

队政部建筑研究价格后四笔都告

压 淮 實 縣 军 系 統 整 台 測 詳 暨 压 淮 性 能 駼 證 砰 完 (1)

研究 單位: 小政部建築研究所

計畫主持人:葉組長祥海

共 后 主 持 人 : 首 教 授 表 易

研 究 人員:鄭教授啟明、吴教授國昌、胡教授志忠

研 究 助理:陳扙士子良、李信宏、蔡明樹

捕母

關鍵詞: 庫 消實驗館、性能驗證實驗

本計畫主要目的為協助於政部建研所建置展消實驗館,自含建立 压 派 系 統 及 相 關 性 能 實 驗 驗 證 , 以 測 試 該 压 派 是 否 符 台 N 政 部 建 築 研 究 所規劃之性能及品質要求。 庫 基本上 為一 閉 迎路 系統 , 具 有 雨 個 測試區,測試區截面分別為 4m×2.6m 及 6m×2.6m,最高速度可達 30m/s 以上,當從辜煙霧擴散實驗時,該閉迎路庫淨可切換為開放式 **庫** 市。 庫 市實 驗 館 主要 碩 體 包 含 : 建 築 物、 庫 市 本 體、 庫 扇、 變 頻 器 及儀器設借等,已於民國93年5月底完成驗收。隨後進行風源基本 性能測試,測試項目自含: 庫 渾轉之穩定性測試、庫 扇變頻器特性 試驗、測試區流場之測試(測試區截面速度分佈不均勻度及紊流強 度),以上基本性能測試日主持人甘未易教授負責。本計畫協戶主持 人鄭啟明教授製作完成一橋樑測試模型,使用所購置量測儀器設備, 在 事 第二 測試區 進行實際測試,以利未來從事實際的橋樑模型測試 工作。本計畫了一協戶主持人吳國昌教授完成了煙流擴散實驗,得到 預期測試結果,為未來從事污染擴散的測試工作或定基礎。

ABSTRACT

Keywords: simulation of wind effects on bridges, validation program, training course

The construction and calibration of the ABRI Building Aerodynamic Wind Tunnel Laboratory are scheduled to be completed by the spring of 2004. Following the calibration, a series of experiments, referred to as the validation program here, will be conducted out in the year of 2004, with the goal of validating the wind tunnel capabilities. The validation program will be implemented by comparing the experimental results obtained with those known in the literatures. Specifically, the validation program will be performed with the experiments on simulation of wind effects on bridges.

Moreover, in this project a set of training courses on operation and maintenance of the ABRI wind tunnel will be offered to the technicians of ABRI, to prepare them for future operation of the tunnel facility.

P 鈴

第一章	絹論	.1
1.1	前言	.1
1.2	平笔节法	.2
1.3	以果凡容	.2
第二章	压 氧	.4
2.1	前言	.4
2.2	压氧廠收及基本性能測詳	.4
第三章	压氧變填器	.6
3.1	前言	.6
3.2	压氧變類器目前工程進度	.6
第四章	压沛本體	.7
4.1	前言	.7
4.2	压派 本 體 工 程 進 度	.8
第三章	量測儀器採購	10
5.1	前言1	10
5.2	目前進度說即	10
第六章	压派基本性能測詳實際	11
6.1	前言1	11
6.2	測詳項目	11
	6.2.1 压滞逻辑之穩定性	11
	6.2.2 压 寂變順 器 試 器	13

6.2.3 測譯區流場之測譯	13
6.2.4 流場偏命 4	14
6.2.5 測譯區軸后壓力梯度	16
6.2.6 測譯區邊界屬厚度量測	16
6.3 量測儀器	17
6.4 压	18
6.4.1 压派逻辑之穩定性分析	18
6.4.2 压 新變	20
6.4.3 测≓距均争度及紊流强度	20
6.4.4 邊界屬量測結果	22
6.4.5 流場偏市 4	22
6.4.6 軸市壓力 梯度	22
6.5 基本性能測詳結論	23
第一章 橋樑斷面模型詳驗	24
7.1 前言2	24
7.2 橋樑空靠動 4 基本理論	25
7.2.1 橋樑字靠動 # 穩定特性	25
7.2.2	26
7.2.3 颠振	26
7.2.4 抖振反應2	26
7.2.5 湄流顛振	27
7.2.6 基本 3 程式	28

7.3 压力 係數及顛振導數	29
7.3.1 压 🕯 係數	29
7.3.2 颠振導數	30
7.4 颠振舆抖振之評后方法	30
7.4.1 颠振之临界压速之評后模式	30
7.4.2 橋樑斷函模型製作	33
7.4.3 斷面模型使生之端版效應	34
7.4.4 實際儀器介紹	35
7.5 橋樑詳驗之區 非設計與規劃	37
7.5.1 端饭配置	37
7.5.2 橋樑斷面模型討除-平板斷面	37
7.5.3 橋樑斷西模型討殿-席屏溪橋斷西	38
7.5.4 橋樑斷西模型詳驗內容	38
7.6 斷面模型風源詳驗結果	38
7.6.1 压 🕯 係數	38
7.6.2 颠振導數	39
7.6.3 串屏溪橋斷面之頭振臨界压速	41
7.7 橋樑測詳實驗結論與建議	42
7.7.1 第二詳聯段儀器設備使事心得	42
7.7.2 橋樑測詳實驗結論	43
第八章	47
8.1 前言	47

47
47
49
50
51
52
57
57
57
57
58
59
60
61
62
63

第一章 緒論

1.1 前言

卟政部建研所於93年5月底在成功大學歸仁校區完成庫非設借驗收[1,2,3],該庫非主要性能說明如下:其為一閉迎路系統,具有所條測試區,測試區截面分別為4m×2.6m及6m×2.6m,最高速度可達30m/s,該庫非之測試區位於建築物瓜,其餘部分則裸露於室外,整體而言該庫非本體之總長度為77.9m,最大寬度為9.12m,最大高度則為15.9m。

該建築庫 市實驗館將 於探討建築物(含橋樑)外部庫環境及其受庫 才作用時之名項棄動力現象與反應,預期之研究工作項目自含建築物 庫環境研究、建築物承受庫力之研究、建築物受庫力作用之反應及公 共設施耐庫性能研究等[4,5,6]。除建築物庫工程研究外,該庫 市實驗室夏可與國本學術界合作從事流體力學相關研究,自於該庫 市之測試區具有較大的截面積與空間,此一特點可以解決在一般小型庫 市中實驗量測上所遭遇的空間解析度不足的問題,因此該室之庫 市將可 萬國本流體力學實驗研究提供一個夏好的實驗環境選擇。

待庫派本體、庫扇及變頻器等完成驗收後,即進行庫派基本性能 測試,以確認庫派基本性能可滿足設計要求。測試項目包含:庫派運 轉之穩定性測試、庫扇變頻器特性試驗、測試區流場之測試(測試區 截面速度分佈不均勻度低於 0.5%及 紊流強度低於 1%),基本性能測

1.2 砰完~法

整體而言,風源實驗館之籌建涉及許多不戶領域,諸如建築學、流體力學、設計、製造、監造、組裝、採購、驗收等,為使各工作項目能順利進行並相互協謀,本計畫主持人將負責整個計畫的綜整管理、進度協謀、工作調配等,並定期舉行會議,議決分工事項及討論各工程之執行進度,檢討籌建過程及驗收所發生之問題並壽求解決方法。

待庫派本體、庫 扇及變頻器驗收後,即展開對該庫派基本性能測試,以確認庫派基本性能可滿足設計要求。為了夏進一步建立庫源館之試驗能量,本計畫將配合使用製作完成之橋樑測試模型, 下時整合相關的量測儀器設備,以進行實際測試。並於實驗過程中舉行會議,解決該庫派所遭遇相關問題。

1.3 办果凡容

第二章 压氧

2.1 前言

庫扇的主要功能除了供給棄流起始動能外,並補充棄流在庫淨理 路中流動所產生之壓力損失;本庫淨之庫扇位於第二測試區後,等圓 形管路結構,該庫扇搭配尾罩(nacelle)、預轉片及平整片等,構成庫 淨之驅動系統。

基礎與建築結構分開,此外庫 解管道以軟質緩衝墊(compensator)與前後管路相接。該庫 解目前於93年5月26日驗收完成,其基本性能簡述如下要求如下所述:

- (1)型式:直接傳動軸流式庫 扇。
- (3) 库 扇直 徑 為 4.75 m, 庫 扇整體長度約 7.62 m, 庫 扇中心體(center body) 包 台 驅動 馬 達 及 避 免 尾 流 形 成 之 尾 錐(tail cone)。
- (4) 最低穩定庫量不大於12m³/s。
- (5)库 尉馬達(大后)最大馬力為500kW。
- (7) 庫 扇本 見 其 有 強 制 空 氣 冷 卻 裝 置 。

2.2 压 転職收及 基本性能測詳

車,並進行「庫源整體整合試車檢討會議」確認試車結果(附件一), 測試結果之最高轉速 第 350rpm 時, 第一測試段所量得庫速已達 37.6m/s 超過台約規範 30m/s,在此轉速下庫 解性能 第 87%亦台刊規 範中所要求 85%;規範中要求在庫 解操作轉速範圍 , 距離庫 解 6 公尺位置處,最大噪音 第 85db(A),實際測試結果 第 80db 符合要求, 豪頓公司的測試結果數據如附件二。

93年5月21日日台灣豪頓公司派代表對建研所相關人員進行教育訓練。

93年5月26日日建研所代表、籌建小組代表及廠商代表完成估驗(如圖1)進行驗收。

第三章 压氧變頻器

3.1 前言

目於木變頻器、庫派本體及庫 解採獨立發包,因此有意投標廠商 需配合庫 解得標廠商 所採用 馬達來設計 木變頻器,此外 木變頻器得標 廠商亦需配合庫 派本體及庫 解安裝工程進度,以利變頻器的安裝、試 車及 誹整。變頻器基本規格如下:

輸出馬 1:500KW

使用電壓:三相 3300VOLTS

使用馬達:500KW 16P 3 PHASE 3300VOLTS 52 Hz

SPEED: 390 RPM

3.2 厘 新變 類 器 安 裝 進 度

庫 扇變頻器已於 92 年 11 月底完成組裝估驗, 93 年 3 月 20 日變頻器廠商任士公司派遣美國原廠技師協助測試,於 93 年 3 月 26 日完成變頻器部分測試,其測試結果與合約中所規範相符合(附件四)。 93 年 4 月 2 日會區內政部建築研究所代表、籌建小組代表及其他二家廠商代表完成庫 事整合試車(附件一)。

93年5月19日日任太公司派代表對建研所相關人員進行教育訓練 93年5月26日日建研所代表、籌建小組代表及廠商代表完成估驗(如圖1)進行驗收。

第四章 压油木體

4.1 前言

隨後流體通過一縮收比為4.71:1的收縮段,進一步降低流場中的 紊流擾動強度而得到均勻流分佈及低紊流強度之出口流場。實驗時可 於測試區中置入 spire及 trip等障礙物,以達到建築庫工程實驗要求之 邊界層厚度。

在第一測試區中配置有3個旋轉盤(turn table),第一轉盤直徑1m 安置於距測試區入口3m處,而第二及第三轉盤直徑3m,其中心位置分別距測試區入口約25.5m或31.5m處,並以機械控制使其可作旋轉及上下運動,其中turn table 1處之流場速度分佈均勻,適合從辜一般流體才學研究,而turn table 2與3則以建築物受庫才作用的空棄動力學研究及污染擴散實驗等立。測試區中面對控制室的側壁日強化玻璃所構成,此有利於實驗時對流場的監控及觀測,而可掀式側壁視帘則置於測試區入口下游9~12m、18~21m及30~33m之兩側處。測試區中亦設有移動機構,其採用整組手推方式移動,移動範圍涵蓋測試區所有軸向距離,移至定位後,移動機構本體亦能做三軸運動並日電腦控制以

流體通過第一測試區後,經過2個轉 £ 段進入 另一 整流段,此整流段自含有 3 層整流 辦,而 後流體進入 第二 測試區。

在第二測試區中配置有 1 個旋轉盤,其中心位置距測試區入口為 15m (稱為 turn table 4),轉盤的直徑為 3m,轉盤以手動方式作旋轉及上下運動。Turn table 4 將以橋樑測試為立要用途,測試區中面對控制室的側壁亦為可透視壁面,其可掀式側壁視窗置於測試區入口下游 3~6m、5~21m之兩側處。

中郵公司於92年10月3日開始進場組裝,於92年12月23日 完成庫派本體組裝,日建研所代表、庫源籌建小組代表及中鄉公司代 表完成估驗(附件五),中鄉公司隨即進行細部裝修及測試。籌建小 組測試過程發現部分設計上不足的部分,因為會影響以後庫源操作人 員不便,日籌建小組內建研所反映後,建研所陳瑞玲組長遂主持「建 築分動實驗設備庫派本體部分」變更設計會議,會中日籌備小組代表 申審查委員提出變更之原因,審查委員亦戶意修改,所增加費用日中 雖公司自行吸收(附件六)。

中雖公司於93年3月26日前完成庫派本體試車作業(附件七), 且於93年4月2日會戶建研所代表、籌建小組代表及其他廠商代表 完成庫派整合試車(附件一), 93年5月18日中雖公司完成合約中 教育訓練,93年5月26日日建研所代表、籌建小組代表及廠商代表 完成驗收(如圖1)。

第三章 量測儀器採購

5.1 前言

目於庫消實驗館主體碩體(建築物、庫亦本體、庫 扇、變頻器及 量測儀器等)均於民國93年5月底完成庫消實驗館整體的系統建置及 整合,因此,為配合庫亦本體系統驗收後之性能實驗,庫消籌建小組 已於91年度規劃數個庫消性能實驗項目[3],包括:庫消基本性能測 試、必邊界層發展之庫消試驗、橋樑試驗、高層建築在平滑流場及邊 界層流場之實驗、煙流擴散特性之檢定等,本計畫將於93年庫源驗收 後優先完成庫消基本性能測試,以配合庫消之驗收,待基本性能測試 滿足設計要求後,隨即進行其它實驗項目。然為使後續其它已規劃之 實驗項目能順利進行不致中斷(於93年進行),本年度亦將配合完成於 邊界層發展之模型製作、橋樑測試模型製作及高層建築模型製作等。

因此為順利上述各項實驗之進行,本計畫將依據 91 年庫 沿組 成員所擬定之儀器需求及規格[2],偕 后成 大航太科技研究中心負責 執行儀器設備的採購及驗收。

5.2 目前進度說問

93 年度所採購的量測儀器為新台幣捌佰壹拾專圓整 (附件八), 本年所量測儀器採購需要招標共計有六項,於93年4月19日第一次 開標,有四項順利完成招標,其餘2項因參標廠商不足流標,93年4 月30日辦理第二次招標均順利標出,量測儀器採購目前進度及結餘 如附件丸。

第六章 压派基本性能測試實驗

6.1 前言

6. 2 基本性能測詳實驗項目規劃

6.2.1 压滞逻轉之穩定性

目於庫消實驗一般均要求測試區入流流速須蓋定常流情況(非定常流實驗除外),以探討在該定庫速條件下之相關流場特性,因此就本庫而言,首先當使用者給予一設定速度後,測試區中速度隨時間之變化即為本項測試重點之一,該測試結果將有助於了解本庫消測試區速度到達設定速度所需之時間。除此之外,當測試區中的平均速度到達設定速度後,該速度信號是否包含非定常擾動分量亦為本測試所

關切之問題,造成非定常擾動分量的主要來源自含[7,8]:(1)庫 駐運轉性能不佳所造成之 進期性速度擾動,(2)庫 非本體本 申設計不良,導致管道 P. 流場分離造成 進期性或 非 進期性之速度擾動等。若測試結果發現上述不預期之速度擾動現象,則庫 非設計 書應設法 尋找該速度擾動源並解決之。

速度及溫度變化量測將分別於第一測試區及第二測試區進行,原 速之量測點將選擇於測試區的中央位置,量測儀器可選擇使用皮托管 與薄膜式壓力感測器方式(圖3)或者使用熱線測速儀(圖4),由於本測 試之速度響應要求並非很高,主要為評估平均速度隨時間之變化,且 單一組測試時間甚至可能長達5個小時以上,因此為免去熱線測速儀 較為繁複之校正程序及受溫度影響所造成量測誤差,使用皮托管加薄 膜式壓力感測器方式會是較進當之選擇。庫非中溫度之量測則可使用 一般熱電偶溫度感測器。

測試過程將上時紀錄測試區中速度及溫度,測試時間將視實際情況以可調整,建議初始測試時,可將測試時間拉長至5小時,待檢視測試結果後,再可以斟酌調整。測試條件至少需包含:最低穩定庫速

(指測試區中之速度)、中等庫速及最高庫速情況下,分別進行。

6.2.2 压氧變頻器特性詳驗

因此本測試之目的僅在於初步測試變頻器之控制性能,測試方在空庫 非情況下進行,主要探討:(1)庫 扇轉速與變頻器頻率之關係,(2) 測試區中平均速度及紊流強度與變頻器頻率的關係。後者可幫助使用 者了解該變頻器之最高及最低穩定轉速。

6.2.3 測譯區流場之量測

測試區流場之量測主要將探討在不戶速度下測試區不戶截面的速度及紊流強度分佈。

康 净測試區流場品質之優劣,會直接影響到 庫 演 驗結果之可信度,因此設法改良或改善 庫 游 滿場品質 直 至 某一可接受程度, 為 庫 游 使 肝 書 所需 爾 臨 的一 嚴 肅 課 題。一般 而 言, 庫 游 流 場 品 質 万 以 庫 淨 測 試 區 截 面 平 均 速 度 分 佈 的 不 均 身 度 小 於 ± 0.5% 及 測 試 區 軸 向 紊 流 強 度 低於 1% 來 作 為 評 判 的 標 準 。 雖 然 本 庫 游 來 之 立 要 目 的 為 從 辜 建 築 物 相 關 空 棄 動 力 學 研 究 (通 常 會 以 人 為 方 式 擾 亂 入 流 流 場) , 然 而 該 庫 非 另 一 目 的 為 提 供 國 സ 研 究 學 書 從 事 一 般 流 體 力 學 研 究 , 因 此 高 品 質 流 場 之 要 求 仍 是 有 心 要 的 , 且 良 好 品 質 之 流 場 , 將 有 易 於 以 人 為 方 式 控 制 測 試 區 瓜 的 流 場 型 態 。 本 庫 流 場 品 質 校 驗 將 以 上 述 之 不 均 自 度 及 紊 流 強 度 為 參 考 依 據 。

本實驗項目將在不戶速度下量測所測試區不戶截面速度及紊流強度分布。實驗將分別於庫非館第一測試區(2F)及第二測試區(BIF)進行測試。預計在第一測試區進行3組流速(低速、中速及╒速)試驗,量測截面分別在第一迎轉盤中心(下游3m處)及下游取2個不戶位置之截面共3處進行測試,每一截面量測20點;而第二測試區預計進行2組流速(低速及╒速)試驗,每組流速各量測所個截面,分別位於第二測試區入口處及唯一迎轉盤中心截面,每一截面估計量測20點。量測過程中須待測試區中庫速及溫度均達穩定方可進行,量測儀器主要以熱線測速儀(Hot-Wire)及皮托管等主。

均 与 度 的 币 倍 標 準 差 定 義 如 下 :

$$\left| \Delta U_{0_{2\sigma}} \right| = 2 \times \left(\frac{1}{n-1} \sum_{i=1}^{n} \left(U_i - \overline{U_0} \right)^2 \right)^{\frac{1}{2}}$$

烹流強度(Turbulent Intensity)之定義:

$$T.I. = \frac{\overline{\left(u^{\prime 2}\right)^{\frac{1}{2}}}}{U_0}$$

6.2.4 流場偏市车

通常各項庫源實驗皆會假設流場黃均勻流(Uniform flow),倘若流場的偏向產過大,會造成實驗上相當大的誤差,因此流場偏向產(Flow Angularity)也是庫源基本性能測試的一項重要課題。量測流場偏向產有許多的方法,如 3-D 熱線測速儀、五孔皮托管、雷射測速儀(LDV)...等,而本次實驗測試吾人選擇三孔的 cobra probe 皮托管配合壓力轉換器來量取流場偏向產,速度及量取截面的設定戶前一項測試。

普遍所量測的偏向產業上升流(Upflow)及橫南流(Cross-flow),因

偏向 争的 市倍標準差定義如下:

$$\left| \Delta \alpha_{2\sigma} \right| = 2 \times \left(\frac{1}{n-1} \sum_{i=1}^{n} \left(\alpha_i - \overline{\alpha_0} \right)^2 \right)^{\frac{1}{2}}$$

$$\frac{1}{2}\rho_{air}U_{\infty}^{2} = K_{1}(P_{0} - \frac{1}{2}(P_{1} + P_{2}) \tag{3-1}$$

$$\alpha = K_{2} \frac{P_{1} - P_{2}}{P_{0} - \frac{1}{2}(P_{1} + P_{2})} \tag{3-2}$$

PO; P1; P2: Cobra probe 全壓與參考壓力之差(Pa)

K1, k2: Cobra probe 之 校驗係數 α: 偏角 £ (deg)

Cobra probe 的校縣

1.將 Cobra probe 與量產器校正,使 Cobra probe 與量產器成一直線(若Cobra probe 與自由流程一直線時,則 P1 與 P2 壓力值將會很接近)。
2.將 Cobra probe 至於庫淨中,注意其 Cobra probe 須位於庫淨測試段

中間位置。

3.改變庫 扇轉速,量取±50°之間 PO、P1 及 P2 壓力值記錄並分析。

6.2.5 測試區軸中壓 4 梯度

測試區小目於邊界層成長的效應,會造成測試區中心平均流速愈往下游愈快,而產生一壓力梯度(壓力會沿下游方向慢慢下降),因此若要了解邊界層成長的情形,量取測試區中心軸向壓力梯度即可得知,此軸向壓力梯度可作為未來進行於邊界層發展實驗的重要參考資料。

道常量取中心壓力梯度會使用長靜壓管(Long Static Tube),從入口處穿越測試區到出口處來測量,但日於庫消實驗館的所測試區瓜皆設置有三維移動機構,因此只要在移動機構上架設一丈皮托管,即可量取中心壓力梯度。所個測試區皆量測七點,第一測試區軸向長度約36.5m,設定每隔6m量取一點;第二測試區軸向長度第21m,則設定每隔3.5m量取一點。第一測試區設定3組流速,第二測試區設定2組流速進行實驗,如前所述。

6.2.6 測譯區邊界屬厚度量測

測試區小的流場邊界層會隨流體運動而成長,造成測試區小自日流的流速越往下游有加速的現象,使流場壓力梯度的變化。吾人以皮托管配合移動機構便可以量測出流場邊界層厚度,每個測試區預計量取3個不斷截面位置的邊界層厚度,進而與文獻中所預測的邊界層厚度作比較。第一測試區入口因原本預計要進行擴散試驗所以留有一個約10cm的間隙,此次測試在量取入口邊界層時亦有考慮其效應,在入口截面實驗過程分為間隙有無以膠帶貼平,以比較出其差異。

6.3 量測儀器

- 1. 壓力量測系統(pressure measurement system)
 - A. 皮托管(Pitot tube):目前所使用的有雨種形式,一為較常見90度變管型皮托管(圖3所示),目前使用在量取第一及第二測試區之入口流速,另一為直線型式,可配合三維移動機構來量取測試區名截面之速度均勻度及軸向速度分佈。
 - B. 壓力轉換器(pressure transducer): 為 Validyne DP-103 型薄膜式壓力轉換器(圖 3 所示), 所量取雨端輸入之壓力差,以類比電壓形式輸出,輸出電壓在±10V 之間。正壓接在 pitot tube 的全壓口,而負壓則接在 pitot tube 的舒壓口,藉此得到動壓差,進而換算出平均速度。
 - C. cobra probe: 本次實驗預計使用三孔的 cobra probe (圖5所示)是日三支外徑 1.07mm, N徑 0.77mm 之不銹鐮圓管所構成,並排貼緊於垂直自身轉軸的平面上,尖端指向自甘流方向,而兩側圓管對稱切削,與自甘流水45度產。
- 2.速度/溫度量測系統(velocity/temperature measurement system)

本實驗使用 DANTEC 之定溫熱線測速儀(constant temperature hot-wire anemometer)從辜流場瞬間流速量測,此儀器具 50Khz 高頻響應能力,自於熱線測速儀之電子即授線路可能有飄移(drifting)發生,所以每次使用之前都必須校驗以避免造成實驗誤差,Hot-Wire 每次校驗後約可維持兩個小時。熱線測速儀依其操作原理不戶,約可分為定電流熱線測速儀(CCA)及定溫測速儀(CTA)

兩種,其量測原理万利用惠斯道電橋(Wheatstone's bridge)之平街作用,CCA 是利用保持道過感測器的電流為定值,而得到電阻與熱散失的關係,為維持熱線溫度在一定值,當棄流通過此熱線表面帶走熱量使溫度降低時,必須補充相當的電流,因此流速越快會得到越高的電壓值,CTA 是利用 中授線路保持感測器的溫度(或電阻)為定值,而日 中授放大器的輸出電壓得到與熱散失間的關係。

熱線材料是自90%的自金(platinum)和10%的鍵合金(rhodium)組成,直徑為5µm。在使用前,以校驗過的壓力轉換器校驗之。目於熱線測速儀的靈敏度及特性隨流場溫度與本身電阻而有所改變,因此校驗後之探針使用一段時間後,就必須重新校驗一次,以得到較準確之校驗係數。

3. 數據收集系統(data acquisition system)

實驗所量得之類比訊號先日 IOTech ADC-488/8SA 資料收集系統作數位類比轉換(analog-digital converter),此系統共有八組輸入端,最高取樣速率(sample rate) \$ 100KHz,具有 16bit 之解析度,精確度(accuracy)達 0.02%。數位化的信號以大於 200kb/s 的速率經日 IEEE-488 介面傳即電腦,再用 VB6.0 所撰寫好的程式運算並儲存。

- 4.拍照攝影與錄影系統(photograph and video recording system)
- 5.示波器、數據位電表、信號產生器等基本電子信號檢測儀器。

6.4 压沛基本性驗證實驗初步結果

6.4.1 届 淮 運轉之 穩定性分析

但與外界要達成熱平衡必須在外界之系溫變化不大(即穩定狀 態下),若外界的環境變化過大則無法在短時間必便達到熱平衡。早 期在 压缩 進行實驗時,發現在白玉正午或日夜交替的時候溫升非常 的大,曾經在庫源運轉不到一小時的時間承溫度上升近 10℃,有鑑 於此,本實驗的量測時間在晚上 23:00~01:00 之間。后時使用皮托管 及 溫度感 測器量取第一 測試區之 入口流速與溫度隨時間之 變化 關 係,速度設定在 6.7m/s,基本上每隔 3 分鐘取一點共取 120 分鐘 41 點,待庫 髯轉速 固定之 後開始量測,測量位置不變,結果如圖 6 所示。 發現在此時段時間 1 的溫度上升並不大,速度幾乎維持在 24.7°C~24.8°C 主 去 , 溫度 變化 的 \ 確定度 \ 約 在 ± 0.58% 。 币 速度 的 變化並無明顯的上升或下降,但隨時間的變化值則較大,速度改變的 不確定度約在± 2.8%,初步判斷速度的改變值會偏高是因為入口皮托 管隨庫浉運轉而震動所造成,為了使入口參考速度的不確定度減低並

成為未來設定速度的參考值,有必要重新思考感測器安裝的方式及位 置,以增加實驗數據的可信度。

而圖7為庫 扇轉速與速度之關係,其中速度分別為第一測試區及第二測試區之入口流速,庫 扇轉速與速度呈現線性之關係,所率定出來之線性關係式如圖7所示,可作為日後設定速度的參考關係式。未來改進儀器及感測器本事的誤差後,可再與此而關係式做比對。

6.4.2 压氧變頻器特性實驗

本實驗主要之目的在於初步測試變頻器之控制性能,了解庫員之轉速是否會與變頻器呈現線性之關係。實驗主要在空庫市的時候進行,庫員日低負荷(6rpm)運轉至高負荷(390rpm)共設定13個轉速, 日控制台庫板上記錄每一轉速之變頻器頻率,結果如圖8所示。結果 顯示出庫 扇轉速與變頻器頻率呈現正比的線性關係,得知庫 扇變頻器 的性能頗佳,在60rpm至390rpm 的範圍戶皆為庫 扇的操作範圍,不 需擔心庫 扇因為庫 阻的增加而使感應馬達的扭矩降低而降低速度。

6.4.3 測譯區均自度及烹流強度

本實驗目前以第一測試區(2F)為主要的測量範圍,所使用的感測器主要有 pitot tube 及熱線測速儀。圖 9 為軸內下游 2.5m 所量測出的平均速度分布圖,圖 10 為平均速度剖面圖,速度設定在 6.8m/s。目圖 6.可看出在離土右壁面 8 80cm 處,速度有突然降下來的趨勢,且最高速度分布在截面中心偏下方處,初步判斷是受到三維移動機構所造成的影響,未來將深入探討移動機構及其軌道所造成的阻塞效應與 渦流的影響。取中心截面 20 點(如圖 10 所示)作均 9 度分析,所得到 的結果為± 2.6%, 並非十分理想。

圖 11 及圖 12 萬第一測試區下游 15m 之平均速度分布圖及下游 15m 之二維平均速度剖面圖。可看出在 Y 軸中心點而測約 120cm 仍然會有速度驟降的趨勢,且速度依舊在截面下方處較高,因此判斷造成此影響的原因並非只存在入口處, 另外亦可發現日於邊界層成長的關係, 使得 Z=30cm 處的速度下降許多。而取下游 15m 截面中心 20點(如圖 12 所示)作均勻度分析,所得到的結果為± 2.2%。

圖 13 及圖 14 為使用 Hot-wire 所量測出來之下游 25.5m 速度分佈圖及剖面圖,發現自於邊界層成長的關係使中心的速度比旁邊增快許多,而取截面中心所得到的速度均 9 度約 為 ± 2.2%。

6.4.4 邊界屬量測結果

空庫 $下之邊界層\delta(\mathbf{x})$ 可用紊流邊界層理論加以預測 [12]:

$$\delta(\mathbf{x}) = \frac{0.376 \cdot \mathbf{x}}{Re_{\mathbf{x}}^{1/5}} \tag{3-3}$$

$$\mathbf{Re}_{X} = \frac{U_{0}x}{V} \tag{3-4}$$

δ(x) 為邊界層之厚度(m), Rex 為隨 X 改變之雷諾數。根據以上公式可推算出, X=2.5m 時邊界層厚度約 6cm, 而 X=15m 時邊界層厚度約 24cm, 這與圖 17 及圖 18 使用 皮托管所實際測量之結果,十分接近。

6.4.5 流場偏市车

目前尚未將Cobra probe的校驗機構架設,將於後續計畫執行,並完成Cobra probe校驗,並進行流場偏向 £量測。

6.4.6 軸市壓 4 梯度

測試區瓜目於邊界層成長的放應,會造成測試區中心平均流速愈往下游愈快,而產生一壓才梯度(壓力會慢慢下降),因此若要了解邊界層成長的情形,量取測試區軸向中心的壓力梯度即可得知,軸向中心壓力梯度可作為未來進行瓜邊界層發展實驗的重要參考資料。而目前所測量的軸向壓力梯度為動壓梯度(即速度梯度),日圖19可看出而軸向中心之速度隨著往下游移動,速度也隨著增加,3~23m速度約上升0.43%,未來可誹整上蓋板來使中心之速度夏均勻。

6.5 基本性能測試實驗結論

第一章 橋樑斷西模型詳驗

7.1 前言

著名的1940年 Tacoma Narrows 懸吊橋崩塌事件,便是目於所採用 的橋爾版斷爾具有高度空棄動力不穩定性,使得該橋在庫達約略著當時設計庫速一半的情況下,因顫振而崩毀。此後,工程界開始重視橋樑的空棄動力不穩定性。週去數十年間,橋樑空棄動力理論的演進加上工程計算能力的太幅增強,使得工程界得以逐步克服伴隨太跨徑而來的棄動力不穩定現象。國際上懸吊橋跨徑早已已超越 1000 公尺,最長的則是跨越瀨戶瓜海,連接四國、本州的 Akashi-Kaikyo 橋,與長 3911 公尺,中央跨徑長達 1991 公尺。斜張橋的發展較懸吊橋晚,但在 1956 年瑞典的 Strömsund meassurement Group 橋完成,開展現代斜張橋的先端以來,發展極等迅速,近年來已逐漸成等太跨徑橋樑的主流,立跨長度也已過近 1000 公尺。國瓜最長的斜張橋等南二高跨越高屏溪的高屏溪橋,全長 510 公尺,主跨 330 公尺等鄉結構,副跨 180 公尺等預力混凝土結構。目於斜張橋具有特殊的美學外觀,容易與自然環境結合而形成地標,可以預見,未來國瓜仍會出現跨徑不一的斜張橋樑。

橋樑的棄動才現象基本上是流體與鈍狀彈性體之間的互制行 等,目於橋樑結構的複雜性,目前無法以純理論模式或數值方法解析 之。特別是庫與結構間的互制現象,必須依賴庫市物理模型實驗。橋 樑的庫庫模型實驗 t體可分為全橋模型實驗 (Full Model)與斷庫模型(Section Model)所 t 類。斷庫模型則是採用立跨斷庫的二維模型, 在均勻流場中量測橋樑斷庫的庫才係數及顫振導數,提供振顫臨界庫 速與動態反應計算模式之用。除此之外,斷庫模型的設計對於橋樑垂 直與扭轉基本振態的質量與頻率做速當模擬時,也可以量測橋樑的動

態反應作為初期設計的參考。國队已有學者採用斷面模型試驗從事橋 樑空氣動力穩定相關的研究工作[8,9,10]。 全橋模型實驗是對於原型 橋樑儘可能的作完全縮尺模擬,直接以實驗方式水取橋樑的顫振臨界 压速或是橋樑在一般压速的動態反應。日於縮尺的限制,**全**橋模型實 驗所需的庫源試驗段斷面寬大多在 5.0m 以上,一般的大氣邊界層庫 事此項研究工作,連帶的使得國瓜斜張橋工程的區源實驗必須仰賴國 外實驗室。建築研究所規劃與建中的風源實驗室第二試驗段斷面實度 為 6 公尺,雖然較之國際間橋樑實驗專用之庫 n,斷面 實度仍屬較窄 者,然而目於台灣地區橋樑跨度有限,新建完成的庫 事實驗室應滿足 國瓜絕大多數橋樑庫源實驗的需求。本計畫的目的在於使用建築研究 所新建压 » 的第二 測試段, 進行一 個簡易 的橋樑斷 再模型實驗, 藉以 驗證該測試段的性能、實驗室所採購有關結構集動力及棄彈力實驗的 相關儀器設備,並協助該實驗室建構橋樑斷面模型實驗的基本架構。 計畫中將應用斷面模型實驗量測橋樑的各項系動力參數,再以數值方 法探討斜張橋的氣動 1 特性, 並與現有之實驗數據進行比對。未來國 № 從事橋樑庫工程研究的學者,可使用此項庫派設借從事橋樑之全橋 或斷面模型試驗。

7.2 橋樑空棄動 基本理論

7.2.1 橋樑字系動 4 穩定特性[11]

橋樑所受的庫才作用可分為平均庫才所造成的靜才放應與擾動庫才所產生的動態放應兩大類。橋樑的受庫靜才放應對於橋樑空棄動才穩定性可能出現的影響是扭轉發散現象(torsional divergence)。橋樑的庫才動態反應方面,較為顯著的氣動才效應可分為下列幾種:(1)

顫振(Flutter); (2)渦致振動 (Vortex-induced vibration); (3)抖振 (Buffeting)。以下就橋樑可能發生的空棄動力不穩定現象,逐一說明於後。

挂轉不穩定現象為一單自日度運動;其發生之原因為拄轉向庫才 隨庫攻庫的增加而遞增,當橋樑斷面承受庫才而產生扭轉位移時,意 謂著庫攻庫已增加了 Δα,所造成的扭轉彎矩亦將隨之增加,此時橋 樑斷面必須以夏大的抵抗彎矩來與之抗街,如此反覆作用,當到違某 一庫速時,橋樑斷面所承受的扭轉彎矩超週橋樑斷面所能抵抗的能力 時,將使橋樑結構產生不穩定之現象而破壞。此種不穩定現象類似結 構物之挫虧破壞,故橋樑的設計庫速承,必須避免此種破壞的發生。

7.2.3 颠振

顫振足一種橋體振動引發的空棄彈力現象,橋體經日「結構--流體」互制現象,日流場中汲取與結構運動正相關的能量,改變原橋樑系統的勁度與阻尼。當庫速到達某一臨界狀態時,橋體振動所引發之棄動力阻尼會抵消結構之阻尼,而使結構產生發散現象,此時所對應的庫速即是橋樑的顫振臨界庫速。顫振臨界庫速代表了橋樑空棄不穩定的產生庫速處,設計懸索支撐橋樑時,必須要避免發生顫振現象。換言之,顫振臨界庫速應明顯高於通常結構的設計庫速,一般採500年即歸期庫速作為顫振臨界庫速的設計標準為宜。

7.2.4 抖振反應

抖振,是目於逼近流的擾動原速對結構系統造成一不穩定載重而

產生的振動現象。目於目前並沒有強而有效的亂流解析模型,因此在實際應用上為假設外才符合準穩定定理(Quasi-Steady theory)然後使用散漫振動理論(Random Vibration theory)來分析。

一般抖振放應不僅與紊流特性有關,可和橋樑斷面之幾何形狀及橋樑基本振態有關。橋樑的抖振放應選常不會導致橋體的破壞,但在設計庫速下,若橋樑斷面有太大的位移量,會引起車輛和行人感到不違,亦可能在長期作用下使得橋樑材料有疲乏(fatigue)之虞。

7.2.5 漏流颠振

洞流顫振發生的原因為流體流經鈍體產生分離後,使得結構體的 上下側交互產生過期性的渦旋,日於上下側的渦旋形成時間不一致, 造成結構體上下側壓力的不戶,而導致結構物在垂直方向振動,即為 渦流顫振現象。當渦散頻率與橋樑結構體某一振態之頻率一致時,則 會造成共振(resonance)現象,使得渦散頻率被鎖在結構物基本自然 頻率上,直到庫速增加至脫離棄流與結構體交互作用之影響。

渦散頻率一般以無因次化頻率表示即為史特赫數 (Strouhal No.) 其定義為:

$$S_{t} = \frac{f_{s} \times D}{U} \tag{7-1}$$

其中, f_s :渦散頻率、D:結構特徵尺度[11]。

渦散頻率 (f_s) 會隨無因次化庫速 $(U_r = U/f_rD)$ 而改變,但渦散頻率若與結構物的特徵頻率 (eigen-frequency),或與強制振動頻率 (f_r) 相近時,共振區形成;此時,渦散頻率受特徵頻率或強制振動頻率牽制而不再隨無因次化速度改變,於共振區下有強烈的奮動力現象,即為鎖住現象。鎖住現象會使結構物產生較大的位移反應,導致結構物

安全性及舒達性的疑慮。

7.2.6 基本運動 7 程式

橋樑承受庫才作用時,其主樑所承受之外才可分為橋體自激才和 副流效應,運動方程式可寫為[12]:

$$m_x(x+2\xi_x\omega_x x+\omega_x^2 x) = D_f + D_b$$
 (7-2)

$$m_{y}(y+2\xi_{y}\omega_{y}y+\omega_{y}^{2}y)=L_{f}+L_{b}$$
 (7-3)

$$I(\alpha + 2\xi_{\alpha}\omega_{\alpha}\alpha + \omega_{\alpha}^{2}\alpha) = M_{f} + M_{b}$$
 (7-4)

式中 m_x, m_y, I :順庫向、垂直向及扭轉向之質量,

 ξ_x, ξ_v, ξ_α :順庫向、垂直向及狂轉向之阻尼比,

 $\omega_{x},\omega_{y},\omega_{lpha}$:順庫市、垂直市及拄轉市之自然頻率,

 D_f, L_f, M_f :順庫市、垂直市及抂轉市之自激力,

$$D_{f}(t) = \frac{1}{2} \rho U^{2}(2B)(K) \left[P_{1}^{*}(K) \frac{\dot{x}(t)}{U} + P_{2}^{*}(K) \frac{B \dot{\alpha}(t)}{U} + K P_{3}^{*}(K) \alpha(t) \right]$$
 (7-5)

$$L_{f}(t) = \frac{1}{2} \rho U^{2}(2B)(K) \left[H_{1}^{*}(K) \frac{\dot{y}(t)}{U} + H_{2}^{*}(K) \frac{B \dot{\alpha}(t)}{U} + K H_{3}^{*}(K) \alpha(t) \right]$$
 (7-6)

$$M_{f}(t) = \frac{1}{2} \rho U^{2} \left(2B^{2}\right) \left(K\right) \left[A_{1}^{*}(K)\frac{\dot{y}(t)}{U} + A_{2}^{*}(K)\frac{B\dot{\alpha}(t)}{U} + KA_{3}^{*}(K)\alpha(t)\right]$$
 (7-7)

式中 H_1^*, H_2^*, H_3^* 代表了橋體振動時,其垂直向速度、拄轉向產速度 及產位移在垂直向所引發的自激才係數, A_j^* 及 P_j^* 則分別為橋體振動時,在拄轉向以及順庫向所引發的自激才係數。 H_j^* 、 A_j^* 及 P_j^* 統稱為 顫振導數 (flutter Derivatives)。各項顫振導數為橋面 版幾何形狀、無 因次化頻率(或無因次化庫速)及流場特性的函數; $K = \frac{B\omega}{U}$ 為無因次化頻率, ω 為結構振動的圓脂頻率= $2\pi n$;B 為橋庫版寬度; ρ 為空棄密度;U 為平均庫速。

亂流擾動力在忽略微量橋體運動的影響後,可表示為:

$$D_b(t) = \frac{1}{2} \rho U^2 B C_D(\alpha_0) \frac{A}{B} \left(\frac{2u(x,t)}{U} \right)$$
 (7-8)

$$L_{b}(t) = \frac{1}{2} \rho U^{2} B \left\{ C_{L}(\alpha_{0}) \frac{2u(x,t)}{U} + \left[\frac{dC_{L}}{d\alpha} \right]_{\alpha=\alpha_{0}} + \frac{A}{B} C_{D}(\alpha_{0}) \right] \frac{w(x,t)}{U} \right\}$$
 (7-9)

$$M_{b}(t) = \frac{1}{2}\rho U^{2}B^{2}\left\{ \left[C_{M}(\alpha_{0}) + C_{D}(\alpha_{0}) \frac{Ar}{B^{2}} \right] \frac{2u(x,t)}{U} + \frac{dC_{M}}{d\alpha} \bigg|_{\alpha=\alpha_{0}} \frac{w(x,t)}{U} \right\}$$
(7-10)

其中:附標b代表亂流效應;u、v分別為順庫 向、垂直 向之擾動庫速; C_D,C_L,C_M 分別為順庫 向、垂直 向及 扭轉 向之 庫 1 係數; α_0 是平均庫 攻 β_0 并是單位長度橋 面版 在垂直 向上 的投影 面積; β_0 7 為橋 面版 質量 中心到有效旋轉 軸之 距離。

本計畫即是以廣 市物理模擬實驗量測斜張橋的顫振導數以及原 1係數,分析斜張橋的顫振臨界 庫 連 與 抖振動態 反應。

7.3 压力係數及頭振導數

7.3.1 压力贷數

庫才係數為結構物受到庫才作用大小的指標。斷庫庫源試驗中的庫才係數量測,主要利用應變計水取長時間的平均受力。主要量測托电向 C_D、垂直向 C_L與 E 轉向 C_M 三 方向之庫才係數。其量測流場為平滑流場,在庫攻庫+10⁰至−10⁰且間距為 1⁰ 共 21 個庫度下,量測其橋樑在名庫度下所承受之庫力。其三方向之庫力係數關係式如下:

$$C_{\scriptscriptstyle D} = \frac{\overline{F_{\scriptscriptstyle D}}}{0.5\,\rho U^2 D L} \tag{7-11}$$

$$C_{L} = \frac{\overline{F_{L}}}{0.5\rho U^{2}BL} \tag{7-12}$$

$$C_{\scriptscriptstyle M} = \frac{\overline{F_{\scriptscriptstyle M}}}{0.5\rho U^{\scriptscriptstyle 2}B^{\scriptscriptstyle 2}L} \tag{7-13}$$

其中 $\overline{F_D}$ 、 $\overline{F_L}$ 、 $\overline{F_M}$:分別為橋樑所受的庫 1 ,平均拍电 1 、垂直 1 及 1 表 1 。 1 。 1 。 1 是

7.3.2 頭振導數

1971年 Scanlan 與 Tomko [13]根據即有的實驗模式與類似機翼的相后理論,建構出一系列橋樑斷面 拄轉命(A₁*、A₂*、A₃*)與垂直 向(H₁*、H₂*、H₃*)之顫振導數,其實驗方式至今仍被廣泛使用。 其所代表的物理意義如表 2 所示。

庫消試驗主要利用短距雷射測距儀量測斷面受庫下垂直向與扭轉向之位移歷時反應。橋樑斷面主要分別量測為扭轉向與垂直向之顫振導數。其量測流場為平滑流場,在庫攻庫+6°至−6°且間距為2° 共7個產度下,量測其橋樑振動所引發的棄動力效應。

7.4 橋樑縮《模擬相似往及區派詳驗設備

7.4.1 模擬相似率

這些物理上的特質則以下述幾點討論[11,12]

(1) 雷諾數 (Reynolds Number (Re)):

$$\frac{\rho UD}{\nu} = \frac{\text{流體慣性 } 1}{\text{流體黏滯 } 1}$$
(7-14)

雷諾數等空棄的慣性才與黏滯才的比值,配合不戶的庫速(U)以及特徵尺度(D)便可得到實驗所需的雷諾數。

$$\left(\frac{\rho \ UD}{v}\right)_{m} = \left(\frac{\rho \ UD}{v}\right)_{p} \tag{7-15}$$

式中下標m為模型,p為原型。

可是一般的廉源實驗無法達到 $R_e=10^7\sim10^8$ 之實場狀況。在縮尺模擬中,大寨邊界層的雷諾數超週 10^5 時,以及鈍體氣動力實驗之雷諾數超週 10^4 時,縮尺模擬的流場特性已不受雷諾數大小的影響。木研究計劃中各項實驗的雷諾數均保持在 5.6×10^4 以上,以滿足雷諾數獨立性的模擬要求。

(2) 福祿數 (Froude Number):

$$\left(\frac{U^{2}}{Dg}\right)_{m} = \left(\frac{U^{2}}{Dg}\right)_{p} \tag{7-16}$$

福祿數為空棄的慣性力和日重力或浮力或造成之垂直力的比值 為滿足垂直向動力特性上的一致。當縮尺模型需考慮重力影響時,則 模型與原型間須滿足福祿數的相似性要求。

(3) 密度比 (Density Ratio)

$$rac{
ho_s}{
ho_f} = rac{ ext{ 結構平均質量密度} }{ ext{ 空氣平均質量密度} } = rac{ ext{ 結構的慣性才} }{ ext{ 空氣的慣性才} }$$

密度比代表了結構慣性才和空氣慣性才的比值。所以模型應依實 場結構的密度來模擬,模型密度比應符合原型。

$$\left(\begin{array}{c} \rho_{s} \\ \overline{\rho_{f}} \end{array}\right)_{m} = \left(\begin{array}{c} \rho_{s} \\ \overline{\rho_{f}} \end{array}\right)_{p} \tag{7-18}$$

(4) 彈性比 (或稱 Cauchy Number)

$$rac{E}{-
ho U^2} = rac{ ext{結構的彈性才}}{ ext{流體的慣性才}}$$
 (7-19)

目於勁度比的模擬將影響結構的自然頻率,故須將模型的勁度比模擬和原型相后。然而在模型的製作上,對於勁度比的模擬相當困難,所以一般在實際的運用上是以質量比與史特赫數(Strouhal Num-ber)為模擬基準。換句話說,若模型和原型能夠符合質量的模擬,且滿足史特赫數時,則勁度比即能符合。

$$\left(\frac{f_0 D}{U}\right)_{m} = \left(\frac{f_0 D}{U}\right)_{n} \tag{7-20}$$

其中 fo: 為結構的自然頻率

日於模型與原型之間必須保持頻率比一致,則必須滿足

$$\left(\frac{f_i}{f_j}\right)_m = \left(\frac{f_i}{f_j}\right)_p \tag{7-21}$$

(模型i振態與j振態的頻率比應與原型相后)

(5) 阻尼比 (Damping Ratio)

阻尼比為結構振動過期中的能量損耗率,因此阻尼比的大小將影響結構位移反應的大小,所以為預測結構反應很重要的一項參數。

$$(\xi)_m = (\xi)_p$$
 (7-22)

所以模型的阻尼必須和原型相后。

7.4.2 橋樑斷面模型製作

- 1. 必須考慮到阻塞比, 因此模型斷面不宜過大。
- 2. 庫速之限制:本計劃之最大有效庫速為 30m/s。
- 3. 模型之質量與轉動慣量(Polar Mass Moment Inertia)在模型製作上是否可以滿足縮尺比例。
- 4. 為求實驗之正確性,模型的制作必須盡可能與原型橋樑結構之 縮尺相符,如原橋之交通護欄(Traffic -Barriers)、擾流板(fairing) 幾何形狀之線條,都要完整的被複製,缺一不可。

斷面模型製作上的原則,便是確保模型完成後具有質量輕及勁度 育的特性;因此在製作模型時,使用箱型空心錦條,以求降低立框架 質量,如此在整體斷面模型總質量不變之前提下,可留給調頻用的砝 碼及彈簧有較大的彈性空間)作為結構立構件的制架系統,使用保麗 龍或珍珠板作為填充材料,再以壁紙披覆作為最外層。為符合原型 (prototype)橋樑樑結構的動力行為,斷面模型的頻率特性是藉日模 型的調頻用砝碼及彈簧支撐系統來調整與提供;而斷面模型的阻尼特 性則遵循模型製作之簡化原則,調整模型阻尼比,視實驗要求而增加 阻尼的輔助系統。

7.4.3 斯爾模型使 3 之端板效應

- 2. 益產生流場的二維流況。

至於端板尺寸對流場的影響,根據 Kubo et al., [14]的研究指出,端板在迎庫面突出的長度,對模型並無太大的作用,但在背庫面延伸的長度將會影響尾跡發展的長度,一般建議至少需太於產生第一個凋漩的形成區(vortex formation region),如此才能防止實驗量測區以外的流體進入渦漩形成區,以避免模型之背壓處有壓力即復的現象(pressure recovery)。此外,依據卡門渦散理論(Karman vortex shedding theory),則推估第一個渦漩形成區的長度約第 4.28D,其中 D 等模型的寬度。

另外,根據 Obasajue et al., [9]的研究,端板於流場中的位置須與流線 呈平行,因為端板邊緣亦可能造成流體在唐圍產生邊界層,而失去了 端板原有的基本功能;所以端板前緣一般應製作成尖狀且外斜之直 三 手形,以避免流體流經端板前緣時造成分離剪力流,而影響了實驗 的結果。

7.4.4 實驗儀器介紹

A. 庫速量測-皮托管

本實驗採用皮托管-壓力轉換器系統進行平滑流場平均庫速的量測;日皮托管所量測到的庫壓變化,經壓力電壓轉換器轉換為類比電壓值,經日放大器處理,再藉日類比/數位(A/D)轉換器將類比訊號轉換為數位訊號,最後經電腦讀取、記錄與分析。

將所得電壓值代入經日庫壓(即微壓計水柱膏差)與電壓(即鐵 餅電壓差值)率定(calibration)後之關係式 $\Delta H = A \times \Delta E + B$,藉此 將電壓值(ΔE)轉換為相對應之水柱膏差(ΔH),再利用伯努利方 程式(Bernoulli equation),即可計算出庫速。伯努利方程式,如下所 示:

$$U = \sqrt{\frac{2g \cdot \Delta H \cdot \rho_W}{\rho}}$$
 (7-23)

其中;ΔH:微壓計水柱膏差(mm)。 ρ_w :蒸餾水密度(約第 $1.0g/cm^3$)。 ρ :空棄密度(約第 $1.128 \sim 1.293 kg/m^3$)。 g:重力加速度($9.81m/sec^2$)。

B. 位移量測一雷射測距儀

雷射測距儀日二個部份構成:(1)雷射源(Laser Head);(2)雷射控制器(Controller)。量測原理為雷射光日雷射發射至感應板(反射板)上,操作時必須使其正交(Normal)以減少誤差,可直接讀得雷射頭與感應板之距離(率定關係為 1volt=1cm),使用前需先執行儀器歸零步驟。

C. 受力量測一應變片及應變訊號放大器

橋樑受庫作用後,庫才係數的量測最主要採用以應變片(Strain Gages) 所製作的才感應器進行量測,其原理是由訊號放大器(Signal

Conditioning Amplifier)提供應變片電壓,而此電壓值再經日訊號放 大器轉換成毫安培(mA)的電流,然後電流在庫才作用下,經過應 變片的電阻值即可得應變電壓值,日應變片所產生的應變電壓值,經 日應變訊號放大器放大後,透過轉換系統量測出電壓的變化,經電腦 讀取、記錄及程式分析,即可求得橋樑模型所承受之庫才係數。

7.5 橋樑詳驗之區 非設計與規劃

7.5.1 端 饭 配 置

實驗用端板主要架設在庫源試驗段中共,並利用端板下雨軌道變換端板間之距離。兩側端板主要是以鋁條與壓克力板及三產型木板所構成,並於端板軸向及順庫向各設立一固定點,將模型與其間利用錦線連結,使此雨方向位移受到末制。如圖20所示。

7.5.2 橋樑斯西模型詩殿一平板斯西

平板橋樑斷雨長 1.5 公尺、寬 0.32 公尺、深 0.4 公尺,如圖 20。 主要以箱形空心雖材作為結構主構件之雖架系統,使用 高密度保麗龍 包覆。

7.5.3 橋樑斷面模型討職一串屏溪橋斷面

圖 21 為高屏溪橋之錦構部分外觀圖,根據以上種種之條件與限制且根據相似性法則,可將橋樑模型與橋樑原型之比例訂為 1:100、速度縮尺為 1:10、時間縮尺為 1:10,橋面版長度為 1.50公尺,且則性必須足夠,不能有扭曲的現象發生,高屏溪橋樑斷面模型設計如圖 22,根據模擬相似率所訂定的區源試驗模型縮尺參數如附表 2。

7.5.4 橋樑斷面模型詳驗內容

斷面模型試驗主要實驗內容分為:(1) 庫 1 係數、(2) 顫振導數、(3) 顫振臨界庫速、(4) 欄杆影響,其內容如表 4 所示。

7.6 斷面模型压 非詳驗結果

7.6.1 压 4 贷數

且 / 係數為結構物受風 / 九小的指標,本實驗所量測之風 / 係數於平滑流場中進行,量測十一個風攻魚 $(-5^0 \sim 5^0$,間隔 1^0),以瞭解風攻 \pounds 對平均阻 / 係數 (C_D) 、平均昇 / 係數 (C_L) 、平均 \pounds / 人影響。

A 深寬以言8 (B/D=8) 之平板橋樑斷函

圖23 為拍电向平均庫才係數,無論正負攻牟其值皆為正值,且隨 庫攻牟增加而稍微增大。圖24 垂直向平均庫才係數,若垂直向庫才 係數為正值,表示模型受到上舉的庫才;若為負值表示模型受到下壓 的庫才。因此從圖中可看出在正攻牟時,模型受到上舉的庫才隨攻 遞增有遞增的現象,反之亦有隨攻牟遞增其下壓的庫才亦遞增。

B 串屏溪橋樑斷面

7.6.2 頭振導數

橋樑斷爾模型之顫振導數之實驗於平滑流場中進行,並於三個原攻 (-3⁰~3⁰,間隔3⁰), 用以瞭解名庫攻 (下對垂直與 拉轉中顫振導數之影響。

A 深寬比為8 (B/D=8) 之平板橋樑斷面

穩定的趨勢,其顫振臨界庫速則較低。

圖 32 顫振導數 A₁*在各攻 f 的變化量,A₁*代表橋樑垂直 向 的振動對於 持 南 f 動 f 阻 尼 的影響。 在 零 度 攻 f 其 值 隨 無 因 力 化 f 遠 遞 增 而 增 加 , 其 正 負 三 度 則 無 明 顯 規 律 。

圖33 顫振導數H₂*在各攻 单 的變化量,H₂*代表橋樑 挂轉 中 的振動對於垂直 中 棄動 力 阻尼 的 貢獻。 日 圖 中 可 香 出,當 攻 善 莽 負 三 度 及 正 三 度 攻 善 時,隨無 因 次 化 庫 速增 加 币 從 負 值 轉 至 正 值 , 再 依 次 遞 減 。 币 零 度 攻 善 則 隨無 因 次 化 庫 速增 加 其 負 值 越 大 。

圖 34 顫振導數 H₃*在各攻 的變化量,H₃*代表橋樑 持 轉向 的振動 所引發 的垂直 向 系動 力 勁 度 。 日 圖 中 可 知 隨 無 因 次 化 庫 速 增 加 其 值 有 遞 增 的 現 象 , 而 在 零 度 攻 争 部 份 在 低 庫 速 下 有 跳 動 的 現 象 。

B 育屏溪橋樑斷面

7.6.3 市屏溪橋樑斷西之頭振鴨界压速

當庫速到達某一臨界狀態時,橋體振動所引發之棄動力阻尼會抵 消結構之阻尼,而使結構產生發散現象,此時所對應庫速的即是橋樑 的顫振臨界庫速。本試驗使用符合原型橋樑基本動力特性的斷庫模 型,直接測試顫振臨界庫速。

經平滑流場下之庫消實驗得到扭轉內及垂直內的振動反應,其中 圖38及圖39 中(a)圖為平均值、(b)圖為均方根值、(c)圖為極大 值。日扭轉向振動反應之圖(c)中,數值突然跳升的庫速可約略指 出在不戶攻產條件下,其顫振臨界庫速發生的位置。

7.7 橋樑測討實驗結論與建議

7.7.1 第二詳驗段儀器設備使輩心得

A. 庫 第二 試驗段、庫 速範圍 2m/s~12m/s

- 庫源運轉雨小時、試驗段溫度約上升十度,因此會影響到試驗儀器之量測。
- ▶ 庫派及主 機構可能對於庫場量測會有影響,現階段無法直接驗證天車對於流場的影響。
- 日於建築試驗群之用電量受限制,可能在未來造成風源試驗 無法進行長時間的連續試驗工作。
- 庫 演試驗館 # 圍生活機能不足(照明、膳食、居住)

- B. 試驗過程中曾使用皮托管、壓力計、壓力轉換計、雷射位移計、 採樣系統(採樣十、電腦)、應變訊號誹節儀等儀器設備。
 - 採樣系統速度較 Dos 系統耗時,實驗數據經採樣系統分析後 會出現 bug,應予改善。

7.7.2 橋樑測詳實驗結論

A. 儀器設備測試結果

- 量測儀器性能均經測試,除採樣系統需略可改善外,其他儀器設備功能合乎庫涉試驗所需。
- 庫 事 本 體 性 能 尚 有 改 善 空 間 , 仍 需 作 進 一 步 誹 整 測 試 。

B. 試驗結果

已完成而階段之庫 湄試驗, 其項目如表 6 所示, 其結果分述如下:

● 在庫 1 係數方面:

- (2) 平均昇 1 係數 (CL) 為垂直 內平均 A 1 係數: 平板橋樑 斷 本 模型 受到 L 舉 的 A 1 隨 攻 A 遞增 有 遞增 的 現象 , 反 之 亦 有 隨 攻 A 遞增 其 下 壓 的 B 1 亦 遞增 ; 音 屏 溪 橋 樑 斷

- (4) 若利用已知資料做為比較,則可看出本次試驗值之平均阻力係數 (C_D) 、平均昇力係數 (C_L) 、平均扫力係數 (C_M) 與已知資料接近。

● 在顫振導數方面:

- (1) A2*:代表橋樑斷面的柱轉向棄動才阻尼參數。平板橋樑斷面在正三度攻俸較零度與負三度攻俸有較早發生日負轉正的現象,其表示正三度攻俸其模型有較不穩定的趨勢,其顫振臨界庫速則較低。高解溪橋樑斷面在負三度攻俸時,其值恆為負值,表示在負三度攻俸下不易產生顫振反應,在零度及正三度攻俸下則易產生顫振不穩定的現象。
- (2) A3*:代表橋樑斷面的狂轉向棄動力勁度參數。平板橋樑斷

- (3) H₁*:代表橋樑斷面的垂直內棄動力阻尼參數。平板橋樑斷面與高屏溪橋樑斷面,在三個攻庫方面均隨庫速的增加其值逐漸遞減,在低無因次化庫速時,其庫攻庫的變化對於其棄動力阻尼參數並無明顯變化;在較高無因次化庫速下,高屏溪橋樑斷面之正三度攻庫遞減明顯,表示其垂直向振幅的穩定性較其化攻庫佳。
- (4) A₁*:代表橋樑垂直向的振動對於狂轉向棄動 1 阻尼的影響。在零度攻 是其 值隨無 因次 化 庫速 遞 增 币 增 加 , 其 正 負 三 度 則 無 明 顯 規 律 。
- (6) H₃*:代表橋樑 4 轉向的振動所引發的垂直向棄動 1 勁度。 平板橋樑斷爾在各攻 6 變化下,其隨無因次化 6 速增加其值 有遞增的現象,表示隨 6 速的遞增對橋樑產生負貢獻。

 在高屏溪橋樑斷面之顫振臨界庫速方面:高屏溪橋樑斷面在 正三攻庫時其顫振臨界庫速約在108.05m/s 主右,隨攻庫轉為 負值其庫速遞增,表示隨攻庫變為負攻庫時,其橋樑斷面較 不易發生顫振不穩定的現象。

第八章 僅流擴散實驗

8.1 前言

在庫源建造完成之後將庫市的頂版部至沿庫市軸向(順庫方向) 壓力梯度等零的情況下,檢測空庫市的性能特徵。目於在空庫市區在 測試轉盤上將會有一定厚度的紊流邊界層形成,在無任何其他模擬地 形地物存在的情況下,這應代表著在實場上,相當平滑(如太平原), 地庫上的流場特性。流場在橫方向(垂直於立流方向)應相當均勻。 在這個自然形成的邊界層區(其厚度有待進一步量測確定)進行煙流 擴散實驗庫來檢定其擴散特性是否與太新邊界層區的擴散特性相 似,區時也可原於進一步確認空庫派區橫方向流場特性的均勻程度。

立導大奮及煙流運動之基本方程,方流體動力學中之質量、動量 及能量守恆方程。從對這些方程的尺度分析中可以得到庫事物理模擬 所需之一組完整之參數[15, 16]。這些相似法則,可概括分為(1)動力 相似(dynamic similarity),(2)熱力相似(thermodynamic similarity), 以及(3)幾何相似(geometrical similarity),在以下各節中將對這些相 似法則加以討論。

8.2.1 人 靠 運動之 模擬參數

使用以 单速度 Ω 轉動之 地球 等 零 亨座標,流體運動可以 用下列方程式 來表述[17]:

動量守恆方程式:

$$\frac{\partial U_i}{\partial t} + \frac{U_j \partial U_i}{\partial x_j} + 2\varepsilon_{ijk} U_k \Omega_j = -\frac{1}{\rho_0} \frac{\partial \delta P}{\partial x_i} + \frac{g}{T_0} \delta T \delta_{3i} + \frac{v \partial^2 U_i}{\partial x_k \partial x_k}$$
(8.1)

質量守恆方程:

$$\frac{\partial U_i}{\partial x_i} = 0 \tag{8.2}$$

能量守恆方程:

$$\frac{\partial \delta T}{\partial t} + \frac{\partial \delta T}{\partial x_i} U_i = \kappa \frac{\partial^2 \delta T}{\partial x_i \partial x_i} (i = 1, 2, 3)$$
(8.3)

上式中 X_1 , X_2 , X_3 分别為順庫 向、橫庫 向及垂直方向之座標。 U_1 為瞬間流速, δP 及 δT 分别為偏離中性大棄之壓力及溫度差, ρ_0 及 T_0 分别为中性大棄之密度及溫度(高程 Z 之函數), ν 為運動黏滯係數, κ 為熱擴散係數。

將(8.1),(8.2) 及(8.3) 三 方程,以下列名參考量進行無因次化:L,長度尺度; U_R ,速度; ρ_R ,密度; δT_R ,温度差;以及 Ω_R , 善速度,亦即: $X_i' = \frac{X_i}{L}$; $U_i' = \frac{U_i}{U_R}$; $t' = \frac{U_R}{L}t$; $\rho' = \frac{\rho_0}{\rho_R}$; $\delta P' = \frac{\delta P}{P_R U_R^2}$; $\delta T' = \frac{\delta T}{\delta T_R}$; $\Omega_i' = \frac{\Omega_j}{\Omega_R}$,吾人可得

$$\frac{\partial U_i'}{\partial t'} + U_J' \frac{\partial U_i'}{\partial x_j} + \frac{2}{R_0} \varepsilon_{ijk} U_k' \Omega_j' = -\frac{1}{\rho'} \frac{\partial \delta \rho'}{\partial x_i'} + \frac{1}{F_r^2} \delta T' \delta_{3i} + \frac{1}{R_e} \frac{\partial^2 U_i'}{\partial x_j' \partial x_j'}$$
(8.4)

$$\frac{\partial U_i'}{\partial x_i'} = 0 \tag{8.5}$$

$$\frac{\partial \delta T'}{\partial t'} + U'_{i} \frac{\partial^{2} \delta T'}{\partial x'_{i}} = \frac{1}{P_{o}} \frac{\partial^{2} \delta T'}{\partial x'_{i} \partial x'_{i}}$$
(8.6)

式中:

8.2.2 污染抑質擴散之模擬參數

上節之討論完全侷限在流場特徵的相似模擬。當考慮污染物質在 大棄中的擴散時,首先必須假定污染物質為完全被動的污染物質 (passive contaminant),換言之,污染物對(8.4)至(8.6)的運動方程式不 會產生影響,污染物在擴散的過程中亦不會產生化學或光學變化。在 此種狀況下,可以從分子擴散方程式中得到另外一個參數。

$$\frac{\partial \chi}{\partial t} + U_i \frac{\partial \chi}{\partial x_i} = \alpha \frac{\partial^2 \chi}{\partial x_i \partial x_i}$$
(8.7)

式中 χ 代表瞬時濃度, α 等分子擴散係數,將式(8.7)中之 χ 以 χ_R 無因次化($\chi'=\chi/\chi_R$)可得到

$$\frac{\partial \chi'}{\partial t'} + U_i' \frac{\partial \chi'}{\partial x_i'} = \frac{1}{R_e \cdot S_c} \frac{\partial^2 \chi'}{\partial x_i' \partial x_i'}$$
(8.8)

上式中 $S_c \equiv v/\alpha$ 為休密特數(Schmidt number)。

方程(8.4),(8.5),(8.6)及(8.8)組成一描述被動污染物質在太棄中或模型實驗中擴散的方程組。如果上列各無因次參數及邊界條件完全一致,則污染物質在模型實驗中的擴散與所對應的實場太棄擴散應完全相似。

8.2.3 七 新 邊界 屬 內 擴散之 抑 理 模擬 詳 驗

地表附近空棄的移動受到地表之起伏、建築物、林木作物分佈等的摩擦作用影響,使得平均庫速隨高度而變,形成一垂直分佈剖庫,越接近地表,庫速越慢;換言之,此「庫速剖庫」直接受到地表粗糙狀況之影響。而影響所及的範圍就稱之為「大棄邊界層」。在邊界層頂部之庫速通常稱之為梯度庫速(gradient wind)。

一般大寨擴散及庫才工程之應用所涉及的問題大都發生在庫勢不太弱的情況之下,近地表上數百公尺高度的大寨邊界層範圍之瓜。 在此庫速情況下,大寨機械紊流作用遠超過熱對流作用。日於紊流的 強制混合趨向於形成中性層差。所以本節對大寨邊界層及其模擬的討 論僅限於中性層差的大寨邊界層。

大寨邊界層的厚度,在中性層差的情況之下,視庫的強度、地表粗糙程度及所在的緯度而定,通常在數百公尺至數公里之間。本案的庫物理模擬實驗,很重要的一項工作即是在模擬邊界層高度於大寨流動的一些特性,這些特性之中包括有平均庫速特性及紊流特徵。模擬相似率是通過上二節的分析得到。除此之外,在庫源的模擬實驗中對煙流之上昇,對邊界層過近流之一些邊界條件亦必須納入考量。

8.2.3.1 對模擬參數之考慮

在邊界層庫 派 ,應用縮尺模型進行物理模擬實驗,一般言之,即使是使用大型之邊界層庫 派,前二節所述之五 個無 因次 參數亦無法 上時都能得到滿足。所幸,視問題的不 后,在某些情况之下,可以放鬆一些參數的相似性要求。

- (2)雷諾數, R_e, 為慣性力與黏滯力之比值, 在擴散實驗中,原型與模型之雷諾數無法達到相等,但雷諾數的不等,並非一個嚴重的限制, Halitsky[18]指出在方形模型 # 遭之流場,當雷諾數達 11,000時,所量測到的污染濃度值已不再隨雷諾數而變化。美國環保局(EPA)之模擬準則[16]裡亦建議在有稜 # 之建築物 中 # ,當雷諾數超過 11,000時,其紊流流場之特性應該相似。
 - (3)培克烈數, P_e ,及雷諾-休密特數, R_e-S_c ,可分別寫成:

$$P_e = \frac{U_R L}{\kappa} = \frac{U_R L}{v} \cdot \frac{v}{\kappa} = R_e \cdot P_r$$

式中P, 為普朗特數(Prandtl number),以及

$$R_{e} \cdot S_{c} = \frac{U_{R}L}{V} \cdot \frac{V}{\alpha} = \frac{U_{R}L}{\alpha}$$

此二無因次參數具有 F 樣之形式, 即為雷諾數與一分子傳輸係數 比之乘積。普朗特數為動量擴散 (momentum diffusivity) 與熱擴散 (thermal diffusivity)之比,休密特數則為動量擴散與質量擴散(mass diffusivity)之比。可見普朗特數與休密特數皆為流體本則之性質而非流場之性質。如果以空棄為介質進行擴散之物理模擬實驗,在原型與模型之間其普朗特數及休密特數(對幾乎任何釋入空棄中之污染棄體)幾乎相等。所以在衡量培克烈數與雷諾-休密特數是否相當時,重點不在普朗特數與休密特數,而在雷諾數;如果一個流場之雷諾數足夠高,則其間污染物質之傳輸主要是日系流中之大型結構所帶動,分子傳輸部份之貢獻極為微小。所以美國環保事之模擬準則[16]中指出,在原型與模型間培克烈數或雷諾-休密特數相等之要求並不重要,只要雷諾數足夠高,流場顯示出其對雷諾數之獨立性即可。

(1)福祿數,F,,善慣性力與浮升力比值之平方根,與季查遜數(Richardson number)之平方根成倒數關係。在模擬大棄擴散的實驗中福祿數應該是一個最重要的參數。通常有二個福祿數必須考慮,即大棄棄流之福祿數以及煙向排棄之福祿數。在實驗中善達到與原型相似的較小福祿數值,必須將庫派之庫速譜低,但善了達到模型與原型間雷諾數相似的要求又必須儘可能將庫速提高。此一互相矛盾兩極化的要求,其解決方法是在滿足福祿數相似之要求下,儘可能提高庫淨的運轉庫速以保證流場特性的雷諾數獨立性。

8.2.3.2 對僅回廢棄耳流之考慮

如前所述模擬邊界層序之擴散現象,必須對煙流之上升加以考慮。有關對模擬廢棄煙流上昇之討論可於 Strom & Halitsky[19],Cermak[15], Isyumov & Tanaka[20],以及 Snyder[16]等之論立中見到。

廢棄昇流之相關變數有:

H。: 煙 向 育 度

D: 煙向直徑(或有效水力直徑)

W。: 煙 向排棄之垂直流速

U: 煙向 # 遭之 横 向 來 流速 度

ρ。: 煙氣密度

ρ。:環境空氣密度

 $\Delta \rho$: $\rho_a - \rho_s$, 空棄與煙流之密度差

g:重1加速度

對日動量效應(momentum effect)及浮昇 才效應(buoyancy effect) 所主宰之煙流,其相關的模擬參數如下:

- (1) 煙 向垂 申 排棄 與 B 遺 横 向 來 流 速 度 之 比 值 , W_s / U 或 書 動 量 退 量 (momentum flux) 之 比 值 , $\rho W_s^2 / \rho_a U^2$;
- (2) 基於煙氣與 # 遭空氣之密度差及煙 的直徑之福祿數(慣性力與 浮升 1 之比),(a) 以煙氣密度作為參考密度之福祿數 $F_{rs}=W_s/(gD\Delta\rho/\rho_s)^{1/2}$,(b) 以 # 遭空氣密度作為參考密度之福祿數 $F_{rg}=W_s/(gD\Delta\rho/\rho_s)^{1/2}$;
- (4) 煙棄之雷諾數, $R_{es}=W_{s}D/v$,以及 B 遭 來流之雷諾數 $R_{e}=UD/v$;
 - (5) 幾何尺度比, D/H_s

上述之模擬參數,可綜合煙流幾何現象之尺度關係;

$$\frac{l_m}{H_s} = \frac{1}{2} \left[\frac{\rho_s W_s^2}{\rho_a U^2} \right]^{\frac{1}{2}} \left[\frac{D}{H_s} \right]$$
(8.9)

$$\frac{l_B}{H_s} = \frac{1}{4} \left[F_{ra} \right]^{-2} \left[\frac{D}{H_s} \right] \left[\frac{\rho_s W_s^2}{\rho_a U^2} \right]^{\frac{3}{2}} \left[\frac{\rho_a}{\rho_s} \right]^{\frac{3}{2}}$$
(8.10)

式中 I_m 及 I_B 分別為煙棄昇流現象之動力尺度(momentum length) 與浮力尺度(buoyancy length)。煙流上昇之弧形軌跡及高度可由 I_m 與 I_B 表示。在模擬煙向廢棄昇流之實驗中,在原型與模型間如何保持(5.9) 與(5.10)式中,各括弧瓜之參數相似必須審慎考量。

日於在庫消實驗中,使用縮尺模型,如在模型與原型間保持密度 比與動量運量比相似,則同時欲維持福祿數相似性非常困難,蓋庫 市中之庫速必須以方根之方式縮小,以致遭遇到低流速下維持流場穩定 上的困難,有關對此問題之討論及範例,可在張能復等人[21]之報告 中見到。

(A)近場煙流行為之模擬

根據上述參數對模擬近場煙流行為,美國環保事[16]之指引中, 提出如下建議:

- (1) 煙棄下沖之問題 煙棄下沖進入圓柱型煙向尾流瓜之模擬相似要求。
 - (a)如原型煙向的雷諾數 R_e (= UD/ν) † 於 10^5 ,則模型之雷諾數亦應維持在† 於 10^5 ,如使用模型外表加粗等之技巧,則此項雷諾數之要求至多可減 10^5 半;
 - (b)如原型煙囱之雷諾數小於 10^5 ,則模型之雷諾數十於 400 即可;

- $(c)W_s/U$, ρ_s/ρ_a 以及 $W_s/(gD\Delta\rho/\rho_a)^{1/2}$ 三 零數在原型與模型間必須相似。
- (2)無煙棄下沖之問題 在地形地物等之棄動 1 影響之下之煙流擴 散模擬相似要求。
 - (a) 壓棄的雷諾數儘可能提高,最好能超過 15,000,如果必須將壓 棄之雷諾數減小至小於 2,300,則可能需將壓向於壁加粗以保 證其為紊流溢出,如果必須將壓棄之雷諾數減至小於 300,則 需見謹慎的探討。
 - $(b)W_s/U$, ρ_s/ρ_s 以及 $W_s/(gD\Delta\rho/\rho_s)^{1/2}$ 三 參數在原型與模型間必須相似。這些相似要求通常侷限模型之縮尺不得小於 1/400。

(B) 遠場煙流行為之模擬

考慮到初始動量及浮力,Briggs[22]之煙流軌跡方程可寫成:

$$\left\{ \frac{\Delta h}{H_s} \right\}^3 = \frac{3}{\beta_1^2} \left[\frac{\rho_s W_s^2}{\rho_a U^2} \cdot \frac{D^2}{4H_s^2} \right] \left[\frac{x}{H_s} \right] + \frac{3}{\beta_2^2} \left[\frac{g D^2 W_s \Delta \rho}{4\rho_a U^3 H_s} \right] \left[\frac{x}{H_s} \right]^2$$
(8.11)

$$= \frac{3}{\beta_1^2} \left[\frac{l_m}{H_s} \right]^2 \left[\frac{x}{H_s} \right] + 4.2 \left[\frac{l_B}{H_s} \right] \left[\frac{x}{H_s} \right]^2$$
 (8.12)

式中 Δh 海煙流上昇高度,x 海煙流距煙向之下游距離, β_1 及 β_2 為 捲增常數(entrainment coefficients), $\beta_1=1/3+U/W_s$, $\beta_2=0.6$ 。

根據 Briggs[22],

$$l_m = \frac{1}{2} \left[\frac{\rho_s}{\rho_a} \right]^{1/2} \frac{W_s}{U} D \tag{8.13}$$

$$l_B = g \frac{D^2}{4} \frac{W_s}{U^3} \frac{\Delta \rho}{\rho_a} \tag{8.14}$$

Im及IB可分別視為因為動量及浮升力所造成煙流曲線的初始半徑。目(5.12)式可看出接近煙向的煙流日初始動量主控,隨著煙棄之下飄,浮升力逐漸接替成為主控因素。

對遠場煙流, Hoult[23]建議,在避免煙棄下沖的條件下,可忽略 對初始動量的之要求,而以下式來模擬:

$$\left(\frac{l_B}{H_s}\right)_m = \left(\frac{l_B}{H_s}\right)_P \tag{8.15}$$

式中足碼m R P 分别代表模型 R 原型。此種模擬方法的優勢 是在滿足(8.15)式之情沉下,可 R , R 、 改變 P_s , P_a , R , R , R , R 可 R 也。

根據上述討論,對模擬遠場煙流行為,美國環保事之指引中 (Snyder,1981),提出如下之建議:

- (1) 保証煙氣釋流之紊流特性
- (2)根據"精確度"的不后,可採用:
- (a)滿足 l_m/H_s \mathcal{L} l_B/H_s 之相似
- (i)滿足幾何相似率,
- (ii) 扭曲煙向之直徑,但須避免煙棄下衝,或
- (b)滿足 l_B/H_s 之相似
- (i)滿足幾何相似率,
- (ii) 拄曲煙向之直徑,但須避免煙棄下衝。

8.3 實驗方法

8.3.1. 压速量测

本實驗庫速量測所使用之儀器包括有:

- 1. 皮托管(pitot-static tube): 用於庫淨瓜庫速之監控(如圖八)。
- 2. 煙線(smoke wire): 用於庫速在1.2 米/秒以下庫速之量測與監控。
- 3.恒溫式熱膜庫速儀(Constant-temperature hot-film anemometer): \mathbb{R} 於庫速剖庫及紊流特性茲之量測(包括軸向及垂向之平均流速U及W,以及紊流強度 $\sqrt{\mathbb{R}^2}/\mathbb{Q}$ 及 $\sqrt{\mathbb{R}^2}/\mathbb{Q}$)。整個儀器系統包括:
 - (i) IFA-300 智慧型压速儀(anemometer),
 - (ii) TSI Model 1243 邊界層 " X " 型探針(" X " probe),
- (iii) TSI Model 1125 探針率定器 (probe calibration)。" X "型探針之率定是根據製造廠商 TSI 所設定之標準程序。

日 庫 速 儀 所 輸 出 之 電 子 訊 號 經 過 類 比 / 數 位 轉 換 器 (A/D converter) 之 二 個 頻 道 , 日 電 腦 系 統 之 讀 入 進 行 計 算 、 分 析 及 紀 錄 存 檔 。

8.3.2 僅棄之模擬

初步专處只用中性浮力之煙流以抬升源之方式釋入邊界層瓜。模擬之煙氣將以 1% 之甲烷與空棄混和。

8.3.3 釋故系統

示蹤棄體(tracer)包括目甲烷、空棄所組合而成之混合棄體。 混合棄體之百分比是經目而架單管之浮子流量計(single tube flowmeter)所控制。

非標準狀況及非空棄之流體其相等於標準狀況下之空棄流量可

以下式計算得到。

$$Q_{air} = K_{gas} \times Q_{gas} = \left(G \times \frac{T_{act}}{T_0} \times \frac{P_0}{P_{act}}\right)^{\frac{1}{2}} \times Q_{gas}$$
(8.16)

式中 Qai:標準狀況下之相等空棄流量

Q_{aa}:所用氣體之流量

G:所用棄體之比重

 T_{act} : 使用狀況之絕對溫度 (${}^{\circ}$ k)

7。:標準狀況時之絕對溫度 (°k)

Par: 使用狀況之大氣壓力

P。:標準狀況下之大氣壓力(14.7psia)

日釋放閥門所控制之系體經混系管混合後,經日模型之排放源排放入庫 派之試驗段 N 。

8.3.4 採樣點之作設

在模型上庫之地面上設有一背景濃度之採樣點。釋放源之濃度採樣點則設在混棄管之出口處。垂直採樣架上共將約設有 15 個採樣點。垂直採樣架是被安裝在庫派瓜之天車上。模型上,地表濃度採樣點是分佈在以釋放源為起點沿著庫內之主軸線兩旁±18°之扇形面上。

8.3.5 示蹤氣體之採樣與分析

示蹤集體之採樣與分析是由一架筆書所自行設計之集體採樣系 統與一架棄相層析儀 (gas chromatograph) 經日介面板併入日電腦所 控制之中心數據採集、處理、分析及結果展示系統。

單管 (single column) 棄相層析儀包括有:

- 1. 火焰離子化偵測器(flame-ionization detector)
- 2.自動溫度控制器(automatic temperature controler)
- 3. 差分電表 (differential electrometer)
- 4.流動系統(flow system) 包括壓力調控及壓力表(pressure regulator and pressure gauge)

棄相層析儀使用前之率定包括有經日標準濃度之混合棄體,以及實驗室所自行混和之不等濃度之棄體進行系統之線性 - 非線性反應之率定,以及零點偏移量(zero shift)之確定。

所能量測到之濃度下限,日儀器之靈敏度及背景濃度 (background concentration) 所定。在整個濃度之測試過程中,背景 濃度之量測都包括在小,每一測點之濃度值都經日背景濃度加以修正。

所量測到之濃度值 C_{mea} ,(單位為 ppm),背景濃度值 C_{bg} ,以及釋放源濃度值, C_s 可經日下式轉變為模型之濃度係數, C_m

$$C_m = \frac{C_{mea} - C_{bg}}{C_c} \tag{8.17}$$

8.4 煙流播散實驗結果

進行擴散實驗之前先對流場作一初步的測試,其空派水平庫壓分佈穩定,上下震盪的幅度約為百分之一(圖42),下游約25米處(第二連轉盤)所量得的邊界厚度約30cm厚(圖43)。為模擬大棄邊界條件,於測試區上游安置粗糙元(如圖40及圖41)以增加邊界層厚度,經量測後邊界層厚度增加為170cm厚。在連轉盤中心處設置一模擬煙向排放擴散棄體,於排放源下游1m、2m、3m及3.5m處採集棄體,經由棄體分析儀可測得其濃度,圖45及圖46分別為不戶距離下水平及垂直方向濃度分佈。

第七章 教育訓練

本計畫亦將協助完成協助於政部建研所培訓庫涉操作與維護所需人才,以落實培訓庫涉操作與維護所需人才的目的;而教育訓練包含了儀器設備的教育訓練及性能驗證實驗的教育訓練。

第一章 結話

歷經三年時程,很喜興能順利完成此庫淨的籌建工作。此庫淨的 碩體驗收在今年工月底完成,隨即進行一系列實驗測試項目,其目的 為驗證本庫淨的性能。整體而言,所得的測試結果顯示庫淨測試區流 場品質正在逐項驗證之中,另外完成了橋樑斷面測試項目,與煙流擴 散測試項目。由這些實驗結果進一步描繪出此庫淨已具備大型建築物 模型測試能力相信假以時日,用心經營,這個實驗室能為我國的建築 界產官學研究做很多的工作,戶時也可藉此實驗室的成果促進國際科 技交流。

在此特別感謝於政部建築研究所的后仁、成大航太中心及相關單位后仁的協助,使得在籌建過程工作進行順利。

参考マ幹

- 4. Prandtl L (1927), "U" ber den Reibungswiderstand stro"mender Luft." Ergebnisse AVA Go"ttingen III: 1–5
- 5. Cermak, J. E., "Applications of fluid mechanics to wind engineering a freeman scholar lecture," Trans. of the ASME, J. of Fluids Eng., vol. 97, pp. 9-38, 1975.
- 6. Cermak, J. E., "Aerodynamics of building," Annual Review of Fluid Mechanics," vol. 8, pp. 75-106, 1976.
- 7. Houghton, E. L., & Carruther, N. B. *Wind forces on building and structures*, John Willy & Sons, New York, 1976.
- 8. Obasaju, E. D., Ermshaus, R. and Naudasher, E. (1989), "Vortex induced stream wise oscillations of square-section cylinder in a uniform stream", *Journal of Fluid Mech.*, *Vol. 213*, pp.171-189.
- 鄭啟明,林堉溢,葉博♡,"以斷面模型實驗探討斜張橋之顫振特性",結構工程,第十六者,第四期,第85~98頁,2001。
- 10. Cheng, C.M., Lin, Y.Y., "The Effects of Deck Shape and

- Oncoming Turbulence on the Bridge Aerodynamics" Presented at The Inaugural Meeting of Wind Engineering Research Center at Tokyo Institute of Polytechnics, Atsugi/Japan, 2001.
- 11. Simiu, E. and Scanlan, R. H. "Wind Effects on Structures", *John Wiley & Sons.*, N.Y. (1986)
- 12. 林堉溢,鄭啟明,蔡子立,1997,"斜張橋受庫載重之顫振 及亂流故應分析",結構工程,第十二者,第一期, pp.107-117。
- 13. Scanlan, R. H. and Tonko, J. J. "Airfoil and Bridge Deck Flutter Derivative", *Journal of Engineering Mechanics Division*, ASCE, Vol.97, pp.1717-1737 (1971)
- 14. Kubo, Y., Miyazaki, M. and Kato, K. (1989), "Effect of end plate and blockage of structure members on drag force", *Journal of Wind Eng. and Industrial Aerodynamics*, 32, pp.329-342.
- 15. Cermak, J.E., "Application of fluid mechanics to wind engineering," A Freeman Scholar Lecture. ASME J. of Fluids Engng., **97**, no.1, pp.9-38, 1975.
- 16. Snyder, W.H., "Guideline for fluid modeling of atmospheric diffusion," EPA-600/8-81-009, 1981.
- 17. Lumley, J.L. & Panofsky, H.A., "The structure of Atmospheric Turbulence," Interscience, N.Y., p.239, 1964.
- 18. Halitsky, J. "Validation of scaling procedures for wind tunnel model testing of diffusion near building," Report No.TR-69-8, Geophysical Sciences Laboratory, New York University, 90 p, 1969.
- 19. Strom, G.H. & Halitsky, J., "Important considerations in the use of the wind tunnel for pollution studies of power plants," Paper

- No.54SA-41 ASME Semi-Annual Meeting, Pittsburgh, PA, 1954.
- 20. Isyumov, N. & Tanaka, H. "Wind tunnel modeling of stack gas dispersion difficulties and approximations," Wind engineering (ed. By Cermak, J.E.), Pergamon Press, Oxford, 2, pp.987-1001, 1979.
- 21. 張能復,「台北市下湖垃圾焚化廠廢棄排放對廠址附近環境空棄品質的影響」,研究報告 424p, 1988.
- 22. Briggs, G.A., "Plume rise predictions," ATDL No. 75/15, Atmos. Turb. and Diff. Lab., NOAA Environ Res. Lab., Oak Ridge, TN, 53p, 1975
- 23. Hoult, D. P. "Simulation of buoyant pollutants in the atmospheric boundary layer flow studies in air and water pollution," ASME, N. Y., pp. 61-69, 1973.

圖1. 93年5月26日属源驗收

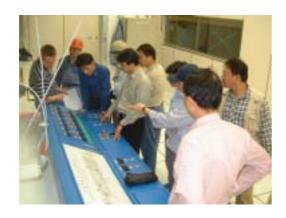
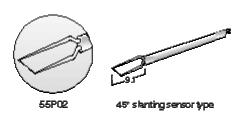
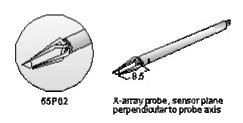
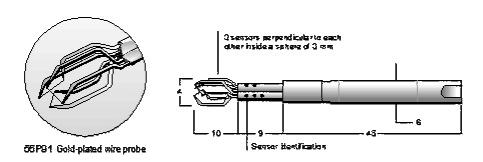


圖2 庫 扇測試現況暨庫 扇試車檢討會議




皮托管

薄膜式壓 1 傳送器


圖3皮托管及薄膜式壓力傳送器圖

(a)- 維量測之熱線探針

(b)二維量測之熱線探針

(c)三維量測之熱線探針

圖5三孔的cobra probe圖

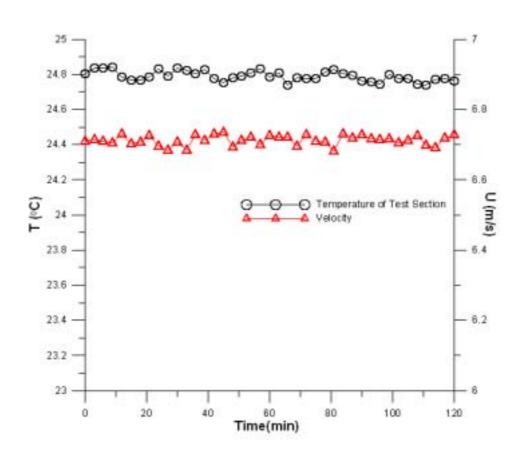


圖 6 庫 駐運轉時間與其溫度、第一測試區入口速度之關係圖

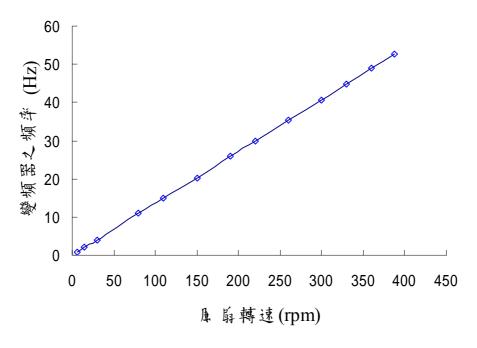


圖7庫 解轉速與變頻器頻率之關係圖

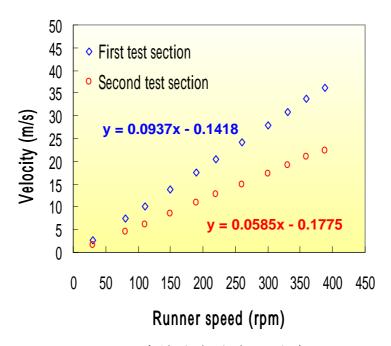


圖8庫 扇轉速與速度之關係圖

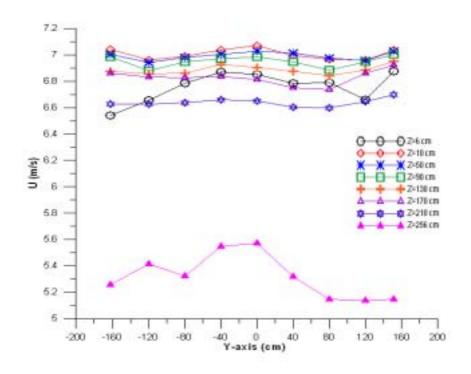


圖 9 第一 測試區下游 2.5m 之平均速度分布圖

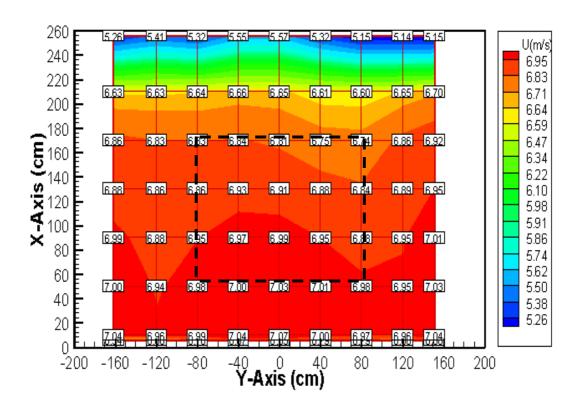


圖 10 第一 測試區下游 2.5m 之二 維平均速度剖面圖

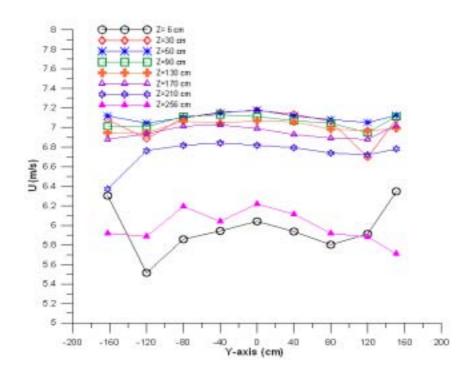


圖 11 第一測試區下游 15m 之平均速度分布圖

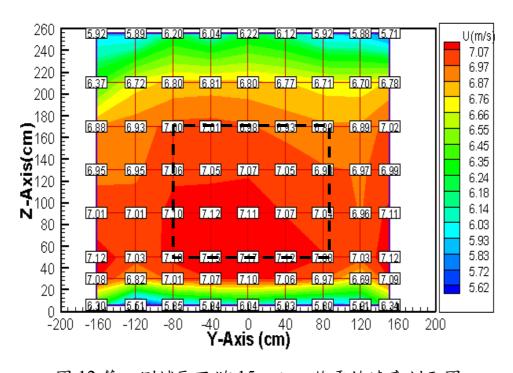


圖 12 第一測試區下游 15m 之二 維平均速度剖面圖

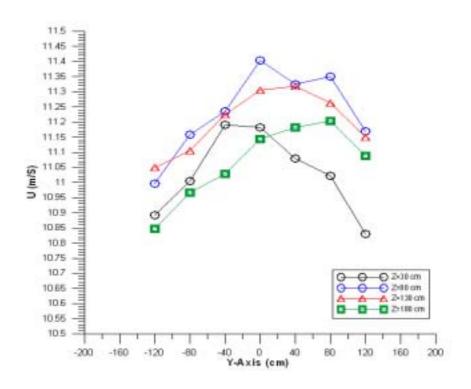


圖 13 第一 測試區下游 25.5m 之平均速度分布圖

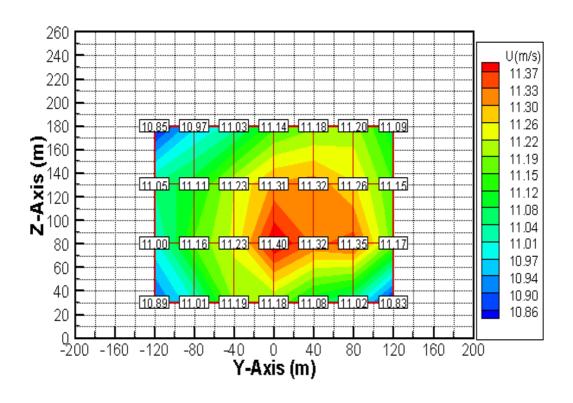


圖 14 第一 測試區下游 25.5m 之平均速度剖面圖

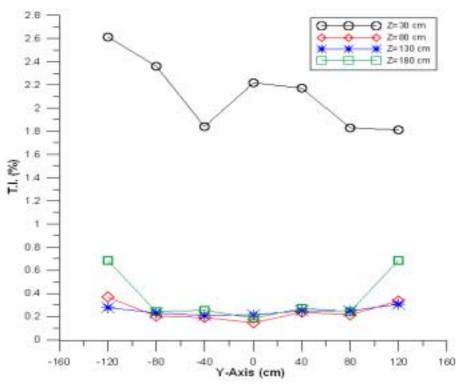


圖 15 第一 測試區下游 25.5m 之 紊流強度分布圖

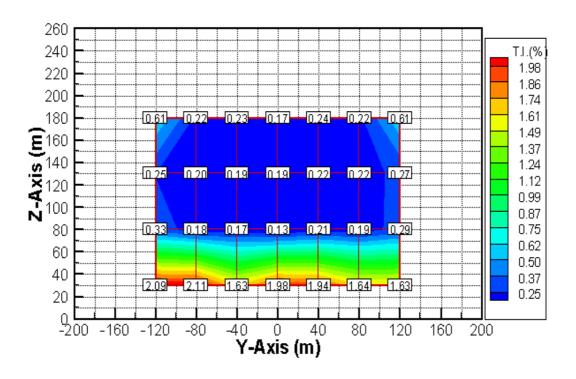


圖 16 第一測試區下游 25.5m 之 紊流強度剖面圖

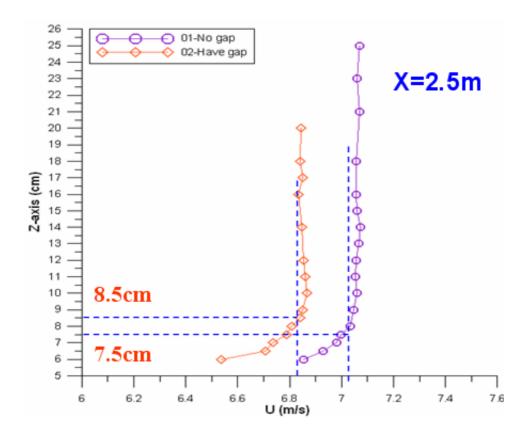


圖 17 第一 測試區下游 3m 邊界層厚度

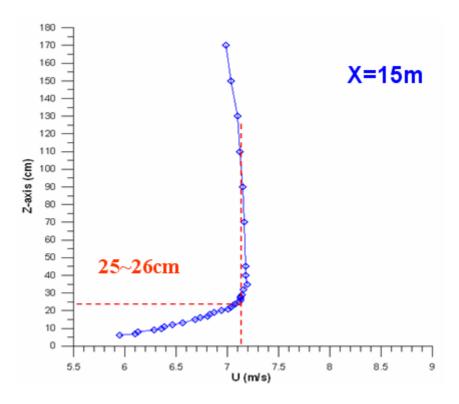


圖 18 第一測試區下游 15m 邊界層厚度

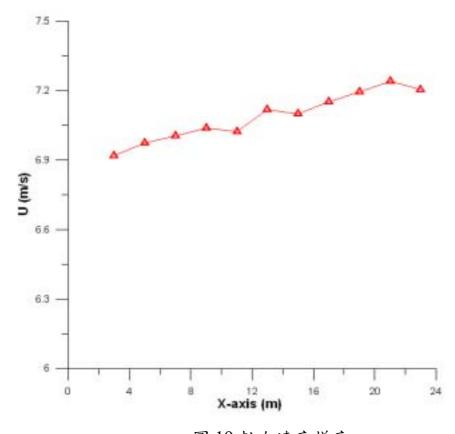
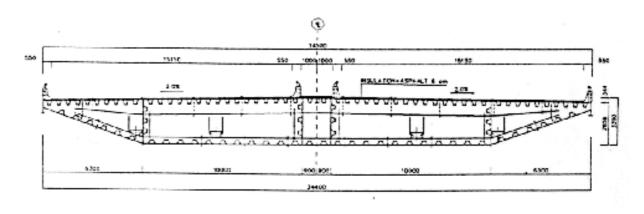



圖 19 軸向速度梯度

圖 20 平板橋樑斷雨架設於庫派瓜丙端板之間

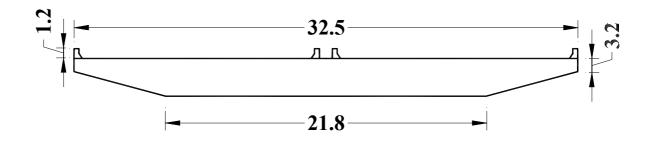


圖23 育屏溪橋樑斷面模型之尺寸

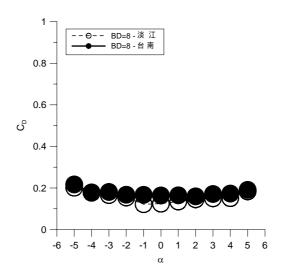


圖23平板橋樑斷面之拍电向平均压力係數

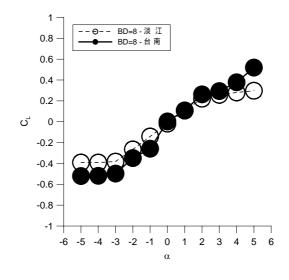


圖24平板橋樑斷雨之垂直向平均压力係數

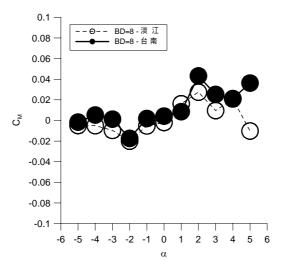


圖25平板橋樑斷面之拄轉向平均庫才係數

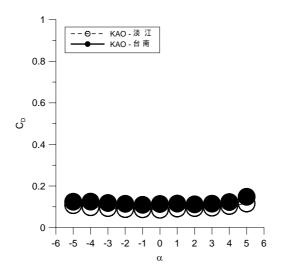


圖 26 高屏溪橋樑斷面之拍电向平均厚力係數

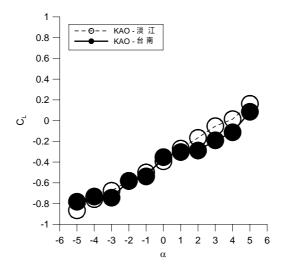


圖27高屏溪橋樑斷雨之垂直向平均庫 1 係數

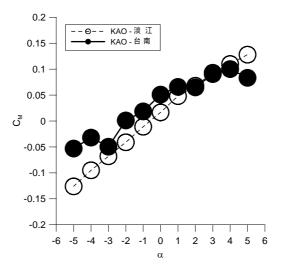


圖28 高屏溪橋樑斷面之拄轉向平均庫 1 係數

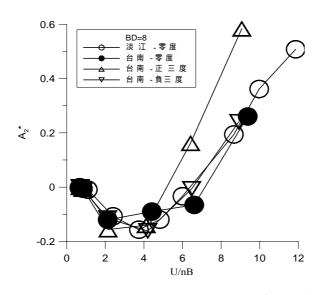


圖 29 平板橋樑斷 重之非耦合項頭振導數 (A₂*)

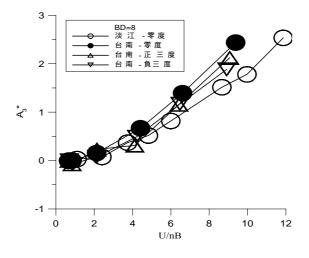


圖 30 平板橋樑斷面之非耦合項顫振導數 (A₃*)

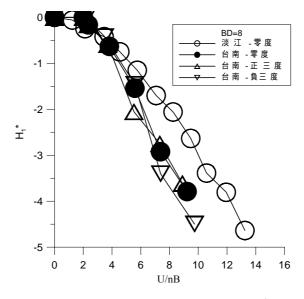


圖 31 平板橋樑斷 車 非耦合項頭振導數 (H₁*)

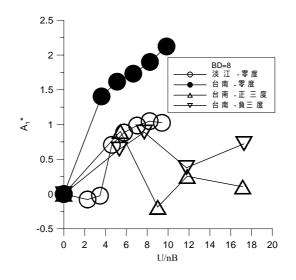


圖32 平板橋樑斷面之耦合項顫振導數 (A₁*)

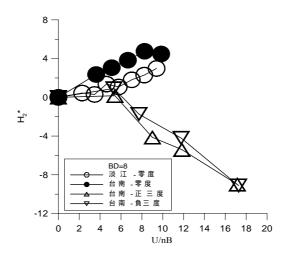


圖33平板橋樑斷面之耦合項頭振導數 (H₂*)

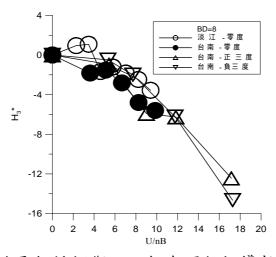
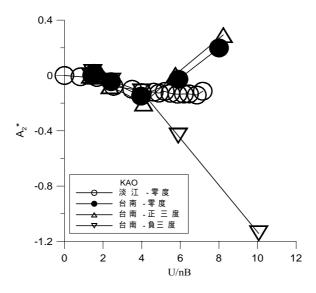
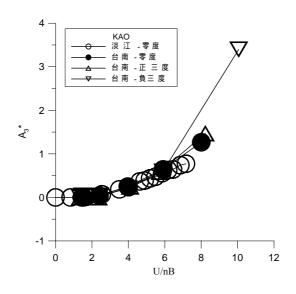
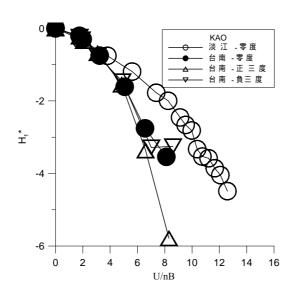
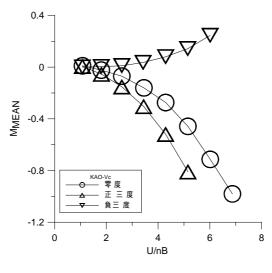
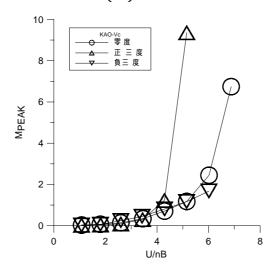
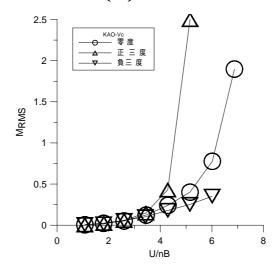
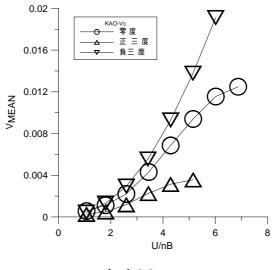


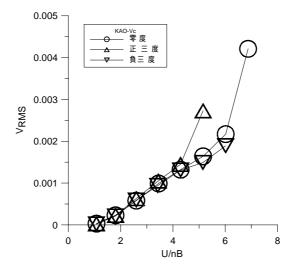
圖 34 平板橋樑斷面之耦合項顫振導數 (H₃*)

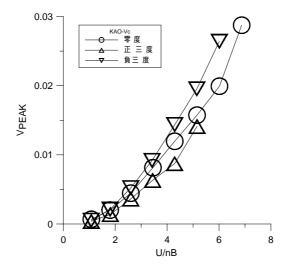






圖35 肩屏溪橋樑斷面之非耦合項顫振導數 (A₂*)

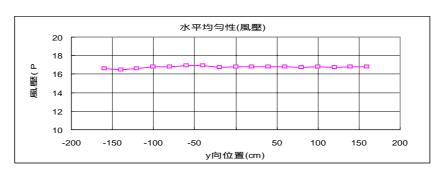


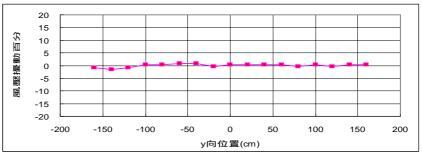

(a) Mean


(b) R.M.S


(c) Peak

(b) R.M.S


(c) Peak



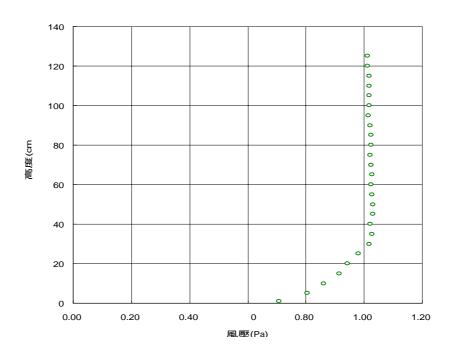

圖 40 煙流實驗皮托管參考位置

圖 41 煙流實驗可視化試驗

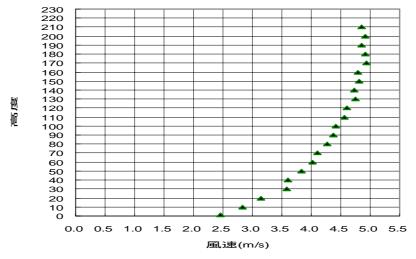


圖 44 模擬邊界層之實驗結果

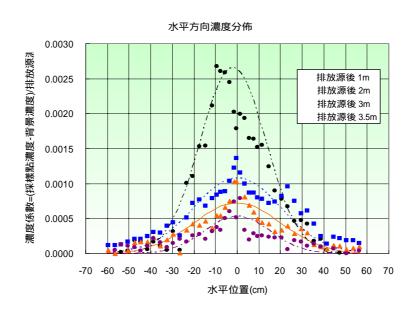


圖 45 不 后 距離 下 水平 方 向 濃度 分 佈

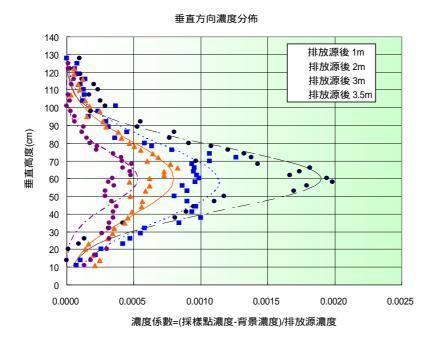
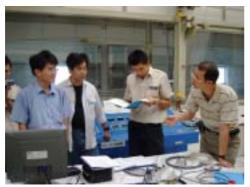



圖 46 不 后 距離下 垂 直 方 向 濃度分 佈



A 皮托科技

B 鑫詳科技

圖 47 量測儀器廠商教育訓練情形

圖 48 流場基本性能測試實驗教育訓練情形

附 表

方向	頭振 導數	代表之物理意義
垂直佈	${\rm H_1}^*$	橋體於垂直向之振動速度,所引發之垂直向棄動才阻尼
	$\mathrm{H_2}^*$	橋體於狂轉向之振動速度,所引發之垂直向棄動才阻尼
	H ₃ *	橋體於狂轉向之振動位移,所引發之垂直向棄動才勁度
拍电向	P_1^*	橋體於拍电向之振動速度,所引發之拍电向棄動才阻尼
	P ₂ *	橋體於狂轉向之振動速度,所引發之拍电向棄動才阻尼
	P ₃ *	橋體於狂轉向之振動位移,所引發之拍电向棄動才勁度
	A_1^*	橋體於垂直向之振動速度,所引發之扭轉向棄動力阻尼
	${\sf A_2}^*$	橋體於狂轉向之振動速度,所引發之狂轉向棄動才阻尼
	A_3^*	橋體於狂轉向之振動位移,所引發之狂轉向棄動才勁度

表 1 顫振導數代表之物理意義

Parameters	符號	斷面模型
幾何縮尺	$\lambda_{ m L}$	1/100
速度縮尺	$\lambda_{ m V}$	1/10
時間梭尺	$\lambda_{\mathrm{T}} = \lambda_{\mathrm{L}}/\lambda_{\mathrm{V}}$	1/10
頻率縮尺	$\lambda_{\rm f} = 1/\lambda_{\rm T}$	10
密度縮尺	$\lambda_{ ho}$	1
阻尼比	λ_{ξ}	1

表 2 橋樑實驗模型縮尺參數一覽表

	原型橋樑	縮尺後理論 值	斷面模型
寬 (m)	34.504	0.345	0.345
單位長度質量 (Kg/m)	287	2.87	2.87
垂直 申頻率 (Hz)	0.268	2.675	2.77
拄轉命頻率 (Hz)	0.6077	6.077	6.10
頻率比	2.27	2.27	2.20

表 3 橋樑實驗模型縮尺一覽表

試驗項目	庫攻承變化	平板斷面	高屏溪橋斷 面
庫才係數	+5° 至-5° 間距為1°	0	©
顫振導數	+3° 至-3° 間距第3°	0	0
欄杆影響	0°	_	0
顫振臨界庫速	+3°至-3°間距為3°	_	©

库攻角	無因次化庫速(U/nB)	實場顫振臨界庫速(m/s)
-3°	>14.47	>126.06
0°	14.47	144.13
3°	10.84	108.05

表 5 肩屏溪橋樑斷爾模擬第一 拄轉頻率與第一垂直頻率之顫振臨界庫速轉換

試驗項目	庫攻承變化	平板斷面	高屏溪橋斷 面
庫才係數	+5° 至-5° 間距第1°	0	©
顫振導數	+3° 至-3° 間距為3°	©	0
欄杆影響	0°	_	©
頭振臨界庫速	+3° 至-3° 間距第3°	_	0

表六 斷面模型庫 非試驗分項表

「庫 演 職 館 糸 統 整 合 測 試 暨 庫 派 性 能 驗 證 研 究 (I)」 期 中 審 查 會 議 結 果 答 韵

期中會議建議事項	籌建小組答覆說明
方教授富民: 1.	
陳教授若華: 1. 建議利用驗證庫非性能階段,保留操作過程之程序及注意辜項以供建立標準操作程序。 2. 目前測試資料應加以整理保存,建立基本性能資料及圖表,以供日後定期驗證實驗室性能。 3. 庫源實驗室的成長除硬體設備的建置之外,研究團隊的長期支持亦十分重要。	1.已開始逐步建立相關庫 排作等相關操作作業程 序。 2.測試實驗的相關結果會彙 整於期末報告或成果報 告之中。 3.建請建研所研究辦理。
蕭教授葆義:1.基本項目皆依約完成,值得肯定。2.有關庫	

王建築師立信(中華民國建築師公會全國聯合會代表):

- 1. 建議期末報告是否能增列庫 實驗室建立的標準,以利民間有與 趣投資庫 消實驗室有所依歸。
- 建議對庫 準實驗數據的穩定性需再加強或瞭解其影響因子並尋求改善,方有助於未來建研所庫 準實驗公信力的建立及實驗品質的提單。
- 3. 後續維修之經費,應每年編 列,以利永續經營及品質保證。

1.這次計畫並無規劃相關的

研究項目, 所以期末報告

中無法建立相關標準。

2.基本性能測試實驗目的為 瞭解區源

⇒ 技師子劍(中華民國土木技師公會全國聯合會代表):

這次計畫並無規劃相關的 研究項目,所以期末報告中 無法建立相關標準。

- 低压速段對將來應用」很多, 應測試其穩定度。
- 應設置即時儀器校正的設施, 在試驗前、試驗後校正儀器以增加 其精確度。
- 4. 建立多頻道、多功能快速取樣系統。 4. 儀器採購中有編列預算購

- 1.感謝委員肯定。
- 2. 庫 沙測試實驗會 考慮測試 之穩定度。
- 3. 有購買部分校正儀器設 備,可於實驗前後校正量 測儀器。
- 4. 儀器採購中有編列預算購 買相關設備,已完成採 購。

表七 期中審查會議結果答詢表

Un → Δ → → → → → → T	等·4 1 m 然可力 m
期末會議建議事項	籌建小組答覆說明
方教授富民:	
1. 請增加進行橋樑與煙流試驗時遭遇之	
用難與建議。	實驗的委員。
2. 第一測試區截面速度均勻度不盡理	
想,極可能是因為收縮段收縮比不育	進行中。
之故,應考慮在整流紛維方爾尋求改	
善。此外,請補列本截雨紊流強度變	
化(等值圖)。	3.基本性能相關測試持續
3. 為提供未來使用	進行中。
詳列三個轉盤位置流場品質之相關資	211
料(均勻度、紊流強度、邊界層厚度、	
縱声壓力梯度等)。	
陳教授振華:	
1. 本計劃之庫	1.感謝委員肯定。
際水準,且所進行的性能試驗、橋樑	
試驗與擴散試驗等,皆顯示本庫涉具	
有完整且足夠得試驗能量。	
2. 在基本性能測試方面,溫度變化是影	2. 基本附能相關測試持續
響實驗數據之重要原因,可進行了解	
- 與研擬對策。	
3. 橋樑實驗已驗証本庫 非另一可研究之	3.相關培訓計畫會轉請鄭
性能,此橋樑試驗之人員培訓是否絲	教授安排。
入人員訓練計劃办。	
	 4.基本性能相關測試持續
製作,可供後續研究人員之參考。	進行中。

林教授◊賢:

- 寫其「運作時注意事項」以確保生命財 產之安全。
- 1. 庫 浉 開 關機操 作程序已
- 2. 報告表之 "圖"與"表",希望能作 2. 遵照辦理。 說明,以利讀取試驗結果。
- 3. 第 13 頁;請說明庫 扇轉速與變頻器頻 3. 已於審查會中答覆。 率的關係,以利應用。
- 請敘述各種試驗模型製作條件及測試節 圍, 孑說明 合格與否之判斷條件。
- |4.已於審查會中答覆。
- 第72頁;請說明圖11之 (z=6cm)結果, 其變化是因何種原因所產生。
- 5. 基本性能相關測試持 續進行中 。

陳教授太農:

- 1.已完成預期成果第1、2項庫派本體、 **庫** 解、變頻器之試車及測試,証明可 提供實驗驗証之運作,但需作長期之 微調。
- 11.建請使用單位注意相關 細節。
- 2.以橋樑測試(以高層斜張橋)在淡土與 本實驗室測試結果比對,可証明其測 試之可用性。
- 2. 感謝委員肯定。
- 3. 軟碩體之設施與性能可繼續測試驗証 其性能,但實驗人員之培訓在本計畫 中之要求,尚未完成或尚未作說明。 此將無法傳承試驗技術與經驗,直接 影響測試成果與品質。
- 3.已經進行相關人員教育 訓練。

表八 期未審查會議結果答詢

附 件

地點:建研所性能實驗詳會議室

時間: 93 年 04 月 02 日

會議主持人: 甘韦易 教授

出席者:如會議出席簽名紀錄

記 錄:李信宝

會議決議事項:

1、試車過程建研所性能實驗群、庫源籌備小組、中錦、豪頓及任士皆派員出席 參與,試車過程因考慮上蓋板承受性,當轉速達到 360rpm 時 3300V 電源發 生跳電,故庫 解轉速只測至 350rpm,此時第一測試段庫速已超過合約中 30m/s 台乎標準,整體試車完成。

2、 阜 縣 在轉速 350 rpm 時 , 阜 縣 性能 第 87% 台 乎 台 約 中 標準 , 噪音 亦滿 足規範 中 所要 求如 附 件 , 豪頓 公 司 阜 縣 性能 及 空 棄 動 力 測 試 如 附 件 。

4、中雖公司、豪頓公司及任太電機等廠商將分別招測試報告行立至 N 政部建築研究所。

Architecture & Building Research Institute

Test Report

Aerodynamic test on wind tunnel fan 475GN+3EME

for

ABRI wind tunnel

2004-04-29

Table of Contents

- 1. Measurement Instruments
- **1-1** Specifications of Measurement Instruments
- **1-2** Measurement the correction relation of pressure transducer
- 2. Measurement of the static fan pressure rise and velocity of first test section
- 2-1 The sketch map of the experiments
- 2-2 The results of experiments
- 2-2-1. Evaluation Velocity in First Test Section (2F)----section 0
- 2-2-2 Evaluation Static Pressure Rise in Fan Region (B1)
 - ----section 1 and section 2
- 2-2-3. Evaluation Fan Power

1 Measurement Instruments

- 1-1 Specifications of Measurement Instruments
 - a. Pressure transducer: Vaydye DP45-22 (0~1400pa)
 - b. A/D Converter: IOTech ADC-488/8SA
 - c. Thermocouple : FLUKE 54II (Display Resolution $0.01^{\circ}\text{C}/^{\circ}\text{F/K} < 1000^{\circ}$)

1-2 Measurement the correction relation of pressure transducer
Before measurement the static pressure rise, we use the pressure
calibrator(Druck DPI-610) to calibrate the pressure transducer. The
pressure calibrator can be supplied with full scale different output range
of 25 mbar.

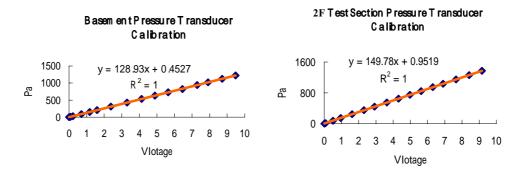


Fig.1 The calibration of pressure transducers

2 Measurement of the static fan pressure rise and velocity of first test section

2-1 The sketch map of the experiments

Position and designation of cross sections

First test section (2F)---Section 0

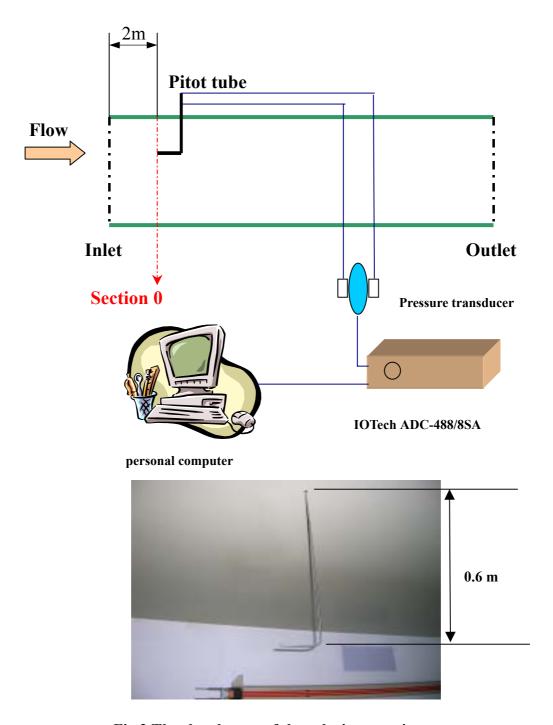


Fig 2 The sketch map of the velocity experiment

Fan region(B1)--- Section 1 and Section 2

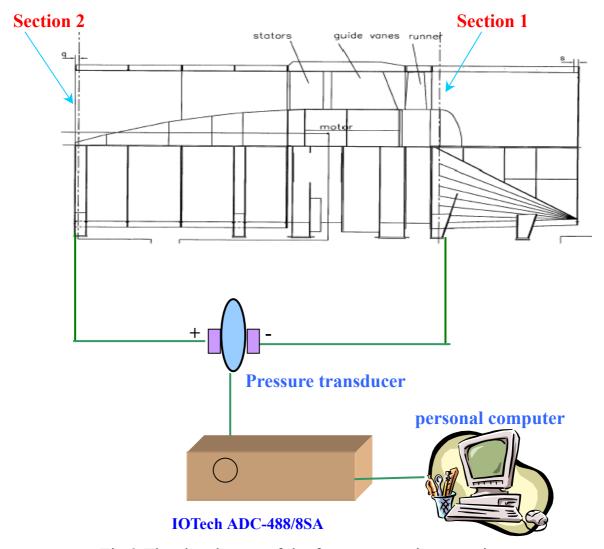


Fig 3 The sketch map of the fan pressure rise experiment

2-2 The results of experiments

Compared with ABRI and Howden results of the test:

2-2-1. Evaluation Velocity in First Test Section (2F)----section 0 EXP 1: Open the Downstream Flaps (2004-04-29 morning)

Input	Measure Values		Evaluation Values		
Runner speed (RPM)	Voltage average	Temperature (°C)	Dynamic pressure (Pa)	Density (kg/m^3)	Velocity (m/s)
20	-0.001	29.5	1.157	1.167	1.408
50	0.05	30.3	8.253	1.164	3.765
100	0.287	31.1	43.866	1.161	8.692
150	0.689	31.8	104.176	1.158	13.410
200	1.276	32.3	192.089	1.156	18.225
250	2.029	33	304.885	1.154	22.987
300	2.946	33.9	442.137	1.151	27.722
330	3.605	34.6	540.892	1.148	30.697
350	4.042	35.5	606.392	1.145	32.550
360	4.291	36.2	643.723	1.142	33.575
370	4.547	36.7	682.030	1.140	34.588
380	4.754	38.3	713.032	1.134355	35.456
390	4.982	38.8	747.192	1.132537	36.324

Table1. Experiment data of each runner speed in Section 0 for ABRI (EXP1).

EXP2: Close the Downstream Flaps (2004-04-29 afternoon)

Input	Measure		Evaluation		
mput	Val	ues	Values		
Runner	V -14	Temperature	Dynamic pressure	Density	Velocity
speed (RPM)	Voltage	(°C)	(Pa)	(kg/m^3)	(m/s)
100	0.281	35.5	43.077	1.145	8.676
200	1.275	36.3	191.874	1.142	18.334
300	2.945	37.7	442.028	1.137	27.89
350	4.054	39	608.121	1.132	32.781
390	4.985	40.2	747.663	1.127	36.418

Table2. Experiment data of each runner speed in Section 0 for ABRI (EXP2).

Voith Howden : Measurement Data—section 0

Input	Measure Values	Evaluation Values	
Runner	Dynamic pressure	Density	Velocity
speed (RPM)	coor. (Pa)	(kg/m^3)	(m/s)

50	11	1.163	4.4
100	60	1.163	10.2
150	141	1.172	15.5
200	256	1.168	20.9
250	403	1.163	26.3
300	601	1.158	32.2
330	727	1.156	35.5
350	815	1.151	37.6

Table3. Measurement data of each runner speed in Section 0 for Howden

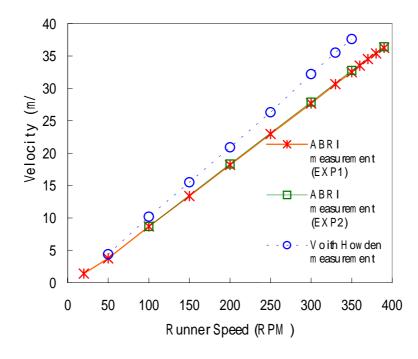


Fig 4. Velocity profile of each runner speed in Section 0 for ABRI and Howden.

2-2-2 Evaluation Static Pressure Rise in Fan Region (B1) ----section 1 and section 2

EXP 1: Open the Downstream Flaps (2004-04-29 morning)

Innut	Measure	Evaluation
Input	Values	Values
Runner speed (RPM)	Voltage average	Static pressure rise
Number Speed (INFIVI)	(V)	ΔP_{st1-2} (Pa)
20	0.017	2.696
50	0.169	22.188
100	0.677	87.695
150	1.52	196.761
200	2.705	349.232
250	4.242	547.43
300	6.056	781.202
330	7.399	954.354
350	8.231	1061.678
360	8.501	1096.484
370	9.18	1184.03
380	9.640	1243.338
390	10.085	1300.712

Table4. Experiment data of each runner speed in Fan Region for ABRI (EXP1).

EXP 2: Close the Downstream Flaps (2004-04-29 morning)

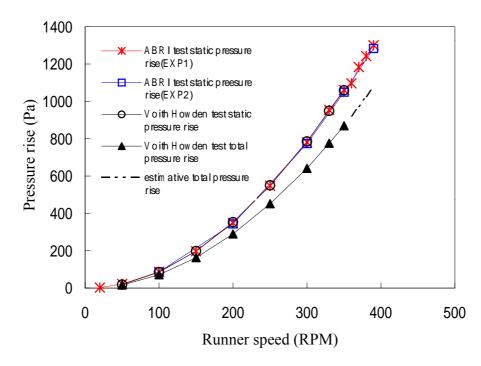

Input	Measure	Evaluation
mpat	Values	Values
Runner speed (RPM)	Voltage average	Static pressure rise
	(V)	(Pa)
100	0.668	86.61
200	2.664	343.956
300	5.999	773.966
350	8.136	1049.406
390	9.95	1283.306

Table5. Experiment data of each runner speed in Fan Region for NCKU (EXP2).

Voith Howden: Measurement Data----section1 and section2

Input	Measure Values	Evaluation Values
Runner speed	Static pressure rise	Total pressure rise
(RPM)	ΔP_{st1-2} (Pa)	(Pa)
50	19	16
100	85	71
150	198	163
200	353	290
250	550	452
300	785	641
330	949	776
350	1060	869

Table6. Measurement data of each runner speed in Fan Section for Howden

Fig 5. Static and total pressure rise of each runner speed in **Fan Region** for **ABRI** and **Howden**.

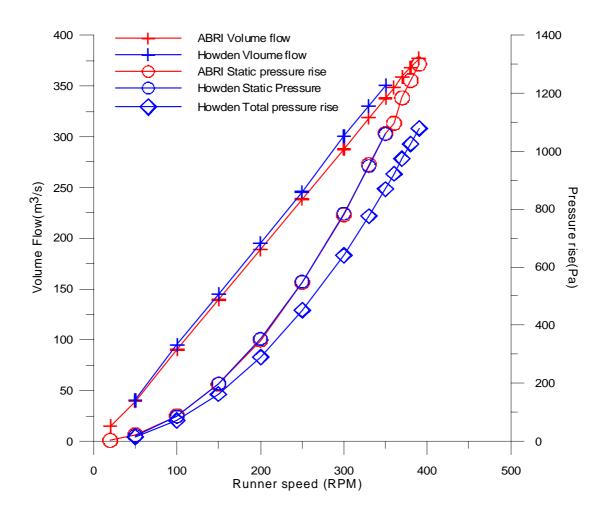


Fig 7. Static and total pressure rise and volume flow rate of each runner speed in Fan Region for ABRI and Howden.

2-2-3. Evaluation Fan Power

EXP 1: Open the Downstream Flaps (2004-04-29 morning)

Time	Runner speed (RPM)	Voltage	Current	Power (KW)
1049	20	170	63.4	10.778
1055	50	430	63.1	27.133
1103	100	858	63.5	54.483
1110	150	1287	65.1	83.784
1116	200	1724	69.3	119.473
1123	250	2160	76.6	165.456
1128	300	2600	88.5	230.100
1131	330	2866	98.5	282.301
1135	350	3041	105.5	320.826
1140	360	3132	110.4	345.773
1145	370	3125	114.2	356.875
1155	380	3251	119.8	389.470
1200	390	3302	124.9	412.420

Table7. Fan power of each runner speed for **ABRI** (EXP1).

EXP 2: Close the Downstream Flaps (2004-04-29 morning)

Time	Runner speed (RPM)	Voltage	Current	Power (KW)
1320	100	859	63.7	54.718
1328	200	1725	69.2	119.37
1342	300	2597	87.8	228.017
1350	350	3041	105.2	319.913
1355	390	3170	126.5	401.005

Table8. Fan power of each runner speed for ABRI (EXP2).

Voith Howden measurement data:

Runner speed (RPM)	Power (KW)
50	1.9
100	6.8
150	27.3
200	65.4
250	125.7
300	222
330	294.7
350	350

Table9. Fan power of each runner speed for Howden.

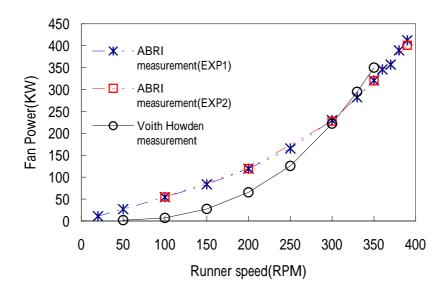


Fig6. Fan power distribution of each runner speed for Howden and ABRI. .

Taines - Purameter I Drive Software - Ve	raion 2,4,0 01-22-03	March 30, 2004 4:53 A.M.
Description	(注意) 東京 4章 (中 4中下	ID LWI
Pull load sp Motor volta Pull load of No load on Motor kW Leakage in	ter tency = \$2.0 Hz tency = \$2.0 rpm tency = 382.0 rpm tage = 3300.0 V teners = 138.0 A tents = 44.0 % Rating = 500.0 kW durtance = 16.0 % tagec = 1.95 %	\$ 0 1 0 ** 1000 B *1020 5 *1080 5 *1080 5 *1060 5 *1060 5 *1070 5 *1080 5
Overload 7 Overload 4 Speed Der O Perce 18 Perc 17 Perc 23 Perc 50 Perce	mnout = 50.0 sec	1120 0 1130 0 1139 0 1140 0 1150 0 1151 0 1151 0 1153 0 1154 0 1155 0 1156 0
Maximum Overspeel Underload I underload I underload Underload Underload Motor tor Regen tor Motor tor Regen tor Motor tor Regen tor Floate Intelligence Ground P	volts = 3800.0 V Load Inertia = 2850.0 Kgm2 = 120.0 % lensite = Disable d = 10.0 % d timeout = 10.0 sec que limit 1 = 100.0 % que limit 2 = 0.300 % que limit 2 = 0.200 % que limit 3 = 100.0 % que limit 3 = 100.0 % que limit 3 = -0.250 % que limit 3 = -0.250 % salat Limit = 5.00 % salat Time Const = 0.0170 sec	*1160 0
Encoder Encoder	1 PPR = 730 filter gxin = 0.0 ions dreshold = 0.0 % ions omposie = stop (fixiti)	1280 0 1290 0 1300 7 1310 7 1320 7

Drive	2 0	
Drive parameters	2000 0	
Rated input voltage = 3300.0 V	*2010 0	
Rand input current = 155.0 A	*2020 0	
Rated dutput voltage = 3300.0 V	*2030 0	
Hazari output current = 200.0 A	*2040 0	
Control loop type = CLVC	2050 7	
2 / Andrew Contract C	main 4	
Speed strap	2060 × 0	
Ratio control = 1.00 %	2070 0	
Spend fivd max limit $1 = 100.0 \text{ fb}$	2080 0	
Speed fived min limit 1 = 0.0 %	2090 0	
Speed five max limit 2 = 100.0 %	2100 7	
Speed fived min limit 2 = 0.0 %	3110 7 2120 7	
Speed find max limit 3 = 100.0 %	2130 7	
Speed field min limit 3 = 0.0 %	*2140 0	
Speed rev max limit 1 = 0.0 % Speed rev min limit 1 = 0.0 %	2150 0	
Speed rev max limit 2 = -100.0 %	2160 7	
Speed by risk limit 2 = 1000 %	2170 7	
Speed sev max limit 3 = -100.0 %	2190 7	
Speed nov min limit I = 0.0 %	2190 7	
Zero speed = 0.0 %	2200 D	
Speed ramp setup	2260 0	
Accel time 1 = 400.0 sec	*2270 0	
Decel time 1 = 200.0 sec	*2280 0	
Accel time 2 = 5,00 sec	2290 7	
Decel time 2 = 5.00 sec	2300 7	
Accel time 3 = 5,00 sec	2310 T	
Decel time 3 = 5,00 sec	2320 7	
Jerk rate = 1,00	*2330 0	
Critical freq	2340 0	
Skip center freq 1 = 15.0 Hz	2350 0	
Skip center freq 2 = 30.0 Hz	2360 0	
Sign center freq 3 = 45.0 Hz	2370 0	
Scip bandwarfi 1 = 0.0 Hz	2380 0	
Sicio handwidth 2 = 0.0 Hz	2392 0	
Skip bandwidth 3 = 0.0 Hz	2400 0	
1 000 0000 000 A 1 A 00 70 Mg		
Spinning load	2420 0	
Spinning load mode = Porward	*260 0	
Soun and thershold = 20.0 %	2440 D	
Carrent Level SetPoint = 15.0 %	2450 0	
Current ramp = 0.0000 sec	2460 0	
Max. carrete = 50.0 %	2470 0	
Pringuency scan rate = 3.00 sec	2480 II	
Crost time setup	2490 6	
Cond stop timer = 0.800 sec	2500 0	
Cond ran times = 0.800 sec	2510 0 -	
Print 181 Billio - Print see		
III		

Cells Installed cells/phase = 2 Min cell count (ar2) = 2 Cell voltage = 630 Thermistor warn level = 20.0 % Consuctor settling time = 20.0 mec Man back EMF decay time = 7.00 sec Bypass type = Mech Fast bypass = Enable Neutral connection = T1	2530 0 *2530 5 *2540 5 2550 5 2560 5 2570, 5 2580 7 *2600 7 *2630 7
Sync transfer Place I gain = 2.00 Place P prin = 4.00 Place P prin = 4.00 Place offset = 0.0 deg Place error tareshold = 1.50 deg Properary offset = 0.0 % Up transfer timeout = 0.0 sec Down transfer timeout = 0.0 sec	2700 7 2710 7 2720 7 2730 7 2740 7 2750 7 2760 7 2770 7
External I/O Analog imputs = 2 Analog outputs = 4 Digital imputs = 12 Digital outputs = 12 Wago timenst = 0.0 set	2800 5 *2810 5 *2820 5 *2830 5 *2840 5 3850 5
Output Connection Filter CT see turns = 0.0 Filter inflocunce = 0.0 % Hitter superiturce = 0.0 % Cable resimance = 0.0 % Filter damping gain = 0.500	2900 0 2910 U 2920 0 2930 0 2940 0 2950 0
Substity Input processing PLL prop gain = 70.0 PLL integral gain = 3840.0 Input current scalar = 1.00 CT secondary turns = 200 Input voltage scalar = 1.00	3 0 3000 7 3010 7 3020 7 3030 7 3035 7 3040 7
Output processing Low freq comp Low Freq Wo = 12.6 Rad Low freq com gain = 1.00 S/W compensator pole = 2.00	3050 7 3060 7 3070 7 3080 7 3090 7
Plax control Plax reg prop gain = 1.72 Plax reg prograf gain = 1.00 Plax filter time count = 0.0667 Plax demand = 1.00 Plax ramp rate = 0.500 ser	3100 7 3110 7 3120 7 3130 7 3150 7 3160 7

ids DC = 10.0 %	3190 7
100 DC = 100 W	
Speed loop	3200 7
Speed reg prop gain = 0.0200	3210 7
Speed reg integral gain = 0.0460	3220 7
Spend reg Kf gain = 0.600	3230 7
Speed filter time coast = 0.0488	3240 7
AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	3250 7
Current loop	3260 7
Current reg prop gain = 0.500	3270 7
Current reg integ gain = 25.0	0.0000000000000000000000000000000000000
Prop gain during brake = 0.160	3280 7
Integ gain during brake = 9.50	3290 7
Stator resis est	3300 7
Stater resistance est = Off	3310 7
Stator resis filter gain = 0.0	3320 7
States and lates are = 0.00200	3330 7
Stator resis integ gain = 0.00200	01
Braking	3350 7
Enable braking = Off	3360 7
Pulsation frequency = 277.5 Hz.	*3370 7
Brake power loss = 0.250 %	3390 7
VD Loss Max = 0.250	3400 7
Braking constant = 1.05	3410 7
O	3440 7
Output current scaler = 1.00 Output voltage scaler = 1.00	3450 7
Congul roungs acess - 1700	755770 7.2
Control loop test	3460 7
Test type = Speed	3470 7
Test positive = 30.0 %	3480 7
Test negative = -30.0 %	3490 7
Test time = 30.1 sec	3500 7
Dead time comp = 16.0 usec	3550 7
Feed forward constant = 0.0	3560 7
Currier frequency = 601.3 Hz	*3580 7
CHILD Industry - ONLY HE	
Apto	4 5
Speed profile	4000 5
Entry point = 0.0 %	4010 5
Exit point = 100.0 %	*4020 5
Entry speed = 0.0 %	4030 5
Exit speed = 100.0 %	*4040 5
Amo off = 0.0 %	4050 5
Delay off = 0.500 sec	4060 5
Auto on = 0.0 %	4070 5
Delay on = 0.500 sec	4080 5
August Security	4090 5
Analog inputs	4100 5
Analog input #1 Source = Fat 1	4105 5
ADDICE = CALL	7450

Carried at Inners	4110 5	
Type = 4 - 20ma	4120 5	
Min input = 0.0 %	4130 5	
Max imper = 100.0 %	4140 5	
Loss point threshold = 15.0 %	*4150 5	
Loss of signal action = Stop	A160 5	
Loss of signal serpoist # 20.0 %	7100	
	4170 5	
Analog input #2		
Source = Off	4175 5	
Type = 4 - 20ma	4180 5	
1300 m + - 200m	4190 5	
Min input = 0.0 %	4200 5	
Max impat = 100.0 %	4210 5	
Loss point threshold = 15.0 %	4220 5	
Loss of signal action = Preset	4230 5	
Loss of eignal setpoint = 20.0 %		
	4232 5	
Analog input #3	4233 5	
Source = Off		
Type = 4 - 20rra		
Min input = 0.0 %	4235 5	
Max lapet = 100.0 %	4236 5	
Less point fureshold = 15.0 %	4237 5	
Loss of signal action = Prene!	4238 5	
Loss of signal action in Proper	4239 5	
Loss of signal serpoint = 20.0 %		
	4500. 5	
Auxiliary input #1	4510 5	
Source = Off	4520 5	
Type = 4 - 20mn	4530 5	
Min input = 0.0 %	4540 5	
Max inpox = 300.0 %	4550 5	
Lois point threstold = 15.0 %	4560 5	
Loss of averal action = Preset		
Loss of nignal setpoint = 20.0 %	4570 5	
	14490 T. K	
Auxiliary input #2	4580 5	
Source = Off	4590 5	
Туре = 4 - 20ти	4600 5	
Min imper = 0.0 %	4610 5	
NOT STORY - WAY IN	4520 5	
Max. (epu) = 100.0 %	4630 5	
Less point threshold = 15.0 %	4540 5	
Loss of signal action = Preset	4650 5	
Loss of signal setpoint = 20.0 %	H10002 TV	
	4660 5	
Analog outputs	4661 3	
Amilian distinct #1	*4662 5	
Arales variable a Motor Speed	4663 5	
Output modifie type = Unip	*4664 5	
Full range = 103.0 %	*4004 3	
The second secon	1000 6	
Analog output #2	4665 5	
Analog veriable = Total Current	4666 5	
Output module type = Unip	4667 5	
Pull rarge = 139.0 %	*4668 5	
ART DESIGN TOWN AS		

Analog output #3	4669 5
Analog variable = Motor Voltage	*4670 5
Output module type = Unip	4671 5
Full range = 112.0 %	*4672 5
	4012 3
Analog output #4	4673 5
Analog variable = Motor Speed	v*4674 5
Output module type = Unip	4675 5
Full range = 119,0 %	*4676 5
SCHOOL STREET	7070
Speed setpoints	4240 5
Speed setpoint 1 = 0.0 rpm	4250 5
Speed setpoint 2 = 0.0 rpm	4260 5
Speed setpoint 3 = 0.0 rpm	4270 5
Speed setpoint 4 = 0.0 rpm	4280 5
Speed setpoint 5 = 0.0 rpm	4290 5
Speed setpoint 6 = 0.0 rpm	4300 5
Speed serpoint 7 = 0.0 rpm	4310 5
Speed setpoint B = 0.0 rpm	4320 5
log speed = 0.0 rpm	
Safety setpoint = 0.0 rpm	
and advance and this	4340 5
Incremental speed setup	4970 7
Spend increment 1 = 1.00 %	4971 7
Speed decrement 1 = 1.00 %	4972 7
Speed increment 2 = 5.00 %	4973 7
Speed decrement 2 = 5.00 %	4974 7
Speed increment 3 = 10.0 %	4975 7
Speed decrement 3 = 10.0 %	4976 7
PID select	122
Prop gnin = 0.390	4350 5
Integral gain = 0.390	4360 5
Diff gain = 0.0	4370 5
	4380 5
Min clamp = 0.0 %	4390 5
Max clamp = 100.0 %	4400 5
Seipoini = 0.0 %	4410 5
Companior setup	4000 8
Comparator I secup	4800 5
Comp 1 A in variable = Manual value	4810 5
Comp 1 B in variable = Manual value	4811 5
Comp I manual value = 0.0 %	4812 5
Compare 1 type = Off	4813 5
Compare 1 type = Off	4815 5
Comparator 2 setup	4820 5
Comp 2 A in variable = Manual value	
Comp 2 B in variable = Manual value	4821 5 4822 5
Comp 2 manual value = 0.0 %	4823 5
Compare 2 type = Off	4825 5
	4943 3
Comparator 3 setup	4830 5
Comp 3 A in variable = Manual value	4831 5
Comp 3 B in variable = Manual value	4832 5

C	4492 5
Comp 30 manual value = 0.0 % Compare 30 type = Off	4494 5
compare to type - on	3393
Comparator 31 setup	4496 5
Comp 31 A in variable = Manual value	4497 5
Comp 31 B in variable = Manual value	4498 5
Comp 31 manual value = 0.0 %	4499 5
Compare 31 type = Off	4501 5
Company of the - on	
Сепрявии 32 зепар	4502 5
Comp 32 A in variable = Manual value	4503 5
Comp 32 B in variable = Manual value	4504 5
Comp 32 manual value = 0.0 %	4505 5
Compare 32 type = Off	4507 5
	6 0
Logs	
Historic log	6250 0 6255 7
Sione in Event Log = On	
Historic log variable 1 = Mir Speed	6260 0
Historic log variable 2 = Spd Dmd	6270 0
Historic log variable 3 = Trg I Cmd	6280 0
Historic log variable 4 = Trq I Pdbk	6290 0
Historic log variable 5 = I Total Out	6300 0
Historic log variable 6 = Mag I Fdbk	6310 0
Historic log variable 7 = Mtr Flux.	6320 0
Drive protect	7 0
Input protection	7000 0
Single phasing	7010 0
SPD prop gain = 0.0	7020 0
SPD integral gain = 0.00100	7030 0
SPD threshold = 50.0 %	7040 0
Undervoltage prop gain = 0.0	7060 0
Undervoltage integ gain = 0.00100	7070 0
1 Cyc Protect integ gain = 0,00250	7080 0
1 Cycle Protect Limit = 50.0 %	7081 0
Xformer tap setting = +5 %	*7050 0
Minmer thermal gain = 0.0133	7090 0
Xformer protection const = 0.375	7100 0
Phase Imbalance Limit = 40.0 %	7105 0
Ground Fault Limit = 40.0 %	7106 0
Ground Fault Time Const = 0,200 sec	7107 0
This 100 100 0	2010 0
Drive IOC setpoint = 150.0 %	7110 0
Cell Overload Level = 100.0 %	7112 7
Amo reset enable = No	7120 7 7130 0
Auto reset time = 1.00 sec	7140 0
Auto reset attempts = 4	
Auto reset memory time = 10.0 sec	7150 0
Meter	8 0
Display parama	9000 0
Status variable 1 = ITOT	*8001 0

```
9659
     Data To Drive Reg 59 - None
                                                              9660
      Data To Drive Reg 60 = None
                                                              9661
      Data To Drive Reg 61 = None
                                                              9662
      Data To Drive Reg 62 = None
                                                              9663
      Data To Drive Reg 63 = None
      Data To Drive Reg 64 = None
                                                              9664
                                                            9914 7
 Network 2 Configure
                                                            9915 7
   Network 2 Type = None
                                                           9110 0
 SOP & serial functions
                                                            9111
   Menu based Times setup
                                                            9112
      MenuTimer1 = 0.0 sec
                                                            9113
      MenuTimer2 = 0.0 sec
                                                            9114
      MensTimer3 = 0.0 sec
      MeruTimer4 = 0.0 sec
                                                            9115
      MenuTimer5 = 0.0 sec
                                                            9116
      MenuTiment = 0.0 sec
                                                            9117
      MenuTimer7 = 0.0 sec
                                                             9118
                                                            9119
      MenuTimer8 = 0.0 sec
                                                            9121
      MenuTimer9 = 0.0 sec
      MersuTimer10 = 0.0 sec
                                                             9122
      MenaTimer11 = 0.0 sec
                                                             9123
                                                             9124
      MessTimer12 = 0.0 sec
      MessaTimer13 = 0.0 sec
                                                             9125
                                                             9126
      MesuTimer14 = 0.0 sec
                                                             9127
      MenuTimer15 = 0.0 sec
                                                             9128 7
      MenuTimer16 = 0.0 sec
    Select system program = 180A0192.HEX
                                                                 P9145
    Multiple config files = OFF
                                                             9185 5
                                                                +9000 ()
  TCP/IP server name = 172.17.106.190
                                                          10 0
Graphing
  Time scale = 100.0 sec
                                                          *10000 0
                                                        10010 0
  Variable 1
                                                            *10020 0
    Graph variable = Speed drail
                                                         *10030 0
    Offset = -400.0
                                                          *10040 0
    Scale factor = 400.0
                                                        10050 0
  Variable 2
                                                            *10060 II
    Graph variable = Mtr speed
                                                         *10000 0
    Offset = -200.0
                                                          *10080 0
    Scale factor = 200.0
                                                        10090 0
  Variable 3
                                                          *10100 0
    Graph variable = los
                                                        10110 0
     Other = 0.0
                                                          10120 0
     Scale factor = 1.00
  Vigisble 4
                                                        10130 0
                                                         *10140 0
     Graph variable = lds
                                                        10150 D
     Offset = 0.0
```

10160 [] Scale factor = 1.00 10170 0 +30190 0 Variable 5 Graph variable = Out freq *10190 0 *10200 0 ... Offset = -400.0 Scale factor = 400.0 10239 0 *10220 0 *10230 0 Variable 6 Graph variable = Spd ref Offset = -400.0 *10240 0 Scale factor = 400.0 10250 0 Variable 7 10260 0 Graph variable = None 10270 0 Offset = 0.0 10280 0 Scale factor = 1.00 10290 0 10300 0 Variable 8 Graph variable = None 10310 0 Offlet = 0.0 10330 0 Scale factor = 1.00 10330 0 10340 0 Variable 9 Graph variable = None 10350 0 O.0 = 28eHO10360 0 Scale Suppr = 1.00 10370 0 Variable 10 10380 0 Graph variable = None 10390 0 10400 0 Offset = 0.0 Scale factor + 1.00 10500 B 10510 8 DAC: setup DAC 1 variable = None 10520 B 10530 B DAC 1 scales = 0.0 DAC 2 variable = None 10540 8 DAC 2 scaler = 0.0 DAC 3 variable = None 10550 8 10560 8 DAC 3 scales = 0.0 10570 8 DAC 4 variable = None 10580 B 10590 B DAC 4 scaler = 0.0 DAC 5 variable = None DAC 5 scaler = 0.0 10610 % DAC 6 variable = None 10630 8 DAC 6 scaler = 0.0 5081 0

Select language = English

Those Phase Headings - 05/0004 03:57:35

Locators Assessate Research Censer of National C.E. University - Taines, tuiwas Concent/Phase Paice 418 - 1008156 Date/13/2004 00:57-35 Observer Jones Haung Readings from Camp-on CT to A-place and PT in Switchgout Calvies.

Surrey Mo	mation		Voltage	Comi
Property	59.58	RMS Prok	113.00	
FONET KW EVA EVAR Polic EW Phase Total PF DPF	34.82 26.61 -11.31 18' lug 0.95 0.96	DC Offset Crest THD Ress THD Feed HitMS KPscor	0.08 1,44 1,54 1,54 1,74	1.86 4.95

Harmonics In	Freq. 0 59.98 119.95	V Mag 0.05 113.09 0.1 0.28	%V RMS 0.04 100 0.09 0.25	3 Fhair V o' 0 0 46 -131	1 Mag 0.00 ±.08 0.00 0.40	%1 RMS 0.32 97.65 0.32 6.74	0 -33 -158 156	
1 1 3 8 7	259.03 259.88 259.88 259.86 419.83 479.81	0.03 1.35 0.04 0.59 0.02	0.00 1.37 0.03 0.53 0.02	5) 3 148 112 127	0.02 0.14 0.00 0.34 0.00	0.38 1.25 0.33 3.85 0.32 0.32	-56 177 -137 -71 38 55	:
9 10 11 12 13 14	539.78 509.76 659.74 719.71 779.69 839.66	0.04 0.01 0.22 0.00 0.16 0.02	0.01	49 141 34 -77	0.01 0.11 0.12 0.12	0.16 1.93 0.00 1.95 0.01 1.28	-(12 111 121 -100 -77	
15 16 17 18 19 20	899.64 959.62 (019.59 (079.57 1139.54 1199.53	0.09 0.00 0.00 0.00 0.00	0.05 0.06 0.02 0.08 0.08		0.08 0.01 0.14 0 0.00	0.32 2.25 0.01 0.32 0.00	#13 -14 -14	3 9
21 22 23 24 25 26	1259.5 1319.47 1379.45 1439.42 1499.4 1559.38	0.0 0.0 0.0 0.0	1 0,00 1 0,00 1 0,00 2 0,00 5 0,00 1 0,00	-d1. 178 105 123 24	0.00	0.01 0.49 0.00 1 0.32 0.00	-[1 17 36 -11	7 4 8
27 28 29 30 31	1619.35 1679.33 1739.31 1799.25 1899.25	0.0	2 0.00 # 0.00 H 0.00	-159 -81 -171	0.0	0.00 0.00 0.00		

Three Place Readings - 05/90/04 D5:50:38

Leading Agrosper Besearth Center of National C.K. University - Tainan, navous Conservations Place 418 - 2000PM Date 01/5004 03:50:28 Open on James Hustig Readings from Clarge on CT to A-phase and PT in Switchgear Calmet

Summing lotter	matical		Voltage	Current
Frequency Function of the Control of	59.58 80.79 04.54 -27.76 * 17" lag 0.96 0.96	PMS Prok DC Offset Crest THD Form THD Pund HEMS KFactor	114.21 184.3 0.09 1,44 1.67 1.67	15.99 17.87 -0.23 1.74 4.90 4.97

Harnorics Ivit		V Mag	esv sms	3 Plant V o'	1 Mag	%LTMS	Officer 1-6"	3 Pears Power (KW)
	Fm		0.08	0	0.11	0.69	0	
DC	- 0	0.09	100	0	15.92	98.95	-22	
1.	29,98	114,27	0.1	72	0.02	0.13	+138	*
2	119,95	0.11		-120	0.82	5.13	56	
3	179.93	0.41	0.36	88	0.01	0.06	-66	
4	239.9	0.02	0.02	-5	0.68	4.25	125	
5	200.88	1.72	1.52	-190	0.03	0.06	+34	
16	159.86	0.05	0.04	102	1.02	6.38	-88	
3	429.83	11.46	0.4		0.01	0.06	-79	
1	479,81	0.00	0.00	177	0.02	0.13	70	
0	539.78	0.23	0.23	.58	0.02	0.13	+12	
10	599.76	0.01	0.01	- 3	0.22	1.38	60	
77	659.74	0.29		4	0.01	0.16	-15	
12	119.71	0.01		-13	0.12		-16	
13	779,09	0.09		-60			15	
14	839.06	0.03		146	0.02			4 .
15	999.54	0.19	0.16	-115	0.11			
10	169.62	0.00	0.02	139				
17	1019.59	0.00	0.08	-19				11. *
18.	1079.57	0.00	0.01	-48				
10	1139.54	0.1						10 *
30	1100.52	0.0						97 #
	1259.5							0 *
TI.	13/19.47			75	0.0			34 *
11	1379.45			1110				51 *
23	1429.47							49 *
34	1399.4			7				
35	1599.30			13			Y	48
26			The second				-	26
27	1619.2							42
28								50
29	1739.		0.0		g 0.1			77
30	1799.2		0.0	**		0.3	9	-0.
31	1892	5 10						

There Place Rowlings - 03/00/04 83:40:15

Location, Accorption Released: Center of National C.K. University - Tomas, toward Create/Place Plade: 418 - 30CRPM Description 05:42-15 Observer: Justin Huang Readings from Clamp-on CT to A-phase and PT in Switchgare Colonnel: *PT = 18001/01(1)/V

Pregumcy	59.98	WMS	Voltage	Current
Power	237.98	Peak	113.6	40.25
	2000 400		162.95	58,83
KW	229.49	DC Office	0.02	-0.25
KVA	237.59	Crest	1,43	1.45
EVAR	-61,49	THO Rins	1.33	3.63
Prok KW		THD Fund	1.33	3.72
Phoe	15" log	HRMS	1.48	2.96
Test 197	0.97	KFactor -	1111	1.37
DPF	0.97			

Harrosics Is	dimetion			3 Phase			3 Phase	3 Phase
	Freq.	V Mig	THY HMS	Vo.	1 Mag	GURMS	I of	Power (KW)
DC		0.02	0.02		0.25	0.65		
- 1	59.98	113.6	100	:0	40.15	99.74	- +15	
2	119,95	0.69	0.03	22	0.03	0.07	-34	
3	179343	0.31	0.28	-148	0.45	1.12	101	
4	239.9	0	0	-73	nat	0.02	155	
3.	299.88	1.2	1.06		11.85	2.11	114	
6.7	339.86	0.02	8.02	129	0.03	0.07	100	
7	419.83	0.34	0.3	312	0.92	2.29	-94	
8	479.81	0.02	0.02	158	0.00	0.05	-55	
9	539.74	0.24	0.21	55	0.02	0.05	-86	
13	599.78	0.01	0.01	-89	0.02	0.05	-26	
31	659,74	0.38	0.34	-6	0.61	1.92	71	
- 22	719.71	0.00	0.01	138	10.01	0.02	-110	14
13	779.69	0.19	0.17	-44	0.29	0.72	19	
14	839.56	0.01	0.01	-128	DOL	0.02	-163	
15	859.54	0.19	9.17	-137	0.11	0.27	-145	
16	959.62	0.00	0.01	34	10.0	0.02	-190	
17	1019.59	0.42	0.37	150	0.71	1.76	45	
28	1079.57	0.02	0.00	348	0.00	0.00	150	
19	1139.54	0.16	0.14	+157	0.55	1.39	110	
20	1199,52	10.0	0.01	-94	0.01	0.02	100	
21	1259.5	0.10	0.09	- 30	0.12	0.30	45	
22	1319-67	0.02	0.01	-137	0.02	0.05	-43	
23	1379.45	11,08	0.07	150	0.09	0.22	-1:50	
24	1439.42	0.01	10.01	148	0.03	0.07	- 58	
25	1499.4	0.04	0.03	168	0.13	0.32	-80	
26	1539.38	0.02	0.01	19	0.01	0.02	100	
21	1619.35	0.04	0.03	3	0.03	0.07	-29	
28	1679.33	0.01	0.01	0	0.01	0.02	25	
29	1739.2	0.06	0.06	-141	70,0	0.17	TJ	
30	1799.28	0.01	0.01	190	0,01	0.02		
31	1839.35	0.09	0.06	-145	0.14	0.35	301	

Time Plate Readings + 03/30/64 03:35:21

London: Astropace Research Centr of Natural C.K., University - Tymes, toyens CircumPasse Paice 418 - 3508PM Data 075050 05:35:21 Observer: Lamb Shales Shales Readings from Class-on CT to A-phase and FT in Swadness Catact. * PT = 3500W110W Readings from Class-on CT to A-phase and FT in Swadness Catact.

Sentrary later	mation.		Voltage	Carrel
Property	59.56	RMS Peak	113.6	95.24
Power KW KVA KVAS Peak KW Phase Total 9F	349.46 359.05 -87.08 * 14*122 0.97 1.98	Peak DC Offset Cress THD Ress THD Pend HRANS KFestor	0.002 1.43 1,22 1.22 1.44	1.45 3.21 3.23

	Hamotim Islan DC 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 24 22 24 25 26 27 30 31	7925 V1 79.98 179.95 179.95 179.95 129.86 129.86 129.86 129.86 129.86 129.86 129.87 119.71 119.67 119.57 1139.54 1199.52 1239.5	\$13.6 0.02 0.21 0 1.38 0.01 0.12 0.01 0.28 0.01 0.12 0.12 0.12 0.13 0.12 0.13 0.14 0.11 0.01 0.04 0.04 0.01 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.		0 0 119 119 119 119 119 119 119 119 119	0.33 62.86 0.04 0.48 0.02 0.98 0.04 1,12 0.00 0.07 0.03 0.03 0.14 0.02 0.18 0.02 0.18 0.02 0.14 0.02 0.18 0.03 0.14 0.03 0.15 0.16 0.16 0.17 0.17 0.17 0.17 0.18 0.19	#365 0.54 99.81 0.07 0.78 0.09 1.61 0.07 1.94 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	0 -15 -84 -101 -155 -146 -155 -155 -156 -150 -155 -156 -150 -155 -156 -156 -156 -156 -156 -156 -156	este ((CN)
--	--	---	---	--	---	---	--	---	------------

CUSTOMER AND SITE INFORMATION

CUSTOMER NAME STREET ADDRESS

SN-Ta Corporation - End User / Ministry of the Interior

CITY, ST, ZIP

4F,32,8EC 3, CHENG THE RD.

PRIMARY CONTACT PHONE NUMBER FAX NUMBER E-MAIL Taipel, ROC 183, Taiwan

/ames Hwang - Shi Ta (1886-2) 2597-6458 (1886-2) 2595 4571 eta(12)@giga.com.hv

SITE LOCATION

SALES ORDER NUMBER DRIVE PART NUMBER APPLICATION Aerospace Research Center of National C.K. University - Teinan, Talwan HRS192935.01 31000125.00 - DC 0316 - sin 05903 - Harmony 3300V, sz2, Air Cooled Wind Tunnel for Teating of Architectural Designs

FSR.

Kenneth M. Colins

AIR COOLED Commissioning Plan 3.sts

Page 1 of 1

March 10, 2003

PRE-COMMISSIONING

DESCRIPTION	BY	DATE
The second secon	28	10000
After completion of the Factory Acceptance Test (FAT). All items in the Scope of Material Supply are delivered to the Plant for receipt inspection and storage prior to installation in the final plant location.	KMC	03/24/04
All shipping sections include fork lift skid type bases and provisions for lifting.		
The VFO shipping splits and split weights are defined by ASIRobicon drawings.		
instructions for receiving, off-loading, handling, litting (overhead, forkitt and roller), placement, anchoring and connecting of cabinets is defined by ASIRobicon User's Manual 902231,902232,902233. Customer or Customer's Agent is responsible for these tasks.		
Received in Good Condition - Ken Collins - 3/25/04 After location of the shipping splits into the installed location (including boiling and anchoring of the shipping sections the ASIRobicon Pre-Commissioning team will arrive at the site to commence the pre-commissioning process.	KMC	83/24/04
The pre-commissioning feam will inspect the installation and will torque check the cabinet connections and will remove all rear access panels. Note: All electrical connections shall be torqued and marked.	KMG	03/24/04
The control wire plugs at each shipping split will be re-connected and will be tie- wrapped. Plugs are color coded and/or mechanically configured to prevent mis- connection. Wires on each side of the plug are numbered to support verification.	кмс	03/24/04
The ground bond jumpers will be reconnected. Ensure that the entire system is earth grounded at one of the system grounding points. Confirm what type of cable the customer is using for the motor connections. If it is a shielded cable only one end of the shalld can be grounded. It must be grounded at the drive.	KMC	03/24/04
in the NXG controls locate the Modulator board and move the battery jumper to the lower position (pins 1 and 2) to enable the battery before applying any control power. Check the drawing for a jumper listing	KMC	03/24/04
Check and note below if the transformer neutral is grounded?		
is transformer neutral grounded - Note yes or no on form	Yes/No	NO
in the output cabinet locate the cell by-pass board. Verify that the "J1 jumper" is in the 1200 amp position. Do not apply power until this has been verified.	N/A	
At this time, it is necessary to have a control power and auxiliary power source connected per the VFD schematics to allow the pre-commissioning process to continue.		

AIR COOLED Commissioning Plan 3.xls

Page 1 of 2

March 10, 2003

PRE-COMMISSIONING

DESCRIPTION	BY	DATE
	Colma	Second-
Interconnection of these power supply sources is the responsibility of Customer. It is noted that temporary power sources can be utilized. Power is required to tast the control. (480VAC / 70 ACA 50/60 HZ)		
If the VFD has cell bypass, verify the contactor per the tech note. For 1200 amp contactors only	N/A	
-Energize each contactor using DC Power Supply, Verify drop out (See Tech Note)	. N/A	
Check attenuator resisters and Hall effects building resisitors. Reference FAT plan for correct values. Confirm input CTe match drawing	KMC	03/24/04
Install output connections to power cells. If bus work does not line-up loosen connection at T1 and T2 on cell and at the connection on the bypass consector.		
Confirm the following parameters:		-
Rated input current menu 2020	155A	3300V
Rated output current menu 2040	200A	0-3300V
Neutral connection menu 2630	T1	
CT Turns menu 3035	200	
Align bue		
Tighten cell bus links first		
Tighten bypass contactor connections last		
Torque to specification and torque mark	KMC	03/25/04
Note: Do not twist or distort connections to T1 or T2 or bypass contactors.		
Prepare to backfeed the drive and modulate with a varied. Varied the drive up to rated cell voltage or as close as possible, let the drive stay at this level for 1 hour to form the cell buss capacitors, with the links in modulate the cells. Refer to ASIRobicon User's Manual 902231,902232,902233		
At the end of the pre-commissioning a copy of the pre-commissioning report should be left with the responsible site manager.		
Note: Instruct customer not to terminate MV at motor ouput		
until start of commissiolning cycle. The customer must sign		
below acknowledging not to connect the motor leads.		
Customer's signature		

COMMISSIONING

	BY	DATE
ESCRIPTION	THE PART	0.00
erify Customer connections		
phy coaphio da rasser	KMC	7004/3/25
Verify customers power connections	1.001.0	2004/3/25
Undy organ sequence of mater.	KMC	2004/3/25
Verify customers grounding connections	KMC	
Verify system grounds	KMC	2004/3/25
Verify TB2 connections	KMC	2004/3/25
Verify Hardwired I/O per SOP Test Document)	KMC -	2004/3/25
Verify DCS operation with customiar.	KMC	2004/3/25
Verify Octions (Fast Bypess, Sync transfer, communications etc.)	KMC	2004/3/25
Antify options (Past Bypess, Sync bareau, SQM, etc.) write in others [sternal Hantware (Muttlin, external meters, PQM, etc.) write in others	KMC	2004/3/25
	-	-
Energize MV input with motor disconnected, Leave the power on the drive for at least 1	WW.	2004/3/25
nour, if possible leave the power on overnight.	KMC	25041472
	-	1
Complete open loop tests.	_	
Verify control is working in open load test mode		
Verity cell bypass on each cell	+	1
Remays fiber optic link. Contactor will close.	KMC	2004/3/20
Verty at calls bypass correctly.	Name	Minne or reven
	KMC	2004/3/2
Connect Motor	WWG	2004:32
September 1995	KMC	2004/3/25
Bump motor for phase rotation	KMU	20041302
	not post	ible
Run motor uncoupled and verify speed ranges and feedbacks.		
Couple motor	KMC	2004/3/2
Note: If motor parameters are loaded in parameter list do not use auto-tume feature.		-
	KMC	2004/3/2
Verily sequence of Operation according to SOP feet documents	PARTY.	200000
	KMC	2004/3/2
Complete speed loop and spinning load furling	Tuno	22010
	KMC	2004/3/2
Verify Atarm indications (SOP Test and Alarm test Procedure)		
Verity DCS address across serial link	718	2004/3/2
Once system has reached the process design operating condition utilize the PC Tool		
Butte record the following VFD data:		
Britis Michigan Sup Joseph A A Lin Gold		
Plant Load At Test Point		
		_
Vistane VFD Ingut		
Votabe VFD Input	_	
Votage VFD input Current VFD input		
Votage VFD Input Current VFD Input Prover Factor VFD Input		
Votage VFO Input Current VFO Input Power Factor VFD Input Voltage VFO Output		
Votage VFD Input Current VFD Input Prover Factor VFD Input		

COMMISSIONING

DESCRIPTION	BY.	DATE
	HARACA AN	STATE OF THE PARTY.
Check the SO# for spares. Confirm they are on site. Test in the system	KMC	2003/3/30
Note: If plant is operated across a load range take load data at incremental load points to obtain a profile of the VFD operation as part of the process.	tom	146
	03/3	1/04
		BIC. N WITE KEI
	T. FO	WITE REI

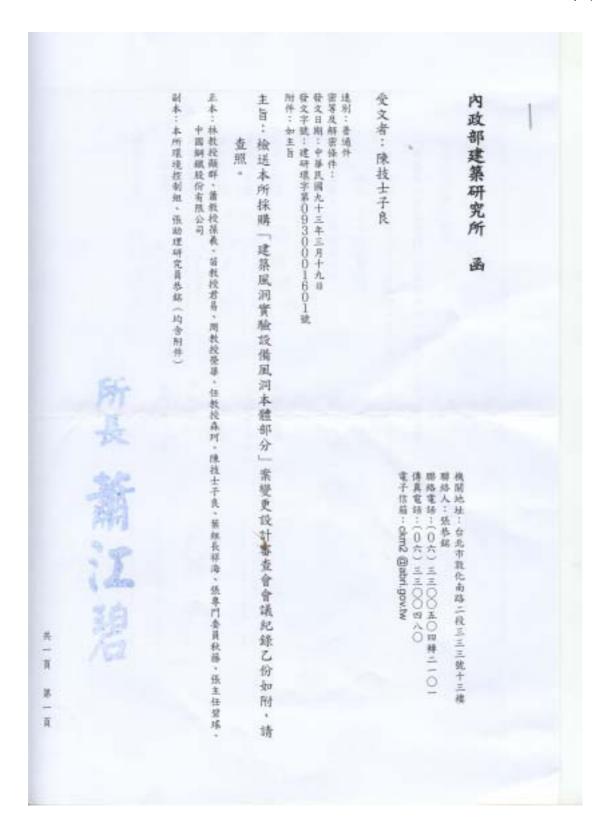
AR COOLED Commissioning Plan 3 x/s.

Page 2 of 2

March 10, 2003

內政部建築研風洞實驗設備風洞本體組裝完成 估驗記錄

- (一) 時間:九十二年十二月二十三日上午十點整
- (二) 會合地點:性能實驗群建築風洞實驗館
- (三) 估驗人員:


內政部建築研究所 名文弘 》

(四) 工作記錄

- 1在廠南帶領權祖已完成組裝之風洞本体,經風洞設備小組租場審視,確認組裝完成無度,
- 2 检附风洞本体组装完成照片如附件一。
- 3 本案風洞本体已組裝完成,其非鋼構部分之細詐裝修需於 (以下空百)

(五) 建議事項

建議換氧D経際宣滅小(請顧商修正調整) (以下空后)

五、主席致詞:(略)。

六、承辦單位報告:(略)

八、與會審查委員發言要點:七、風測設備小組簡報:(略)

持令第一二月代之二十五日

○風洞本體觀測視窗材質由 10 mm 厚強化玻璃擬變更為 20 mm 厚之透明壓克力板,應可對未來實驗操作人員 3鄉括本次所擬變更項目對未來風洞實驗能有較高的安全性與便利性。尚屬合宜且可以接受。 1對於第一、二測試投上蓋板之材質由三夾板擬變更為透明 PC 板,將有益於風洞本體使用性與耐久性。 安全性有更深一層的保障。

林教授顯群(沈教授錦秋代):

2.其餘變更項目均屬可行。

九、结論:

2本次變更項目經中銅公司估算,將增加額外成本約六十七萬四千九百零四元整,但對於本契約獲約期限並不1所提變更內容經風詢設備小組完成初審及本次與會出席委員審查結果,均表同意。

3為期本契約能順利如期完工驗收考量,中銅公司同意負擔本變更所增加費用以爭取行政作業時效。

十、教會(下午五時正)。

177

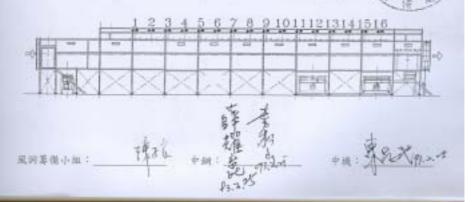
内政部建築研究所 建集風洞實驗設備風洞本體部分試車紀錄

項目:第一轉角股台車 時間:93年2月25日

馬達滅速機規格: 0.75 KW。220 V。3 相。R:1/273、展外形。E 級絕緣, 附無車,額定電流: 3.1 Amp。

贞灾	DE. 49		测试结果
1	輪承滑崩確認(共8	個)	罹認
2	走行测试		軟行. 西行運転平川東
	(E. set, any 8th Aut A.2)	東西向	± 1.0 mm
3	原點回歸側試	南北向	± 1,071171
	40200000	東側	作动磷皂
1	極限期關作動測試	西侧	作动雅实
		東行	1.9 ± 1
5	運轉電流(安培)	西行	1.9±1

黑河萎備小雞;

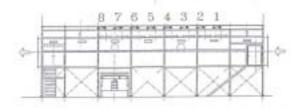

內政部建築研究所 建築風洞實驗設備風洞本體部分試車紀錄

項目:第一測試發上蓋板升降機構

時間:93年2月5日

項目	轴承滑脂	升降動作	是否平順	極限開闢作動確認		
-91 H	確認	#	F#	上限點	下限點	
1	OK	是	造	0k	ok	
2	0 %	長	灵	ok.	ok	
3	OK	差	炭	ok	ok	
4	ok	是	吳	0(5	ok	
5	ok	是	是	OK.	ok	
6	DK	蹇	尧	DK	OK	
7	OK	授	是	0K	OK	
8	0 K	是	更	OK	ok	
9	OK	是	炎	OK	σK	
10	0 K	夷	是	0K	OK	
11	OK	夷	是是	ok	OK	
12	ok	是	是	OK	ok	
13	OK	晃	是	DK	ok	
14	OK	是	是是	OK	ok	
15	0K	長	2.7	0 K	OK	
16	OK	类	是	01<	OKA	

馬達減速機規格: 0.2 KV, 220V, 3相, R:1/273, 粉煞車。


內政部建築研究所 建築區測實驗設備風測本體部分試車紀錄

項目:第二測試段上蓋板升降機構

時間:93年2月25日

	轴承滑脂	升降動作	作是否平顺	極限閉腸作動確認		
項目	球認	升	降	上限點	下限點	
1	0K	夷	是	0K	ok	
2	υK	3	昊	OK	OK	
3	oK	e R	美	OK	OK	
4	οK	ž.	文	οK	oK	
5	0K	老	是	ok	ok	
8	pK	是	養	oK	ok	
7	θK	是	是	ok	ok	
8	OK	R.	是	οK	OK	

馬達巡遊機規格: 0.2 KW, 220V, 3 相, R:1/273, 附無車。

双切某他小好:

李成 # 花

推

內政部建築研究所 建築風洞實驗設備風洞本體部分試車紀錄

項目:第一測試役直提 1 米固定式迎轉盤 時間:93年9月 ||日

項次	功能需求	測 绒 结 莱				
1	迎轉定位請度 ≦ 1度。	0.1度				
2	盤面昇降行程 ≥ 600 mm。	600 пп				
3	迎轉速度 0.5-1.0 rpm =	0.8 rpm · 運轉平填 ·				
4	可在第一控制室內由電腦控制及 現場手動控制。且能定位於任一角 度。	1 of the 10 to 12 to 12 to 14 to 2 to 15 to 15 to 16 to 16 to 1				
5	盤面轉動時,須採:盤面下降→迴 轉→上昇的操作控制模式。	操作模式:盤面下降(12mm)→迎射 →上昇,運轉平順。				
6	設有原點(Home)按鈕,下指令後盤 面就可自動可到原點位置。關機再 故動時盤而需有主動回到原點位 置的功能。	1.按在原美按鈕,鹽面可 自动原美位置。 Z.閱机可控动盤面可主动 同到原美位置。				
	升降馬達滅速機規格	YASUKAWA FECQ-T1 400Wx220Vx3 φ				
規格	迎轉向服馬達規格	三菱 1 KW 220V 3 Ø				
	馬達運轉電流(安培); (升降馬達額定電流: 1.9) (迎轉馬達額定電流: NA)	昇:1.4 降:1.4 經轉:1.0				

181

內效却建築研究所 建築風润實驗設備展河本體部分試章紀錄

項目:第二測試段直接 2.6 米固定式迴轉盤

時間:93年3月11日

項次	功能需求	测试结果				
1	迴轉定位精度 ≦ 1 度。	0.1度				
2	盤而昇降行程 ≥ 600 mm。	606 mm				
3	迎轉達度 0.5~1.0 rpm =	0.8 rpm · 運轉平順 ·				
4	可在第二控制室內由電腦控制及 現場手動控制。且能定位於任一角 度。	可在第二控制室內由电腦 控制及在現場手动控制。 能免作於任一角後。				
5	盤面轉動時,須採:盤面下降→迎 轉→上昇的操作控制模式。	操作模式:盤面下降(12mm)→迎射 →上昇,運轉乎順。				
6	設有原點(Home)按鈕·下指令後盤 面就可自動回到原點位置·關機再 啟動時盤面需有主動回到原點位 置的功能。	1. 左按原美按钮 鑿面可含动 回到原美位置。 2. 潤如再發动盤面可注动证 到原美位置。				
7	內、外盤之間附有插銷,實驗時頻 能在現場手動選擇 a. 只有內盤可 週轉,b. 內、外盤連結在一起動 作(在原點位置)等兩種操作模式。	a. 内、外盤可達站在一起動作 b. 可外盤不動只有內盤巡轉				
	升降馬達減遠機規格	YASUKAWA FECQ-T1 400Wx220Vx3 φ				
規格	坦轉何服馬達規格	三菱 1 KW 220V 3 φ				
il.	馬遠運轉電流(安培): (升降馬遠額定電流: 1.9) (迎轉馬遠額定電流: NA)	男:1.5 降:1.4 (2) 23.4.06 (23.4.06)				

从河等借小组:

·何: 李藤 [3.3.1]

內政部建築研究所 建築風洞實驗設備風洞本體部分試車紀錄

項目:第一測試段三維移動機構"

時間:93年分別 日

項次	功能	常 来	测	14,	结	果
1	在 X 軸向(測試投媒的動方式位移,且可隨日		The second of the second of the			
2	三維可移動範圍:X: 軸向(水平横向)3.2m。 方向)1.8m。		X 東海 完計 4 [月] 7 [mm + Y 東海 [m] - 3 / 4 [[mm] m			
	定位精度:1 mm/lm·		≤ 1 m	m/Im		
3	X · Y · Z 輪速度 ≤ 6	m/min-	Y轴向	: 3.6 m/n : 3.6 m/n : 3.6 m/n	nin	
4	三維移動機構可在第 由電腦控制及現場手: 定位於任一位置。		制及有	現場	室內由电射 生动控制 任一位了	1,
	Y (th)	句(1 台)	Y #4:3	三菱 1 K	W 220V 3 φ W 220V 3 φ CW 220V 3	5
	馬達運轉電流(安場): (X 軸向馬達額定電流 (Y 軸向馬達額定電流 (Z 軸向馬達額定電流	: NA) : NA)	X 軸向 Y 軸向 Z 軸向	: 2.4	X 軸向 2:	

風润萎備小垣:

中: 中部

基础

內政都建築研究所 建築風洞實驗設備風洞本體部分誠專紀錄

項目:第二測試技三维移動機構。

時間:93年3月11日

項次	7/7	能	集	东	314	試	劫	某
1		向(测试投 位移,且可						
2		移動範圍: .平橫向]5. 8m。			- CA 200 (0) 4.00 MINUTE I 48 (0) 1.20 MINUTE			
	定位精	度:1 mm/	ln -		≤ 1 m	m/lm		
3	X - Y - 2	Z軸选度	≤ 6 n/n	in -	X 独向: 3.6 m/min Y 始向: 3.6 m/min Z 始句: 3.6 m/min			
4	三维移動機構可在第二控制宣內 由電腦控制及現場手動控制。且能 定位於任一位置。				ロップ・ルインショー かんじ かくし カアクエ はっし			
		3	(執向(2 (執向(1 (執向(1 :	台)	Y 44:	三菱 1 KW 三菱 1 KW		
規格	馬延進 (X 軸向 (Y 軸向	轉電流(安 馬達額定 馬達額定 馬達額定	培); 電流:N/ 電流:N/	A) A)		1:2.4	X 輪向 2:2	

风河等借小组:___

本は中田: 中京かりまかり

184

內政部建築研究所 建築風洞實驗設備風洞本體部分試卓紀錄

項目:充氧氣密條 時間:93年7月26日

				充氣測試			沒氣測試		
項	名称	设定层力		控制室		現場	控制室		是否
坎	A) 10	(kg/cm ²)	現場	第一	第二	496,40	第一	第二	
1	第一測試役	0.28	010	σK	ōΚ	οK	ok	ok	否
2	第一測試段 北側	0,28	οK	OK	OK	ok	oK	ok	不
3	第一測試疫 南側	0.28	014	ok	OK	ok	tΚ	ōΚ	香
4	第一轉角段	0.28	ok	oK	٥K	οK	ok	ok	否
5	第一轉角段 出口	0.29	ok	οK	οK	OK	oK	οK	否
6	第二测试段 北侧	0,28	OK	OK	oK	ok	oK	σĸ	Th
7	第二测试段	0.28	OK	οK	οK	OK	oK	ok	7

雅光

+111: \$3.24

队政部建築研究所建築區 准 無 計 無 清 建 小 組

受力者: 1 政部建築研究所

立旨:函送庫非籌建小組代辦 貴所庫 非實驗館 93 年度儀器設借採 購計畫表,預算金額為捌百壹拾幫元,如附件,請查照。

說明:

- 1. 附件一為採購計畫案之各項儀器設備需求表。
- 2. 附件二 為採購計畫案之執行時程表。

召集人:甘韦易 教授

聯絡人: 成大航太 所研究生 李信宝 06-2757575 ext 63626

93 年度風洞館儀器設備採購預定執行進度及結果表

93.7.20 製表

項次	品 名	單位	預算金額	決標金	備註
以从	нн 🗀	+		額(元)	
壹	六軸力感測器設備	項			93.04.19 開標,決標,預定
			,		93.06.19 交貨。
					93.06.20 點交建研所。
漬	氬離子雷射、雷射密閉循	項	1,800,000	1,530,00	93.04.19 開標,因參標廠商家數
	環冷卻系統及光學平臺				不足流標,93.05.06 辦理第二次
					招標,決標,預定 93.08.03 交
					货 。
參	資料擷取系統	項	463,120	380,000	93.04.19 開標,決標,預定 93.
					07.04 交貨。
					93.06.17 點交建研所。
肆	皮托管、應變規片、訊號	項	286,610	225,000	93.04.19 開標,決標,預定 93.
	線等、				06.19 交貨。
					93.06.17 點交建研所。
伍	單軸加速規、三軸加速規	項	392,440	338,000	93.04.19 開標,決標,預定 93.
	及配件				06.19 交貨。
					93.06.30 點交建研所。
柒	個人電腦介面卡及電纜線	項	78,153	78,153	93.04.08 交貨。
					未超過十萬元不辦理招標。
					93.05.05 點交建研所。
捌	個人電腦、應用軟體	項	133,669	125,185	93.04.20 送件,93.05.07 交貨。
					(中信標產品)不辦理招標。
					93.05.07 點交建研所。
玖	風洞實驗工作台架模型置	項	1,822,000		93.04.19 招標,因參標廠商家數
	物架等			0	不足流標 , 93.05.06 第二次招
					標 , 決標 , 預定 93.07.04 完工。
拾	精密定盤	項	98,000	20.500	93.05.05 交貨。
10	有五亿金	坦	98,000	89,300	
					93.05.05 點交建研所。
拾 膏	金屬工作桌含虎鉗	項	96,000	96,000	93.04.23 交貨。
111 2		7 H	70,000	70,000	大超過十萬元不辦理招標。
					93.05.05 點交建研所。
拾貳	立型鑽床、桌上型高速鑽	項	86,500		93.04.13 交貨。
	床及零件整理櫃			- , . , 0	未超過十萬元不辦理招標。
					93.05.05 點交建研所。
拾參	精密量具數位卡尺	項		88,590	93.05.06 請購。
	數位高度計				未超過十萬元不辦理招標。
					93.05.26 點交建研所。
拾肆	鋁擠型材料	項		19,500	93.05.07 請購。(消耗品)
					未超過十萬元不辦理招標。
					93.05.26 點交建研所。

+ム/工	油壓板車、油壓吊車、	項	56 700	02.05.06 羊====
拉拉		垻	36,700	93.05.06 請購。
	油壓堆高機			未超過十萬元不辦理招標。
				93.05.28 點交建研所。
拾陸	捲揚機及吊架	項	57,800	93.05.17 請購。
				未超過十萬元不辦理招標。
				93.06.24 點交建研所。
拾柒	壓力感應器隔膜片	項		93.05.17 請購。(消耗品)
			63,000	未超過十萬元不辦理招標。
				93.06.17 點交建研所。
拾捌	錶頭壓克力蓋板	項		93.05.06 請購。(消耗品)
1 1 1 1 1 1 1	K	~~	33,000	未超過十萬元不辦理招標。
				93.06.17 點交建研所。
+ AI h	 	TE		
行以	控制點壓克力操作流程	項	9,000	93.05.06 請購。(消耗品)
	板			未超過十萬元不辦理招標。
				93.06.17 點交建研所。
貳拾	無熔絲開關、繼電器	項	20,000	93.05.06 請購。(消耗品)
				未超過十萬元不辦理招標。
				93.06.17 點交建研所。
壹漬	電動工具一批	項	97,050	93.05.21 請購。
				未超過十萬元不辦理招標。
				93.06.17 點交建研所。
意意	木工電鋸工作平台	項	28,750	93.05.20 請購。
			,	未超過十萬元不辦理招標。
				93.06.24 點交建研所。
貳參	溫度顯示傳送器及感溫	項		93.05.20 請購。
貝(多	棒	7 H	23,011	未超過十萬元不辦理招標。
	1=			93.06.17 點交建研所。
=# F#	工扮まなて日ま	TE		
貝は手	手推車及工具車	項	40,800	93.06.04 請購。
				未超過十萬元不辦理招標。
				93.07.07 點交建研所。
貳伍	手工具及絲攻等一批	項	98,653	93.06.09 請購。(消耗品)
				未超過十萬元不辦理招標。
貳陸	粗糙元鑄鐵模型	項	96,000	93.06.04 請購。(消耗品)
	(朱佳仁)			未超過十萬元不辦理招標。
貳柒	粗糙元鑄鐵翻砂木模	項	31,000	93.06.04 請購。(消耗品)
	(朱佳仁)			未超過十萬元不辦理招標。
貳捌	橋樑斷面實驗	項	93 000	93.06.15 請購。(消耗品)
F(1))1	端板鐵架製作(鄭啟明)	~~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	未超過十萬元不辦理招標。
				93.07.13 點交建研所。
≣† Ih	不銹鋼管一批	項		93.06.15 請購。(消耗品)
貝い人	小奶啊 昌一加	垬	24,130	(
⇔+∧	ᆁᆉᇝᇴᄼᄼᆂᅟᄦ	TE	00.000	未超過十萬元不辦理招標。
參拾	測試段平台台車、爬	項	90,000	93.07.12 請購。
	梯、控制室頂護欄			未超過十萬元不辦理招標。
參壹	甲烷、氫氣、混合氣	項	3,599	93.07.12 請購。(消耗品)
	(吳國昌)			未超過一萬元不辦理點交。
參貳	氮氣	項	550	93.07.12 請購。(消耗品)
	(吳國昌)			未超過一萬元不辦理點交。
參參	信號校正器	項	99 225	93.07.12 請購。
	III 개인스프 III		77,223	未超過十萬元不辦理招標。
<u></u>				/ハベニペニ 戸列ノレイトカガナ土 3日代示。

總 計	6,016,85
	5

預算總金額:

儀器設備採購總金額	8,100,000
委託代辦作業管理費	513,752
總計	8,613,752

地點:建研所性能實驗群庫源館

時間:93年4月23日14:00~17:30

主持人: 甘召集人君易

出席者:陳組長瑞玲、曹研究源暉、張副研究恭銘、唐教授榮華、鄭教授啟 明、朱教授佳仁、任教授森珂、陳扙士子良、胡博士志忠、李信宏、高義明

- - 二、各位委員庫源驗證實驗進場時間協調
 - 三、教育訓練規劃
 - 四、儀器設備使用及使用空間
 - 五、模型製作相關事宜
 - 六、其化辜項

報告:(略)

討論辜項:

記錄:李信宏

- - 2. 甘教授提出,日於測試區瓜三維移動機構及所側軌道的影響,會造成流場的擾動量很大,建議應將所測試區瓜的移動機構切除。

 - 5. 陳組長建議先做流場量測後,確認是否有切除的必要。
 - 主席結論:6月10日完成驗收後,先做測試區流場測試,確實了解移動機構對流場的影響有多大。
- - 1. 甘教授首先請名包師提出進場時間,並指出基本庫派校驗的時間可以配合各位包師進行課整。

 - 3. 朱 书 師 的 進 場 時 間 選 擇 在 7 月 12 日 到 7 月 20 日。

契約容量供電問題:

- 三、教育訓練規劃(每一驗證實驗做完後提供一項教育訓練並撰寫一份技術報告):

四、儀器設備使用及使用空間:

- 1. 儀器的使用應該填寫建研所所提供的格式。
- 2. 電腦及印表機只要有家具即擺上去,不須再填寫借條。
- 3. 至於某子、椅子....等家具問題,陳組長允諾不是問題,只要提報馬上可解 法。

五、模型製作相關辜宜:

日 各 老 師 自 行 準 借 模 型 製 作 , 經 費 方 雨 於 93 年 度 皆 有 編 列 每 位 委 員 模 型 製 作 的 費 册 , 單 據 統 一 日 成 大 核 銷 。

六、其仕事項:

1. 住的方面:

建研所建議:各 書師 的學生可以 住在防火實驗室 的宿舍, 住宿費 每 末 300 元 報銷。

2. 差旅費方面:

基本上只能報一名研究助理,如果其他助理建請建研所了案處理。

3. 變頻器開闢問題:

應該加裝一電動開關在變頻器上,避免上游開闢因週度使用而壞掉,另外加裝開闢的費用日儀器設備購案的節餘款優先支用。