.4 橋際縮《模擬相似往及區源詳驗設備

7.4.1 慎擬相似率

模型進行庫源實驗時,須遵守模型系彈才相似性模擬原則,包括 庫源流場特性、模型特徵長度縮尺、空系密度及黏滯才、庫速、及因 重才影響所導致的加速度...等。 這些物理上的特質則以下述幾點討論[11,12]

(1) 雷諾數 (Reynolds Number (Re)):

$$\frac{\rho UD}{\nu} = \frac{ 流體慣性1}{ 流體黏滯1}$$
(7-14)

雷諾數等空棄的慣性才與黏滯才的比值,配合不同的庫速(U)
以及特徵尺度(D) 便可得到實驗所需的雷諾數。

$$\left(\frac{\rho UD}{v}\right)_{m} = \left(\frac{\rho UD}{v}\right)_{p}$$
(7-15)

式中下標m為模型,p為原型。

可是一般的庫源實驗無法達到R_e=10⁷~10⁸之實場狀況。在縮尺模擬中, 大案邊界層的雷諾數超週10⁵時, 以及鈍體系動才實驗之雷諾 數超週10⁴時, 縮尺模擬的流場特性已不受雷諾數大小的影響。木研 究計劃中各項實驗的雷諾數均保持在5.6×10⁴以上, 以滿足雷諾數獨 立性的模擬要求。

(2) 福祿數 (Froude Number):

$$\left(\frac{U^2}{Dg}\right)_m = \left(\frac{U^2}{Dg}\right)_p$$
(7-16)

福祿數為空棄的慣性1和日重1或浮1或造成之垂直1的比值 為滿足垂直向動1特性上的一致。當縮R模型需考慮重1影響時,則 模型與原型間須滿足福祿數的相似性要求。

(3) 密度比 (Density Ratio)

$$\frac{\rho_s}{\rho_f} = \frac{結構平均質量密度}{2 \,\underline{x} \, \underline{x} \, \underline{x} \, \underline{y} \, \underline{z} \, \underline{x} \, \underline{x} \, \underline{z} \, \underline{z}$$

密度比代表了、結構慣性才和空棄慣性才的比值。所以模型應依實 場結構的密度來模擬,模型密度比應符合原型。

$$\left(\begin{array}{c} \rho_{s} \\ \overline{\rho_{f}} \end{array}\right)_{m} = \left(\begin{array}{c} \rho_{s} \\ \overline{\rho_{f}} \end{array}\right)_{p}$$
(7-18)

(4) 彈性比 (或稱 Cauchy Number)

日於勁度比的模擬將影響結構的自然頻率,故須將模型的勁度比 模擬和原型相下。然而在模型的製作上,對於勁度比的模擬相當困 難,所以一般在實際的運用上是以質量比與史特赫數(Strouhal Num-ber) 等模擬基準。換句話說,若模型和原型能夠符合質量的模擬,且滿足史特赫數時,則勁度比即能符合。

$$\left(\frac{f_0 D}{U}\right)_m = \left(\frac{f_0 D}{U}\right)_p \tag{7-20}$$

其中fo: 為結構的自然頻率

日於 模型 與 原型之間 必須保持 頻率比一致,則必須 满足

$$\left(\frac{f_i}{f_j}\right)_m = \left(\frac{f_i}{f_j}\right)_p \tag{7-21}$$

(棋型i振態與j振態的頻率比應與原型相下)

(5) 阻尼比 (Damping Ratio)

阻尼比為結構振動運期中的能量損耗率,因此阻尼比的大小將影響結構位移反應的大小,所以為預測結構反應很重要的一項參數。

$$\left(\xi \right)_m = \left(\xi \right)_p$$
 (7-22)

所以模型的阻尼必須和原型相后。

7.4.2 橋樑斷面模型製作

模型之縮尺比例有一定之原則與依據,其主要考量與下列幾項要點有 關:

- 1. 必須考慮到阻塞比,因此模型斷面不宜過大。
- 2. 庫速之限制:本計劃之最大有效庫速為 30m/s。
- 3. 模型之質量與轉動慣量(Polar Mass Moment Inertia)在模型製作上是否可以滿足縮尺比例。
- 4. 義求實驗之正確性,模型的制作必須盡可能與原型橋標結構之 縮尺相符,如原橋之交這護欄(Traffic -Barriers)、擾流板(fairing) 幾何形狀之線係,都要完整的被複製,缺一不可。

斷爾模型製作上的原則, 便是確保模型完成後具有質量輕及勁度 高的特性; 因此 在製作模型時, 使用 箱型空心錦條, 以求降低立框架 質量, 如此 在整體斷爾模型總質量不變之前提下,可留給認頻用的砝 碼及彈簧 有較大的彈性空間) 作為結構立構件的則架系統, 使用保麗 龍或珍珠板 作為填充材料, 再以壁紙拔覆作為最外層。為符合原型 (prototype) 橋樑樑結構的動力 行為, 斷爾 模型的頻率特性是藉目 模 型的認頻用 砝碼及彈簧 支 撐系統來認整與提供; 币 斷爾 模型的阻尼特 性則遵循模型製作之簡化原則, 調整模型阻尼比, 視實驗要求所增加 阻尼的辅助系統。

日上述可知,木實驗之斷面模型是日主框架(main frame)、側框架(side frame)、 調頻用砝碼及彈簧與填充材料(保麗龍或珍珠板) 為主要構件,此外還包括模擬交通護欄等較細微的次要構件,所組合 丙戌的一完整斷面模型。

7.4.3 斷面模型使 3 之端板放應

二維流場庫 源實驗被用來作著橋樑與結構物的案動才研究已相 當普過,因此如何確保模型在二維流場中進行將是實驗的首要工作。 實驗時日於庫 源硬體設施的影響,造成模型長度無法完全延伸,因此 往往會受到庫 源牆壁所產生的邊界層效應的影響,而破壞了原有流場 的二維特性。所以端板的設置可以避免一些實驗設備如:側框架、講 頻用的彈簧、雪射位儀計及接線裝備等對模型 m 圍流場的干擾。日以 上的探討可知端板設置的基本功能主要有二:

2. 為產生流場的二維流況。

至於端板尺寸對流場的影響,根據Kubo et al., [14]的研究指出, 端板在近庫 重突出的長度,對模型並無太大的作用,但在背庫 重延伸 的長度將會影響尾跡發展的長度,一般建議至少需大於產生第一個凋 漩的形成區(vortex formation region),如此才能防止實驗量測區以外 的流體進入凋漩形成區,以避免模型之背壓處有壓才 臣復的現象 (pressure recovery)。此外,依據卡門凋散理論(Karman vortex shedding theory),則推估第一個凋漩形成區的長度約為 4.28D,其中 D 為模型的寬度。

另外,根據 Obasajue et al., [9]的研究,端板於流場中的位置須與流線 呈平行,因為端板邊緣亦可能造成流體在唐圍產生邊界層,而失去了 端板原有的基本功能;所以端板前緣一般應製作成尖狀且外斜之直 三 年形,以避免流體流經端板前緣時造成分離剪力流,而影響了實驗 的結果。

7.4.4 實驗儀器介紹

A. 庫速量測-皮托管

木實驗採用皮托管-壓力轉換器系統進行平滑流場平均庫速的量 測;由皮托管所量測到的庫壓變化,經壓力電壓轉換器轉換等類比電 壓值,經由放大器處理,再藉由類比/數位(A/D)轉換器將類比訊號 轉換等數位訊號,最後經電腦讀取、記錄與分析。

$$U = \sqrt{\frac{2g \cdot \Delta H \cdot \rho_W}{\rho}}$$
(7-23)

- 其 f ; ΔH : 微壓計水柱 高 差 (mm) 。 ρ_w : 蒸馏水密度(約 ង 1.0g/cm³)。ρ:空 系密度(約 ង 1.128~1.293kg/m³)。 g: 重 t 加速度 (9.81m/sec²)。
- B. 位移量测-雷射测距儀

雪射測距儀日二 倡部份構成:(1) 雪射源(Laser Head);(2) 雪 射控制器(Controller)。量測原理為雪射光日雪射發射至感應板(反 射板)上,操作時必須使其正交(Normal)以減少誤差,可直接讀得 雪射頭與感應板之距離(率定關係為 lvolt=1cm),使用前需先執行 儀器歸零步驟。 短距離測距儀之有效範圍著 $6.5 公分 \sim 9.5 公分 。 若令雨側雷射$ 測距儀於某瞬時所量資料之差著 <math>r(t),此二測距儀之間距著 L,假 設在轉 a 等 h b c (t),則其可表示 a $\theta(t) = \frac{r(t)}{L}$ 。雷射測距儀的資 料亦 t 類比/數位轉換器將訊號轉 b 数位資料,再 t 電腦記錄、分析。

C. 受力量測-應變片及應變訊號放大器

橋樑受庫作用後,庫才係數的量測最主要採用以應變片(Strain Gages) 所製作的才感應器進行量測,其原理是由訊號放大器(Signal Conditioning Amplifier)提供應變片電壓,而此電壓值再經由訊號放 大器轉換成毫安培(mA)的電流,然後電流在庫才作用下,經過應 變片的電阻值即可得應變電壓值, 由應變片所產生的應變電壓值, 經 由應變訊號放大器放大後,透過轉換系統量測出電壓的變化, 經電腦 讀取、記錄及程式分析, 即可求得橋樑模型所承受之庫才係數。

7.5 橋標詳驗之區 非設計與規劃

7.5.1 端缼配置

實驗用端板主要架設在庫 涉試驗段中央,並利用端板下雨軌道變 換端板間之距離。雨 側端板主要是以鋁條與壓克力板及三 產型木板所 構成,並於端板軸向及順庫 向各設立一 固定點,將模型與其間利用錄 線連結,使此兩方向位移受到末制。如圖 20 所示。

7.5.2 橋探斯西棋型詳驗-亚板斯西

平板橋樑斷雨長 1.5 公尺、寬 0.32 公尺、深 0.4 公尺,如圖 20。 主要以箱形空心錦材作為結構主構件之錦架系統,使用 高密度保麗龍 自覆。

7.5.3 橋探斷面模型詳驗- 唐屏溪橋斷面

7.5.4 橋探斷西 模型詳驗內容

斷面模型試驗主要實驗於容分落:(1) 庫才係數、(2) 顫振導數、 (3) 顫振臨界庫速、(4) 欄杆影響,其於容如表4所示。

7.6 新西模型压泥詳驗結果

7.6.1 压 + 係數

▶ 1 係數為結構物受▶ 1 大小的指標,本實驗所量測之▶ 1 係數於 平滑流場中進行,量測十一個▶ 攻▶ (-5⁰~5⁰,間隔1⁰),以瞭解▶ 攻▶對平均阻1係數(C_D)、平均昇1係數(C_L)、平均扗1係數(C_M) 之影響。

A 深寛い言8(B/D=8) 之 平板橋探斯雨

圖23 著拍电向平均庫1係數,無論正負攻產其值皆著正值,目隨 庫攻產增加而稍微增大。圖24 垂直向平均庫1係數,若垂直向庫1 係數等正值,表示模型受到上舉的庫1;若等負值表示模型受到下壓 的庫1。因此從圖中可看出在正攻產時,模型受到上舉的庫1隨攻產 遞增有遞增的現象,反之亦有隨攻產遞增其下壓的庫1亦遞增。 圖 25 拄轉向平均庫 1 係數,其值為正值顯示模型受庫下之上舉1 大於下壓1,表示模型受到順時針的庫1,反之,則受到逆時針的庫 1影響。目於此橋樑斷面為一對稱斷面,因此正負攻產其值有對襯的 趨勢,若利用已知資料做為比較,則可看出本次試驗值與已知資料接 近。

B 高屏溪橋探斷西

圖 26 著拍电向平均压力係數,無論正負攻牟其值皆著正值,目隨 压攻牟增加而稍微增大。圖 27 垂直向平均压力係數,從圖中可看出 約在正 平度界,小於正 平度之攻 牟其模型受到下壓力較嚴重且隨攻 俸 遞減有遞增的現象,表示高屏溪橋模型較易受到下壓力的影響。圖 28 拄轉向平均压力係數隨攻 產遞增而有增大的趨勢,因本斷 雨形狀 並非對稱,造成其最小值並未發生在零度攻 產處。

7.6.2 顫振導數

橋樑斷爾模型之顫振導數之實驗於平滑流場中進行,並於三個庫 攻角(-3⁰~3⁰,間隔3⁰), 用以瞭解各庫攻庫下對垂直與扭轉向顫振 導數之影響。

A 深寬比為8(B/D=8)之平板橋樑斷面

圖 29 \$ 顫振導數 A₂*在各攻 £ 的變化, A₂*是橋樑斷 面的 拄轉 向 系動 1 阻尼 參數,對於顫振型態傾 向於單自日 度顫振的橋樑斷 面 為一 重要 的參數。只要掌握 A₂*日 負轉正時所對應的無因次化 庫速值, 及可約 略表示顫振放應發生之處。日圖中可 舌出 在正三度攻 £ 較零度 與 負三 度攻 £ 有較 早發生日 負轉正的現象, 其表示正三度攻 £ 其模型 有較 不

穩定的趨勢,其顫振臨界庫速則較低。

圖 30 善顫振導數 A3*在各攻争的變化,A3*是橋樑斷面的拄轉向 奮動才勁度參數,當其值隨無因次化庫速的增加而往正值遞增,即代 表橋樑斷面拄轉向的有效勁度降低,拄轉頻率隨之下降;增加的幅度 越大,則拄轉與垂直頻率比越小,代表橋樑夏易產生奮動才振態耦合 而降低其穩定性。甘圖中可知各攻爭下之值均無明顯差異,表示對於 攻爭的變化對於奮動才穩定性的影響較輕微。

圖 31 尊顫振導數 H₁* 在各攻 单 的變化, H₁* 是橋 樑斷 重 的垂直 南 奮動 1 阻尼 參數, 隨 庫 速 的增加 其 值逐漸遞減,表示 隨 著 庫 速 的增加 而 垂直 奮動 1 阻尼對 其 垂直 向 運動 之 有 放阻 尼 所提供的正 貢獻 將越 大, 有助於橋 樑斷 亜 在 垂直 向 振幅的 穩定性。 日 圖 中 可 知 各 攻 牟 下 之 值 均 無 明 顯 差 異,表示 對於 攻 牟 的變化 對於 垂直 向 振幅的 穩定性 影響 較輕微。

圖 32 顫振導數 A1* 在各攻 单 的變化量, A1* 代表橋 探垂直 中 的振 動對於 拄轉 向 棄動 才 阻尼 的影響。 在零度攻 单 其 值 隨 無 因 次 化 庫 速 遞 增 而 增 加 , 其 正 貞 三 度 則 無 明 顯 規 律 。

圖33 顫振導數H₂*在各攻争的變化量,H₂*代表橋樑拄轉向的振 動對於垂直向棄動才阻尼的貢獻。日圖中可看出,當攻争等負三度及 正三度攻争時,隨無因次化庫速增加內從負值轉至正值,再依次遞 減。內零度攻争則隨無因次化庫速增加其負值越大。

B 高屏溪橋樑斷面

圖35 善顫振導數A2*在各攻 单的變化,A2*是橋樑斷 面的 杜轉 南 奮動 1 阻尼 參數, 日 圖 中 可 香 出 在 頁 三 度 攻 单 時, 其 值 恆 善 貞 值,表 示 在 頁 三 度 攻 单 下 不 易 產 生 顫 振 反 應, 在 零 度 及 正 三 度 攻 单 下 則 易 產 生 顫 振 不 穩 定 的 現 象。

圖 36 等顫振導數 A3*在各攻 单的變化, A3*是橋樑斷 車的 打轉 奮動 才勁度 參數, 日 圖 中可 知, 當攻 爭 等 頁 三 度 時, 因其 值 隨 無 因 次 化 庫 速 的 增 加 币 往 正 值 遞 增 且 增 加 的 幅度 較 其 化 攻 爭 术, 即 代 表 橋 樑 斷 亜 扗 轉 申 的 有 放 勁 度 降 低, 扗 轉 頻 率 隨 之 下 降,則 扗 轉 與 垂 直 頻 率 比 越 小, 代 表 頁 三 度 攻 爭 較 其 化 攻 爭 夏 易 產 生 系 動 才 振 態 耦 合 币 降 低 其 穩 定 性。

7.6.3 富屏溪橋探斷西之頭振臨界压速

當庫速到達某一臨界狀態時,橋體振動所引發之棄動才阻尼會抵 消結構之阻尼,而使結構產生發散現象,此時所對應庫速的即是橋樑 的顫振臨界庫速。本試驗使用符合原型橋樑基本動才特性的斷庫模

型,直接測試顫振臨界庫速。

經平滑流場下之庫源實驗得到社轉內及垂直內的振動反應,其中 圖38及圖39 中(a)圖為平均值、(b)圖為均方根值、(c)圖為極大 值。由社轉向振動反應之圖(c)中,數值突然跳升的庫速可約略指 出在不戶攻庫條件下,其顫振臨界庫速發生的位置。 從圖 38 (c) 社轉反應與圖 39 (c) 垂直反應中發現。亦可從社轉向 互應圖中發現也工在各世上,其時界區,這才在前公報,亦可從社轉向

反應圖中發現當正攻承越大,其臨界庫速有往前移動的現象,表示當 攻承遞增其系動才穩定性有降低的趨勢。將試驗發生顫振時之無因次 化庫速轉換成實場庫速後如表 5,由表中亦可看出當正攻承遞增時, 實場臨界庫速亦有降低的現象。

7.7 橋探測詳實驗結論與建議

7.7.1 第二詳論段儀器設備使 心得

A. 庫 脂 第 二 試驗段、庫 速 範 圍 2m/s~12m/s

- 庫 浉 運 轉 雨 小 時、試驗 段 溫 度 約 上 升 十 度 , 因 此 會 影 響 到 試 驗 儀 器 之 量 測 。
- 压 沛 爪 天 車 機 構 可 能 對 於 压 場 量 測 會 有 影 響,現 階 段 無 法 直 接驗證 天 車 對 於 流 場 的 影 響。
- 日於建築試驗詳之用電量受限制,可能在未來造成庫 源試驗
 無法進行長時間的連續試驗工作。
- 庫 肺 試驗 館 岸 圍 生 活 機 能 不 足 (照 明 、 膳 食 、 居 住)

- B. 試驗過程中曾使用皮托管、壓力計、壓力轉換計、雪射位移計、 採樣糸統(採樣卡、電腦)、應變訊號誹節儀等儀器設備。
 - 採樣系統速度較 Dos 系統耗時,實驗數據經採樣系統分析後 會出現 bug,應引改善。

7.7.2 桶探测詳實驗結論

- A. 儀器設備測試結果
 - 量測儀器性能均經測試,除採樣系統需略予改善外,其化儀
 器設備功能合乎庫 涉試驗所需。
 - 庫 庫 本 體 性 能 尚 有 改 善 空 間 , 仍 需 作 進 一 步 誹 整 測 試 。
- B. 試驗結果
- 已完成师偕段之屋 湄試驗,其項目如表 6 所示,其結果分述如下:
 - 在库力係數方面:
 - (1)平均阻力係數(C_D)等拍电向平均压力係數:平板橋樑 斷面與高屏浮橋樑斷面無論正負攻產其值皆等正值,且 隨風攻產增加而稍微增大。
 - (2)平均昇1係數(CL)為垂直向平均庫1係數:平板橋樑 斷面模型受到上舉的庫1隨攻產遞增有遞增的現象,反 之亦有隨攻產遞增其下壓的庫1亦遞增;膏屏溪橋樑斷

雨約以正 四度界,小於正 四度之 攻 单其 模型 受到下壓力 較嚴重且 隨攻 单遞減 有 遞增 的現象,表示 高 屏 溪橋 模型 較易 受到下壓力的影響。

- (3) 平均挂力係數(C_M) 等挂轉向平均庫力係數:日於平板 橋樑斷面等一對稱斷面,因此正負攻庫其值有對襯的趨勢;高屏溪橋樑斷面,平均庫力係數隨攻庫遞增而有增 大的趨勢,且因形狀並非對稱,造成其最小值並未發生 在零度攻庫處。
- (4) 若利用已知資料做為比較,則可看出本次試驗值之平均 阻力係數(C_D)、平均昇力係數(C_L)、平均投力係數(C_M) 與已知資料接近。
- 在顫振導數方面:
- (1) A2*:代表橋樑斷面的拄轉向系動力阻尼參數。平板橋樑斷 面在正三度攻集較零度與員三度攻集有較早發生日員轉正 的現象,其表示正三度攻集其模型有較不穩定的趨勢,其顫 振臨界庫速則較低。高屏溪橋樑斷面在員三度攻集時,其值 恆等負值,表示在員三度攻集下不易產生顫振反應,在零度 及正三度攻集下則易產生顫振不穩定的現象。
- (2) A₃*:代表橋樑斷面的抂轉向棄動力勁度參數。平板橋樑斷

• 對於攻争的變化對於案動才穩定性的影響較輕微。高屏 溪橋樑斷雨員三度攻争較其化攻争夏易產生案動才振態耦 合而降低其穩定性。

- (3) H₁*:代表橋樑斷面的垂直向系動才阻尼參數。平板橋樑斷 面與高屏溪橋樑斷面,在三個攻角方面均隨庫速的增加其 值逐漸遞減,在低無因次化庫速時,其庫攻角的變化對於 其系動才阻尼參數並無明顯變化;在較高無因次化庫速 下,高屏溪橋樑斷面之正三度攻角遞減明顯,表示其垂直 向振幅的穩定性較其化攻角佳。
- (4) A1*:代表橋樑垂直向的振動對於扭轉向棄動才阻尼的影響。在零度攻角其值隨無因次化庫速遞增而增加,其正負 三度則無明顯規律。
- (5) H₂*:代表橋樑拄轉向的振動對於垂直向棄動才阻尼的貢獻。平板橋樑斷面在攻庫等負三度及正三度攻庫時,隨無 因次化庫速增加內從正貢獻轉至負貢獻。內零度攻庫則隨 無因次化庫速增加其正貢獻越大。
- (6) H₃*:代表橋樑拄轉向的振動所引發的垂直向系動才勁度。 平板橋樑斷面在各攻角變化下,其隨無因次化庫速增加其值 有遞增的現象,表示隨庫速的遞增對橋樑產生負貢獻。

 在高屏溪橋樑斷雨之顫振臨界庫速方雨:高屏溪橋樑斷雨在 正三攻庫時其顫振臨界庫速約在108.05m/s 主力,隨攻庫轉等 負值其庫速遞增,表示隨攻庫變等負攻庫時,其橋樑斷雨較 不易發生顫振不穩定的現象。

第八章 僅流播散實驗

8.1 前言

在庫 源建造完成之後將庫 源的頂版 調至 沿庫 源 軸 南(順庫 方 南) 壓力 梯度 善零 的情況下,檢測空庫 源 的性能特徵。日於在空庫 源 卧在 測試轉盤上將會有一定厚度的 紊流邊界層形成,在無任何其他 模擬地 形地物 存在的情況下,這應代表 著在實場上,相當 平滑(如太 平原), 地 雨上的流場特性。流場在橫 方 南(垂直於 五 流 方 南)應相當 均 勻。 在這個 自然形成 的邊界層 卧(其厚度有待進一步量測確定)進行 煙流 擴散實驗 團 來檢定其 擴散特性 是否 與 太 系 邊界層 卧的擴散特性相 似, 卜時 可 團 於進一步確認空庫 源 卧橫 方 南 流場特性的均 勻 程度。

8.2理論背景

主導大案及煙流運動之基本方程,万流體動才學中之質量、動量 及能量守恆方程。從對這些方程的尺度分析中可以得到庫源物理模擬 所需之一組完整之參數[15,16]。這些相似法則,可概括分為(1)動才 相似(dynamic similarity),(2)熱才相似(thermodynamic similarity), 以及(3)幾何相似(geometrical similarity),在以下各節中將對這些相 似法則加以討論。

8.2.1 ~ 靠運動之模擬參數

使用以產速度Ω轉動之地球等參考座標,流體運動可以用下列方 程式來表述[17]:

動量守恆方程式:

$$\frac{\partial U_i}{\partial t} + \frac{U_j \partial U_i}{\partial x_j} + 2\varepsilon_{ijk} U_k \Omega_j = -\frac{1}{\rho_0} \frac{\partial \delta P}{\partial x_i} + \frac{g}{T_0} \delta T \delta_{3i} + \frac{v \partial^2 U_i}{\partial x_k \partial x_k}$$
(8.1)

質量守恆方程:

$$\frac{\partial U_i}{\partial x_i} = 0 \tag{8.2}$$

能量守恆方程:

$$\frac{\partial \delta T}{\partial t} + \frac{\partial \delta T}{\partial x_i} U_i = \kappa \frac{\partial^2 \delta T}{\partial x_i \partial x_i} (i=1,2,3)$$
(8.3)

上式中X₁,X₂,X₃分別等順庫向、橫庫向及垂直方向之座標。U, 等瞬間流速, SP及 ST分別等偏離中性大棄之壓力及溫度差,P₀及 T₀分 別等中性大棄之密度及溫度(高程 Z之函數),V等運動黏滯係數,K 等熱擴散係數。

將(8.1),(8.2)及(8.3)三方程,以下列各參考量進行無因次化: L, 長度尺度; U_R ,速度; ρ_R ,密度; δT_R ,溫度差;以及 Ω_R , 俸速度, 亦即: $x'_i = \frac{x_i}{L}$; $U'_i = \frac{U_i}{U_R}$; $t' = \frac{U_R}{L}t$; $\rho' = \frac{\rho_0}{\rho_R}$; $\delta P' = \frac{\delta P}{P_R U_R^2}$; $\delta T' = \frac{\delta T}{\delta T_R}$; $\Omega'_j = \frac{\Omega_j}{\Omega_R}$, 吾人可得

$$\frac{\partial U_i'}{\partial t'} + U_J' \frac{\partial U_i'}{\partial x_j} + \frac{2}{R_0} \varepsilon_{ijk} U_k' \Omega_j' = -\frac{1}{\rho'} \frac{\partial \delta \rho'}{\partial x_i'} + \frac{1}{F_r^2} \delta T' \delta_{3i} + \frac{1}{R_e} \frac{\partial^2 U_i'}{\partial x_j' \partial x_j'} \quad (8.4)$$

$$\frac{\partial U_i'}{\partial x_i'} = 0 \tag{8.5}$$

$$\frac{\partial \delta T'}{\partial t'} + U'_i \frac{\partial^2 \delta T'}{\partial x'_i} = \frac{1}{P_e} \frac{\partial^2 \delta T'}{\partial x'_i \partial x'_i}$$
(8.6)

式日:

$$R_0 = \frac{U_R}{L\Omega_R}$$
 為道常所稱之 羅斯培數(Rossby number)

$F_r \equiv \frac{U_R}{\left(gL\delta T_R / T_0\right)^{1/2}}$	為密度福祿數(Densimetric Froude number)
$R_e \equiv \frac{U_R L}{v}$	為雷諾數(Reynolds number)
$P_{e} \equiv \frac{U_{R}L}{\kappa}$	為培克烈數(Peclet number)

就相似模擬的**產度**币言, 方程(8.4)至(8.6)配以遽當的邊界條件, 可完全界定一個流場的特徵。任何兩個流場,例如原型流場與模型流 場,的運動方程式,如(8.4)至(8.6)三式中的常數R₀, F_r, R_e及 P_e以及 無因次化的邊界條件完全相下,則其各自的無因次解U₁, U₂, U₃, δ^c, 及 δT'應完全相下,換言之,在模型與原型之間可得到完全的相似模 擬。

8.2.2 污染抑質播散之模擬參數

上節之討論完全侷限在流場特徵的相似模擬。當考慮污染物質在 大奮中的擴散時,首先必須假定污染物質為完全被動的污染物質 (passive contaminant),換言之,污染物對(8.4)至(8.6)的運動方程式不 會產生影響,污染物在擴散的過程中亦不會產生化學或光學變化。在 此種狀況下,可以從分子擴散方程式中得到另外一個參數。

$$\frac{\partial \chi}{\partial t} + U_i \frac{\partial \chi}{\partial x_i} = \alpha \frac{\partial^2 \chi}{\partial x_i \partial x_i}$$
(8.7)

式中 χ 代表瞬時濃度, α 為分子擴散係數,將式(8.7)中之 χ $|\chi_R$ 無 因 次 化 ($\chi' = \chi/\chi_R$)可 得 到

$$\frac{\partial \chi'}{\partial t'} + U'_i \frac{\partial \chi'}{\partial x'_i} = \frac{1}{R_e \cdot S_c} \frac{\partial^2 \chi'}{\partial x'_i \partial x'_i}$$
(8.8)

上式中 $S_c \equiv v/\alpha$ 為休密特數(Schmidt number)。

方程(8.4),(8.5),(8.6)及(8.8)組成一描述被動污染物質在大案中 或模型實驗中擴散的方程組。如果上列各無因次參數及邊界條件完全 一致,則污染物質在模型實驗中的擴散與所對應的實場大案擴散應完 全相似。

8.2.3 ~ 靠邊界層內播散之郑理模擬詳驗

出表附近空系的移動受到出表之起伏、建築物、林木作物分佈等的摩擦作用影響,使得平均庫速隨高度而變,形成一垂直分佈剖面, 越接近出表,庫速越慢;換言之,此「庫速剖面」直接受到出表粗糙 狀況之影響。而影響所及的範圍就稱之為「大案邊界層」。在邊界層 頂部之庫速道常稱之為梯度庫速(gradient wind)。

一般大套擴散及庫力工程之應用所涉及的問題大都發生在庫勢 不太弱的情況之下,近地表上數百公尺高度的大套邊界層範圍之瓜。 在此庫速情況下,大套機械紊流作用遠超週熱對流作用。由於紊流的 強制混合趨向於形成中性層差。所以本節對大套邊界層及其模擬的討 論僅限於中性層差的大套邊界層。

大案邊界層的厚度,在中性層差的情況之下,視庫的強度、地表 粗糙程度及所在的緯度而定, 道常在數百公尺至數公里之間。本案的 庫 市物理模擬實驗,很重要的一項工作即是在模擬邊界層高度 D. 大案 流動的一些特性,這些特性之中包括有平均庫速特性及 案流特徵。模 擬相似率是通過上二節的分析得到。除此之外,在庫 市的模擬實驗中 對煙流之上昇,對邊界層逼近流之一些邊界條件亦必須納入考量。

8.2.3.1 對模擬參數之考慮

在邊界層庫 涉 , 應用 縮尺 模型進行物理模擬實驗,一般言之, 即使是使用大型之邊界層庫 涉,前二節所述之五 個無因次參數亦無法 下時都能得到滿足。所幸,視問題的不 下,在某些情況之下,可以放 鬆一些參數的相似性要求。

(1)羅斯培數, R₀,代表科氏力(Coriolis force)對大棄運動的影響 程度,在庫源實驗中對科氏力模擬有極大的困難,無法達到在原型與 模型問羅斯培數相等的要求。但是在模擬邊界層棄流運動時,如果所 考慮之尺度不大,如本案之微尺度(microscale)煙流現象,在中性或穩 定之大棄以及相對不太崎嶇的地形情況下,地球自轉對流場所產生的 影響可謂極小。一般言之,在水平距離小於十公里(Snyder[16]建議不 超週五公里),垂直距離不超週一公里的情況下,此項效應可以忽略。

(2)雷諾數, R。, 等慣性力與黏滯力之比值, 在擴散實驗中,原 型與模型之雷諾數無法達到相等,但雷諾數的不等,並非一個嚴重的 限制, Halitsky[18]指出在方形模型推進之流場,當雷諾數達 11,000 時,所量測到的污染濃度值已不再隨雷諾數而變化。美國環保局 (EPA)之模擬準則[16]裡亦建議在有稜角之建築物四准,當雷諾數 超週 11,000 時,其紊流流場之特性應該相似。

(3)培克烈數, P,, 及雷諾-休密特數, R, -S, , 可分別寫成:

$$P_e = \frac{U_R L}{\kappa} = \frac{U_R L}{v} \cdot \frac{v}{\kappa} = R_e \cdot P_r$$

式中P,為普朗特數(Prandtl number),以及

$$R_e \cdot S_c = \frac{U_R L}{v} \cdot \frac{v}{\alpha} = \frac{U_R L}{\alpha}$$

此二無因次參數具有 FF 樣之形式, FP 著雷諾數與一分子傳輸係數 比之 乘積。 普朗特數 著動量 擴散 (momentum diffusivity) 與熱擴散 (thermal diffusivity)之比,休密特數則善動量擴散與質量擴散(mass diffusivity)之比。可見普朗特數與休密特數皆善流體本身之性質而非 流場之性質。如果以空系為介質進行擴散之物理模擬實驗,在原型與 模型之間其普朗特數具休密特數(對幾乎任何釋入空系中之污染系 體)幾乎相等。所以在衡量培克烈數與雪諾-休密特數是否相當時, 重點不在普朗特數與休密特數,而在雪諾數;如果一個流場之雪諾數 足夠高,則其間污染物質之傳輸主要是由紊流中之大型結構所帶動, 分子傳輸部份之貢獻極籌微小。所以美國環保署之模擬準則[16]中指 出,在原型與模型間培克烈數或雪諾-休密特數相等之要求並不重 要,只要雪諾數足夠高,流場顯示出其對雪諾數之獨立性即可。

(1)福祿數, F,,, \$ 慣性力與浮升力比值之平方根,與李查遜數 (Richardson number)之平方根成倒數關係。在模擬大系擴散的實驗中 福祿數應該是一個最重要的參數。通常有二個福祿數必須考慮,即大 系系流之福祿數以及煙向排系之福祿數。在實驗中 \$ 達到與原型相似 的較小福祿數值,必須將庫 非之庫速 部 低,但 \$ 了達到模型與原型間 雪諾數相似的要求又必須儘可能將庫速提高。此一 互相引盾兩極化的 要求,其解決方法是在满足福祿數相似之要求下,儘可能提高庫 非的 運轉庫速以保證流場特性的雪諾數獨立性。

8.2.3.2 對軍向廢棄昇流之考慮

如前所述模擬邊界層區之擴散現象,必須對煙流之上升加以考慮。有關對模擬廢棄煙流上昇之討論可於 Strom & Halitsky[19], Cermak[15], Isyumov & Tanaka[20],以及 Snyder[16]等之論文中見到。

廢棄昇流之相關變數有:

H。:煙囪高度

D: 煙向直徑 (或有放水力直徑)

W: 煙肉排棄之垂直流速

U: 煙向 費 遭 之 横 向 來 流 速 度

 ρ_s : 煙棄密度

 ρ_a :環境空系密度

 $\Delta \rho: \rho_a - \rho_s$,空棄與煙流之密度差

g:重力加速度

對自動量效應(momentum effect)及浮昇才效應(buoyancy effect) 所主宰之煙流,其相關的模擬參數如下:

(1) 煙 回 垂 申 排 系 與 唐 遭 橫 向 來 流 速 度 之 比 值 W_s/U 或 者 動 量 通 量 (momentum flux)之 比 值 $\rho W_s^2 / \rho_s U^2$;

(2) 基於煙棄與**岸遭空棄之密度差**及煙向直徑之福祿數(慣性力 與浮升力之比),(a) 以煙棄密度作為參考密度之福祿數 $F_{rs} = W_s / (gD\Delta\rho / \rho_s)^{1/2}$,(b) 以 岸遭空棄密度作為參考密度之福祿數 $F_{rg} = W_s / (gD\Delta\rho / \rho_a)^{1/2}$;

(3) 煙流與唐遭空棄之密度比, ρ_s/ρ_a ,或密度差比 $\Delta \rho / \rho_a = (\rho_a - \rho_s) / \rho_a;$

(4) 煙棄之雷諾數, $R_{es} = W_s D/v$, 以及

遭 來流之雷諾數
 $R_e = UD/v$;

(5) 幾何尺度比, D/H_s

上述之 模擬參數,可綜合 煙流幾何現象之尺度關係;

$$\frac{l_m}{H_s} = \frac{1}{2} \left[\frac{\rho_s W_s^2}{\rho_a U^2} \right]^{\frac{1}{2}} \left[\frac{D}{H_s} \right]$$
(8.9)

$$\frac{l_B}{H_s} = \frac{1}{4} \left[F_{ra} \right]^{-2} \left[\frac{D}{H_s} \right] \left[\frac{\rho_s W_s^2}{\rho_a U^2} \right]^{\frac{3}{2}} \left[\frac{\rho_a}{\rho_s} \right]^{\frac{3}{2}}$$
(8.10)

式中1m 及1g分別等煙棄昇流現象之動力尺度(momentum length) 與浮力尺度(buoyancy length)。煙流上昇之弧形軌跡及高度可由1m與1g 表示。在模擬煙向廢棄昇流之實驗中,在原型與模型間如何保持(5.9) 與(5.10)式中,名括弧卧之參數相似必須審慎考量。

日於在庫源實驗中,使用縮尺模型,如在模型與原型間保持密度 比與動量運量比相似,則下時欲維持福祿數相似性非常困難,蓋庫源 中之庫速必須以方根之方式縮小,以致遭遇到低流速下維持流場穩定 上的困難,有關對此問題之討論及範例,可在張能復等人[21]之報告 中見到。

(A)近場煙流行為之 模擬

根據上述參數對模擬近場煙流行為,美國環保署[16]之指引中, 提出如下建議:

- (1) 煙棄下沖之問題 煙棄下沖進入圓柱型煙向尾流卧之模擬相似 要求。
 - (a)如原型煙向的雪諾數R_e(=UD/v) 大於 10⁵,則模型之雪諾數亦 應維持在大於 10⁵,如使用模型外表加粗等之技巧,則此項雪 諾數之要求至多可減少一半;

(b)如原型煙肉之雷諾數小於105,則模型之雷諾數大於400即可;

- (c) W_s /U , ρ_s / ρ_a 以 𝔅 W_s /(gDΔρ / ρ_a)^{1/2} 三 參數在原型與模型間必須 相似。
- (2)無煙棄下沖之問題 在地形地物等之系動1影響之下之煙流擴 散模擬相似要求。
 - (a) 煙棄的雷諾數儘可能提高,最好能超過15,000,如果必須將煙 棄之雷諾數減小至小於2,300,則可能需將煙向卧壁加粗以保 證其為紊流溢出,如果必須將煙棄之雷諾數減至小於300,則 需夏謹慎的探討。
 - (b)W_s/U, ρ_s/ρ_a以及W_s/(gDΔρ/ρ_a)^{1/2}三参數在原型與模型間必須 相似。這些相似要求通常侷限模型之縮R不得小於1/400。

(B)遠場煙流行為之 棋擬

考慮到初始動量及浮力,Briggs[22]之煙流軌跡方程可寫成:

$$\left\{\frac{\Delta h}{H_s}\right\}^3 = \frac{3}{\beta_1^2} \left[\frac{\rho_s W_s^2}{\rho_a U^2} \cdot \frac{D^2}{4H_s^2}\right] \left[\frac{x}{H_s}\right] + \frac{3}{\beta_2^2} \left[\frac{g D^2 W_s \Delta \rho}{4\rho_a U^3 H_s}\right] \left[\frac{x}{H_s}\right]^2$$
(8.11)

$$= \frac{3}{\beta_1^2} \left[\frac{l_m}{H_s} \right]^2 \left[\frac{x}{H_s} \right] + 4.2 \left[\frac{l_B}{H_s} \right] \left[\frac{x}{H_s} \right]^2$$
(8.12)

式中 Δh 等煙流上昇高度, x 等煙流距煙向之下游距離, $\beta_1 \not \in \beta_2$ 等捲增常數(entrainment coefficients), $\beta_1 = 1/3 + U/W_s$, $\beta_2 = 0.6$ 。

根據 Briggs[22],

$$l_m = \frac{1}{2} \left[\frac{\rho_s}{\rho_a} \right]^{\frac{1}{2}} \frac{W_s}{U} D \tag{8.13}$$

$$l_B = g \frac{D^2}{4} \frac{W_s}{U^3} \frac{\Delta \rho}{\rho_a}$$
(8.14)

Im 及 IB 可分别視為因為動量及浮升才所造成煙流曲線的初始半徑。由(5.12)式可看出接近煙向的煙流日初始動量主控,隨著煙棄之下飄,浮升才逐漸接替成為主控因素。

對遠場煙流,Hoult[23]建議,在避免煙棄下沖的條件下,可忽略對初始動量的之要求,而以下式來模擬:

$$\left(\frac{l_B}{H_s}\right)_m = \left(\frac{l_B}{H_s}\right)_p \tag{8.15}$$

式中足碼m及p分別代表模型及原型。此種模擬方法的優勢是在 满足(8.15)式之情況下,可抂則、改變ps, pa, Ws, D或U之數值。

根據上述討論,對模擬遠場煙流行為,美國環保爭之指引中 (Snyder,1981),提出如下之建議:

- (1)保証煙棄釋流之 紊流特性
- (2)根據"精確度"的不下,可採用:
- (a)满足 l_m/H_s 及 l_B/H_s 之相似
- (i)满足幾何相似率,
- (ii) 扫 聞 煙 向 之 直 徑 , 但 須 避 免 煙 棄 下 衝 , 或
- (b)满足 l_{B}/H_{s} 之相似
- (i)满足幾何相似率,
- (ii) 扫 邮 煙 向 之 直 徑 , 但 須 避 免 煙 棄 下 衝。

8.3 實驗 考法

8.3.1.压速量测

本實驗庫速量測所使用之儀器包括有:

1. 皮托管(pitot-static tube): 用於庫源瓜庫速之監控(如圖八)。

2. 煙線(smoke wire): 用於庫速在1.2 米/秒以下庫速之量測與監控。

3.恒溫式熱膜庫速儀(Constant-temperature hot-film anemometer):f於庫速剖庫及紊流特性茲之量測(包括軸向及垂向之平均流速U及W,以及紊流強度 $\sqrt{u^2}/U$ 及 $\sqrt{w^2}/U$)。整個儀器系統包括:

(i) IFA-300 智慧型庫速儀(anemometer),

(ii) TSI Model 1243 邊界層 "X"型探針("X" probe),

(iii) TSI Model 1125 探針率定器 (probe calibration)。 X 型探
 針之率定是根據製造廠商 TSI 所設定之標準程序。

日 庫 速 儀 所 輸 出 之 電 子 訊 號 經 週 類 比 / 數 位 轉 換 器 (A/D converter) 之 二 侮 頻 道 , 日 電 腦 糸 統 之 讀 入 進 行 計 算 、 分 析 及 紀 錄 存 檔。

8.3.2 僅靠之慎擬

初步考慮只用中性浮力之煙流以抬升源之方式釋入邊界層瓜。模擬之煙系將以1%之甲烷與空系混和。

8.3.3 釋女系統

示蹤棄體(tracer)包括日甲烷、空棄所組合而成之混合棄體。 混合棄體之百分比是經由兩架單管之浮子流量計(single tube flowmeter)所控制。

非標準狀況及非空棄之流體其相等於標準狀況下之空棄流量可

以下式計算得到。

$$Q_{air} = K_{gas} \times Q_{gas} = \left(G \times \frac{T_{act}}{T_0} \times \frac{P_0}{P_{act}}\right)^{\frac{1}{2}} \times Q_{gas}$$
(8.16)

式中Qair:標準狀況下之相等空系流量

Qas:所用素體之流量

G:所用案體之比重

 T_{act} :使用狀況之絕對溫度 ($^{\circ}$ k)

 T_0 :標準狀況時之絕對溫度($^{\circ}$ k)

Par: 使用狀況之大案壓力

P。:標準狀況下之大案壓力(14.7psia)

日釋放閥門所控制之案體經混案管混合後,經日模型之排放源排 放入庫 非之試驗段序。

8.3.4 採樣點之 佈 設

在模型上庫之地面上設有一背景濃度之採樣點。釋放源之濃度採 樣點則設在混棄管之出口處。垂直採樣架上共將約設有 15 個採樣 點。垂直採樣架是被安裝在庫源於之天車上。模型上,地表濃度採樣 點是分佈在以釋放源等起點沿著庫向之主軸線兩旁±18°之 解形面 上。

8.3.5 示蹤事體之採樣與分析

示蹤棄體之採樣與分析是日一架筆書所自行設計之棄體採樣系統與一架棄相層析儀 (gas chromatograph) 經日介爾板併入日電腦所

控制之中心數據採集、處理、分析及結果展示系統。

筆書自行設計製造之案體採樣系統是一架先進之採樣系統,它可 戶時採集 48 個樣本,所採樣本不為外界環境所污染,表現穩定,能 在相當寬之濃度範圍於採集到重複性高之樣本,對採樣器設有標準之 檢定程序,以確保採樣器之性能表現。

單管 (single column) 案相層析儀包括有:

1. 火焰離子化偵測器(flame-ionization detector)

2.自動溫度控制器(automatic temperature controler)

3. 差分 電表 (differential electrometer)

4.流動系統 (flow system) - 包括壓力 誹控及壓力表 (pressure regulator and pressure gauge)

棄相層析儀使用前之率定包括有經日標準濃度之混合棄體,以及
 實驗室所自行混和之不等濃度之棄體進行系統之線性 - 非線性反應
 之率定,以及零點偏移量(zero shift)之確定。

所能量測到之濃度下限, 由儀器之靈敏度及背景濃度 (background concentration)所定。在整個濃度之測試過程中, 背景 濃度之量測都包括在水, 每一測點之濃度值都經日背景濃度加以修 正。

所量測到之濃度值C_{mea},(單位為 ppm),背景濃度值 C_{bg},以及 釋放源濃度值,C。可經日下式轉變為模型之濃度係數,C_m

$$C_m = \frac{C_{mea} - C_{bg}}{C_s} \tag{8.17}$$

8.4 運流播散實驗結果

第七章 教育訓練

中錄公司、任大電機及豪頓公司三家設備廠商已於今年5月中自 庫 源驗收時完成了相關的教育訓練,而量測儀器部分有皮托公司及鑫 祥科技师家廠商分別針對多孔式壓力掃描閥及示波器、數位電表與電 源供應器等相關儀器進行操作示範(如圖47)。

▶ 凈基本性能測試實驗於93年12月23日進行相關教育訓練, ▶ 容包含有皮托管與熱線測速儀介紹、基本性能實驗項目、基本性能 實驗結果及實際示範皮托管及熱線測速儀操作(如圖48)。

第一章 結話

歷經三年時程,很高興能順利完成此庫 滞的籌建工作。此庫 滞的 碩體驗收在今年五月底完成,隨即進行一条列實驗測試項目,其目的 等驗證本庫 滞的性能。整體而言,所得的測試結果顯示庫 源測試區流 場品質正在逐項驗證之中,另外完成了橋樑斷 剛試項目,與煙流擴 散測試項目。日這些實驗結果進一步描繪出此庫 滞已具備大型建築物 模型測試能才相信假以時日, 用心經營,這個實驗室能 等我國的建築 界產官學研究做很多的工作, 戶時才可藉此實驗室的成果促進國際科 拔交流。

另一個產度而言,目於木庫浉剛籌建完成,其各項性能有待進一 步確認,而測試的技巧也有待發展建立,這些工作均需要人才與時間的投入,期此庫涉的建立能吸引更多人投入,所累積的成果,才是實驗室最重要的資產。

在此特別感謝 的政部建築研究所的 后一、 成大航太中心 及相關單位 后仁的 協助, 使得在 籌建 週程 工作 進行 順利。

参考 マ 献

- 蕭江碧、甘君易, A 政部建築研究所研究計畫期末報告,「庫 · 『實驗館實驗設施建置及系統設計之研究」, 民國 90 年。

- Prandtl L (1927), "U" ber den Reibungswiderstand stro"mender Luft." Ergebnisse AVA Go"ttingen III: 1–5
- Cermak, J. E., "Applications of fluid mechanics to wind engineering – a freeman scholar lecture," Trans. of the ASME, J. of Fluids Eng., vol. 97, pp. 9-38, 1975.
- Cermak, J. E., "Aerodynamics of building," Annual Review of Fluid Mechanics," vol. 8, pp. 75-106, 1976.
- 7. Houghton, E. L., & Carruther, N. B. *Wind forces on building and structures*, John Willy & Sons, New York, 1976.
- Obasaju, E. D., Ermshaus, R. and Naudasher, E. (1989), "Vortex induced stream wise oscillations of square-section cylinder in a uniform stream", *Journal of Fluid Mech.*, Vol. 213, pp.171-189.
- 鄭啟明,林靖溢,葉博立,"以斷面模型實驗探討斜張橋之顫振特性",結構工程,第十六卷,第四期,第85~98頁,2001。
- 10. Cheng, C.M., Lin, Y.Y., "The Effects of Deck Shape and
Oncoming Turbulence on the Bridge Aerodynamics" Presented at The Inaugural Meeting of Wind Engineering Research Center at Tokyo Institute of Polytechnics, Atsugi/Japan, 2001.

- Simiu, E. and Scanlan, R. H. "Wind Effects on Structures ", John Wiley & Sons., N.Y. (1986)
- 12. 林墳溢,鄭啟明,蔡子文,1997, "斜張橋受庫載重之顫振 及亂流放應分析",結構工程,第十二巻,第一期, pp.107-117。
- Scanlan, R. H. and Tonko, J. J. "Airfoil and Bridge Deck Flutter Derivative", *Journal of Engineering Mechanics Division*, ASCE, Vol.97, pp.1717-1737 (1971)
- Kubo, Y., Miyazaki, M. and Kato, K. (1989), "Effect of end plate and blockage of structure members on drag force", *Journal* of Wind Eng. and Industrial Aerodynamics, 32, pp.329-342.
- Cermak, J.E., "Application of fluid mechanics to wind engineering," A Freeman Scholar Lecture. ASME J. of Fluids Engng., 97, no.1, pp.9-38, 1975.
- Snyder, W.H., "Guideline for fluid modeling of atmospheric diffusion," EPA-600/8-81-009, 1981.
- Lumley, J.L. & Panofsky, H.A., "The structure of Atmospheric Turbulence," Interscience, N.Y., p.239, 1964.
- Halitsky, J. "Validation of scaling procedures for wind tunnel model testing of diffusion near building," Report No.TR-69-8, Geophysical Sciences Laboratory, New York University, 90 p, 1969.
- 19. Strom, G.H. & Halitsky, J., "Important considerations in the use of the wind tunnel for pollution studies of power plants," Paper

No.54SA-41 ASME Semi-Annual Meeting, Pittsburgh, PA, 1954.

- Isyumov, N. & Tanaka, H. "Wind tunnel modeling of stack gas dispersion difficulties and approximations," Wind engineering (ed. By Cermak, J.E.), Pergamon Press, Oxford, 2, pp.987-1001, 1979.
- 21. 張能復,「台北市 A 湖垃圾 焚化 廠廢 案 排放對 廠址 附近環境 空 案 品質 的影響」,研究報告 424p, 1988.
- Briggs, G.A., "Plume rise predictions," ATDL No. 75/15, Atmos. Turb. and Diff. Lab., NOAA Environ Res. Lab., Oak Ridge, TN, 53p, 1975
- 23. Hoult, D. P. "Simulation of buoyant pollutants in the atmospheric boundary layer flow studies in air and water pollution," ASME, N. Y., pp. 61-69, 1973.

附 圖

圖1. 93年5月26日属源驗收

圖2 庫 解測試現沉暨庫 解試車檢討會議

薄膜式壓力傳送器

圖3皮托管及薄膜式壓力傳送器圖

(a)- 維量測之熱線探針

(b)二維量測之熱線探針

(c)三維量測之熱線探針

圖4 不 局型式之熱線探針示意圖

圖5 三孔的 cobra probe 圖

圖6庫員運轉時間與其溫度、第一測試區入口速度之關係圖

圖7庫 解轉速與變頻器頻率之關係圖

圖9第一測試區下游2.5m之平均速度分布圖

圖10第一測試區下游2.5m之二維平均速度剖面圖

圖11 第一測試區下游15m 之平均速度分布圖

圖12 第一測試區下游15m之二維平均速度剖面圖

圖13第一測試區下游25.5m之平均速度分布圖

圖14第一測試區下游25.5m之平均速度剖面圖

圖16第一測試區下游25.5m之 紊流強度剖雨圖

圖 17 第一測試區下游 3m 邊界層厚度

圖18 第一測試區下游15m邊界層厚度

圖20 平板橋樑斷雨架設於庫源瓜雨端板之間

圖21 高屏溪橋原型斷雨之錦構造部份(steel section)

圖23 高屏溪橋樑斷雨模型之尺寸

圖23平板橋樑斷雨之拍电向平均庫1係數

圖24平板橋樑斷雨之垂直向平均庫1係數

圖25平板橋樑斷面之扭轉向平均庫1係數

圖26 高屏溪橋樑斷雨之拍电向平均压力係數

圖27高屏溪橋樑斷雨之垂直向平均庫1係數

圖28高屏溪橋樑斷雨之抂轉向平均庫1係數

圖 29 平板橋樑斷 正之非耦合項 顫振導數 (A2*)

圖 30 平板橋樑斷 m 之 非 耦 合項 顫振 導數 (A3*)

圖 31 平板橋樑斷 非耦合項 5 振 4 數 (H1*)

圖32 平板橋樑斷
山之耦合項頭振導數(A1*)

圖33平板橋樑斷雨之耦合項顫振導數(H2*)

圖 34 平板橋樑斷 m 之 耦 合 項 顫 振 導 數 (H₃*)

圖35 高屏溪橋樑斷雨之非耦合項顫振導數(A2*)

圖36 高屏溪橋樑斷雨之非耦合項顫振導數(A3*)

圖 37 高屏溪橋樑斷雨之非耦合項顫振導數(H₁*)

(c) Peak 圖38 高屏溪橋樑斷雨 模擬第一 抂轉頻率與 第一 垂直頻率之 抂轉 向反應

(c) Peak 圖39 高屏溪橋樑斷雨 模擬第一 扗轉頻率與 第一 垂直頻率之 垂直向反應

圖40 煙流寶驗皮托管參考位置

圖 41 煙流實驗可視化試驗

圖 42 空庫 湄水平庫 場特性

圖43 空庫 淨垂直庫場特性

圖45不戶距離下水平方向濃度分佈

圖46不戶距離下垂直方向濃度分佈

A 皮托科技

B 鑫祥科技

圖 47 量測儀器廠商教育訓練情形

圖48 流場基本性能測試實驗教育訓練情形

附 表

方庙	顫振 導數	代表之物理意義
垂直向	${\rm H_1}^*$	橋體於垂直向之振動速度,所引發之垂直向棄動才阻尼
	${\rm H_2}^*$	橋體於抂轉向之振動速度,所引發之垂直向棄動才阻尼
	${\rm H_3}^*$	橋體於抂轉向之振動位移,所引發之垂直向棄動才勁度
	P_1^{*}	橋體於拍电向之振動速度,所引發之拍电向棄動才阻尼
拍电向	P_2^*	橋體於抂轉向之振動速度,所引發之拍电向棄動才阻尼
	P ₃ *	橋體於抂轉向之振動位移,所引發之拍电向棄動才勁度
拄轉向	A_1^*	橋體於垂直向之振動速度,所引發之抂轉向棄動才阻尼
	A_2^*	橋體於抂轉向之振動速度,所引發之抂轉向棄動力阻尼
	A_3^*	橋體於汪轉向之振動位移,所引發之汪轉向棄動才勁度

表1 顫振導數代表之物理意義

Parameters	符號	斷雨 模型
幾何縮尺	$\lambda_{ m L}$	1/100
速度縮尺	$\lambda_{ m V}$	1/10
時間梭尺	$\lambda_{T}\!=\!\lambda_{L}/\lambda_{V}$	1/10
頻率縮尺	$\lambda_f = 1/\lambda_T$	10
密度縮尺	$\lambda_{ ho}$	1
阻尼 比	λ_{ξ}	1

表2橋探實驗模型縮尺參數一覽表

	原型橋樑	縮尺後理論 值	斷雨 模型
 〕 〔 m 〕	34.504	0.345	0.345
單位長度質量(Kg/m)	287	2.87	2.87
垂直	0.268	2.675	2.77
拄轉倚頻率 (Hz)	0.6077	6.077	6.10
頻率比	2.27	2.27	2.20

表3橋探寶驗模型縮尺一覽表

試驗項目	庫 攻 產 變 化	平板斷雨	膏屏溪橋斷 爾
庫才係數	+5° 至-5° 間距為1°	Ø	Ø
顫振導數	+3° 至-3° 間距為3°	Ø	Ø
欄杆影響	0°	_	Ø
顫振臨界庫速	+3° 至-3° 間距為3°	_	Ø

表 4 斷雨 模型 庫 酒 試驗分項表

庫 攻產	無因次化庫速(U/nB)	實場顫振臨界庫速(m/s)
-3°	>14.47	>126.06
0°	14.47	144.13
3°	10.84	108.05

表 5 高屏溪橋樑斷雨 模擬第一 扭轉頻率與

第一 垂直 頻率之 顫振 臨界 庫速轉換

試驗項目	庫 攻 產 變 化	平板斷雨	高屏溪橋斷雨
庫才係數	+5° 至-5° 間距為1°	Ô	Ô
顫振導數	+3° 至-3° 間距為3°	Ô	Ô
欄杆影響	0°	_	Ô
顫振臨界庫速	+3° 至-3° 間距為3°	_	Ô

表六 斷面模型庫 派試驗分項表

「庫源實驗館糸統整合測試暨庫派性能驗證研究 (I)」

期中審查會議結果答詢

期日會議建議事項	籌建小組答覆說明
 方教授富民: 1. 庫 非試驗段(test section)測試除 10、20、30 m/s 庫速外,應辦入夏 低庫速(如1至5 m/s)之情況,以符 台庫工程試驗之需求。 2. 在大騫庫 非試驗中,由於試驗量測處 係位於試驗段之後段,截雨 庫落二次 流(secondary flow)之 放應不容忽 視。應考慮檢視其規模與強度,以為 未來庫況品質改善之依據。對試驗書 而言,至少可作為試驗規劃之考量。 	 1. 已, 新入以後實驗規劃。 2. 遵照辨理
陳教授若華: 建議利用驗證庫 準性能階段, 保留操作過程之程序及注意事項以 供建立標準操作程序。 目前測試資料應加以整理保 序,建立基本性能資料及圖表,以 供日後定期驗證實驗室性能。 庫 潭驗室的成長除硬體設備的建 置之外,研究團隊的長期支持亦十分 重要。 	 1.已開始逐步建立相關庫 操作等相關操作作業程 序。 2.測試實驗的相關結果會彙 整於期末報告或成果報 告之中。 3.建請建研所研究辦理。
 蕭教授葆羲: 基本項目皆依約完成,值得 肯定。 7 闢 庫 沛 基 本 性 能 之 檢 測,例如庫速均 与 度、背景 紊流強 度, 在期末報 告應提出,以確定該 庫 沛 之 基 本 性能 是否 與 設計 - 致。 	1.感謝委員肯定。 2.遵照辦理。

王建築師立信(中華民國建築師公會主	
國聯合官代表了· 1. 建議期末報告是否能增列庫源 實驗室建立的標準,以利民間有興	1.這次計畫並無規劃相關的
> 趣投資庫 脂實驗室有所依歸。2. 建議對庫 脂實驗數據的穩定性	研究項目,所以期末報告
需 · 加強或瞭解其影響因子並尋求 改善, 方有助於未來建研所庫 涉寶	中無法建立相關標準。
驗公信才的建立及實驗品質的提 昇。	2.基本性能測試實驗目的為
 後續維修之經費,應每年編 列,以利水績經營及品質保證。 	瞭解庫肺
▶ 技師子劍(中華民國土木技師公會全 國聯合會代表):	
請研究庫 » 完成後各年度操作維護費 ■ 苯干, 前付計其 經費 办酒如政府自捧	這次計畫並無規劃相關的
若干,民間案件收入若干。	研究項目,所以期末報告中
	無法建立相關標準。
虚教授博堅(中華民國庫工程學會代	
 衣)· 1. 庫源基本性能符合要求。 2. 低庫速段對將來應用上很多, 應測試其穩定度。 3. 應設置即時儀器校正的設施, 在試驗前、試驗後校正儀器以增加 其精確度。 4. 建立多頻道、多功能快速取樣系統。 	 1.感謝委員肯定。 2.庫 ル測試實驗會考慮測試 之穩定度。 3.有購買部分校正儀器設 備,可於實驗前後校正量 測儀器。
	4.俄西抹烟「月骊列頂弄賄 員相關設借,已完成採 購。

表七 期中審查會議結果答詢表

「庫源實驗館系統整合測試暨庫派性能驗證研究(1)」

期末審查會議結果答詢

	期末會議建議事項	籌建小組答覆說明
方孝	发授富民:	
1.	請增加進行橋樑與煙流試驗時遭遇之	1.會將意見轉知負責相關
	困難與建議。	實驗的委員。
2.	第一測試區截面速度均勻度不盡理	2.基本性能相關測試持續
	想,極可能是因為收縮段收縮比不高	進行中。
	之故,應考慮在整流約維方爾尋求改	
	善。此外,請補列本截面紊流強度變	
	化(等值圖)。	2 目 大 从 化 扣 朗 训 计 扶 适
3.	等提供未來使用 首參考,建議以表格	5. 本个任胜伯确侧砥行领
	詳列三個轉盤位置流場品質之相關資	迎们了。
	料(均年度、紊流強度、邊界層厚度、	
	縱庫壓力梯度等)。	
陳	教授振華:	
1.	本計劃之庫派性能與測試成果已達國	1.感謝委員肯定。
	際水準,且所進行的性能試驗、橋樑	
	计 的 施 掛 計 卧 筆 , 比 顯 千 木 卧 沥 目	
	叫····································	
	有完整且足夠得試驗能量。	
2.	在基本性能測試方面,溫度變化是影	2.基本性能相關測試持續
	響會 驗數 援之重要原因,可進行了解	進行中。
	只研擬對末。	
3.	橋探實驗已驗証本庫派另一可研究之	3.相關培訓計畫會轉請鄭
	性能,此橋樑試驗之人員培訓是否,斜	教授安排。
	入人員訓練計劃瓜。	
4	压派试验之性能校正测试结果之圖表	4.基本性能相闢測試持續
,	製作,可供後續研究人員之參考。	進行中。
林教授> 賢:		
---	--	
1.當庫 湄寶驗室在「運作」時是否能撰	1.庫 源開 關機操作程序已 經 右 制 訂。	
寫其「運作時注意事項」以確保生命財		
產之安全。		
2.報告表之 "圖" 與"表" ,希望能作	2.遵照辨理。	
說明,以利讀取試驗結果。		
3. 第13頁; 請說明風 扇轉速與變頻器頻	3.已於審查會中答覆。	
率的關係,以利應用。	1 1 秋康本人中於亚。	
請敘述各種試驗模型製作條件及測試範	4.6 於黃鱼曾生各復。	
圉 , f 說明台格與否之判斷條件。		
第72頁;請說明圖11之 (z=6cm)結果,	5. 基本性能相關測試持	
其變化是因何種原因所產生。	"说在111。	
陳教授太農:	1 建 詩 使 册 單 位 注 意 相 關	
陳教授士農: 1.已完成預期成果第1、2項庫源本體、	1.建請使用單位注意相關 細節。	
陳教授太農: 1.已完成預期成果第1、2項庫非本體、 庫	1.建請使用單位注意相關 細節。	
陳教授太農: 1.已完成預期成果第1、2項庫派本體、 庫	1.建請使用單位注意相關 細節。	
陳教授太農: 1.已完成預期成果第1、2項庫 海本體、 庫	1.建請使用單位注意相關 細節。	
陳教授太農: 1.已完成預期成果第1、2項庫 非本體、 庫	 1.建請使用單位注意相關 細節。 2.感謝委員肯定。 	
陳教授太農: 1.已完成預期成果第1、2項庫 涉本體、 庫 解、變頻器之試車及測試,証明可 提供實驗驗証之運作,但需作長期之 微誹。 2.以橋樑測試(以高層斜張橋)在淡大與 本實驗室測試結果比對,可証明其測	 1.建請使用單位注意相關 (細節。) 2.感謝委員肯定。 	
陳教授太農: 1.已完成預期成果第1、2項庫 海本體、 庫	 1.建請使用單位注意相關 細節。 2.感謝委員肯定。 	
陳教授太農: 1.已完成預期成果第1、2項庫 海本體、 庫	1.建請使用單位注意相關 細節。 2.感謝委員肯定。	
陳教授太農: 1.已完成預期成果第1、2項庫涉本體、 庫	 建請使用單位注意相關 約節。 2.感謝委員肯定。 3.凡 (約) (1) (1) 	
陳教授太農: 1.已完成預期成果第1、2項庫 海本體、 庫	 建請使用單位注意相關 細節。 2.感謝委員肯定。 3.已經進行相關人員教育 訓練。 	
陳教授太農: 1.已完成預期成果第1、2項庫 海本體、 庫	 建請使用單位注意相關 細節。 2.感謝委員肯定。 3.已經進行相關人員教育 訓練。 	

表八 期末審查會議結果答詢

附 任

附件一

內 政部建築研究 所建築 L 浙 實 L 彩 读 所 武 诺 工 程 協 認 會 議

坩點:建研所性能實驗詳會議室

時間: 93 年 04 月 02 日

會議主持人: 甘韦易 教授

出席者:如會議出席簽名紀錄

記 錄:李信宏

會議決議事項:

- 1、試車過程建研所性能實驗詳、庫涉籌備小組、中錄、豪頓及仕大皆派員出席 參與,試車過程因考慮上蓋板承受性,當轉速達到 360rpm 時 3300V 電源發 生跳電,故庫 解轉速只測至 350rpm,此時第一測試段庫速已超過合約中 30m/s 合乎標準,整體試車完成。
- 2、庫 扇在轉速 350rpm 時,庫 扇性能為 87% 合乎 合約 中標準,噪音亦滿足規範 中所要求如附件,豪頓公司庫 扇性能及空棄動力測試如附件。

3、庫 駐最高轉速可達 390rpm,日後日 籌借小組繼續進行測試,而豪頓公司亦會派員出席。

4、 中 鏎 公司、豪頓公司及 任 木 電 機 等 廠 商 將 分 別 把 測 試 報 告 行 立 至 A 政 部 建 築 研 究 所。

102
Architecture & Building Research Institute

Test Report

Aerodynamic test on wind tunnel fan 475GN+3EME

for

ABRI wind tunnel

2004-04-29

Table of Contents

- 1. Measurement Instruments
- 1-1 Specifications of Measurement Instruments
- **1-2** Measurement the correction relation of pressure transducer
- 2. Measurement of the static fan pressure rise and velocity of first test

section

- 2-1 The sketch map of the experiments
- 2-2 The results of experiments
- 2-2-1. Evaluation Velocity in First Test Section (2F)----section 0
- 2-2-2 Evaluation Static Pressure Rise in Fan Region (B1)

----section 1 and section 2

2-2-3. Evaluation Fan Power

1 Measurement Instruments

1-1 Specifications of Measurement Instruments

a. Pressure transducer : Vaydye DP45-22 (0~1400pa)

b. A/D Converter : IOTech ADC-488/8SA

c. Thermocouple \therefore FLUKE 54II (Display Resolution 0.01^oC/^oF/K < 1000^o)

1-2 Measurement the correction relation of pressure transducer

Before measurement the static pressure rise, we use the pressure calibrator(Druck DPI-610) to calibrate the pressure transducer. The pressure calibrator can be supplied with full scale different output range of 25 mbar.

Fig.1 The calibration of pressure transducers

2 Measurement of the static fan pressure rise and velocity of first test section

2-1 The sketch map of the experiments

Position and designation of cross sections

First test section (2F)---Section 0

Fig 2 The sketch map of the velocity experiment

Fan region(B1)--- Section 1 and Section 2

Fig 3 The sketch map of the fan pressure rise experiment

2-2 The results of experiments

Compared with ABRI and Howden results of the test:

2-2-1. Evaluation Velocity in First Test Section (2F)----section 0 EXP 1: Open the Downstream Flaps (2004-04-29 morning)

Input	Measure		Evaluation		
	Values		Values		
Runner speed (RPM)	Voltage average	Temperature (°C)	Dynamic pressure (Pa)	Density (kg / m ³)	Velocity (m/s)
20	-0.001	29.5	1.157	1.167	1.408
50	0.05	30.3	8.253	1.164	3.765
100	0.287	31.1	43.866	1.161	8.692
150	0.689	31.8	104.176	1.158	13.410
200	1.276	32.3	192.089	1.156	18.225
250	2.029	33	304.885	1.154	22.987
300	2.946	33.9	442.137	1.151	27.722
330	3.605	34.6	540.892	1.148	30.697
350	4.042	35.5	606.392	1.145	32.550
360	4.291	36.2	643.723	1.142	33.575
370	4.547	36.7	682.030	1.140	34.588
380	4.754	38.3	713.032	1.134355	35.456
390	4.982	38.8	747.192	1.132537	36.324

Table1. Experiment data of each runner speed in Section 0 for ABRI (EXP1).

Input	Mea	sure	Evaluation		
mput	Values		Values		
Runner	Valtaga	Temperature	Dynamic pressure	Density	Velocity
speed (RPM)	Voltage	$({}^{0}C)$	(Pa)	(kg / m^3)	(m/s)
100	0.281	35.5	43.077	1.145	8.676
200	1.275	36.3	191.874	1.142	18.334
300	2.945	37.7	442.028	1.137	27.89
350	4.054	39	608.121	1.132	32.781
390	4.985	40.2	747.663	1.127	36.418

EXP2: Close the Downstream Flaps (2004-04-29 afternoon)

 Table2. Experiment data of each runner speed in Section 0 for ABRI (EXP2).

Voith Howden : Measurement Data—section 0

Input	Measure Values	Evaluation Values	
Runner	Dynamic pressure	Density	Velocity
speed (RPM)	coor. (Pa)	(kg / m^3)	(m/s)

50	11	1.163	4.4
100	60	1.163	10.2
150	141	1.172	15.5
200	256	1.168	20.9
250	403	1.163	26.3
300	601	1.158	32.2
330	727	1.156	35.5
350	815	1.151	37.6

Table3. Measurement data of each runner speed in Section 0 for Howden

Fig 4. Velocity profile of each runner speed in Section 0 for ABRI and Howden.

2-2-2 Evaluation Static Pressure Rise in Fan Region (B1) ----section 1 and section 2

Innut	Measure	Evaluation
Input	Values	Values
Pupper speed (PDM)	Voltage average	Static pressure rise
	(V)	ΔP_{st1-2} (Pa)
20	0.017	2.696
50	0.169	22.188
100	0.677	87.695
150	1.52	196.761
200	2.705	349.232
250	4.242	547.43
300	6.056	781.202
330	7.399	954.354
350	8.231	1061.678
360	8.501	1096.484
370	9.18	1184.03
380	9.640	1243.338
390	10.085	1300.712

EXP 1: Open the Downstream Flaps (2004-04-29 morning)

Table4. Experiment data of each runner speed in Fan Region for ABRI (EXP1).

EXP 2: Close the Downstream Flaps (2004-04-29 morning)

Input	Measure	Evaluation
•	Values	Values
Runner speed (RPM)	Voltage average	Static pressure rise
	(V)	(Pa)
100	0.668	86.61
200	2.664	343.956
300	5.999	773.966
350	8.136	1049.406
390	9.95	1283.306

Table5. Experiment data of each runner speed in Fan Region for NCKU (EXP2).

Innut	Measure	Evaluation
Input	Values	Values
Runner speed	Static pressure rise	Total pressure rise
(RPM)	ΔP_{st1-2} (Pa)	(Pa)
50	19	16
100	85	71
150	198	163
200	353	290
250	550	452
300	785	641
330	949	776
350	1060	869

Voith Howden : Measurement Data----section1 and section2

Fig 5. Static and total pressure rise of each runner speed in Fan Region for ABRI and Howden .

Fig 7. Static and total pressure rise and volume flow rate of each runner speed in Fan Region for ABRI and Howden.

2-2-3. Evaluation Fan Power

Time	Runner speed (RPM)	Voltage	Current	Power (KW)
1049	20	170	63.4	10.778
1055	50	430	63.1	27.133
1103	100	858	63.5	54.483
1110	150	1287	65.1	83.784
1116	200	1724	69.3	119.473
1123	250	2160	76.6	165.456
1128	300	2600	88.5	230.100
1131	330	2866	98.5	282.301
1135	350	3041	105.5	320.826
1140	360	3132	110.4	345.773
1145	370	3125	114.2	356.875
1155	380	3251	119.8	389.470
1200	390	3302	124.9	412.420

EXP 1: Open the Downstream Flaps (2004-04-29 morning)

Table7. Fan power of each runner speed for **ABRI** (EXP1).**EXP 2:** Close the Downstream Flaps (2004-04-29 morning)

Time	Runner speed (RPM)	Voltage	Current	Power (KW)
1320	100	859	63.7	54.718
1328	200	1725	69.2	119.37
1342	300	2597	87.8	228.017
1350	350	3041	105.2	319.913
1355	390	3170	126.5	401.005

Table8. Fan power of each runner speed for ABRI (EXP2).

Voith Howden measurement data:

Runner speed (RPM)	Power (KW)
50	1.9
100	6.8
150	27.3
200	65.4
250	125.7
300	222
330	294.7
350	350

Table9. Fan power of each runner speed for Howden .

Fig6. Fan power distribution of each runner speed for Howden and ABRI.

Description	12 - Sec. 4 - A - Sec Se	ID LVI
P-25-11 p-25-11	(禄) 就住 件 种下)
-		
Main - Sec. level: 8 Motor Motor pasarson Pull load sp Motor voita Full load ou No load ou Motor kW I Leakage in Stator resitt Inertia = 30	rr rscy = \$2.0 Hz red = 382.0 rpm gr = 3300.0 V rrmt = 138.0 A mil = 44.0 % lating = 500.0 kW netance = 16.0 % latez = 1.95 % 0 Kgm2	5 0 1 0 * 1000 B *1020 5 *1040 5 *
Limits Overload P Overload P Overload 6 Speed Den 0 Percer 18 Perce 17 Perce 25 Perce 50 Percer 100 Percer	tert = Constant infing = 100.0 % 120.0 % metut = 60.0 sec to Curve Donak Point = 0.0 % nt Break Point = 31.6 % nt Break Point = 41.2 % at Break Point = 50.0 % at Break Point = 70.7 % at Break Point = 70.7 %	1120 0 1130 0 1139 0 1140 0 1150 0 1151 0 1152 0 1153 0 1154 0 1155 0 1155 0 1155 0 1155 0 1155 0
Motor zip Maximum Overspool Underloud I underloud Motor toro Regen	valts = 3800.0 V Lead Inerria = 2850.0 Kgm2 = 120.0 % enable = Disable 1 = 10.0 % timeout = 10.0 sec or limit 1 = 100.0 % or limit 2 = 100.0 % or limit 2 = 100.0 % or limit 3 = 100.0 % or limit 3 = 100.0 % alaste Limit = 40.0 % distre Limit = 5.00 % all Time Const = 0.0170 sec	*1160 0 *1159 0 1170 0 1180 0 1382 0 1185 0 1190 0 *1200 0 1210 7 1220 7 1230 7 1230 7 1240 7 1244 0 1245 0 1245 0
Encoder Encoder 1 Encoder f Encoder i Encoder i	PPR = 720 Iber gain = 0.0 as threshold = 0.0 % as emporate = stop (fazilt)	1280 0 1290 0 1300 7 1310 7 1320 7

Drive	1 0	
Drive parameters	2000 0	
Rated input voltage = 3300.0 V	+2010 0	
Rand lapor correct = 155.0 A	-2020 0	
Rated output voltage = 3300.0 V	-2030 0	
A 0.001 = 100000 running = 200.0 A	-1040 U	
Control loop type = OLVC	2050 /	
	2010 - 0	
Speed strap	2060 * 0	
Eatio control = 1.00 %	2010 0	
Spend fwd mux limit 1 = 100.0 %	2000 0	
Speed find min limit 1 = 0.0 %	2090 0	
Speed field max limit 2 = 100.0 %	2100 7	
Speed fwd min limit 2 = 0.0 %	2110 /	
Speed feed max limit 3 = 100.0 %	2120 7	
Speed (wd min limz 5 = 0.0 %	#120 /	
Spend rev max tirrit 1 = 0.0 %	2150 0	
Speed rev rain limit 1 = 0/0 W	2120 0	
Speed rev man timit 2 = 100.0 m	2170 7	
Speed on man limit 2 = 100 %	2193 7	
Speed my max arm limit 1 = 0.0.4	2190 7	
Zero mand = 0.0 %	2200 0	
Teto floon a con m		
Ensed roma antin	2260 0	
Accel time 1 = 400.0 sec	*2270 0	
Theored time 1 = 200.0 sec	*2280 0	
Appel time 2 = 5.00 sec	2290 7	
Decel time 2 = 5.00 sec	2300 7	
Accel time 3 = 5.00 sec	2310 7	
Decel time 3 = 5.00 sec	2320 7	
Jerk rate = 1.00	*2330 0	
Critical freq	2340 0	
Ship center freq I = 15.0 Hz	2350 0	
Slop center freq 2 = 30.0 Hz	2360 Q	
Skip center freij 3 = 45.0 Hz	2370 0	
Scip bandwidth 1 = 0.0 Hz	2380 0	
Skip handwidth 2 = 0.0 Hz	2390 0	
likip bundwidin 3 = 0.0 Hz	2400 0	
Contraction (3/20 0	
Cristian Intel mode - Contract	*2(3) 0	
Stan and dambald = 20.0 %	2440 0	
Connect Level SetBrint = 15 ft %	3450 0	
Current ramp = 0.0500 sac	2460 0	
Max correct = 50.0 %	2470 0	
Frequency acus rate = 3.00 sec.	2480 II	
Cond time setup	2490 0	
Cand stop timer = 0.800 sec	2500 0	
Cond ran timer = 0.800 sea	2510 0 +	

I

Cell voltage = 0.30 Thermistor warn level = 20.0 % Contactor settling time = 200.0 meet Max hark EMF decay time = 7.00 sec Bypass type = Mech Fast bypass = Ensble Neutral connection = T1	2550 5 2560 5 2570, 5 2580 5 2590 7 *2600 7 *2630 7
Sync transfer Phase I gain = 2.00 Phase P gain = 4.00 Phase offset = 0.0 deg Phase error threshold = 1.50 deg Programmy offset = 0.0 % Up transfer timeout = 0.0 set Down transfer timeout = 0.0 set	2700 7 2710 7 2720 7 2730 7 2740 7 2750 7 2760 7 2770 7
External 1/O Analog inputs = 2 Analog outputs = 4 Digital inputs = 12 Thefail outputs = 12 Wago timenut = 0.0 set	2800 5 *2810 5 *2820 5 *2820 5 *2830 5 *2840 5 2850 5
Output Connection Filter CT set turns = 0.0 Filter information = 0.0 % Filter superitures = 0.0 % Cubie institutes = 0.0 % Filter damping gain = 0.500	2900 0 2910 1 2920 0 2930 0 2930 0 2940 0 2950 0
Statisticy Input processing PLL group gain = 70.0 PLL integral gain = 38:40.0 Imput current scalar = 1.00 CT secondary turns = 200 Input voltage scalar = 1.00	3 0 3000 7 3010 7 3020 7 3030 7 3030 7 3035 7 3040 7
Output processing Low freq comp Low Freq Wo = 12.6 Rad Low freq com gain = 1.00 S/W compensator pole = 2.00	3050 7 3060 7 3070 7 3080 7 3090 7
Rax control Plax rag prop gain = 1.72 Plax rag pringral gain = 1.00 Plax filter time const = 0.0067 Plax demand = 1.00 Plax namp rate = 0.500 set	3100 7 3110 7 3120 7 3130 7 3130 7 3150 7 3160 7

Energy saver min DMX = D000 lds DC = 10.0 %	3190 7
Speed loop	3200 7
Speed reg prop gain = 0.0200	3210 7
Speed reg integral gain = 0.0460	3220 7
Speed reg Ef gain = 0.600	3230 7
Speed filter time const = 0.0488	₃ 2240 7
Current loop	3250 7
Current reg prop gain = 0.500	3260 7
Current reg integ gain = 25.0	3270 7
Prop gain during brake = 0.160	3280 7
Integ gain during brake = 9.60	3290 7
Stator resis dit	3300 7
Stator resistance est = Off	3310 7
Stator resis filter gain = 0.0	3320 7
Stator resis integ gain = 0.00200	3330 7
Braking	3350 7
Enable braking = Off	3360 7
Pulsation frequency = 277.5 Hz	*3370 7
Brake power loss = 0.250 %	3390 7
VD Loss Max = 0.250	3400 7
Braking constant = 1.05	3410 7
Output current scalar = 1.00	3440 7
Overant valuese scalar = 1.00	3450 7
Control loop test	3460 7
Test type = Speed	3470 7
Test positive = 30.0 %	3480 7
Test negative = -30.0 %	3490 7
Test time = 30.1 sec	3500 7
Dead time comp = 16.0 uses	3530 7
Feed forward constant = 0.0	3560 7
Carrier frequency = 601.3 Hz	*3580 7
Auto Speed profile Entry point = 0.0 % Entry speed = 0.0 % Exit speed = 0.0 % Exit speed = 100.0 % Amo off = 0.0 % Delay off = 0.500 sec Auto on = 0.0 % Delay on = 0.500 sec	4 5 4000 5 4010 5 *4020 5 4030 5 *4040 5 4050 5 4050 5 4060 5 4060 5 4080 5 4080 5
Analog input #1	4100 5
Source = Ext 1	4105 5
	Statut and states

Type = 4 - 20mil Min input = 0.0 % Max impat = 10.0 % Loss prim threshold = 15.0 % Loss of signal action = 320p Loss of signal sepport = 20.0 % Analog input #2 Source = Off Type = 4 - 20ms Min impat = 100.0 % Loss point threshold = 15.0 % Loss of signal action = Preset Loss of signal action = Preset Loss of signal seppoint = 20.0 %	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Analog input #3 Source = Off Type = 4 - 20ms Min input = 0.0 % Man input = 100.0 % Loss point fureshold = 15.0 % Loss of signal action = Prent Loss of signal serion = 20.0 %	4232 5 4233 5 4234 5 4235 5 4236 5 4237 5 4238 5 4238 5 4239 5	
Autrillary Input #1 Scarce = Off Type = 4 - 20rm Min input = 0.0 % Man input = 100.0 % Lois point threshold = 15.0 % Loss of nignal action = Present Loss of nignal setpoint = 20.0 %	4500 5 4510 5 4520 5 4530 5 4540 5 4550 5 4550 5 4560 5 4570 5	
Auxiliary input #2 Source = Off Type = 4 - 20mm Min impet = 0.0 % Max imput = 100.0 % Lean point theshold = 15.0 % Lean of signal action = Porset Lean of signal action = Porset	4580 5 4600 5 4600 5 4600 5 4600 5 4600 5 4600 5 4600 5 4600 5	
Analog outputs Analog outputs #1 Analog variable = Monor Spied Output module type = Unip Full mings = 103.0 %	4660 5 4661 5 *4663 5 4663 5 *4664 5	
Analog estpot #2 Analog versible = Total Corrent Output mobile type = Unip Pull range = 139.0 %	4565 5 4565 5 4567 5 *4568 5	

Analog output #3	A660 6
Analos veriable - Motor Voltana	4009 5
Control module time - Thin	*4670 S
Computer incounter type = Unity	4071 3
Fort traffic = 1150 %	*4672 5
Analog output #4	4673 5
Analog variable = Motor Speed	**4674 5
Output module type = finin	4675 6
Full range = 110/1 5	+1575 F
1 444 FRIDE - 11 27/1 70	-4078 3
Speed setpoints	4240 5
Speed setpoint 1 = 0.0 rpm	4250 5
Speed setpoint 2 = 0.0 rpm	4260 5
Strend setroint 3 = 0.0 rpm	4770 5
Steed settobet 4 = 0.0 mm	4200 5
Steed analysist 5 = 0.0 mm	4280 5
Speed services 6 = 0.0 mm	4250 5
Speed serpoint n = 0.0 mm	4300 5
apeed serpoint 7 = 0.0 rpm	4310 5
speed setpoint 8 = 0.0 rpm	4320 5
log ipeed = 0.0 rpm	4330 5
Safety setpoint = 0.0 rpm	4340 5
Incremental speed seture	1000 7
Spend increment 1 = 1 00 #	4370 1
Steed devenuent 1 = 1.00 ft	4974 7
Speed increment 1 - 5 10 ft	4972 7
Space destamout 7 - 5 00.0	9973 7
President and a start of the	4974 7
apeeu increment 3 = 10.0 %	4975 7
Speed decrement 3 = 10.0 %	4976 7
PID select	4350 5
Prop gain = 0.390	4360 5
Integral gain = 0.390	4770 5
Diff $rain = 0.0$	1290 5
Min clamp = 0.0 5	1000 0
Max clamp = 100.0 ff	4190 2
Company = 0.0 m	4400 5
apphoint = 0.0 at	4410 5
Companyor setup	4800 5
Comparator I setup	4810 5
Comp 1 A in variable = Manual value	4911 6
Comp 1 B in variable - Marcal value	4011 2
Comp 1 manual value - 0.0 %	4512 3
Communa Liture - CP	4813 3
compare a cobe = CVI	4815 5
Comparator 2 setup	4820 5
Comp 2 A in variable = Manual value	4821 5
Comp 2 B in variable = Marcal value	4822 5
Comp 2 manual value = 0.0 %	1000 2
Compare 2 type = Off	4825 5
Compared by part - out	
Comparator 3 setup	4830 5
Comparator 3 setup Comp 3 A in variable = Manual value	4830 5 4831 5

Comp 30 manual value = 0.0 %	4492 5
Compare 30 type = Off	4494 5
continue to other and	
Comparator 31 setup	4496 5
Comm 31 A in variable = Mormal value	4497 5
Come 31 B in variable = Manual value	4498 5
Comp 21 at in Variable - 7.0 %	4400 5
Comp 51 minut vide = 0.0 w	4501 5
Campare 31 (ypt = OII	4301 2
Comparator 32 setup	4502 5
Comp 32 A in variable = Manual value	4503 5
Comp 32 B in variable = Manual value	4504 5
Comp 32 manual value = 0.0 %	4505 5
Compare 32 type = Off	4507 5
	22.24
Logs	0 0
Historic log	0,000
Store in Event Log = On	6255 7
Historic log variable 1 = Mir Speed	6250 0
Historic log variable 2 = Spd Dmd	6270 0
Historic log variable 3 = Tru I Crud	6280 0
Historic log variable 4 = Tro I Edbk	6290 0
Historic log variable 5 = I Total Cast	6300 0
Mistoria los conside 6 e Mas I Feld	6310 0
There is a second by Table Table Track	6100 0
Historic log variable / = bill Plux.	0320 0
Drive propert	7 0
Innut renderline	7000 0
Einste nhasing	2010 0
Cipp practing to 0.0	0.000
SPD prop gam = 0.0	2020 0
SPD integral gain = 0.00100	7050 0
SPD threshold = 50.0 %	7040 0
Undervoltage prop gain = 0.0	7060 0
Underwoltage integ gain = 0.00100	7070 0
1 Car Dentert inter min = 0.00250	2080 0
1 Carola Destant Limit = 50.0 %	2081 0
Vicente het setting av 15 m	*2050 0
Allocher up setting = +5 %	7000 0
Alumer mermal gain = 0.01.33	7090 0
Xformer protection const = 0.375	2100 0
Phase Imbalance Limit = 40.0 %	7105 0
Ground Fault Limit = 40.0 %	7106 0
Ground Fault Time Const = 0.200 sec	7107 0
D. 107	7110 0
Drive IOC setpoint = 150.0 %	(110 0
Cell Overload Level = 100.0 %	7112 3
Auto reset enable = No	7120 7
Auto reset time = 1.00 sec	7130 0
Auto reset attempts = 4	7140 0
Auto reset memory time = 10.0 sec	7150 0
Meter	1. 0.
Tilester exercis	1000 A
Luspay parama	8300 10
Sumi viziable 1 = ITUT	*8001 0

Design and the second sec	0440 7
Tisti 10 Telas Vel 20 = 5000	0640 5
Data To Drive Reg 60 = Note	9000 /
Data To Drive Reg 61 = None	9001 7
Data To Drive Reg 62 = Nont	9662 7
Data To Trive Reg 63 = None	9663 7
Posts To Deine Ban 6d - None	9664 7
THIS 10 THINE KIE PA = More	
Network 2 Configure	9914 7
Klassick & Tonia - Mana	0015 7
INCOMULA 1 YES - PARK	
9/10-2 control functions	9110 0
Many knowl Tanin Offic	9111 7
302111 00200 131100 Se1440	6113 7
Menulimari = 0.0 sec	7114 1
MenuTirotr2 = 0.0 sec	9113 7
MenuTimer3 = 0.0 sec	9114 7
MeruTimer4 = 0.0 sec	9115 7
MeestTaver5 + 0.0 sec	9116 7
Man Town of Oren	0117 7
ALERIA RECO - CO SEC	0118 7
Menu (imer / = 0.0 sec	3110 Y
MenuTitier8 = 0.0 sec	9119 /
MenuTimer9 = 0.0 sec	9121 7
MenuTimer10 = 0.0 and	9122 7
Mees Timer 11 + 0.0 set	9123 7
Manufiner17 - 80 pet	9174 7
Manufacture = 0.0 and	0194 7
Menulimerts = 0.0 sec	0142 7
MenuTimer14 = 0.0 snc	9L2D 7
MenuTimer15 = 0.0 sec	9127 7
MemTimer16 = 0.0 sec	9128 7
Service of the servic	10110 2
Peters Manual Buckets = 180/0010771077	-9142 /
Multiple config files = OFF	9185 3
TCP/IP server name = 172.17.106.190	+9000 0
Graphing	10 0
Time scale = 100.0 sec	*10000 0
Verieble 1	10010 0
Walking a	*10000 0
Chilly Antippe = 20000 quer	-10020 0
Offset = -400.0	*10030 0
Scale factor = 400.0	*10040 0
10 C C C C C C C C C C C C C C C C C C C	10000 0
Variable 2	1000 0
Graph variable = Mir speed	<10000 II
Offset = -200.0	*10070 0
Scale factor = 200.0	*10080 0
Variable 3	10090 0
Graph variable = Igs	*10100 0
Officer = 0.0	10510 0
Scale factor = 1.00	10120 0
Variable 4	10130 0
Graph variable = Ids	*10140 0
Offset = 0.0	10150 0

Scale factor = 1.00

Variable 5 Graph variable = Out freq Offret = -400.0 Scale factor = 400.0

- Variable 6 Graph variable = Spd mf Offset = 400.0 Scale Sartor = 400.0
- Variable 7 Graph variable = None Offset = 0.0 Scale factor = 1.00

Variable 8 Griph variable = None Office = 0.0 Scale factor = 1.00

Variable 9 Graph variable = Note Offset = 0.0 Scale Sactor = 1.00

Variable 10 Graph variable = None Offart = 0.0 Scale factor = 1.00

DACs setup DAC 1 variable = None DAC 1 staler = 0.0 DAC 2 variable = None DAC 2 variable = None DAC 3 scaler = 0.0 DAC 4 variable = None DAC 4 variable = None DAC 5 variable = None

Scheet language = English

10160 0

*10130 0 *10180 0 *10180 0 .

10210 0 *10220 0 *10230 0 *10240 0

10250 0 10260 0 10270 0 10280 0

10290 0 10300 0 10310 0 10320 0

10330 0 10340 0 10350 0 10350 0

10370 0 10380 0 10390 0 10400 0

Three Phase Headings - 03/03/04 03:57:35

.

Lossone Arrespuce Ramarch Center of National C.E. University - Tainan, taiwan Cocult/Phase-Place 41B - 100805M Date/13/2004 00:57-35 Observer:Jamon Huang Readings from Clamp-on CT to A-place and PT in Switchgest Cabines

Sustany Information

atasida yea	mappen		Voltage (Carrent
Propagation RW EVA EVA Posia RW Phase Total PF DPF	59.58 34.82 35.61 -11.31 * 18° Jug 0.85 0.96	RMS Peak DC Offset Creat THD Read HBMS KPlower	113.00 162.97 0.08 1.44 1.54 1.54 1.54	623 11.61 -0.02 1.86 4.95 4.98 1.35 1.81

Harmonica Infr	mation			3.7hait			3 Phote	3 Phase
Harmon inc.	Frm)	V Mag	WV RMS	V φ*	I Mag	961 RMS	1.9	rdeid (A.M.)
DC.	0	0.05	0.04	0	0.02	0.32		
Ť	59.98	115.09	100	0	1.08	41.63	144	
1	119.85	0.1	0.09	46	0.001	0.34	146	
3	179.93	0.28	0.25	-131	0,42	0.70	-1/1/	
1	255.0	0.03	0.00		0,02	0.50	100	
4	299.88	1.35	1.37		0.54	0.72	192	
	179.86	0.04	0.03	148	0.00	0.22	-1.24	
	419.83	0.59	0.52	111	0.34	1.80		
	479.81	0.02	(5.02	1.27	0.02	0.22	20	
÷	539.78	0.24	0,21	49	0.02	0.10		
10	509.76	0.01	DOL	341	0.01	1.10		
31	659.74	0.22	0.19	1	-0.11	1,912	110	
75	719.71	0.00	0.01	34	11	0.00	119	*
15	779.69	0.16	0,15	i - 19	0.12	1.303	-10	
14	839,66	0.02	0.01	0		0.01		
15	899.84	0.09	0.08	-134	0,08	1.28		
16	979.82	0.00	10.01	39	DUII	0.50	12	
12	1019.59	0.08	5 0.06	(i	0.14	1.0		
100	1079.57	0.0	2 0.02	-180	1 <u>1</u>	0.01		
19	1179.54	0.0	0.08	13	0.00	0.32		
20	1199.57	-0.0	1 0.00	्म मंग		1 0.00		
21	1259.5	0.0	5. 0.03	- 30	0.07	0.04		
	1319.47	0.0	1. 0.01	-01	6	0.01		
73	1779.45	0.	1. 0.09	1. ITB		0.45	1 N	
78	1430.43	0.0	2. 0.01	105	2 14	3 0.00	S	× •
35	1495.4	1.0.0	5. 0.05	123		1 0.30		
14	1559.3	1.0 5	1 0.01		1	0.14	2 3	ñ2 0
-97	1619.3	s 0.0	15 0.03	5)) 1 1	. 0.0	1 0.0	S - 5	17
28	1679.3	1 0.0	12 0.0	-154	5	0 0.0		
- 12	1739	3 01	34 0.03	3 -81	1. 0.0	2. 0.0	5 B	70
10	1299.2	s 0/	11 11.0	1 -12	5	0 101	N 4	11.
71	18.99.2	5 00	15 11.0	4 -10	0.0	4.0 44.0	e	
1.000								

Torre Plase Readings - 08/30/04 03:50:38

Lenation Aerospace Research Center of National C.K. University - Tainan, taiwaa ChronoPhase/Phake 41B - 2008/PM Data:01/3004 03:50:38 Observer:Sares Hwatg Readings from Clamp-on CT to A-phase and PT in Switchgetz Californi

Servery Wormains

Services Vitor	ration		Voluer	Current
Frequency Forser KW KVA KVA Peak KW Phane Total PF DIF	99.58 90.79 94.94 -27.76 * 17" lag 8.96 6.96	RMS Peak DC Office: Cred THD Ford THD Ford HRMS KFactor	114.17 184.3 1099 1.44 1.67 1.67 1.9	15.89 17.87 -0.23 1.74 4.90 4.97 2.28 1.56

	and interest			3 Plain			0 Phase) Paint	
THURSDAY 141	East	Villar	HAV RMS	V.#*	1 Mag.	#L RMS	1.0	None: (P.M.)	
-	71114	0.59	80.51	D	0.11	0.69			
500-	-111-120	114.22	100	Ω.	15.82	98.95	-2		
1.1	110.04	0.11	8.1	32	0.02	0.13	+13		
2	119,93	PLAN.	0.34	-120	0.82	5.13	. 9	5	
3	1.79.293	10.000	11.02	88	0.01	0.05	-0	5	
÷	129.9	1.00	1.52	.5	0.68	4.25	12	5 *	
5.	200.88	3.12	Diffe	191	0.01	0.06	-+3	4 *	
1	259.86	1112	0.4	100	1.02	#.38	4	8 *	
3.	479.83	11.46	10.00	177	0.01	0.05	-1	9 *	
5	479/81	0.00	0.04		0.02	0.13	- 7	. 0	
9	\$39.78	0.25	2.13		0.00	0.13	+12	5 *	
10	599.76	0.01	0001		0.55	1.38		a * .	
11	659.74	0.19	9.25	1.1.1	0.00	0.06	-1	10 *	
12	739.73	0.04	0.01	12	615	0.75	-19	62 *	
13	779,09	0.09	0.00	-07	0.00	0.13	E	50 *	
34	835.06	0.03	0.0	140	0.044	0.40			
15	999.54	0.19	0.17	· · · · · · · · · · · · ·	0.11	0.13	C 1	15 *	
15	169.62	0.02	1 0.0	1. 119	0.0	1.11	1 i	n5 *	
	1019.59	0.0	0.0	E -05	0.2	1.11	11 3	ui. *	
18	1079,97	0.00	2 0,0	112	a.a.	0.17	1.1.2	- 11	
10	1114 54	n.,	t 0.0	9 21	0.5	4 0.00		40 *	
	1100.52	0.0	2 0.0	6. U.S	0.0	1 0.13		AT #	
100	1050 1	0.0	4 0.0	a -102	5 0.0	8 . 4,5	23	11	
	1300.87	0.0	2 0.0	1. 7	5 0.0	C. U.X		14	
	1170.45	0.0	. 0.0	7 +12	5 Q.D	6 93		41 0	
20	1175.47	6.0	0.0.0	N 7	7 0.0	0.0	5 S	100 0	
24	1200.4	0.0	15 0.1	5 7	1 0.0	B 0.3	N 8	10 4	
2	100010	0.0	10.000	н 13	4 03	N 0.0	6	116	
20	1010.00	- D.	95 0.0	15	p 94	94 0,2	3	119	
22	1017-10	0.0	11 0.	Q. 10	1 担	11 0,0	0	-04	
28	1901912		nic D	00 -1	ā 04	12 0.1	3 7	(20	
29	1.107A		072 EL	dt +10	0 0.	D2 0.1	1	11#	
30	1798.4		13 5	m -1	4 D	05 0.3	9	-44	
33	1879.2	5 W		10					

Then Phase Rankage - 03/00/04 (2):45/15

Location Astrophon Related Center of National C.K. University - Tainan, taiwan Crivat/Phane/Flate 418 - 300RPM Deac092004 D5:42-15 Observer:Journe Huang Readings from Clamp-on CT to A-phase and PT in Switchgest Colonel * PT = 130010/1101/

Summary Information

Progamoy Power KW KVA EVAR Peak KW Phane Finan Finan Finan	99.98 229.43 237.59 -61.49 * 15 [°] lag 0.97	RNS Peak DC Officet THD Ros THD Pasal HRMS KFactor	Vallage 113.6 162.91 1.43 1.33 1.33 1.48	Current 40.25 58.83 -0.25 1.45 3.63 3.72 2.96 L.37
DIFF	0.97	Aradar		1.12

DC 1 2	1944. 1938	0.02	W RM3 0.02	V Ø"	TMag	GIRMS	1ψ"	Power OCW
1 1 1	0 5938	23.0	0.02	11	12.24			
1	29.98	117.2			9.29	0.85	- 9	
2.		11.5.0	100	0	43.15	99.74	+15	
	119.95	0.63	0.03	22	0.03	0.07	-34	
- 3	1793/3	0.31	0.28	-14型	0.45	1.12	101	+
4	239.9	0	0	-73	10.01	0.02	155	
3.5	299.88	1.2	1.06	5	11.85	2.11	114	
÷.	359.86	0.02	0.02	129	0.03	0.07	-92	
7.	419.83	0.34	0.3	312	0.92	2.29	-94	
8	479.81	0.02	11.02	158	0.02	0.05	-32-	
9	539,78	0.24	0.21	65	0.02	0.05	-86	
15	599.78	0.01	0.01	-39	0.02	0.05	-26	
3.5	(059,74	0.38	0.34	-6	0.61	1.92	71	
- 22	719.71	0.02	10.0	138	10.0	0.02	-130	14
23	770.69	0.19	0.17	-44	0.29	0.72	- 18	
14	839.66	0.01	0.01	-158	DOT	0.02	+163	
15	859.64	0.14	0.17	-157	0.17	0.27	+145	
16	959.62	0.00	0.01	34	0.01	0.00	-103	- G
17	1019.59	0.42	0.27	150	0.71	1.78	- 45	
18	1079.57	0.02	0.01	348	0.00	0.00	1.53	
19	1130.54	0.16	0.34	+157	0.55	1.19	110	
20	1109.52	10.01	0.01	-34	0.01	0.00	100	
21	1259.5	0.10	0.09	- 51	0.12	0.30	45	- G
72	1319.47	0.02	10.01	-137	0.02	0.05	-63	
23	1379.45	11/78	0.07	150	0.09	0.22	-160	1.1
24	1439.42	10.01	10.01	148	0.03	0.07	- 55	
25	1499.4	0.04	0.03	168	0.13	0.32	-10	
26	1400.18	0.02	0.01	19	0.01	0.02	105	
- 21	1619.35	0.04	0.03	1.1	0.05	0.07	.70	- 18
- 28	1/729.33	0.01	0.01	0	0.01	0.02	24	
70	1799.3	0.06	0.06	-141	DDT	0.17	TI	
30	1700 28	0.01	0.01	180	0.01	0.07	1.0	
21	10702 75	0.09	0.06	-147	0.14	0.15	384	
	10000-000			2430.1	9947	and a second		

Tame Phase Readings + 03/03/64 03:35:31

.

Longion Assumption Research Center of National C.K. University - Tolean, talvain Constribution Phase Phase Alia - 32000PM Data 00/0044 03:15:01 Observer: James Husing Resultings from Chemp-on CT to A-phase and PT in Switchgrad Oblant. * PT = 33000/11/07

Sentury later	10.014		Voltage	Carrent
Property	51.51	RMS Peak	113.6	80198 \$5.24
Power KW KVA KVAR Peak KW Phate Total 97 Dety	349.46 359.95 487.08 147.124 1.97 1.988	DC Offset Crest THD Rest THD Parel IGM/S K/Factor	0.02 1.43 1.22 1.22 1.44	-0.25 1.45 3.21 3.33 2.98 1.33

Hamonian Islam DC 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 27 18 19 20 11 12 13 14 15 16 27 18 20 10 11 12 13 14 15 16 20 10 11 12 13 14 15 16 16 17 10 10 11 11 11 11 11 11 11 11 11 11 11	ration Phile 0 90.98 179.95 179.95 299.98 299.98 299.88 479.81 519.76 509.76 479.81 519.76 609.74 719.71 179.69 889.64 959.02 1019.29 1139.54 1139.54 1139.54 1139.54 1139.54 1139.57 1139.54 1139.57 1139.54 1139.57 1139.54 1139.57 1139.57 1139.57 1139.54 1139.57 1139.57 1139.54 1139.57 1139.54 1139.57 1139.54 1139.57 1139.54 1139.57 1139.57 1139.54 1139.57 1139.54 1139.57 1139.54 1139.57 1139.54 1139.57 1139.54 1139.57 1139.54 1139.57 1139.54 1139.57 1139.54 1139.54 1139.54 1139.57 1139.54 1139.55 1139.55 1139.55 1139.55 1139.55 1139.55 1139.55 1139.55 1139.55 1139.55 1139.55 1139.55 1139.55 1159.55 1139.55 11	Mag 6V 934 0.02 0 1155 1 0.02 0 0.12 0 0 1.38 0.11 0 0.12 0 0 0 1.38 0 0.12 0 0.14 0 0.15 0 0.15 0 0.15 0 0.00 0 0.15 0 0.00 0 000 0 000 0 000 00000000	SPhase E V φ ² 10 0 0 10 -148 10 -148 10 -15 10 -15 1	1 Mag %1 0.33 62.86 0.48 0.02 0.98 0.04 0.98 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 Paras 8385 L 4' 0.54 99.81 0.07 0.78 0.09 1.61 0.07 1.54 0.05 0.05 0.05 1.28 0.05 0.05 0.05 1.28 0.05 0.0	3 Pase (0) Pose (0) 0 15 14 10 155 14 155 110 155 100 155 100 100	D,
	Lines Cost						

CUSTOMER AND SITE INFORMATION

CUSTOMER NAME STREET ADDRESS

CITY, ST, 21P

PRIMARY CONTACT PHONE NUMBER FAX NUMBER E-MAIL

SITE LOCATION

BALES ORDER NUMBER DRIVE PART NUMBER APPLICATION

FSR

SNI-Ta Corporation - End User / Ministry of the Interior

4F,32,SEC 3, CHENG THE RD.

Taipel, ROC 103, Taiwan

James Hwang - Shi Ta (888-2) 2597-5458 (896-2) 2595 4571 eta(02@giga.com.tw

Aarospace Rasearch Center of National C.K. University - Teinan, Telwan HRS192935.01 31000125.00 - DC 0316 - sin 08903 - Harmony 3300V, sz2, Air Cooled Wind Turnel for Teacing of Architectural Designs

Kenneth M. Collins.

AIR COOLED Commissioning Plan 3.sts

Page 1 of 1

March 10, 2003

PRE-COMMISSIONING

14

UE3GRP TION	BY	DATE
A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERT	1	
After correlation of the Eastern Accord		
After completion of the Pactory Acceptance Test (PAT). All fams in the Scope of Material Supply are delivered to the Plant for receipt inspection and storage prior to installation in the final plant location.	KMC	03/24/04
All shipping sections include fork iff skid type bases and provisions for lifting.		
The VFD shipping splits and split weights are defined by ASIRobicon drawings.		
instructions for receiving, off-loading, handling, 3tting (overhead, forkitt and roller), placement, anchoring and connecting of cabinets is defined by ASIRobicon User's Menuel 902231,902232,902233. Customer or Customer's Asart is responsible for these tasks.		
Received in Good Condition - Ken Califies - 3/25/04		
After location of the shipping splits into the installed location (including boiling and anchoring of the shipping sections the ASIRobicon Pre-Commissioning team will arrive at the site to commence the pre-commissioning process.	KMC	83/24/04
The pre-commissioning team will inspect the installation and will torque check the cabinet connections and will remove all remaccess panels. Note: All electrical connections shall be torqued and marked.	KMC	03/24/04
The control wire plugs at each shipping split will be re-connected and will be te- wrapped. Plugs are color coded and/or mechanically configured to prevent mis- connection. Wires on each side of the plug are numbered to support verification.	KMC	03/24/04
The ground bond jumpers will be reconnected. Ensure that the entire system is safe grounded at one of the system grounding points. Confirm what type of sable the customer is using for the motor connections. If it is a shielded cable only one end of the shelld can be grounded. If must be grounded at the drive.	KMC	03/24/04
In the NXG controls locate the Modulator board and move the battery jumper to the lower position (pins 1 and 2) to enable the battery before applying any control power. Check the drawing for a jumper listing	KMC	03/24/04
back and note being if the important particular second 40		
Is transformer neutral grounded - Note yes or no on form	Yes/No	NO
n the output cabinet locate the cell by-poss board. Verily that the "J1 jumper" is in the 1200 amp position. Do not apply power until this has been verified.	NIA	
At this time, it is necessary to have a control power and auxiliary power source connected per the VFD schematics to allow the pre-commissioning procees to continue.		

AIR COOLED Commissioning Plan 3.xls

Page 1 of 2

March 10, 2003
附件匹

PRE-COMMISSIONING

		DATE
	the states	A CONTRACTOR
Interconnection of these power supply sources is the responsibility of Customer. It is noted that temporary power sources can be utilized. Power is required to tast the control. (480VAC / 70 ACA 50/60 HZ)		
If the VFD has cell bypass, verify the contactor per the tech note. For 1200 amp contactors only	N/A	
-Energize each contactor using DC Power Supply. Verify drop out (See Tech Note)	N/A	
Check attenuator resisters and Hall effects building resisitors. Reference FAT plan for correct values. Confirm input CTe match drawing	KMC	03/24/04
Instal output connections to power cells. If bus work does not line-up loosen connection at T1 and T2 on cell and at the connection on the bypass contactor.		
Confirm the following parameters:		
Rated input current menu 2020	155A	3300V
Rated output current menu 2040	200A	0-3300V
Neutral connection menu 2630	T1	
CT Turns menu 3038	200	
Align bus		
Tighten cell bus links first		
Tighten bypass contactor connections last		
Torque to specification and torque mark	KMC	03/25/04
Note: Do not twist or distort connections to T1 or T2 or bypass contactors.		
Prepare to backfeed the drive and modulate with a varies. Variac the drive up to rated cell voltage or as close as possible, let the drive stay at this level for t hour to form the cell buss capacitors, with the links in modulate the cells. Refer to ASIRobicon User's Manual 902231,902233		
At the end of the pre-commissioning a copy of the pre-commissioning report should be left with the responsible site manager.		-
Note: Instruct customer not to terminate MV at motor ouput until start of commissioning cycle. The customer must sign below acknowledging not to connect the motor leads.		
Customer's signature		

AIR COOLED Commissioning Plan 3,xls

Page 2 of 2

March 10, 2003

附件四

COMMISSIONING

ACCULTION .	BY	DATE
DURIN HON	- 2 C 1	Contraction of the
wity Customer connectione		-
	14.67	2004/9/26
Verty customers power connections	CARC .	2004/3/25
Verty phase sequence of motor.	KRAP	2004/3/25
Verify customers grounding connections	KONIG KONIG	2004/3/25
Varify system grounds	UNC .	2004/3/25
Verify TB2 connections	ULLO.	2004/3/25
Verify Hardwired VO per SOP Test Document)	PANNA	2004/3/35
Verity DCS operation with customer.	MMG	2004/3/24
with options (Fast Bypass, Sync transfer, communications etc)	KMG	2004/3/27
sternal Hantware (Muttlin, external meters, PQM, etc) write in others	KMG	2004/320
I would be an in the ensure on the drive for at least 1		1000000
nergize MV input with motor disconnected, Leave the power control drive for all water in	KMC	2004/3/25
our, if possible leave the power on overnight.		
Complete open loop tests.		-
Versily exerting is open bed test mode		
Varity call burges of each cell		
Remove ther optic link, Contactor will dose.		6101000
Verk all cells tytues correctly.	KMC	2004/3/25
Amil micena olibuia estistati.		
Constant Motor	KMC	2004/3/25
COLUMNS INTOIN	URAN.	2004/3/26
Bump motor for phase rotation	NMU	200413221
and the second sec	not poss	/bie
Run motor uncoupled and verify speed ranges and recoducies.	That Picture	
	KMC	2004/3/26
Couple motor		
in the assessmentane and loaded in manameter list do not use auto-tume feature.		
Note: If motor parameters are capted to permitted the of	-	
 Operation account to SCP least documents. 	KMC	2004/3/27
Verily sequence of Operation according to doir well edge in the		
and selection and selection and tablet	KMC	2004/3/27
Complete speed loop and spinning loss spring		
(COR Test and Alam test Procedure)	KMC	2004/3/27
Verify Adarm indications (Sur-Tes) and Hammadri Internet		
to an ended link	718	2004/3/27
Verity DCS address across remained		
The second second the remains design operating condition utilize the PC Tool		
IOnce system has reacting and provide course of the		
Brite vectored and tonowing Auto cares		
Plant Load At Test Point		-
Viotasa VED Isrut	-	_
Primer VID Interd	-	_
Breast Easter VFD Intut		-
Values VED Output		
Contact VED Output	-	_
Record Carpord	_	
Advancement (BPM)	_	
Must surfice the and		

AIR COOLED Commissioning Plan 3.xts

Page 1 of 2

March 10, 2003

COMMISSIONING

內政部建築研風洞實驗設備風洞本體組裝完成

估驗記錄

- (一) 時間:九十二年十二月二十三日上午十點整
- (二) 會合地點:性能實驗群建築風洞實驗館
- (三) 估驗人員:

內政部建築研究所 各文化、 入分中 風洞設備小組 /司等章 傳 2 在 中國鋼鐵股份有限公司 許 羅 花

- (四) 工作記錄
 - 1 在廠商帶領權相已完成組裝之風洞本体,經風洞設備小組 現場審視,確認組裝完成無虛,
 - 2. 枪附风、洞本体组装完成照片如附件-.
 - 3本案風洞本体已組織完成,其非鋼構部分之細部裝修需於 93年2月10日前完成, (以下空自)
 - (五) 建議事項

建議換和14経際宜減小(請廠商修正調整)

(以下空自)

所長「新江碧	副本:本所環境控制組、預助理研究員券銘(均會附件)副本:本所環境控制組、預助理研究員券銘(均會附件)副本:本所環境控制組、預助理研究員券銘(均會附件)	主旨:檢送本所採購「建築風洞實驗設備風洞本體部分」案變更設計審查會會議紀錄己份如 查照。	附件:如主旨 附件:主要正月十九日 建别:普通科	受文者:陳技士子良 受文者:陳技士子良 #A###################################	內政部建築研究所 函
ж 	主任碧塔。	如附,請) 二 總	

T、 教會 (下午五時正)。	3為期本契約範順利如期完工驗收考量,中銅公司同意員操本豐更所增加費用以爭取行政作業時效, 影響。 2本次變更項目經中銅公司估算,將增加額外成本約六十七萬四千九百零四元整,但對於本契約覆約期限並不 1所提變更內容經風洞設備小組完成初審及本次與會出席委員審查結果,均表同意。	九、姑論:	21其餘變更項目均屬可行。 1以壓充力板取代強化玻璃,安全性較高,且未來如有需要時,亦可做局部更換。 林教授顯輝 (沈教授銘秋代):	3總括本次所擬變更項目對未來風洞實驗能有較高的安全性與便利性。尚屬合宜且可以接受。安全性有更深一層的保障。	2風洞本體觀測視窗材質由 10 mm 厚強化玻璃艇變更為 20 mm 厚之透明壓克力板,應可對未來實驗操作人員1對於第一、二測試現上蓋板之材質由三夾板擬變更為透明 PC 板,將有益於風涧本體使用性與耐久性。蓄軟投搖義 (陳教授遠域代):	八、與會審查委員發言要點:	七、風測設備小組簡報:(略)	六、承辦單位報告:(略)	立、主席致詞:(略)。	

附件も

內政部建築研究所 建築風洞實驗設備風洞本體部分試車起錄

項目:第一轉角段台車 時間:93年2月25日

馬達滅達機規格: 0.75 KW, 220 V, 3 相, R:1/273, 屋外形。E 级规雄。 附熊車、額定電流: 3.1 Amp。

項次	DE. 49	1	测试结果
1	釉水滑脂味锅(共8個) 7躍 認. 走行测试 東行、西行運車云		宿题
2			南行.西行遣南平川夏
	15 mb	東西向	± 1.0 mm
3	原點回解測試	南北向	± 1.0 mm
		東側	作动獾鱼
4	極限開闢作動測試	西侧	作动演奏
	100 10 10 10 10 10 10 10 10 10 10 10 10	東行	1.9 ±1
2	連轉電流 (安培)	西行	1.9±1

下民

風洞籌備小規:

+ 11 = \$3.3

205

附件七

內政部建築研究所 建築風洞實驗設備風洞本體部分試車紀錄

項目:第一測試段上蓋板升降機構 時間:93年2月X5日

內政部建築研究所 建築風洞實驗設備風洞本體部分試車紀錄

•

W. ...

10.00	转承滑盾	升降動作	作是否平顺	極限閉腸	作動確認
게표	喧嚣	升	倖	上限點	下限點
1	0K	灵	是	0K	٥K
2	υk	S.	泉	OK	OK
3	υK	8	灵	OK	OK
4	οK	1. Contraction of the second	炙	οK	oK
5	oK	丧	是	υK	oK
6	pK	是	E.	OK	ok
7	θĶ	是	長	OK	ok
8	0K	240	*	oK	0K

馬達減達機規格:0.2 KW, 220V, 3 相, R:1/273, 附羔卓。

+ 40

風洞籌備小灶:

內政部建築研究所 建築風洞實驗設備風洞本體部分試車紀錄

項目:第一測試殺直徑1米固定式迴轉盤 時間:93年为月11日

項:水	· 功 能 需 求 回魏定伯請臣 < 1 座。	測 試 结
2	梁而昇陸行程 ≥ 500 nm。	600 mm
3	迴轉速度 0.5-1.0 rpm +	0.8 mm · 運轉平順 ·
4	可在第一控制室內由電腦控制及 現場千動控制。且能定位於任一角 度。	百井控制室内(第一) 内电船 控制及在建築于动控制 能免俭於任一角庭。
5	盤面轉動時,須採:盤面下降→迴 轉→上昇的操作控制模式。	操作模式: 盤而下降(12mm)→並 →上昇, 選轉平順。
6	股有原點(Home)按鈕,下指令後盤 面就可自動面到原點位置。關機再 鼓動時盤面需有主動回到原點位 置的功能。	1.按右原美按钮,壁面可 自动原是位置。 2.関机固綮动整面可主之 同到原具位置
	升降馬達滅速機規格	YASUKAWA FECQ-T1 400Wx220Vx3 \u03c6
an ale	迴轉伺服馬達規格	三菱 1 KW 220V 3 Ø
MG for	馬達運轉電流(安培); (升降馬達額定電流: 1.9) (迴轉馬達額定電流: NA)	昇:1.4 降:1.4 坦特:1.0

內成部建築研究所 建築風測實驗設備風洞本體部分試車紀錄

項目:第二測試段直接 2.6 米固定式迴轉盤 。 時間:93 年 3 月11日

項次	功 能	常	求	测	試	結	*
1	迴轉定位精度 ≦	1度。		0.1 度			
2	盤面昇降行程 ≧	: 600 mm •		606 mm			
3	迴轉達度 0.5~1.	0 rpm =		0.8 rpm	· 運轉平)	頁 *	
4	可在第二控制室 現場手動控制。3 度。	內由電腦相 L能定位於有	E 射及 4 一角	可在钓枪	第二控制 反在現場 位於住—	皇內由 詩动控 · 角慶.	21113 制.
5	盤面轉動時,須非 轉→上昇的操作	朱: 载而下四 控制棋式。	₩	操作棋 →上昇	式:盘面7 ,運轉平川	F 稈-(12mm) 町・	→迎林
6	設有原點(Home) 面就可自動回到 啟動時盤面需有 置的功能。	按鈕,下指令 原點位置,目 主動回到局	>後盤 【機再 (點位	1.左按到 2.刑 31,	原美授到 原美位置 ~再罄动 東美位置	卫黎丽 整面可:	自动 EZD [[
7	內、外盤之間附 能在現場手動選 迴轉,b.內、列 作(在原點位置)等	有插銷,實點 译 a. 只有內 發達站在一 平雨種操作部	3時須可 9型動 見之動。	a. 内、约 b. 可外型	- 型可進站者 是不動只有內	地動作 型超時	-
	升降馬達滅遠機	规格		YASUK 400Wx2	AWA FEC 20Vx3 ∳	Q-TI	
胡林	迴轉伺服馬違規	格		三菱 1	KW 220V	3φ	
规格	局違運轉電流(安 (升降馬違額定電 (迎轉馬違額定電	培): 流: 1.9) 流: NA)		昇:1.5 巡轉:1	5 降:1,4 ,0	(4) ² 2 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	4.06

內近部建築研究所 建築風洞實驗設備風洞本體部分試車紀錄

. .

項目:第一測試段三線移動機構, 時間:93年>>月)日

-M-N	功 能	富利	展測	拢	結	果
1	在 X 軸向(測試長 動方式位移,且可	(炭向)上,可以 「隨時固定於執」	手 軌道長 道 時固定	33.8 米 在軌道上	可手動移 。	動並可阻
2	三維可移動範圍 軸向(水平橫向)3. 方向)1.8m。	:X 軸向 4.0m。 2m。Z 軸向(垂	Y 直 乙軸向	4,005mm 1,820mm	1•Y 軸向 3 □,走行平	,240mm, 项。
	定位精度:1 mm/	'ln -	$\leq 1 \text{ m}$	m/1m		
3	X、Y、Z 釉速度	≲ 6 m/min•	X 轴向 Y 轴向 Z 轴向	: 3.6 m/n : 3.6 m/n : 3.6 m/n	nin nin nin	
4	三維移動機構可 由電腦控制及現4 定位於任一位置。	在第一控制室) 骨手動控制•王)	可能第一	-控制 :現場: 注化於	室內曲 き动控器 任一位	腦控則
规格	伺服馬達規格:) 3 2 馬達運動雪油(本)	(軸向(2 台) (軸向(1 台) (轴向(1 台) (轴句(1 台)	X 轴:3 Y 轴:2 Z 轴:8	三菱 1 K 三菱 1 K 引除 0.2 1	W 220V 3 9 W 220V 3 9 KW 220V 3	6 6 qð
	(X 軸向馬達額定) (X 軸向馬達額定) (Z 軸向馬達額定)	電流:NA) 電流:NA) 電流:NA)	X 軸向 Y 轴向 Z 轴向	1 : 2,4 : 0,5 : NA	X 轴向 2	2.3 10 10 6

内政部建築研究所 建築風洞實驗設備風洞本體部分誠準紀錄

5

項目:第二測試段三維移動機構, 時間:93年3月11日

-14	能	席	求	31	試		站	果
生X 轴向 动方式位)(测试段 移,且可	縱向)上, 隨時固定	可以手 於軌道	航道長 時固定	17.2 汞 在轨道上	,可手 	動移動:	性可阻
三维可移 由向(水平 方向)1.8m	動範囲: └橫向)5.3 n。	X 釉向 4 2m,Z 釉(.0m,Y 句(查直	X 釉向 Z 釉向	4,005mm 1,820mm	n·Y射 n,走	h向 5,20 行平順	3mm •
定位精度	:1 m/	ln ×		$\leq 1 \text{ mm}$	n/1m			
• ¥ • Z :	轴递度 :	≤ 6 m/mi	n •	X 軸向: 3.6 m/min Y 軸向: 3.6 m/min Z 軸向: 3.6 m/min				
三维移動 計電腸控 定位於任	·機構可, 制及現場 一位置。	在第二控 6手動控章	制宣内]•且能	可获繁 控制 可以并	第二控) 反在日 上12於	制窒 任一	内由: 利动材 12置	加盟
贝服馬達	規格: X Y Z	轴向(2 台 轴向(1 台 轴向(1 台	;) ;)	X 韩 ; 3 Y 韩 ; 3 Z 釉 ; 8	E.菱 1 K E.菱 1 K 国際 0.2	W 220 W 220 KW 22	IV 3 φ IV 3 φ 20V 3 φ	
与達運轉 X 軸向馬 Y 軸向馬 Z 軸向馬	電流(安))達額定()達額定()達額定(8): 記流:NA 記流:NA 記流:NA 記流:NA)	X 轴向 Y 轴向 Z 轴向	1 : 2.4 : 0.5 : NA	ХŅ	\$1 2 : 2 (1)	2 B. WI
	カ方町水平町 10 方町水平町 10 市 10 市	b方式位移, 且可 = 維可移動範囲: = = = = = = = = = =	b方式位移, 且可隨時固定 2.維可移動範囲:X 釉向 4 h向(水平積向)5.2m,Z 釉(5向)1.8m。 2.位精度:1 mm/1m。 、Y、Z 軸速度 ≤ 6 m/mi 2.维移動機構可在第二控 1.電腦控制及現場手動控象 2.位於任一位量。 3.酸馬違規格: X 釉向(2 名 Y 釉向(1 名 2.釉向馬違額定電流:NA 2.釉向馬違額定電流:NA	b方式位移, 且可隨時固定於軌道 = 維可移動範囲:X 釉向 4.0m, Y h向(水平積向)5.2m, Z 釉向(壺直 5 向)1.8m。 = 位積度:1 mn/1m。 、Y・Z 軸速度 ≤ 6 m/nin。 - 準移動機構可在第二控制室内 1電腦控制及現場手動控制。且能 2位於任一位星。 	b方式位移, 其可隨時固定於軌道 時固定- 4年可移動範圍:X 軸向 4.0m, Y a向(水平橫向)5.2m, Z 軸向(查直 5向)1.8m。 2位精度:1 mn/1m。 S 1 mn 、Y・Z 軸速度 S 6 n/min。 X 軸向 、Y・Z 軸速度 S 6 n/min。 Y 軸向 Z 軸向 2 軸向 2 粒符 2 粒符 2 粒符 2 粒向(2 台) X 軸; 3 Y 轴向(1 台) Z 軸; 3 2 粒向(1 台) Z 軸; 3 2 粒向馬達額定電流:NA) X 轴向 2 粒向 2 粒向 2 粒向 3 粒 3 粒 4 粒 5 1 mn 5 粒 5 粒 5 粒 5 粒 5 粒 5 粒 5 粒 5 粒	b方式位移, 正可隨時固定於軌道 時固定在軌道」 2年可移動範囲:X釉向 4.0m,Y h向(水平橫向)5.2m,Z釉向(查直 方向)1.8m。 2位精度:1 mn/1m。 工 植育之業:1 mn/1m。 公 轴向 1,820mm 二 如前方式, 6 m/1m。 文 4 約 約 3.6 m/2 本 4 約 約 4,005mm Z 釉向 1,820mm 二 4 約 3.6 m/1 文 4 約 5 3.6 m/2 Y 軸向 3.6 m/2 Z 釉向 3.6 m/2 Z 細向 3.0 m/2 Z 細h 3.0 m/2 Z 細h 3.0 m/2 Z 細h 3.0 m/2 Z 細h 3.0 m/2 Z	b方式位移, 直可隨時固定於軌道 時固定在軌道上。 2年可移動範圍:X軸向 4.0m,Y b向(水平橫向)5.2m,Z軸向(查直 5向)1.8m。 2位精度:1 mm/1m。 本格局:3.6 m/min x轴向:3.6 m/min X轴向:3.6 m/min X轴向:3.6 m/min X轴向:3.6 m/min X轴向:3.6 m/min X轴向:3.6 m/min Z轴向:3.6 m/min 万死第二控制室 控制及在現式 方面。 万元第二控制室 均及在現式 方面。 五十二章 105克(空於(主- 105克(空於(主- 105克(空於(主- 105克(空於(主- 105克(空於(主- 105克(空於(主- 105克(空於(主- 105克(空於(主- 105克(空於(主- 105克(空於(主- 105克(空於(主- 105))))))))))))))))))))))))))))))))))))	b方式位移, 且可隨時固定於軌道 i面包定在軌道上。 X 軸向 4,005mm, Y 軸向 5,20 Z 軸向 1,820mm, 走行平填 Z 軸向 1,820mm, 走行平填 S 和向 1,820mm, 走行平ц S 和向 1,820mm, 上 S 和向 S 和向 1,820mm, 上 S 和向 1,820mm, 上 S 和

內政部建築研究所 建築風洞實驗設備風洞本體部分試卓紀錄

			Ŕ	无流测力	ς	語	1. 荆州市	ř,	0.2
項	2 44	载定层力	-	控制	宝	-81.18	推り	重量	大官 法系
次	A) 47	(kg/cm [°])	現場	第一	第二	规相	第一	第二	
1	第一測試役 入口	0.28	2/0	øκ	٥K	oK	ok	ok	否
2	第一測試段 北側	0,28	DΚ	0K	OK	ok	oK	ok	The
3	第一測試段 南側	0.28	014	ok	OK	ok	٥K	٥K	万
4	第一轉角段 人口	0.28	ok	0K	٥K	υĶ	٥K	ok	香
5	第一轉角段 出口	0.29	OK	υK	οK	DK	٥K	οK	75
6	第二测试段 北侧	0,28	OK	OK	oK	0K	οK	ōk	The
7	第二测试现	0.28	OK	DK	οK	OK	oK	ok	The

項目:充氟氣密條 時間:93年7月26日

凤滨等做小组;

雅武

队政部建筑研究所建筑压滞實驗能

受立者: 1. 政部建築研究所

立旨:函送庫源籌建小組代辦貴所庫源實驗館93年度儀器設備採 購計畫表,預算金額為捌百壹拾蓴元,如附件,請查照。

說明:

- 1. 附件一為採購計畫案之各項儀器設備需求表。
- 2. 附件二 為採購計畫案之執行時程表。

召集人:甘韦易 教授

聯絡人: 成大航太所研究生 李信宝 06-2757575 ext 63626

附件九

93 年度風洞館儀器設備採購 預定執行進度及結果表

項次	品名	單位	預算金額	決標金	備註
			(元)	額(元)	
壹	六軸力感測器設備	項	525,000	470,000	93.04.19 開標,決標,預定
					93.06.19 交貨。
					93.06.20 點交建研所。
貢	氢離子雷射、雷射密閉循	項	1,800,000	1,530,00	93.04.19 開標,因參標廠商家數
	環冷卻系統及光學平臺			0	不足流標,93.05.06辦理第二次
					招標,決標,預定 93.08.03 交
					貨。
翏	資料擷取糸統	項	463,120	380,000	93.04.19 開標,決標,預定 93.
					07.04 交貨。
					93.06.17 點交建研所。
肆	皮托管、應變規片、訊號 999	項	286,610	225,000	93.04.19 開標,決標,預定 93.
	泳守 、				06.19 交貨。
1-					93.06.17 點交運研所。
1五	早 蚶 加 迷 規 、 二 蚶 加 迷 規	埧	392,440	338,000	93.04.19 開標,決標,預定 93.
					06.19 父員。
**	四十声则人五十九声嘶迫	73	70.152	70.152	93.06.30
采	個人電腦介面下及電纜線	埧	/8,153	/8,153	93.04.08 父貞。 + 切图上英二乙酚四切桠
					木超迥丁禹兀个辦理招信。
ᄞ	個人電腦 確田軟體	та	122 660	125 195	93.03.03 和文建研別。
171	個八电 旭、 悠田料腹	识	155,009	123,183	93.04.20 运计,93.03.07 文員。 (由信煙客只) 不辦理切煙
					(中后标准如)小新连拍标。 03.05.07. 點交建研 所
Ŧク		та	1 822 000	1 600 00	03.0/10
-17	物架等	坝	1,022,000	1,000,00	不足流標 93.05.06 第二次招
				-	檀 決種 預定 93.07.04 完工
拾	精密定盤	項	98,000	89,500	93.05.05 交貨。
			,		未超過十萬元不辦理招標。
					93.05.05 點交建研所。
拾壹	金屬工作桌含虎鉗	項	96,000	96,000	93.04.23 交貨。
					未超過十萬元不辦理招標。
					93.05.05 點交建研所。
拾貳	立型鑽床、桌上型高速鑽	項	86,500	75,470	93.04.13 交貨。
	床及零件整理櫃				未超過十萬元不辦理招標。
					93.05.05 點交建研所。
拾參	精密量具數位卡尺	項		88,590	93.05.06 請購。
	數位局度計				
<u>ተለ F</u> ኳ		73		10.500	93.05.26 點父運研所。
指肆	茹捎型 И科	リ		19,500	93.03.0/
					不迫迥干禺兀个辦埕掐偿。 02.05.26 匙六建亚氏
					ソコ.リコ.20

93.7.20 製表

拾伍	油壓板車、油壓吊車、	項		56,700	93.05.06	請購。
	油壓堆高機				未超過十萬	萬元不辦理招標。
					93.05.28	點交建研所。
拾陸	捲揚機及吊架	頂		57,800	93.05.17	請購。
					未超過十萬	萬元不辦理招標。
					93.06.24	點交建研所。
拾柒	壓力感應器隔膜片	頂			93.05.17	請購。(消耗品)
34714		~		63,000	未招過十萬	
					93.06.17	點交建研所。
拾捌	錶頭厭克力萎板	頂		33 000	93 05 06	請購(消耗品)
11111				22,000	未招過十萬	第二不辦理招標
					93 06 17	<u>點交建研所</u>
±△∓⁄ı	坎غ	та		0.000	02 05 06	
1012	江町和空元刀木FM住	坱		9,000	25.05.00 キ担過十百	明時。(/H↑℃ロ) 第元不辦理切種
	17X				小胆胆 『	
<u></u> =*+∆	血燃化胆胆 燃電器	тБ		20.000	93.00.17	
頁(右	無烙絲用腳、癰龟舔	坦		20,000	93.03.00 j + t刀、凤 上 ī	肩脾。()月秋面 <i>)</i> 第二天她理切 题
					不超迴丁詞	禹兀个掰哇掐棕。 ■ ★ フ+ / 〒 ←
	朝井十日			07.050	93.06.17	結父建妍所。
夏夏	電動上具一批	垻		97,050	93.05.21	前期。
					未超過十月	禹兀个掰埋招標。
nn					93.06.17	點交運 研 所。
貢貢	木工電鋸工作平台	項		28,750	93.05.20	請購。
					未超過十萬	禹元不辦理招標。 ————————————————————
					93.06.24	點交建研所。
貳參	溫度顯示傳送器及感溫	項		23,814	93.05.20	請購。
	棒				未超過十萬	萬元不辦理招標。
					93.06.17	點交建研所。
貳肆	手推車及工具車	項		46,800	93.06.04	請購。
					未超過十萬	萬元不辦理招標。
					93.07.07	點交建研所。
貳伍	手工具及絲攻等一批	項		98,653	93.06.09	請購。(消耗品)
					未超過十萬	萬元不辦理招標。
貳陸	粗糙元鑄鐵模型	項		96,000	93.06.04	請購。(消耗品)
	(朱佳仁)				未超過十萬	萬元不辦理招標 。
貳柒	粗糙元鑄鐵翻砂木模	頂		31,000	93.06.04	請購。(消耗品)
	(朱佳仁)			,	未超過十萬	萬元不辦理招標。
貳捌	橋樑斷面實驗	頂		93 000	93 06 15	請購。(消耗品)
70101	端板鐵空 匙作(鄭啟明)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	未招過十萬	第二不辦理招標。
					93 07 13	<u><u></u> 站 动 动 动</u>
訂わ		T百		24 130	93.06.15	
兵 0-77		-7		21,150	未招過十萬	第二不辦理招標
 	测试码平台台声 爬	T百		90.000	93 07 12	<u></u>
≥ 11	从此投一口口半、 1C	-14		90,000	大招调十章	明元。 第一不觉理招桓
ふち		та		2 500		
多豆	中枕、 剄米、 化百米	坦		5,399	ソン.U/.12; + ±フン詞 ・ ゔ	肩胛。し/月秋の) 第二て前四₽b六
ムギ	(天岡日)					与几个新理 和父。
复诊	<u> </u>	貝		550	93.07.12	請賄。()月耗品)
4 4	(禾超過一副	禹元个掰埋點交。
參參	信號校正器	項		99,225	93.07.12	請購。
					未超過十萬	禹元不辦理招標。

緫	計	6,016,85
		5

預算總金額:

儀器設備採購總金額	8,100,000
委託代辦作業管理費	513,752
總計	8,613,752

附件十

內政部建築研究所建築區 浙實 除 第 書 建 小 組 93 年 度 第 一 六 會 議 記 錄

出點:建研所性能實驗詳庫 源館

時間:93年4月23日14:00~17:30

主持人: 首召集人素易

出席書:陳組長瑞玲、曹研究源暉、張副研究恭銘、唐教授榮華、鄭教授啟 明、朱教授佳仁、任教授森珂、陳扶土子良、胡博士志忠、李信宏、高義明

- - 二、各位委員庫源驗證實驗進場時間協調
 - 三、教育訓練規劃
 - 四、儀器設備使用及使用空間
 - J、模型製作相關事宜
 - 六、其仕事項

報告:(略)

- 討論事項:
- 記錄:李信宏
- 一、開始進庫 源實驗的時間(必須先完成移動機構拆除):
 - 1.預計6月10日完成庫源驗收,之後各位老師即可進場實驗。
 - 2. 甘教授提出, 日於測試區 M 三 維移動機構及 兩 側軌道 的影響, 會造 成流 場的擾動量很大, 建議應將兩測試區 M 的移動機構切除。
 - 3. 鄭老師及朱老師認為 Z 軸移動機構的影響會比雨側大。
 - 4. 唐 老 師 與 陳 子 良 先 生 覺 得 應 當 先 測 量 一 次 流 場 , 了 解 影 響 有 多 大 。
 - 5. 陳組長建議先做流場量測後,確認是否有切除的必要。
 - 主席結論:6月10日完成驗收後,先做測試區流場測試,確實了解移動機構對 流場的影響有多大。
- 二、各位委員庫 源驗證實驗進場時間協調:

 - 2. 鄭老師分為雨段時期做實驗,第一階段預計為6月28日到7月2日,第 二階段時間則為8月2日到8月6日。
 - 3. 朱老師的進場時間選擇在7月12日到7月20日。
 - 4. 而唐老師與任老師時間, 8月9日到9月10日為期一個月。

契約容量供電問題:

- 三、教育訓練規劃(每一驗證實驗做完後提供一項教育訓練並撰寫一份技術報告):
 - 1. 首教授首先說明教育訓練是必要的,要讓建研所的戶仁了解各項實驗如何 操作,希望各老師能夠安排。
 - 陳組長則認為建研所是扮演一管理者的角色,因此讓建研所的人了解各項 實驗以及庫派如何使用是必要的,而教育訓練理想上以一天為原則,早上 理論解說下午進行實作。
 - 3. 技術報告即為結案報告,結案報告使用 Wind Engineering 的格式,請鄭啟 明老師提供格式。
- 四、儀器設備使用及使用空間:
 - 1. 儀器的使用應該填寫建研所所提供的格式。
 - 2. 電腦及印表機只要有家具即擺上去,不須再填寫借係。
- 五、模型製作相關事宜: 日 各 老 師 自 行 準 借 模型 製 作,經費 方 爾 於 93 年 度 皆 有 編 列 毎 位 委 員 模型 製 作 的 費 用,單據統一 日 成 木 核 銷。
- 六、其仕事項:
- 1. 住的方面:

建研所建議:各老師的學生可以住在防火實驗室的宿舍,住宿費每天 300 元 報銷。

2. 差旅費方面:

基本上只能報一名研究助理,如果其付助理建請建研所宇案處理。