建築物隔震消能規範之示範計畫

葉祥海⁺,張國鎮^{*},黃震興^{**},蘇晴茂^{***},甘錫瀅^{****},蔡益超^{*} 高健章^{*},蔡克銓^{*},林裕淵^{*****}

摘要

由於國內結構隔震技術之研發已瑧成熟,因此內政部建築研究所 於民國 86 年度委託中華民國結構工程學會進行『建築物隔震消能系 統設計規範、條文解說及示範例之研訂』研究計畫。該規範之研訂乃 參照國內外最新資料及經驗,並附解說以闡明隔震規範訂定之理論背 景及一般性的設計要求,以適用於所有可能的隔震系統。然而隔震消 能結構之設計理論有別於傳統耐震設計,國內工程界大多尚無設計經 驗。為使該建議之建築物隔震消能設計規範之相關條文及解說能為國 內工程設計單位了解並確實落實於工程應用,必須進行規範之試作, 找出規範與實際執行之落差並加以修正,使本規範能確實落實於國內 建築工程之應用,以減少未來強震下建築物之災害。

本計畫旨在邀請學術界及工程界有經驗之專家學者,就內政部建築研究所民國 86 年之研究報告『建築物隔震消能系統設計規範、條 文解說及示範例之研訂』(MOIS 860008)進行設計實務之試作及規範 條文合理性之探討,以找出規範條文與實際執行之落差並加以修正, 建立合宜之建築物隔震消能設計程序,使該規範得以更完整及可行。

原則上建研所 MOIS 860008 研究報告之規定適用於所有之隔震 支承系統,但由於目前隔震消能建築大都使用鉛心橡膠支承墊及高阻 尼橡膠支承墊,且國內已有能力自行製作,因此本計畫將以此二種隔 震系統為主進行試作。

⁺ 內政部建築研究所工程技術組組長

^{*} 國立台灣大學土木工程系所教授

^{**} 國立台灣科技大學營建工程技術系所教授

^{***} 聯邦工程顧問公司

^{****} 永峻工程顧問公司

^{*****} 國立台灣大學土木工程所博士班研究生

壹、緒論

一、研究動機與目的

傳統結構之耐震設計係以建築物本身之強度及韌性來抵抗地 震,使結構於中、小地震下能保持彈性,而於大地震下有足夠之韌性 來消散地震輸入結構之能量,以避免結構倒塌。此設計理念曾於民國 83 年由內政部建研所委託中華民國結構工程學會進行"建築物耐震 設計規範條文、解說及示範例之研擬"[1],並於民國 86 年正式納入 建築技術規則之耐震設計篇[2]中。

以隔震消能方法來延長建築物之週期以降低地震力及結構反應 之技術在美、日、紐西蘭等國已達實用階段,其耐震效果並於 1994 年美國加州北嶺地震[3]及 1995 年日本阪神地震中獲得證實。目前美 國及日本已建立相關之建築物隔震設計規範,如美國的 UBC 94[4], UBC 97[5], NEHPP 94[6]及日本的免震構造設計指針[7]等。國內近年 來在建築物隔震消能技術之研究已達相當之水準,並已應用於中南二 高之橋梁[8]。

由於國內結構隔震技術之研發已瑧成熟,因此內政部建築研究所 於民國 86 年度委託中華民國結構工程學會進行『建築物隔震消能系 統設計規範、條文解說及示範例之研訂』研究計畫[9]。該規範之研訂 乃參照國內外最新資料及經驗,並附解說以闡明隔震規範訂定之理論 背景及一般性的設計要求,以適用於所有可能的隔震系統。然而隔震 消能結構之設計理論有別於傳統耐震設計,國內工程界大多尚無設計 經驗。為使該建議之建築物隔震消能設計規範之相關條文及解說能為 國內工程設計單位了解並確實落實於工程應用,必須進行規範之試 作,找出規範與實際執行之落差並加以修正,使本規範能確實落實於 國內建築工程之應用,以減少未來強震下建築物之災害。

二、研究範圍

本計畫旨在邀請學術界及工程界有經驗之專家學者,就內政部建築研究所民國 86 年之研究報告『建築物隔震消能系統設計規範、條文解說及示範例之研訂』(MOIS 860008)進行設計實務之試作及規範

條文合理性之探討,以找出規範條文與實際執行之落差並加以修正, 建立合宜之建築物隔震消能設計程序,使該規範得以更完整及可行。

本計畫亦將召開專家諮詢會議,就規範條文疑義之處及設計試作 中所遇到之問題進行討論,並對規範執行之落差提供建議。本計畫並 擬於計畫執行末期舉辦研討會,設計進行建築物隔震消能設計應用之 推廣教育。

原則上建研所 MOIS 860008 研究報告之規定適用於所有之隔震 支承系統,但由於目前隔震消能建築大都使用鉛心橡膠支承墊及高阻 尼橡膠支承墊,且國內已有能力自行製作,因此本計畫將以此二種隔 震系統為主進行試作。

三、研究方法及進行步驟

本計畫之研究方法及進行步驟可分以下數點來說明:

- 針對內政部建築研究所研究報告(MOIS 860008)『建築物隔震消能 系統設計規範、條文解說及示範例之研訂』之相關建議規範條文 及解說進行探討,並與國內現行耐震設計規範及國外相關建築物 隔震設計規範比較。
- 由協同主持人所屬之顧問公司,就其過去所設計之案例中各選貳 案進行隔震消能建築之設計試作,並定期會同所有研究人員針對 設計細節之執行落差進行探討。
- 於期中召開專家諮詢會議,就上述規範條文及解說之實際執行落 差進行討論並對試作中所遇到之問題提供改進意見。
- 4. 經由試作案例,建立合宜之隔震消能建築物設計程序。
- 5. 針對規範執行落差提出具體之修正條文及解說,並以試作案例說 明。
- 6. 舉辦研討會進行建築物隔震消能設計應用之推廣教育。

貳、研究內容與討論

本計畫內容包括規則與不規則鋼筋混凝土及鋼結構建築物加鉛心 橡膠支承墊與高阻尼橡膠支承墊之設計試作案例並與傳統結構作一比 較。分析方法分別使用靜力分析法、反應譜分析法、線性歷時分析法、非 線性歷時分析法等分述如下。但為節省章節起見本文僅敘述規則鋼筋混凝土 結構,其他部份將詳載於期末報告中。

一、 結構系統簡介

本棟建築為區域醫院,地上六層地下一層,3 跨×5 跨,座落於第一類地 盤、地震一甲區內,結構系統為鋼筋混凝土韌性立體剛構架,標準跨距 為9m,屬規則性結構。(平面圖及立面圖見附圖 1~3) 因屬於醫院性質,用途係數 I = 1.5。 考慮地震強度極大,使用鉛心橡膠支承墊之隔震系統。(示意圖見附圖 4) $f_c = 280 \text{ kg/cm}^2$,柱尺寸 60×60/70×70 cm;大梁 40×70/45×75 cm;地梁深 150 cm,筏基版厚 50 cm。(本例若採傳統結構設計,則所須住尺寸為 85×85 cm;大梁 45×80 cm,如附圖 2,3 所示)

二、 載重數據

1. 靜載重:

(1)	鋼筋混凝土		2.40 t/m^3
(2)	屋頂防水、隔熱、	粉刷	$0.10 t/m^2$
(3)	樓版粉刷、管線、	天花	0.045 t/m^2
(4)	外牆	15cm 厚 RC 牆	360 kg/m ² (立面)
		石材	250 kg/m ² (立面)
(5)	隔間牆	15cm RC 梯間牆	360 kg/m ² (立面)
		12cm RC 隔間牆	240 kg/m ² (立面)
		紅磚隔間牆	220 kg/m ² (立面)
活責	伐重:		
(1)	病房(6F~4F)		$0.2 t/m^2$
	手術室(3F)		$0.3 t/m^2$
	 (1) (2) (3) (4) (5) 活車 (1) 	 (1) 鋼筋混凝土 (2) 屋頂防水、隔熱、 (3) 樓版粉刷、管線、 (4) 外牆 (5) 隔間牆 活載重: (1) 病房(6F~4F) 手術室(3F) 	 鋼筋混凝土 屋頂防水、隔熱、粉刷 樓版粉刷、管線、天花 外牆 15cm 厚 RC 牆 石材 (5) 隔間牆 15cm RC 梯間牆 12cm RC 隔間牆 紅磚隔間牆 活載重: 病房(6F~4F) 手術室(3F)

 0.3 t/m^2

診療室(2F)

(2)	地面層	室內	0.5 t/m^2
		室外	1.5 t/m^2
(3)	地下室停車場	平面式	0.5 t/m^2
		機械式(雙層)	$1.0 t/m^2$
(4)	機房		1.0 t/m^2
(5)	水箱		
	屋突水箱		40 t
	基礎水箱		100 t

註: 1.計算地震橫力時水箱及機械室之機械設備視為靜載重。

三、 鉛心橡膠支承墊之初步力學性質(示意圖見附圖 5)

特性強度 Q_d = 20 t; ΣQ_d = 480 \cong 0.045W (W = 10438, 隔震系統以上 建物總重);非彈性水平勁度 K_d = 200 t/m;降伏力 F_y = 21.22 t;降 伏位移 D_y = 0.0061 m

四、 靜力分析

(一) LRB 設計位移迭代計算

1. 假設隔震的設計位移 D = 0.4 m ,每個柱位下端皆裝置隔震器, 24 個隔震器 (m = 24)	 、 、 、 、 、 、 、 、 、 、 、 、 、
第一次迭代計算	
$k_{eff} = \frac{F}{D} = \frac{20 + 200 \times 0.4}{0.4} = 250 \text{ t/m}$	
$K_{eff} = m \cdot k_{eff} = 6000 t/m$	
$A_{\rm T} = m E_{\rm D} = 756.3$	
$_{\rm e} = \frac{1}{2\pi} \left(\frac{A_{\rm T}}{K_{\rm eff} D^2} \right) = \frac{1}{2\pi} \times \left(\frac{756.3}{6000 \times 0.4^2} \right) = 0.125 = 12.5\%$	
$T_e = 2\pi \sqrt{\frac{W}{gK_{eff}}} = 2\pi \sqrt{\frac{10438}{9.81 \times 6000}} = 2.646 \text{ sec}$	
$C = \frac{1.0}{T_e} = 0.378$ 1/sec	
$C_{\rm D} = \frac{1.5}{40\xi_{\rm e} + 1} + 0.5 = 0.749$	

 $D = 25 \cdot ZIC \cdot C_D \cdot T_e^2 = 25 \times 0.33 \times 1.5 \times 0.378 \times 0.749 \times (2.646)^2 = 0.2454 \text{ m}$

- 2. 以 D = 0.2454 m 重新進行上述之迭代計算,直到設計位移 D 收斂為止。經數次迭代,最後可得:
 D = 0.197 m; K_{eff} = 301.52×24 = 7236.5 t/m; e = 20.77%; C_d = 0.661; T_e = 2.409 sec
- (二)、設計總位移及最大總位移計算

已知本棟建築 X 方向尺度為 45.0 m

Y 方向尺度為 27.0 m

$$D_{\rm T} = D \left(1 + y \frac{12 \, e}{b^2 + d^2} \right)$$
$$= 0.197 \times \left(1 + 22.5 \times \frac{12 \times 45 \times 0.05}{27^2 + 45^2} \right)$$

 $= 0.197 \times 1.22 = 0.240 \text{ m}$

$$D_{TM} = 1.5 D_T = 0.360 m$$

(三)、 最小設計水平總橫力

1. 隔震系統及其下方之結構:

$$V_{\rm b} = \frac{K_{\rm eff} \ D}{0.8 \, \alpha_{\rm v}} = \frac{7236.5 \times 0.197}{0.8 \times 1.5} = 1188 \ t$$

2. 隔震系統上方之結構:

$$V_{s} = \frac{K_{eff} D}{1.2 \alpha_{v} F_{u}^{*}} \times \frac{W - W_{b}}{W}$$

因建築物座落於第一類地盤,
$$T_e = 2.12 \text{ sec}$$

故 $F_u^* = R_a^* = 1 + \frac{(R-1)}{5} = 1 + \frac{4.8 - 1}{5} = 1.76$
1.7236.5×0.197 (10438-1944)

$$V_{s} = \frac{7230.5 \times 0.197}{1.2 \times 1.5 \times 1.76} \times \frac{(10438 - 1944)}{10438} = 450 \times 0.814$$

= 366.19 t (≅ 0.037W)

若以傳統方式設計,其地震力為 929.92 t

 3. 依照『建築物風力條文草案』計算 Y 向風力為 197.0 t

4. 隔震系統之降伏強度 m F_y = 24×21.22 = 509.28 t

考慮 UBC 之規範使用 1.5 倍降伏強度為下限 1.5 m F_y = 763.9 t 综合第 (2), (3), (4)項得 V_s = 763.9 t (約為傳統結構設計力之 82.15 %)

(四)、在上述設計過程中,發現上部設計力(V_s)約為傳統結構設計力之 82.15%,並無明顯的經濟性誘因,考慮可能是起初假設之 Q_d 及 K_d 不盡 合理,以下將分三部分討論各種參數(Q_d,K_d 及 D_y, LRB 與 RB 之數量 配置)的影響

	原始方案	方案 B	方案C	方案 D
m (LRB 總數)	24	24	24	24
$Q_{d}(t)$	20	30	15	9
$MQ_{d}(t)$	480 0.045w	720 0.069w	360 0.034w	216 0.021w
$D_{y}(m)$	0.0061	0.0061	0.0061	0.0061
$F_{y}(t)$	21.22	31.22	16.22	10.22
K _d (t/m)	200	200	200	200
$K_u = \frac{F_y}{D_y} (t/m)$	3478.7	5118.0	2659.0	1675.4
$\alpha = \frac{K_{d}}{K_{u}}$	0.057	0.040	0.075	0.119
D(m) 設計位移	0.197	0.163	0.224	0.287
韌性比 D/Dy	32.29	26.72	36.72	47.04
K _{eff} (t/m)	7236.5	9217.2	6407.1	5552.61
ξe	20.77 %	29.4 %	15.53 %	8.45 %
T _e (sec)	2.409	2.135	2.560	2.750
K _{eff} D (t-m)	1425.6	1502.4	1435.2.	1593.6
$K_{eff}D/m F_y$	2.80	2.01	3.69	6.50
$\overline{K_{eff}D/1.2\alpha_yF_u\times \frac{W-W_b}{W}}$	366.2	385.91	368.6	409.3

1. Q_d值變化的影響

1.5 mFy	763.9	1123.9	583.92	367.92
V _s	763.9	1123.9	583.92	409.3
與傳統地震力比值	82.15 %	120.86 %	62.79 %	44.02 %
(V = 930 t)				

討論:

- 1. Q_d與隔震系統的設計位移成反比,但對隔震系統之水平剪力 (K_{eff}×D) 則無 較大影響
- 2. 上部結構設計力 (V_s) 幾乎由 (1.5 mF_y) 之值控制,只有在 Q_d 值極低時 (Q_d = 9, mQ_d = 0.021 W),才有可能受式 2.11 控制。
- 3. Q_d 值 (或 mQ_d) 愈小, 對於地震力的折減愈有效果。由此趨勢觀之, Q_d 值 為零時 (即 K_D = K_{eff}) 地震力最小, 建物設計最經濟。此時建物在小側力作 用下即產生位移,且韌性需求極高,除非規範內規定中、小型地震強度之 下限,如 mQ_d > $\frac{ZIC}{2}$ W 等規定

	原始方案	方案 F	方案 G	方案 H	方案I
M (LRB 總數)	24	24	24	24	24
$Q_{d}(t)$	20	20	20	20	20
$MQ_{d}(t)$	480	480	480	480	480
	0.045w	0.045w	0.045w	0.045w	0.045w
$D_{y}(m)$	0.0061	0.0061	0.0061	0.010	0.004
$F_{y}(t)$	21.22	20.73	21.525	22.0	20.8
K _d (t/m)	200	150	250	200	200
$K_u = \frac{F_y}{D_y} (t/m)$	3478.7	3428.7	3528.7	2200	5200
$\alpha = \frac{K_d}{K_u}$	0.057	0.044	0.071	0.09	0.038
D(m) 設計位移	0.197	0.213	0.186	0.198	0.196
韌性比 D/Dy	32.29	34.9	30.49	19.8	49.0
$K_{\rm eff}$ (t/m)	7236.5	5853.5	8580.6	7224.2	7248.9

2. K_d 值及 D_v 的影響

ξe	20.77 %	23.81 %	18.52 %	20.28 %	21.07 %
T _e (sec)	2.409	2.679	2.213	2.411	2.407
K _{eff} D (t-m)	1425.6	1246.8	1596	1430.4	1420.8
$K_{eff}D/mF_y$	2.80	2.48	3.09	2.71	2.85
$K_{\rm off}D/1.2\alpha_{\rm w}F_{\rm W} \times \frac{W-W_{\rm b}}{M}$					
W	366.2	320.2	409.96	367.4	364.9
1.5 mF _y	763.9	752.9	774.9	792.0	748.8
V _s	763.9	752.9	774.9	792.0	748.8
與傳統地震力比值	82.15 %	80.97 %	83.33 %	85.1 %	80.52 %
(V = 930 t)					

討論:

1. K_d (或 D_y) 的變化對隔震系統之水平剪力 (Keff×D) 的影響不如 Q_d 的變化。

2. 上部結構之設計力多由 1.5 mFy 之值控制。

3. LRB 與 RB 之數量配置影響

若所有柱位下都使用 LRB 隔震系統會造成整體隔震系統之降伏力 (mF_y) 過高,現將鉛心橡膠支承墊 (LRB) 配置於建物之外圍構架,內部柱位則 採用多層橡膠支承墊 (RB)。隔震系統的水平剪力則為 (mK_{eff} + nK_d) × D m:LRB 總數, n:RB 總數

	原始方案	方案 K	方案 L	方案 M	方案 N	方案 0
m (LRB 總數)	24	16	16	16	16	16
n(RB 總數)	0	8	8	8	8	8
$Q_{d}\left(t ight)$	20	22.5	17.5	20	20	20
$MQ_{d}(t)$	480	360	280	320	320	320
	0.045w	0.034w	0.027w	0.03w	0.03w	0.03w
$D_{y}(m)$	0.0061	0.0061	0.0061	0.0061	0.0061	0.0061
$F_{y}(t)$	21.22	23.72	18.72	21.22	20.915	21.525
K_{d} (t/m)	200	200	200	200	150	250
$K_u = \frac{F_y}{D_y} (t/m)$	3478.7	3888.5	3068.8	3478.7	3428.7	3528.7

$\alpha = \frac{K_d}{K_u}$	0.057	0.051	0.065	0.057	0.044	0.071
D(m) 設計位移	0.197	0.224	0.252	0.237	0.256	0.224
韌性比 D/Dy	32.29	36.72	41.31	38.85	41.96	36.72
K_{eff} (t/m)	7236.5	6407.1	5911.1	6150.21	4850	7428.6
ξe	20.77 %	15.53 %	11.68 %	13.62 %	16.02 %	11.91 %
T _e (sec)	2.409	2.560	2.666	2.613	2.943	2.378
K _{eff} D (t-m)	1425.6	1435.2	1489.6	1457.6	1241.6	1664
$K_{eff}D/mF_y$	2.80	3.78	4.97	4.29	3.71	4.83
$K_{eff}D/1.2\alpha_yF_u\times\frac{W-W_b}{W}$	366.2	368.6	382.63	374.41	318.9	427.4
1.5 mF _y	763.9	569.28	449.28	509.28	501.96	516.6
V _s	763.9	569.28	449.28	509.28	501.96	516.6
與傳統地震力比值 (V = 930 t)	82.15 %	61.22 %	48.31 %	54.77 %	53.98 %	55.55 %

討論:

- 1. 就上述之方案 K 和方案 C 比較,雖然兩者之 LRB 總數不同,但隔震系統 之整體特性強度 (mQ_d)相同,因此兩者之結果極為相似。
- 上部結構之地震設計力是否符合經濟上之需求,最大之因素完全在於 mQ_d 之大小,與 LRB 的總數較無關聯。

(五)、 綜合討論

- 1. 若純粹就經濟性的考量,鉛心橡膠支承墊 (LRB) 之特性強度愈低, 則上部結構設計地震力 (V_s) 也愈低,以本案為例,當 $mQ_d > 0.06W$ 時, V_s 100%傳統結構設計地震力,同理,當 $mQ_d < 0.02W$ 時, V_s 40% 50%傳統結構設計地震力。但是如果 mQ_d 過低是否會造成 隔震系統在極小型地震作用即降伏而產生過大位移,是否規範內需再 定義另一下限值。如 $mQ_d > \frac{ZIC}{?}W$,但週期的計算是以 K_u 而非 K_d 的勁度值。
- 2. 關於 V_s 的下限值是否沿用原規範 mFy 或採用 UBC 之 1.5 mFy 則有以

下之討論。

- (a) 就隔震之原設計精神而言,上部結構之側向勁度應與隔震系統之 側向勁度有一定的差距,使上部結構被傳遞力量極小而產生剛體 運動,此即是 UBC 使用 1.5 倍之要求。計算 V_s 時我們是將 $K_{eff} \bullet D$ 除以 $1.2\alpha_yF_u$, 而 UBC 是除以 $R_e = 1.6$ 或 2.0,若取 $F_u^* = 1.76$ 時 則我們的 V_s 祇有 UBC V_s 的 0.63 倍
- (b) 就上部結構之設計力 V_s 而言,當 $mQ_d \le 0.032$ W 時式 2.11 與 mF_y 相近;而當 $mQ_d \le 0.023$ W 時式 2.11 與 1.5 mF_y 相近,換句話說, 若以 UBC 之 1.5 mF_y 為 V_s 下限時, mQ_d 值需小於 0.023 W 才有 可能使上部結構之側向勁度與隔震系統之側向勁度有所分別。
- 3. 依隔震規範 2.15 條 (P.29) 規定,垂直方向以不考慮採用隔震設計為
 原則,則有隔震系統時,載重組合是否仍依耐震規範 2.15 條,用 1.05
 D+1.275 L+1.4 E_h+0.3×1.4 E_v? R 值該取多少?
- 4. LRB 之防火性如何? 耐火特性如何檢驗?
- 5. LRB 之潛變特性如何?對長期沉陷量有無影響?

六、線性歷時分析

1.分析模式

本案使用 ETABS V6.0 電腦程式進行線性歷時分析,所有的梁、柱、牆構件均依照 ETABS 之內定桿件模擬,隔震器的模擬則採用該程式的 Spring-Isolater 1 模擬鉛心橡膠支承墊的力學性質(本例各柱位下採用相同形式 的隔震器)。其分析流程類似於靜力分析的疊代方法。

- a.假設隔震系統的設計位移(D)。
- b.依假設的隔震系統設計位移(*D*)估算隔震系統的有效勁度(k_{eff})及等效阻 尼比(ξ_{eff})。
- c.放入分析程式中執行線性歷時分析,若所得隔震層位移跟原先假設的隔 震系統設計位移(步驟 a.)相等則可,否則以分析程式求得的隔震層位移 重複步驟 b.c.直至收斂為止。

2.線性歷時分析疊代計算及設計位移的調整

線性歷時分析所用地震加速度歷時依規範 3.8 節規定產生,共三組分別如圖 1~2 所示。調整係數採用 ZI=0.33*1.5=0.495。

(1) 鉛心橡膠支承墊力學性質

特性強度 Q_d =25 tf 非彈性水平勁度 K_d =150 tf/m 降伏力 F_y =25.92 tf 降伏位移 D_y =0.0061 m。

- (2) LRB 設計位移疊代計算
 - a.以第一組地震加速度歷時、結構X向為例,假設隔震器的設計位移D=0.2m, 且在每個柱線下端皆裝置隔震器,故共需24個隔震器(m=24)。

隔震系統X向之有效勁度 K_{aff} 及等效阻尼比 ¿ 分別為

$$k_{eff} = \frac{F}{D} = \frac{Q_d + K_d D}{D} = \frac{25 + 150(0.2)}{0.2} = 275 \quad t'/_m \quad (\mbox{${\rm max Wphx wmgp}$})$$
$$K_{eff} = \sum_{i}^m k_{eff} = m \ k_{eff} = 24 \times 275 = 6600 \quad t'/_m$$
$$A_T = \sum_{i}^m E_D = m \ 4Q_d \ (D - D_y) = 24 \times 4(25)(0.2 - 0.0061) = 465.36$$

$$\xi_e = \frac{1}{2\pi} \left[\frac{A_\tau}{K_{eff} D^2} \right] = \frac{1}{2\pi} \left[\frac{465.36}{6600 \times 0.2^2} \right] = 28.05\%$$

將 k_{eff} 及 ξ_e 放入ETABS分析程式中執行線性歷時分析,得隔震層位移 =0.1453 m

b.以 D=0.1453 m 重新進行上述的疊代計算,直到設計位移 D 收斂為止。經數 次疊代最後可得 X 向:

D =0.0976 m

$$K_{eff} = \sum_{i}^{m} k_{eff} = m k_{eff} = 24 \times 406.1 = 9746.4 \quad t'/_{m}$$

 $\xi_{e} = 37.64\%$
 $T_{dyn} = 2.58 \text{ sec}$

c.表1整理各組地震加速度歷時下的 D、 k_{eff}、 ξ_e、 T_{dm}。根據規範 3.8 節第
 三項 "若使用三組的地震歷進行分析時,所得反應之最大值可作為設計之
 用",可得隔震系統設計位移 X 向為 13.98 cm、Y 向為 14.17 cm。

X 向 Y向 第二組 第一組 第三組 第一組 第二組 第三組 10.45 13.98 10.60 10.02 14.17 9.76 D(cm) k_{eff} (tf/m) 406.1 329.2 388.1 399.5 326.7 390.8

36.79

2.60

37.34

2.58

32.95

2.77

36.92

2.60

表1 各組地震加速度歷時下的 D、 k_{af} 、 ξ 、 T_{dm}

(3) 設計總位移及最大總位移

(sec)

37.64

2.58

ξ (%)

 T_{dvn}

依照規範 3.4 節設計位移的調整,隔震系統之設計總位移不可小於(2.2)式 D_T 值之 90%,而最大總位移不可小於(2.3)式 D_{TM} 值之 80%。以本案的案例計算:

 $T_{code} = 0.07 h^{3/4} = 0.07 * (24.3)^{3/4} = 0.7709$ sec $T = \min(T_{code}, T_{dyn}) = \min(1.4*0.7709, 1.447) = 1.079$ sec

33.14

2.77

$$D'' = \frac{D}{\sqrt{1 + (T/T_e)^2}} = \frac{13.98}{\sqrt{1 + (1.079/2.595)^2}} = 12.91 \ cm \quad (X \ \square)$$
$$= \frac{14.17}{\sqrt{1 + (1.079/2.595)^2}} = 13.08 \ cm \quad (Y \ \square)$$

$$D_{\tau} = D^{"} \times (1 + y \frac{12e}{b^{2} + d^{2}})$$

= 12.91 × (1 + 13.5 × $\frac{12 \times 27 \times 0.05}{27^{2} + 45^{2}})$
= 12.91 × 1.079 = 13.94 cm X - Dir
= 13.08 × 1.22 = 15.96 cm Y - Dir

$$D_{TM} = 1.5 D_T = 1.5 \times 13.94 = 20.91 \text{ cm}$$
 (X 向)
=1.5×15.96=23.94 cm (Y 向)

另隔震器之總位移需考量 100% 的主方向+30% 正交方向同時作用

1.當 5% 偏心在 Y 向, 地震分別由 100% 的 X 向和 30% Y 向輸入時, 可得

X 向 $D_7 = \sqrt{(14.647 + 0.3^*0)^2 + (1.731^*0.3^*14.175)^2} = 15.82$ cm >13.94×0.9=12.55 OK

2.當 5% 偏心在 X 向, 地震分別由 100% 的 Y 向和 30% X 向輸入時, 可得

Y 向
$$D_{\tau} = \sqrt{(16.06 + 0.3^*0)^2 + (1.671^*0.3^*13.983)^2} = 17.10 \ cm$$

>15.96×0.9=14.35 OK

3. X 向 $D_{TM} = 1.5 D_{T} = 1.5 \times 15.82 = 23.73 \text{ cm} > 20.91 \times 0.8 = 16.73$ OK Y 向 $D_{TM} = 1.5 D_{T} = 1.5 \times 17.10 = 25.65 \text{ cm} > 23.94 \times 0.8 = 19.15$ OK

故得隔震系統設計總位移 X 向為 15.82 cm、Y 向為 17.10 cm;最大總位移 X 向為 23.73 cm、Y 向為 25.65 cm。靜力與線性歷時分析的位移比較見表 2。

	·미·· 승 冉년	討士 그 도	(白山山 (安古)十 八 十年	
設計参數		一 一 一 一 一 	家性性的分析	
1	設計位移 D	$D=25ZICC - T^2 = 20 \text{ cm}$	13.98 cm (X 向)	
			14.17 cm (Y 向)	
2	設計總位移	D_T =19.9 cm (X 向)	15.82 cm (X 向) > $0.9D_T$	
	$D_T = D[1 + y \frac{12e}{b^2 + d^2}]$	D_T =22.5 cm (Y 向)	17.10 cm (Y 向) > $0.9D_T$	
-				
3	最天總位移 D_{TM}	$D_{TM} = 1.5 D_T = 29.85 (X \square)$	$(23.73 \text{ cm} (X \square) > 0.8D_{TM})$	
		D _{TM} =1.5 D _T =33.75 (Y 向)	25.65 cm (Y 向) > $0.8D_{TM}$	

表 2 靜力與線性歷時分析的位移下限值比較

3.總橫力之調整

依規範 3.5 節要求,如下表 3 所示。

		靜力分析	線性歷時分析
1	設計位移 D	20 cm	13.98 cm (X 向)
			14.17 cm (Y 向)
2	$K_{_{eff}}D$	0.2 x 275 x 24=1320 t	0.1398 x 329.6 x 24=1109.9 t (X 向)
			0.1417 x 326.7 x 24=1111.0 t (Y 向)
3	$V - \frac{K_{eff} D}{D}$	733.4 t	
	$V_s^{-1.2}\alpha_y$		
4	V_{dyn}		1104.8 t (X 向)
			1111.4 t (Y 向)
5	V_{dyn}		613.8 t (X 向)
	$1.2 \alpha_y$		617.4 t (Y 向)
6	$60\% V_s$	440.04 t	
7	2.8.3 節之規定下限	661.57 t	
8	最小設計總橫力=max[(5),(6),(7)]		661.57 t (X 與 Y 向)
9	動力分析桿件	內力調整係數	661.57/1104.8=0.599 (X 向)
	max[(5),(6	$(5),(7)]/V_{dyn}$	661.57/1111.4=0.595 (Y 向)

表 3 線性歷時分析橫力下限

4.隔震系統受地震力作用之動態反應

樓層		X 向			Y 向	
	側向力 t	位移 cm	側移角%	側向力 t	位移 cm	側移角 %
P2	19.12	22.37	0.07	18.27	23.28	0.07
RF	23.07	22.18	0.09	22.10	23.07	0.09
6F	186.39	21.93	0.11	174.09	22.81	0.13
5F	202.99	21.49	0.17	192.72	22.32	0.20
4F	184.42	20.79	0.24	176.32	21.57	0.27
3F	179.27	19.85	0.30	171.97	20.55	0.35
2F	177.89	18.68	0.36	178.24	19.27	0.41
1F	191.99	17.31	0.41	196.75	17.78	0.45
B1	218.66	15.55	0.36	221.50	15.87	0.39
隔震層	221.93	13.98	9.32	219.16	14.17	9.45

表 4 設計地震力(PGA=0.33*1.5=0.495g)作用下地震反應

七、 非線性歷時分析

1.**分析模式**

本案使用 ETABS V6.0 電腦程式進行非線性歷時分析,所有的梁、柱、牆 構件均依照 ETABS 之內定桿件模擬(線性),隔震器的模擬則採用該程式的 Spring-isolater 1 模擬鉛心橡膠支承墊的力學性質(雙線性)。本例各柱位下採用 相同形式的隔震器。

2.非線性歷時分析及設計位移的調整

非線性歷時分析所用地震加速度歷時依規範 3.8 節規定產生,共三組分別如圖 1~2 所示。調整係數採用 ZI=0.33*1.5=0.495。

(1) 鉛心橡膠支承墊力學性質

特性強度 Q_d =25 tf 非彈性水平勁度 K_d =150 tf/m 降伏力 F_y =25.92 tf 降伏位移 D_y =0.0061 m。

(2) LRB 設計位移計算

表 1 整理各組地震加速度歷時下的 D、*T_{oyn}*。根據規範 3.8 節第三項 "若使用 三組的地震歷進行分析時,所得反應之最大值可作為設計之用",可得隔震系 統設計位移 X 向為 12.53 cm、Y 向為 12.71 cm。

表1	各組地震加速度歷時下的 D、	T_{dvr}

	ХÓ			Y 向		
	第一組	第二組	第三組	第一組	第二組	第三組
D (cm)	12.53	11.41	10.24	12.71	10.49	10.82
T _{dyn} (sec)	2.84					

(3) 設計總位移及最大總位移

依照規範 3.4 節設計位移的調整,隔震系統之設計總位移不可小於(2.2)式 D_T 值之 90%,而最大總位移不可小於(2.3)式 D_{TM} 值之 80%。以本案的案例計算: $T_{code} = 0.07h^{3/4} = 0.07*(24.3)^{3/4} = 0.7709$ sec $T = \min(T_{code}, T_{dyg}) = \min(1.4*0.7709, 1.447) = 1.079$ sec

$$D'' = \frac{D}{\sqrt{1 + (T/T_e)^2}} = \frac{12.53}{\sqrt{1 + (1.079/2.595)^2}} = 11.57 \ cm \quad (X \ \textcircled{\square})$$
$$= \frac{12.71}{\sqrt{1 + (1.079/2.595)^2}} = 11.73 \ cm \quad (Y \ \textcircled{\square})$$

$$D_{T} = D' \times (1 + y \frac{12e}{b^{2} + d^{2}})$$

= 11.57 \times (1 + 13.5 \times \frac{12 \times 27 \times 0.05}{27^{2} + 45^{2}})
= 11.57 \times 1.079 = 12.48 cm X - Dir
= 11.73 \times 1.220 = 14.31 cm Y - Dir

$$D_{TM} = 1.5 D_T = 1.5 \times 12.48 = 18.73 \text{ cm}$$
 (X 向)
= 1.5×14.31=21.47 cm (Y 向)

另隔震器之總位移需考量 100% 的主方向+30% 正交方向同時作用

1.當各方向都產生5%偏心,而地震由100%的X向和30%的Y向同時輸入時, 可得

X 向
$$D_{\tau} = \sqrt{(12.592)^2 + (4.783)^2} = 13.47 \ cm$$

>12.48×0.9=11.23 OK

2.當各方向都產生 5% 偏心, 而地震由 100% 的 Y 向和 30% 的 X 向同時輸入時, 可得

Y 向
$$D_{\tau} = \sqrt{(5.203)^2 + (14.079)^2} = 15.01 \ cm$$

>14.31×0.9=12.88 OK

3. X 向 $D_{TM} = 1.5 D_{T} = 1.5 \times 13.47 = 20.21 \text{ cm} > 18.73 \times 0.8 = 14.98$ OK Y 向 $D_{TM} = 1.5 D_{T} = 1.5 \times 15.01 = 22.52 \text{ cm} > 21.47 \times 0.8 = 17.18$ OK

故得隔震系統設計總位移 X 向為 13.47 cm、Y 向為 15.01 cm;最大總位移 X 向為 20.21 cm、Y 向為 22.52 cm。靜力與線性歷時分析的位移比較見表 2。

	設計參數	設計參數 靜力分析			
1	設計位移 D	$D=25ZICC$ $T^{2}=20$ cm	12.53 cm (X 向)		
			12.71 cm (Y 向)		
2	設計總位移	D_T =19.9 cm (X 向)	13.47 cm (X 向) > $0.9D_T$		
	$D_T = D[1 + y \frac{12e}{b^2 + d^2}]$	<i>D_T</i> =22.5 cm (Y 向)	15.01 cm (Y 向) > $0.9D_T$		
3	最大總位移 D _{TM}	D _{TM} =1.5 D _T =29.85 (X 向)	20.21 cm (X 向) > $0.8D_{TM}$		
		D _{TM} =1.5 D _T =33.75 (Y 向)	22.52 cm (Y 向) > $0.8D_{TM}$		

表 2 靜力與非線性歷時分析的位移下限值比較

3.總橫力之調整

依規範 3.5 節要求,如下表 3 所示。

		靜力分析	非線性歷時分析				
1	設計位移 D	20 cm	12.53 cm (X 向)				
			12.71 cm (Y 向)				
2	$K_{eff} D$	0.2 x 275 x 24=1320 t					
3	$V = \frac{K_{eff} D}{D}$	733.4 t					
	s 1.2 α_{y}						
4	V_{dyn}		1050.83 t (X 向)				
			1057.38 t (Y 向)				
5	V_{dyn}		583.79 t (X 向)				
	$1.2 \alpha_y$		587.43 t (Y 向)				
6	$60\% V_s$	440.04 t					
7	2.8.3 節之規定下限	661.57 t					
8	最小設計總橫力	$=\max[(5),(6),(7)]$	661.57 t				
9	動力分析桿件	內力調整係數	661.57/1050.83=0.630 (X 向)				
	max[(5),(6	$(5), (7)]/V_{dyn}$	661.57/1057.38=0.626 (Y 向)				

表3 非線性歷時分析橫力下限

4.隔震系統受地震力作用之動態反應

樓層	X 向				Y 向	
	樓層剪力 t	位移 cm	側移角 %	樓層剪力 t	位移 cm	側移角%
P2	101.74	18.86	0.258	101.67	19.65	0.263
RF	183.07	18.68	0.254	184.96	19.58	0.278
6F	495.84	18.51	0.192	508.97	19.52	0.220
5F	681.04	18.30	0.241	664.25	19.36	0.256
4F	719.76	18.02	0.288	678.15	19.08	0.296
3F	943.00	17.49	0.382	891.78	18.51	0.393
2F	1172.93	16.33	0.461	1152.36	17.54	0.484
1F	1149.87	15.52	0.473	1084.06	16.23	0.478
B1	983.67	13.96	0.349	1031.10	14.39	0.378
隔震層	1050.83	12.53	8.351	1057.38	12.71	8.473

表 4 設計地震力(PGA=0.33*1.5=0.495g)作用下地震反應

八、高阻尼橡膠支承墊設計

以規則鋼結構為例,若所用支承墊特性強度 Q_d =11.4 ff、非彈性水平勁度 K_d =150 ff/m、降伏位移 D_y =0.0061 m,而由前述靜力或動力分析法可得隔震建 築物之設計位移 D、有效週期 T_e 、有效勁度 k_{eff} 、有效阻尼 ξ_e (此處以靜力分析 法為例,可設計位移 D=19.85 cm、有效週期 T_e =2.32 sec、每個支承墊有效勁度 k_{eff} =207.4 ff/m 、有效阻尼 ξ_e =17.08 %),則可依此設計高阻尼橡膠支承墊,其 步驟如下:

1. 決定設計應變(γ_{max})、設計溫度(T)

設 $\gamma_{max} = 100\%$ 、T=27.8

2. 根據設計應變(γ_{max})、設計溫度(T)、隔震結構有效週期(T_e)及隔震結構有效阻 $R(\xi_e)$, 在高阻尼橡膠支承墊製造商所提供的測試資料中選取所對應的有效剪 力模數(G_{eff})。

由參考文獻[10]的表 3-3 可得,T=27.8 、 γ_{max} =100%、f=0.5 Hz 時 G_{eff} =65.09 $\frac{N}{cm^2}$ =66.34 $\frac{t}{m^2}$,此時橡膠支承墊所能提供之阻尼為 17.07%剛好等 於隔震結構所需之有效阻尼 ξ_e =17.08%,故此設計參數 G_{eff} 可行。

3. 橡膠總厚度(T_r)可由設計位移(D)及設計應變(γ_{max})求得

$$\gamma_{\text{max}} = \frac{D}{T_r} \rightarrow T_r = D/\gamma_{\text{max}} = 19.85/100\% = 19.85 \text{ cm}$$

4. 由公式 $G_{eff} = \frac{k_{eff} T_r}{A}$ 可得支承墊面積 A 66.34 = $\frac{207.4 \times 0.1985}{A}$ → A=0.62057 m^2 若使用圓形斷面,則所需直徑 d=0.89m=89 cm → Use d=90 cm

5.決定鋼板厚度[1]

使用 UIC 772R 公式決定鋼板厚度(t_{e})

$$t_{s} = \frac{2(t_{i} + t_{i+1})(DL + 1.5LL)}{A_{re}F_{s}}$$

其中 t_i, t_{i+1} =鋼板所在上、下方之橡膠厚度; DL_iLL =此支承墊所受垂直靜,活載 重; A_{r_e} =有效受壓面積; F_s =鋼板容許應力, 一般取 0.6 F_y 。

設 $t_i = t_{i+1} = 8$ mm;使用 A36 鋼板,則 $F_s = 0.6 F_y = 0.6(25200 t/_{m^2}) = 15120 t/_{m^2}$, DL= 277.27 tf;LL=151.88 tf,則

$$t_{s} = \frac{2(0.008 + 0.008)(277.27 + 1.5 \times 151.88)}{0.4581 \times 15120}$$
$$= 0.00233 \text{ m} = 2.33 \text{ mm}$$
Use $t_{s} = 2.5 \text{ mm}$

6. 決定橡膠層數

因為 $T_r = 19.85 \text{ cm}$,而 $t_i = t_{i+r} = 8 \text{ mm}$,故共需 19.85 cm/8mm=24.8 層橡膠 Use 25 層橡膠每層厚 8 mm,故橡膠層總厚 $T_r = 25$ 層× 8 mm = 20 cm,而所需 鋼板為 24 層。

7. 計算支承墊總高度

設最上及最下層鋼板各厚 2 cm , 則支承墊總高度(h)為 h= T_r +49× t_s +2×2 cm=20 cm+49×2.5 mm+4 cm=36.25 cm

8. 設計結果

所需高阻尼橡膠支承墊直徑 d=90 cm;高 h=36.25 cm;橡膠 25 層,每層厚 8 mm;鋼板 24 層,每層厚 2.5 mm;上、下底板厚 2cm。

[1]

參、結論與建議

截至目前為止,就設計試作例中所遇到之問題進行討論後,內政部建築研究所民國 86 年之研究報告『建築物 隔震消能系統設計規範、條文解說及示範例之研訂』(MOIS 860008),部份內容建議修改如下:

建	議	修	訂	內	容	原	Į		條	修	訂	建	議	說
		綱	要				Ż	ζ				明		
2.8.2 震水	<u>位</u> 位之橫 (位之橫 (加) (加) (加) (加) (加) (加) (加) (加)	濃震系統 震震系統設	上方之 上方與 <i>K_{eff}</i> 位移;『 ^な _y =赴	結構: 流 結 結 結 点 以 光 之 震 酸 批 一 、 、 、 、 、 、 、 、 、 、 、 、 、	以一般耐 私抗一最小 と水平方 有效勁度 なここの 大本震力放	2.8.2 位) 位) 記 結構之 小水平總 ^{V_s = <u>K_{eff}</u> <u>1.2α_y</u> 力折減係 (單位:<i>tf</i>)、 量}	於隔震系統 規定で 院院定進行(<i>V_S</i>) <i>F_i</i> <u>₩</u> - <i>W_b</i> <i>W</i> =隔震 <i>W_b</i> =隔震系 <i>f</i>)	上方之結 上方之結 計與施口 其中: <i>F</i> 。 夏系統以 夏系統上面愛	構: 構應以一般耐 二,以抵抗一最 =結構系統地震 _建築物底版之重	由於並不 桿件產生 部建築配中 向分配中	<希望隔 Ξ降服, 予須成 勿底版之 □。	讀震建築物 故 F_u^* 從[]性設計。 2重量(W_b)	的上部結構 原條文中移[另外 , 隔震 將加入地震	有任何 涂 , 但上 系統上 力的豎
2.8.3 【 横 1. 期 2. (8 (6 (6 (6 (6 (6 (6 (6 (6 (7)) (7)) (7 (7)) ()) (對最小 立之依何夏。設隔如 之之依何夏。設備 不震統。 月、 一、 一、 一、 一、 一、 一、 一、 一、 一、 一、 一、 一、 一、	水平總 夏小計規 了小計規之 <i>L</i> 一 一 一 一 一 一 一 一 一 一 一 一 一	橫 方(二列列第 Φ	Vs)之口 古備: 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 3 <td>限制: 小水平總 構相同調 服之:11b) 力。地震 強性 全 の 、 大 、 、 、 、 、 、 、 、 、 、 、 、 、</td> <td>2.8.3 對: 位之道 力之設隔 1. 由隔隔 (附) 性隔 ;</td> <td>最小水平總 隔可小東系統上 不 載 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一</td> <td>橫力(V 方之結 行之結 行 前 得 所 能 系 察 察 察 程 度</td> <td>)之限制:</td> <td>式(2.11b) 下即体肌 須期代入</td> <td>)為避免 る。在計 電設計規 、。</td> <td>隔震系統 算(2.11b) 見範而得,</td> <td>活中小型牡 弌時 , 所需≵ 但週期以附</td> <td>也震作用 之數據結構 鬲震結構</td>	限制: 小水平總 構相同調 服之:11b) 力。地震 強性 全 の 、 大 、 、 、 、 、 、 、 、 、 、 、 、 、	2.8.3 對: 位之道 力之設隔 1. 由隔隔 (附) 性隔 ;	最小水平總 隔可小東系統上 不 載 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一	橫力(V 方之結 行之結 行 前 得 所 能 系 察 察 察 程 度)之限制:	式(2.11b) 下即体肌 須期代入)為避免 る。在計 電設計規 、。	隔震系統 算(2.11b) 見範而得,	活中小型牡 弌時 , 所需≵ 但週期以附	也震作用 之數據結構 鬲震結構

性風束制隔震系統之極限強度或滑動性隔		
震系統之靜摩擦程度)的1.5倍除以 <i>a_y</i> 。		
2.10 地震力之豎向分配	2.10 地震力之豎向分配	隔震系統上面建築物底版之重量(W,)須加入
位於隔震系統上方之結構其所受之最小	位於隔震系統上方之結構其所受之最小	地震力的豎向分配中。
總橫力(1/8)應依下式豎向分配於隔離交界面	總橫力(V3)應依下式豎向分配於隔離交界面	
以上之各層:	以上之各層:	
$F_x = V_s \frac{W_x U_x}{a} $ (2.17)	$F_x = V_s \frac{W_x U_x}{a} \tag{2.17}$	
$\sum_{i=0}^{n} W_{i} U_{i}$	$\sum_{i=1}^{n} W_i U_i$	
作用在第x層之橫力Fx依該層質量之分	作用在第水層之橫力Fx依該層質量之分	
佈,分配於該層平面。每一結構性元件之應力	佈,分配於該層平面。每一結構性元件之應	
應視為將力F _X 施加於基層上方之適當樓層時	力應視為將力F _X 施加於基層上方之適當樓層	
所得之效應來作計算。 w _x : 第 x層之建築物重	時所得之效應來作計算。 <i>w_x</i> :第 <i>x</i> 層之建築物	
量(包括隔震系統上面建築物底版之重量	重量、 <i>u_x</i> :以建築物各樓層重量 <i>(w)</i> 為水平力,	
W_b)、 u_X : 以建築物各樓層重量(w)為水平力,	施加於隔震建築物各樓層之水平方向後,第x	
施加於隔震建築物各樓層之水平方向後,第×	層所產生之位移	
層所產生之位移		
2.14.1 容許層間相對側向位移角	2.14.1 容許層間相對側向位移角	由於並不希望隔震建築物的上部結構有任何
隔震系統上方之結構,在設計地震力作	隔震系統上方之結構,在設計地震力作	提供產生降服 故 R^* 沿盾修文由移除
用下,每一樓層與其上、下鄰層之相對側向位	用下,每一樓層與其上、下鄰層之相對側向	1年17/21171/1111、113、131、141、141、141、141、141、141、141
移除以層高,即所謂層間相對側向位移角不得	位移除以層高,即所謂層間相對側向位移角	
超過 0.01/(1.2 <i>a_y)。</i> 計算位移時應計及平移與	不得超過 $0.01/(1.2\alpha_y R_a^i)$ 。計算位移時應計及	
扭轉位移 若能證明非結構構材能承受較大層	平移與扭轉位移。若能證明非結構構材能承	
間變位而不致產生影響生命安全之破壞時,上	受較大層間變位而不致產生影響生命安全之	
述限制可酌予放寬。	破壞時,上述限制可酌予放寬。	
2.14.2 建築物間之間隔	2.14.2 建築物間之間隔	
為避免地震時引起之變形造成鄰棟建	為避免地震時引起之變形造成鄰棟建	
築物間的相互碰撞,建築物應各目留設設計地	築物間的相互碰撞,建築物應各自留設設計	
震力作用下產生之位移 0.6($D_{\tau} + D_{r} \times 1.2\alpha_{y}$)	地震力作用下產生之位移	

倍。需要考慮 <i>P</i> - △ 效應者,計算之位移應包 括此效應。 其中: <i>D</i> , 為上部建築物對其底版之相對位移。	0.6($D_r + D_r \times 1.2 \alpha_y R_s^i$) 倍。需要考慮 $P - \Delta$ 效應 者,計算之位移應包括此效應。 其中: D_r 為上部建築物對其底版之相對位移。	北伯地南叶八七月末拉河南哥巴达海港进刊
3.3 加速度反應 請承 致 與 調 整 示 数 反應 譜 分析 採 用 之 加 速 度 反應 譜 係 數 (C) 其 定 義與 第 二 章 相 同。反應 譜 分 析 之 調 整 係 數 用 <i>ZIC</i> 。,而 非 線 性 歷 時 分 析 之 調 整 係 數 用 <i>ZI</i> 。	3.3 加速度及應 請 時數與調整時數 動力分析採用之加速度反應譜係數 <i>(c)</i> ,其定義與第二章相同,動力分析之調整 係數用 <i>ZIC_p</i> 。	非線性歷時分析是直接以隔晨器的運滞模型 為分析依據,而非以等效勁度和等效阻尼 比,故調整係數不須再乘以 <i>C</i> 。。
 3.10.1 容許層間相對側向位移角 在最小設計總橫力下隔震結構之層 間相對側向位移(包含:隔震系統之垂直變形 所造成之位移)不得超過下述限度(如表3.1所 所造成之位移)不得超過下述限度(如表3.1所 示): (1) 位於隔震系統上方之結構,由反應譜分析 所得之最大層間相對側向位移角不得超 過0.015/(1.2α_y) (2) 位於隔震系統上方之結構,由非線性歷時 分析並考慮側向力抵抗系統之非線性元 件之力-位移性質後所得之最大層間相對 側向位移角不得超過0.02/(1.2α_y) (3) 位於隔震系統上方之結構,若其層間相對 側向位移角超過0.01/(1.2α_y)則在計算最 大可能地震所產生之側向位移時應考慮 重力所產生之二次效應。 3.10.2 建築物間之間隔 為避免地震時引起之變形造成鄰棟建 	 3.10.1 容許層間相對側向位移角 在最小設計總橫力下隔震結構之層 間相對側向位移(包含:隔震系統之垂直變 形所造成之位移)不得超過下述限度(如表3.1 所示): (1)位於隔震系統上方之結構,由反應譜分析 所得之最大層間相對側向位移角不得超 過0.015/(1.2α, R_a) (2)位於隔震系統上方之結構,由非線性歷時 分析並考慮側向力抵抗系統之非線性元 件之力-位移性質後所得之最大層間相 對側向位移角不得超過0.02/(1.2α, R_a) (3)位於隔震系統上方之結構,若其層間相對 側向位移角超過0.01/(1.2α, R_a) (3)位於隔震系統上方之結構,若其層間相對 側向位移角超過0.01/(1.2α, R_a) (3)位於隔震系統上方之結構,若其層間相對 側向位移角超過0.01/(1.2α, R_a) (3)位於隔震系統上方之結構,若其層間相對 側向位移角超過0.01/(1.2α, R_a) (3)位於隔震系統上方之結構,若其層間相對 側向位移角超過0.01/(1.2α, R_a) 	由於並不希望隔震建築物的上部結構有任何 桿件產生降服,故從原條文中移除。

0.6(<i>D_τ</i> + <i>D_r</i> ×1.2α _y) 倍。需要考慮 <i>P</i> -Δ 效應	0.6(<i>D_τ</i> + <i>D_r</i> ×1.2 <i>α_yR_a</i>) 倍。需要考慮 <i>P</i> - Δ 效應	
者,計算之位移應包括此效應。	者 , 計算之位移應包括此效應。	
其中: D, 為上部建築物對其底版之相對位移。	其中: D, 為上部建築物對其底版之相對位移	

肆、主要參考文獻

- 1.蔡益超,項維邦,蔡克銓,張國鎮,"建築物耐震設計規範條文、解說 及示範例之研訂,"中華民國結構工程學會研究報告 CSSE 84-03B。
- 2.建築物耐震設計規範及解說",內政部,民國 86年7月。
- 3.CSMIP Strong-Motion Records from Tae Northridge, California Earthquake of January 17, 1994, California Department of Consercation, Division of Mines and Geology, Office of Strong Motion Studies, Report OSMS 94-07, 1994.
- 4. Uniform Building Code, International Conference of Building Officials, Whilter, California 1994.
- 5. Uniform Building Code, International Conference of Building Officials, Whilter, California 1997.
- 6.NEHRP Recommended Provisions for Seismic Regulation, for New Buildings, Federal Emergency Management Agency, 1994.
- 7.免震構造設計指針,日本建築學會 1991.
- 8.黃震興、張國鎮、葉銘煌、陳建州, "國內首座隔震橋梁設計之探討", 結構工程第九卷第二期,中華民國83年6月。
- 9.張國鎮、黃震興、蔡益超、高健章、蔡克銓,"建築物隔震消能系統規 範條文、解說及示範例之研訂",內政部建築研究所研究報告 MOIS 860008,民國 86 年 6 月。
- 10.林錦偉(1998),"高阻尼隔震橡膠支承墊之動力機械特性研究",國立台灣 科技大學、營建工程技術研究所碩士論文,指導:黃震興教授。

0

五、附件

(期初、期中簡報會議記錄及處理情形)

1. 建議增加探討老舊建築物隔震應用。

本計畫以新建結構為主要探討對象。歷史性老舊建築物隔震補強 需採個案處理。

2. 對於相關的維生線設計需求應加以說明。

維生線設計與一般結構設計相似,唯管線通過上部結構與其鄰近 物時須以具柔性管相連接,使結構在最大總位移範圍內能自由活動不 受束制。

3. 建議做一實例,以供業界參考。

本計畫目的即在邀請學術界及工程界有經驗之專家學者,就內政 部建築研究所民國 86 年之研究報告『建築物隔震消能系統設計規範、 條文解說及示範例之研訂』(MOIS 860008)進行建築物加鉛心橡膠支承 墊及高阻尼橡膠支承墊之設計實例試作及規範條文合理性之探討,除 可找出規範條文與實際執行之難易加以修正並建立合宜之建築物隔震 消能設計程序,使得該規範更完整可行外也提供業界一設計參考例。

4. 請考慮增加座落於各種不同地盤的建築物。

已考慮於計算例中。

5. 應增加隔震支承墊應用之限制說明,以免誤導工程界。

隔震支承墊應用之限制已載明於建築研究所民國86年之研究報告 『建築物隔震消能系統設計規範、條文解說及示範例之研訂』(MOIS 860008)中(前言、1.3 節、2.1 節、3.1 節、及第五章隔震系統之原型試 驗與性能保證試驗中)。

因隔震建築規範並非針對某一特定隔震系統而定,為適合所有隔 震系統,而於隔震系統之原型試驗與性能保證試驗中規定一系列的測 試步驟,設計所使用之勁度與阻尼依這些測試結果而定,不能滿足這 些測試步驟的隔震系統則為不適用之隔震系統。一般而言,可接受的 隔震系統須具備以下條件:1.a.於設計位移下能保持穩定、b.當位移增 加時,抵抗力也會增加、c.於反覆循環載重下消能能力不致降低、d. 具可量化的工程參數(如:力一位移性質,阻尼比等)。2.在垂直方向 上具有足夠的剛性來承受上部結構的重量。3.在強震作用下,水平方向 具有足夠的柔性以延長結構週期隔離地震動進入建築物,降低水平地 震力。4.具有消能裝置以控制建築物因週期延長所可能導致的位移增 加、5.須具足夠之水平勁度以抵抗風力。6.須具足夠的回復勁度(recenter stiffness),使隔震結構在經過地震後能夠回復到原來位置。7.若基於設 計需要,隔震系統尚可包含第二防制系統以提供在意外情形下之保護

6. 隔震器不應侷限於國內有能力製作者。

建築研究所民國 86 年之研究報告『建築物隔震消能系統設計規範、條文解說及示範例之研訂』(MOIS 860008)中並無限制隔震器製造商之資格,凡設計製造出之隔震器能通過原型試驗與性能保證試驗者皆可。

7. 請探討隔震設計後建築物行為與實際狀況的差異,必要時以非線性分析結果作比較。

欲探討隔震設計後建築物行為與實際狀況的差異需有實際已採用 隔震技術之建築物,建議內政部建築研究所於本計畫結束後考慮實作 之可行性,則可進一步瞭解隔震設計後建築物行為與實際狀況的差 異。本計畫所使用之示範例分析方法已包含非線性分析。

8. 隔震墊考慮更換的可行性。

建築研究所民國 86 年之研究報告『建築物隔震消能系統設計規 範 條文解說及示範例之研訂』(MOIS 860008) 第四章 4.2.8 節規定「隔 震系統中所有構材之檢測與更換作業之必要設施應於設計時詳加考慮」,即 應事先留置檢測與更換作業空間及通道。 9. 建議做有無隔震的造價比較以供推廣參考。

以目前來說,隔震結構的造價比傳統結構貴,但在耐震效益上卻 遠高出傳統結構

10. 建議規劃歷史建築物加隔震墊的示範例。

本報告完成後將提交管理歷史建築物相關單位以供修復補強之參 考

11. 宜考慮側向位移限制,以避免撞及鄰房。

建築研究所民國 86 年之研究報告『建築物隔震消能系統設計規範、條文解說及示範例之研訂』(MOIS 860008) 第二章 2.14.2 節及第 三章 3.10.2 節分別規定靜力與動力分析時建築物間之間隔,文中提及「為避免地震時引起之變形造成鄰棟建築物間的相互碰撞,建築物應 各自留設設計地震力作用下產生之位移 0.6($D_T + D_r \times 1.2\alpha_v$)倍。」

12. 隔震墊的耐酸鹼、溫度、濕度之能力宜予規定。

因建築研究所民國 86 年之研究報告『建築物隔震消能系統設計規範、條文解說及示範例之研訂』(MOIS 860008)並不規定使用何種隔 震器,故任何特定隔震器的耐酸鹼、溫度、濕度等能力可參考相關的 材料規範,如 CNS、ASTM 等。

13. 隔震墊損壞後之建築物行為宜加評估。

若照『建築物隔震消能系統設計規範』設計之隔震墊,且通過原型試驗與性能保證試驗者,在1.5倍設計地震下不應損壞。

 14. 建議於宜蘭技術學院試驗園區先行試用,待取得足夠資料後再推廣, 以更具說服力。

宜蘭技術學院試驗園區將於本年度結束後關閉。建議建研所盡速 推動實作案例並加以監測實際地震下行為,同時國家地震工程研究中 心亦持續進行相關之研究。 15.鉛心橡膠支承墊之力學性質,與橡膠及鉛心之尺寸有密切關係。例如特性強度 Qd 與鉛心之直徑有關,非彈性水平勁度 Kd 與純粹橡膠之尺寸、勁度(Kr) 及鉛心之面積有關,而 Kr 也與橡膠支承墊之高度有關。此外,鉛心橡膠支承墊之消能量(Ed)也與上述參數相關。另一才面,鉛心之直徑(dl)與橡膠支承墊之直徑(dr)亦須維持在適當之比例(3d_L ≤ d_r ≤ 6d_L),建議於設計準則中加以明榷規範。這些設計參數之間互有關聯,計算例所採用之數據來源在報告中並未說明。在有關 Qd 值變化之影響圖中(第 2-5 頁),不同 Qd 值所得曲線除了降伏強度不同外,降伏後勁度皆相同,似乎忽咯了橡膠支承墊尺寸之影響,請再研究。目前報告內容所提供有關鉛心橡膠支承力學特性之資料仍不夠完整,可能因時問不足來不及準備,建議於期末報告中補充相關資料,讓設計者能有一更明味之設計指導原則可以遵循。

Ans: 不同廠商生產之 LRB, 其力學特性不盡相同, 且在規範中已有原型試 驗與性能保證試驗以保證其功能滿足設計要求。

16.計算例中有關隔震結構基本周期所採用之計算公式 $T_e = 2\pi \sqrt{\frac{W}{gK_{eff}}}$ (第2-2頁)

僅在上部結構為剛體時成立。當結構具有柔性時,其實際之周期將比上式之 估算值高。在低估結構周期的情況下,同時也會低估隔震支承之位移(D),並 高估鉛心橡膠支承墊之消能能力,依此設計結果能否確保結構及橡膠支承之 安全性仍有待進一步研究加以澄清。建議將此效應於期末報告中列入考慮。

Ans: 靜力分析為方便起見係假設上部結構為剛體,但動力分析部份(反應譜 分析與歷時分析)已將上部結構柔性計入。

17.鉛心橡膠支承墊在地震中因產生側位移,致其有效承重面積減少,橡膠支承 墊之承載能力亦因而有所折減。建議支承墊有效承載力之計算方式在規範中 應予明訂,以確保橡膠支承墊之安全及功能的有效發揮。此外,容許之橡膠 支承位移(D)與橡膠支承墊之高度(H)有關:一般而言,設計上應使 D≤H 以 避免鉛,心橡膠支承墊產生翻。相關問題在報告計算中尚未檢核或說明,建 議於期末報告中補充。

Ans: 原規範『建築物隔震消能系統設計規範』第五章隔震系統之原型 試驗與性能保證試驗已涵蓋此項檢劾,如翻覆等問題。 18.在設計鉛心橡膠支承墊的過程中,為求簡便,固可以平均應力(或強度)作為設計之依據。唯在完成設計後,對於鉛心橡膠支承墊安全,性之確保,仍須針對承載力最大之支承進行檢核。任何個別的鉛心橡膠支承墊在非地震及地震之情況下,其所受載重,恆不得超過該支承之設計挫屈載重(buckling load)之半,以避兔支承產生挫屈玻壞。鉛心橡膠支承之設計挫屈載重與其文承斷面、鉛心斷面、單層橡膠厚度(形狀因子)、支承高度等尺寸及橡膠之剪力模數(shear modulus)有關,其計算方式在規範中亦應明訂,建議於期末報告中補尤。

Ans: 原規範『建築物隔震消能系統設計規範』第五章隔震系統之原型 試驗與性能保證試驗已涵蓋此項檢劾。

- 19.應用高阻尼橡膠支承墊之設計梳程與鉛心橡膠支承墊是否完全相同?若有差 異時,建議期末報告亦能針對同一範例建立高阻尼橡膠支承墊之設計流程。 Ans:此為本計劃內容之一,將詳載逾期末報告中。原規範並未限制任何支承 的使用,雙線性化的假設與日本規範意義上相同,請酌參之。
- 20.目前規範之條文似乎較偏重結構設計而輕忽隔震支承之設計。隔震支承與結構設計應整體考量,必須在確保隔震支承安全無虞的前提下,才能期待隔震 系統之功能能夠充分發揮。建議期末報告中有關隔震支承之設計及安全檢核 的部分再予補。

Ans: 原規範第五章隔震系統之原型試驗與性能保證試驗已涵蓋之。

21.目前發展已臻成熟的隔震系統有橡膠式及滑動式支承兩大類,鉛心橡膠支承 墊及高阻尼橡膠支承墊屬於橡膠式隔震系統,摩擦單擺支承(Friction pendulum bearing)則為滑動式系統,其隔震之原理不盡相同,設計考量自然 也有很大的差異。目前,全世界最大的一棟隔震建築為美國舊金山之美國上 訴法院(U.S. Court of Appeals)係採用摩擦單擺支承,總共用了256個隔震支 承,此項工程案並獲得1995年美國公共工程委員會頒發國家設計獎,顯示 這項隔震系統在防震功能及經濟性等方面皆具競爭優勢?國家研訂中之建 築物耐震設計規範條文宜將其納入其中。報告中提到「建研所MOIS 860008 研究報告之規定適用於所有之隔震支承系統.」並不正確,惟在目前有 限之人力、經費及時問內,要求其涵蓋所有的隔震系統亦不甚合理。建議有 關摩擦單擺支承的應用應另案加以研究,針對目前規範草案中無法適用的部 分再予補充修正,使相關設計規範與指導原則更為完整。

Ans: 隔震建築規範並未針對某一特定隔器而定,凡設計製造出之隔震器能通過原型試驗與性能保證試驗者皆可使用。

五、附件

(期初、期中簡報會議記錄及處理情形)

1. 建議增加探討老舊建築物隔震應用。

本計畫以新建結構為主要探討對象。歷史性老舊建築物隔震補強 需採個案處理。

2. 對於相關的維生線設計需求應加以說明。

維生線設計與一般結構設計相似,唯管線通過上部結構與其鄰近 物時須以具柔性管相連接,使結構在最大總位移範圍內能自由活動不 受束制。

3. 建議做一實例,以供業界參考。

本計畫目的即在邀請學術界及工程界有經驗之專家學者,就內政 部建築研究所民國 86 年之研究報告『建築物隔震消能系統設計規範、 條文解說及示範例之研訂』(MOIS 860008)進行建築物加鉛心橡膠支承 墊及高阻尼橡膠支承墊之設計實例試作及規範條文合理性之探討,除 可找出規範條文與實際執行之難易加以修正並建立合宜之建築物隔震 消能設計程序,使得該規範更完整可行外也提供業界一設計參考例。

4. 請考慮增加座落於各種不同地盤的建築物。

已考慮於計算例中。

5. 應增加隔震支承墊應用之限制說明,以免誤導工程界。

隔震支承墊應用之限制已載明於建築研究所民國86年之研究報告 『建築物隔震消能系統設計規範、條文解說及示範例之研訂』(MOIS 860008)中(前言、1.3 節、2.1 節、3.1 節、及第五章隔震系統之原型試 驗與性能保證試驗中)。

因隔震建築規範並非針對某一特定隔震系統而定,為適合所有隔 震系統,而於隔震系統之原型試驗與性能保證試驗中規定一系列的測 試步驟,設計所使用之勁度與阻尼依這些測試結果而定,不能滿足這 些測試步驟的隔震系統則為不適用之隔震系統。一般而言,可接受的 隔震系統須具備以下條件:1.a.於設計位移下能保持穩定、b.當位移增 加時,抵抗力也會增加、c.於反覆循環載重下消能能力不致降低、d. 具可量化的工程參數(如:力一位移性質,阻尼比等)。2.在垂直方向 上具有足夠的剛性來承受上部結構的重量。3.在強震作用下,水平方向 具有足夠的柔性以延長結構週期隔離地震動進入建築物,降低水平地 震力。4.具有消能裝置以控制建築物因週期延長所可能導致的位移增 加、5.須具足夠之水平勁度以抵抗風力。6.須具足夠的回復勁度(recenter stiffness),使隔震結構在經過地震後能夠回復到原來位置。7.若基於設 計需要,隔震系統尚可包含第二防制系統以提供在意外情形下之保護

6. 隔震器不應侷限於國內有能力製作者。

建築研究所民國 86 年之研究報告『建築物隔震消能系統設計規範、條文解說及示範例之研訂』(MOIS 860008)中並無限制隔震器製造商之資格,凡設計製造出之隔震器能通過原型試驗與性能保證試驗者皆可。

7. 請探討隔震設計後建築物行為與實際狀況的差異,必要時以非線性分析結果作比較。

欲探討隔震設計後建築物行為與實際狀況的差異需有實際已採用 隔震技術之建築物,建議內政部建築研究所於本計畫結束後考慮實作 之可行性,則可進一步瞭解隔震設計後建築物行為與實際狀況的差 異。本計畫所使用之示範例分析方法已包含非線性分析。

8. 隔震墊考慮更換的可行性。

建築研究所民國 86 年之研究報告『建築物隔震消能系統設計規 範 條文解說及示範例之研訂』(MOIS 860008) 第四章 4.2.8 節規定「隔 震系統中所有構材之檢測與更換作業之必要設施應於設計時詳加考慮」,即 應事先留置檢測與更換作業空間及通道。 9. 建議做有無隔震的造價比較以供推廣參考。

以目前來說,隔震結構的造價比傳統結構貴,但在耐震效益上卻 遠高出傳統結構

10. 建議規劃歷史建築物加隔震墊的示範例。

本報告完成後將提交管理歷史建築物相關單位以供修復補強之參 考

11. 宜考慮側向位移限制,以避免撞及鄰房。

建築研究所民國 86 年之研究報告『建築物隔震消能系統設計規範、條文解說及示範例之研訂』(MOIS 860008) 第二章 2.14.2 節及第 三章 3.10.2 節分別規定靜力與動力分析時建築物間之間隔,文中提及「為避免地震時引起之變形造成鄰棟建築物間的相互碰撞,建築物應 各自留設設計地震力作用下產生之位移 0.6($D_T + D_r \times 1.2\alpha_v$)倍。」

12. 隔震墊的耐酸鹼、溫度、濕度之能力宜予規定。

因建築研究所民國 86 年之研究報告『建築物隔震消能系統設計規範、條文解說及示範例之研訂』(MOIS 860008)並不規定使用何種隔 震器,故任何特定隔震器的耐酸鹼、溫度、濕度等能力可參考相關的 材料規範,如 CNS、ASTM 等。

13. 隔震墊損壞後之建築物行為宜加評估。

若照『建築物隔震消能系統設計規範』設計之隔震墊,且通過原型試驗與性能保證試驗者,在1.5倍設計地震下不應損壞。

 14. 建議於宜蘭技術學院試驗園區先行試用,待取得足夠資料後再推廣, 以更具說服力。

宜蘭技術學院試驗園區將於本年度結束後關閉。建議建研所盡速 推動實作案例並加以監測實際地震下行為,同時國家地震工程研究中 心亦持續進行相關之研究。 15.鉛心橡膠支承墊之力學性質,與橡膠及鉛心之尺寸有密切關係。例如特性強度 Qd 與鉛心之直徑有關,非彈性水平勁度 Kd 與純粹橡膠之尺寸、勁度(Kr) 及鉛心之面積有關,而 Kr 也與橡膠支承墊之高度有關。此外,鉛心橡膠支承墊之消能量(Ed)也與上述參數相關。另一才面,鉛心之直徑(dl)與橡膠支承墊之直徑(dr)亦須維持在適當之比例(3d_L ≤ d_r ≤ 6d_L),建議於設計準則中加以明榷規範。這些設計參數之間互有關聯,計算例所採用之數據來源在報告中並未說明。在有關 Qd 值變化之影響圖中(第 2-5 頁),不同 Qd 值所得曲線除了降伏強度不同外,降伏後勁度皆相同,似乎忽咯了橡膠支承墊尺寸之影響,請再研究。目前報告內容所提供有關鉛心橡膠支承力學特性之資料仍不夠完整,可能因時問不足來不及準備,建議於期末報告中補充相關資料,讓設計者能有一更明味之設計指導原則可以遵循。

Ans: 不同廠商生產之 LRB, 其力學特性不盡相同, 且在規範中已有原型試 驗與性能保證試驗以保證其功能滿足設計要求。

16.計算例中有關隔震結構基本周期所採用之計算公式 $T_e = 2\pi \sqrt{\frac{W}{gK_{eff}}}$ (第2-2頁)

僅在上部結構為剛體時成立。當結構具有柔性時,其實際之周期將比上式之 估算值高。在低估結構周期的情況下,同時也會低估隔震支承之位移(D),並 高估鉛心橡膠支承墊之消能能力,依此設計結果能否確保結構及橡膠支承之 安全性仍有待進一步研究加以澄清。建議將此效應於期末報告中列入考慮。

Ans: 靜力分析為方便起見係假設上部結構為剛體,但動力分析部份(反應譜 分析與歷時分析)已將上部結構柔性計入。

17.鉛心橡膠支承墊在地震中因產生側位移,致其有效承重面積減少,橡膠支承 墊之承載能力亦因而有所折減。建議支承墊有效承載力之計算方式在規範中 應予明訂,以確保橡膠支承墊之安全及功能的有效發揮。此外,容許之橡膠 支承位移(D)與橡膠支承墊之高度(H)有關:一般而言,設計上應使 D≤H 以 避免鉛,心橡膠支承墊產生翻。相關問題在報告計算中尚未檢核或說明,建 議於期末報告中補充。

Ans: 原規範『建築物隔震消能系統設計規範』第五章隔震系統之原型 試驗與性能保證試驗已涵蓋此項檢劾,如翻覆等問題。 18.在設計鉛心橡膠支承墊的過程中,為求簡便,固可以平均應力(或強度)作為設計之依據。唯在完成設計後,對於鉛心橡膠支承墊安全,性之確保,仍須針對承載力最大之支承進行檢核。任何個別的鉛心橡膠支承墊在非地震及地震之情況下,其所受載重,恆不得超過該支承之設計挫屈載重(buckling load)之半,以避兔支承產生挫屈玻壞。鉛心橡膠支承之設計挫屈載重與其文承斷面、鉛心斷面、單層橡膠厚度(形狀因子)、支承高度等尺寸及橡膠之剪力模數(shear modulus)有關,其計算方式在規範中亦應明訂,建議於期末報告中補尤。

Ans: 原規範『建築物隔震消能系統設計規範』第五章隔震系統之原型 試驗與性能保證試驗已涵蓋此項檢劾。

- 19.應用高阻尼橡膠支承墊之設計梳程與鉛心橡膠支承墊是否完全相同?若有差 異時,建議期末報告亦能針對同一範例建立高阻尼橡膠支承墊之設計流程。 Ans:此為本計劃內容之一,將詳載逾期末報告中。原規範並未限制任何支承 的使用,雙線性化的假設與日本規範意義上相同,請酌參之。
- 20.目前規範之條文似乎較偏重結構設計而輕忽隔震支承之設計。隔震支承與結構設計應整體考量,必須在確保隔震支承安全無虞的前提下,才能期待隔震 系統之功能能夠充分發揮。建議期末報告中有關隔震支承之設計及安全檢核 的部分再予補。

Ans: 原規範第五章隔震系統之原型試驗與性能保證試驗已涵蓋之。

21.目前發展已臻成熟的隔震系統有橡膠式及滑動式支承兩大類,鉛心橡膠支承 墊及高阻尼橡膠支承墊屬於橡膠式隔震系統,摩擦單擺支承(Friction pendulum bearing)則為滑動式系統,其隔震之原理不盡相同,設計考量自然 也有很大的差異。目前,全世界最大的一棟隔震建築為美國舊金山之美國上 訴法院(U.S. Court of Appeals)係採用摩擦單擺支承,總共用了256個隔震支 承,此項工程案並獲得1995年美國公共工程委員會頒發國家設計獎,顯示 這項隔震系統在防震功能及經濟性等方面皆具競爭優勢?國家研訂中之建 築物耐震設計規範條文宜將其納入其中。報告中提到「建研所MOIS 860008 研究報告之規定適用於所有之隔震支承系統.」並不正確,惟在目前有 限之人力、經費及時問內,要求其涵蓋所有的隔震系統亦不甚合理。建議有 關摩擦單擺支承的應用應另案加以研究,針對目前規範草案中無法適用的部 分再予補充修正,使相關設計規範與指導原則更為完整。

Ans: 隔震建築規範並未針對某一特定隔器而定,凡設計製造出之隔震器能通過原型試驗與性能保證試驗者皆可使用。

主講人主要著作

A. 期刊論文

- 1. Chang, K.C., Lin, Y.Y. & Lai, M.L., "Seismic Analysis and Design of Structures with Visocelastic Dampers," in press, ISET Journal of Earthquake Technology India.
- 2. 張國鎮、許昌軍、賴明來,(1998) "懸吊式屋頂加裝黏彈性阻尼器之實例" 結構工程第十三卷第四期。
- 3. Chang, K.C., Tsai, M.H. and Chang, Y.H. (1998), "Temperature Rise Effect of Viscoelastically Damped Structures Under Strong Earthquake Ground Motions," The Chinese Journal of Mechanics, Vol.14, No.3 (NSC 85-2621-P-002-038).
- 4. Chang, K.C., Tsai, M.H., (1998) "Recent Research and Application of Earthquake Protection System in Taiwan, "Journal of Earthquake Engineering Society of Korea, Vol.2, No.3.
- 5. 張國鎮、陳振川、王倫、林詠彬, (1998) "光纖光柵感測器於結構應變量側之 研究,"中國土木水利工程學刊,第十卷第三期。(NSC 85-2221-E-002-063)
- Kim, M.C., Chang, K.C., Lee, G.C., (1997) "Elastic and Inelastic Bucklay of Tapered Steel Member," Journal of Engineering Mechanics, ASCE.123(7), ...pp.727-737.
- 7. 張國鎮, 蔡孟豪, 張耀輝, (1997) "加 VE 阻尼器及橡皮隔震支承墊橋梁之耐震 行為," in press, 中國土木水利工程學刊.(NSC 85-2621-P-002-038)
- Hwang, J.S., Chang, K.C. and M.H. Tsai, (1997) "Composite Damping Ratio of Seismically Isolated Bridges," Engineering Structures, Vol.19, No.1, pp.55-62. (NSC-84-2621-P-002-016-B)
- 9. 張國鎮、林裕淵 (1997), "加黏彈性阻尼器結構之試驗與分析," 結構工程第十二卷第一期, pp.51-64。(NSC-83-0410-P-002-002B)
- 10.張國鎮、林裕淵 (1997), "加黏彈性阻尼器結構之耐震設計," 結構工程第十二 卷第一期, pp.65-78。(NSC-83-0410-P-002-002B)
- 11.張國鎮, 許昌軍, (1996) "加黏彈性阻尼器結構之分析與設計," 中國土木水利工 程學刊, Vol.8, No.1, (NSC-84-2621-P-007-B)
- 12.Chiu, H.S., Chern, J.C. and Chang, K.C., (1996) "Long-term Deflection Control in A Cantilevel Prestressed Concrete Bridge," Part I-Control Method and Algorithm, 122 (6), Journal of Engineerg Mechanics, ASCE, pp.489-494, (NSC-84-2211-E-002-032)
- Chiu, H.S., Chern, J.C. and Chang, K.C., (1996) "Long-term Deflection Control in A Cantilevel Prestressed Concrete Bridge," Part II-Experimental Verification, 122(6), Journal of Engineering Mechanics, ASCE, pp.495-501, (NSC-84-2211-E-002-032)
- 14. Chang, K.C. Chen, S.S. and Lai, M.L., (1996) "Inelastic Behavior of Steel Frames with Added Viscoelastic Dampers," Journal of Structural Engineering, 121(10), ASCE, pp.1178-1186, (NSC-82-0410-E-002-419)
- 15.Lai, M.L., Chang, K.C., et al (1995) "Dynamic Behavior of A Full-Scale Structure

with Added Viscoelastic Dampers," Journal of Structural Engineering, 121(10), pp.1443-1447, (NSC-83-0414-P-002-006-B)

- 16.Chang, K.C. and Oh, S.T., (1995) "Seismic Behavior of A Viscoelastically Damped Frame with Added Viscoelastic Dampers," Journal of Structural Engineering, ASCE 121(10), pp.1418-1426, (NSC-82-0410-E-002-419)
- 17. Yao, G.C. and Chang, K.C., (1995) "A Study of Frame Diagnosis from Earthquake Records on A Steel Gable Frame," Journal of the Chinese Institute of Engineering, Vol.18, No.1, pp.115-124, (NSC-82-0414-P-002-031-BY)
- 18. Yang, C.F. Lee, E.T. Chang, K.C. and Lee, G.C., (1995) "Inelastic Behavior of Steel Members under Nonproportional Loading," Journal of Engineering Mechanics, ASCE pp.131-141.
- 19.Shen, K.L. Soong, T.T. Chang, K.C. and Lai, M.L., (1995) "Seismic Behavior of A 1/3 Scale RC Frame with Added Viscoelastic Dampers," Engineering Structures, Vol.17(5), pp.372-380, (NSC-82-0410-E-002-419)
- 20. Chang, K.C. Kim, M.C. and Lee, G.C., (1995) "Inelastic Buckling of Tapered Steel Members with Accumulated Strain," International Journal of Structural Engineering and Mechanics, Vol.3, No.6, pp.611-622, Nov. 1995.
- 21.Elkordy, M. Chang, K.C. and Lee, G.C., (1994) "A Structural Damage Neural Network Monitoring System," International Journal of Microcomputers in Civil Engineering, Vol.9, pp.83-96, (NSC-82-0414-P-002-031-BY)
- 22.黃震興, 張國鎮, 葉銘煌, 陳建州 (1994) "國內首座隔震橋梁設計之探討," 結構工程, 第九卷, 第二期, pp.15-30.
- 23.Elkordy, M. Chang, K.C. and Lee, G.C., (1994) "Neural Network Based Classifiers in Vibrational Signature Analysis," Journal of Engineering Mechanics, ASCE, 120(2), pp.250-265. (NSC-82-0414-P-002-031-BY)
- 24.Chang, K.C. Soong, T.T. and Lai, M.L., (1993) "Viscoelastic Dampers as Energy Dissipation Devices for Structural Application," Earthquake Spectrum, Vol. 9, No. 3, pp.371-387, (NSC-81-0410-E-002-540)
- 25.Chang, K.C., Elkordy, M. And Lee, G.C., (1993) "Application of Neural Networks in Vibrational Signature Analysis Using Analytically Trained Samples," Journal of Computing in Civil Engineering, ASCE, Vol.7, No.2, pp.130-145, (NSC-82-0414-P-002-031-BY)
- 26.Chang, K.C. Soong, T.T. and Lai, M.L., (1993) "Develpment of A Design Procedure for Structure with Added Viscoelastic Dampers," Applied Technology Council, ATC-17-1, Vol.2, pp.473-484, (NSC-81-0410-E-002-540)

B. 研討會論文

- Chang, K.C., Tsai, M.H., Lai, M.L., "Effect of Tamperature Rise on Seismic Behavior of Structure with Viscoelastic Dampers," Proceedings of the 6th US Conference on Earthquake Engineering, Seattle, USA, May 1998.
- Chang, K.C., Lin, Y.Y. and Lai, M.L., "Dynamic Response of A Full Scale Steel Structure with Viscoelastic Damper," Proceedings of the 2nd World

Conference on Structural Control, Kyoto, Japan, June 1998.

- 3. Chang, K.C. and Tsai, M.H., "Recent Research and Application of Earthquake Protection System in Taiwan," invited lecture, The 1st international symposium Mitigation Technology for Moderate Seismictity, "Seoul, Korea, August, 1998.
- 4. Chang, K.C., Lin, Y.Y. and Tsai, M.H., "Research and Application of Viscoelastic Damping System in Taiwan," invited lecture, APEC Workshop on Seismic Design and Retrofit of Structures, Taipei, Taiwan, August 1998.
- Chang, K.C., J.E. Cermak, S. Kawakita, M.L. Lai, "Viscoelastic Damping System to Mitigate Wind-Induced Dynamic Response of A Long-Span Roof," Proceedings of the Structural Engineering World Congress, Sanfrancisuo, USA, July 18-23, 1998.
- Chang, K.C. and Lin, Y.Y., "Earthquake Resistant Design of Structures with Added Viscoelastic Dampers," Proceedings of the EASEC-6, Taipei, January 1998.
- 7. Chang, K.C. and Lin, Y.Y., "Earthquake Resistant Design of Structures with Added Viscoelastic Dampers," Proceedings of the EASEC-6, Taipei, January 1998.
- Tsai, M.H. and Chang, K.C., "Effect of Damping on High Pier Seismically Isolated Bridges," Proceedings of the 7th Kaist-NTU-Kyoto Sminar on Civil Engineering, Kyoto, Japan, Dec. 1997.
- Chang, K.C., Chern, J.C., Tan. R., Mo. Y.L., (1977) "Static and Dynamic Study of a Prestressed Concrete Highway Bridge," 2nd National Seismic Conference on Bridges and Highways, Sacramanto, CA, July 8-11.
- 10.張國鎮、郭拱源,(1997) "橋梁型式與常見之損壞,"橋梁檢測及評估研討 會,台北市,七月廿五、廿六日。
- 11.張國鎮, 蔡孟豪, 張耀輝, (1996) "加粘彈性阻尼器及橡皮支承墊橋梁耐震研 究," 第三屆結構工程研討會, 中華民國結構工程學會, 9月1日, 墾丁公園, (NSC-85-2621-P-002-038)
- 12.張國鎮, 陳振川, 王倫, 林詠彬, (1996) "光纖感測器應用於結構自動監測系統 之研究," 第三屆結構工程研討會, 中華民國結構工程學會, 9月1日, 墾丁公園, (NSC-85-2221-E-002-063)
- 13.Lai, M.L., Lunsford, D.A., Kasai,K. and Chang, K.C. (1996) "Viscoelastic Damper with Linear or Nonlinear Material," Proceedings of 11WECC, June, (NSC-85-2621-P-002-038)
- 14.Chang, K.C., Chang, Y.H. and Tsai, M.H. (1996) "Analytical Models of Viscoelastic Damper for Structural Applications," Proceedings of the ROC-Kyoto-Kaist Tri-Seminar on Civil Engineering, Sept. Korea, (NSC-85-2621-P-002-038)
- 15. Chang, K.C., Chen, Y.Z. and Lai, M.L., (1996) "Seismic Response of A Full-Scale Structure with Added Viscoelastic Dampers," Proceeding of 2nd World Workshop on Structural Control, Dec., Hong Kong, (NSC-86-2621-P-002-036)
- 16. 張國鎮, 黃震興, (1996) "美國北嶺地震橋梁震害與復舊補強," 由阪神地震探討

國內橋梁耐震工程之發展方向研討會,85年9月,台北.

- 17.黃震興, 張國鎮, (1996) "橋梁使用隔震消能系統國內發展方向探討,"由阪神地 震探討國內橋梁耐震工程之發展方向研討會, 財團法人台灣營建研究中心, 85 年 9 月, 台北.
- 18.張國鎮,陳振川,田堯彰,莫詒隆,(1996)"碧潭橋靜力及動力特性之監測及分 析,"北二高碧潭橋工程技術研討會,交通部國道新建工程局,8月30日,台北.
- 19.Chang, K.C. and Lin, Y.Y. (1996) "Earthquake Resistant Design of Structures with Added Viscoelastic Dampers," Proceedings of 11WECC, June 1996. (NSC-84-2621-P-002-007-B)
- 20. Chang, K.C. and Lin, Y.Y. and Hsu, C.J., (1995) "Inelastic Behavior of Steel Frames with Added Viscoelastic Dampers," Proceedings of the EASEC-5, Gold-Coast, Australia, July 1995, Vol.2, (NSC-82-0410-E-002-419)
- 21.張國鎮,林裕淵,許昌軍,(1995)"加黏彈性阻尼器結構之反應譜分析,"84年土 木水利學會電子計算機應用研討會,(NSC-83-0414-P-002-006-B)
- 22.蔡孟豪, 張國鎮, 黃震興, 葉銘煌, (1995) "橋墩勁度與隔震橋梁關係之探討," 84 年土木水利學會電子計算機應用研討會, (NSC-84-2621-P-002-016-B)
- 23.Chang, K.C. and Tsai, M.H. (1995) "Seismic Behavior of Structures with New Viscoelastic Dampers," Proceedings of the 5th KU-KAIST-NTU Tri-Lateral Seminar/Workshop on Civil Engineer, Taipei.
- 24.張國鎮, 許昌軍, (1994) "加黏彈性阻尼器結構抗震及抗風之應用," 83 近代工程 技術研討會, 台北, (NSC-82-0410-E-002-419)
- 25.張國鎮,陳金生,許昌軍,周芳泙,(1994)"加黏彈性阻尼器極限狀態之研究," 第二屆中華民國結構工程研討會,日月潭,(NSC-82-0410-E-002-419)
- 26.Chang, K.C., (1994) "Application of Viscoelastic Dampers to Wind Vibration Control of a Cable Suspension Structure," Proceedings of the 3rd NTU-Kyoto-Kaist Triseminar on Civil Engineering, Kyoto, Japan.
- 27.Chang, K.C. and Hsu, C.J., (1994) "Seismic Resistant Analysis and Design of Structure with Added Viscoelastic Dampers,"Proceedings of the 10th European Conference on Earthquake Engineering, Vienna, Austria, (NSC-83-0414-P-002-002-B)
- 28.Chang, K.C. Chen, S.J. and Hsu, C.J., (1994) "Inelastic Behavior of a 2/5 Scale Steel Frame with Added Viscoelastic Dampers,"Proceedings of the 1st International Conference on Structure Control, Los Angles, (NSC-82-0410-E-002-419)
- 29.Chang, K.C. Shen, K, Soong, T.T. and Lai, M.T., (1994) "Seismic Retrofit of a Reinforced Concrete Frame with Added Viscoelastic Dampers,"Proceedings of the 5th U.S. National Conference on Earthquake Engineering, (NSC-82-0410-E-002-419)
- 30.Lai, M.L. Chang, K.C. and Soong, T.T., (1994) "Experimental and Analytical Study of a Full-Scale Viscoelastically Dampers Frame," Proceedings of the 5th U.S. National Conference on Earthquake Engineering, (NSC-83-0414-P-002-002-B)
- 31. Chang, K.C. and Hsu, C.J., (1994) "Seismic Behavior and Design of Steel

Structures with added Viscoelastic Dampers," 1st ROC-New Zeland Workshop on Earthquake Engineering, Taipei, (NSC-83-0414-P-002-006-B)

- 32.張國鎮, 陳振川, 田堯彰, 莫詒隆, (1994) "碧潭橋靜力及動力特性之監測及分 析," 第二屆國道建設技術研討會, 台北.
- 33.Chang, K.C. Chern, J.C. and Laiw, J.C., (1994) "Development of a Static and Dynamic Monitoring System for Bi-Tan Bridge,"國際公共工程研討會,台北.
- 34.張國鎮, 顏嘉成,(1993)"加黏彈性阻尼器結構之分析與設計," 第十四屆中日工 程技術研討會, 台北,(NSC-81-0410-E-002-540)
- 35.張國鎮,廖健勝,(1993) "黏彈性阻尼器力學行為研究," 82 年電子計算機於土木 水利工程之應用研討會,台南成功大學,(NSC-81-0410-E-002-540)
- 36.Chang, K.C., (1993) "Seismic Performance snd Design of Steel Structures with Added Viscoelastic Dampers," Proceedings of 4th East Asia-Pacific Conference on Structural Engineering and Construction, (NSC-81-0410-E-002-540)
- 37.Chang, K.C. Shen, K, and Lee, G.C., (1993) "Model Analysis Technique in Local Damage Diagnosis," Proceedings of the Structures Congress, ASCE, 1993, (NSC-82-0414-P-002-031-BY)
- 38.Chang, K.C. and Elnature, H., (1993) "Parametric Study of Structures with Added Viscoelastic Dampers," Proceedings of the 1993 Structures Congress, (NSC-81-0410-E-002-540)

C. 專書及專書論文

- 1. 張國鎮、黃震興、陳昭明、郭士賢(1998),"橋梁結構之耐震評估,"土木技 術第一卷第八期。
- 黃震興、張國鎮、郭士賢、謝有明(1998), "圓形 RC 橋柱之韌性分析與鋼板 包覆補強設計"土木技術第第一卷第八期。
- 3. 張國鎮,陳振川,田堯彰,莫詒隆,(1998)"碧潭橋靜力及動力特性之監測及分 析(五),"交通部台灣區國道新建工程局.
- 夏中和、張國鎮、陳振川、王倫,"光纖分佈式橋梁及高架道路結構監測系統 監測技術開發計畫,"研究報告,交通部,1998年七月。
- 5. 張國鎮、黃震興、蔡益超、高健章、蔡克銓 (1997),"建築物隔震消能系統設計規範條文、解說及示範例之研訂,"內政部建築研究所,MOIS 860008。
- 張國鎮、陳永儒、林裕淵 (1997), "鋼結構裝置隔震消能元件地震反應與實測 分析 - 子計劃 - 加黏彈性阻尼器足尺結構抗震之研究, " 國科會成果報告。 (NSC 86-2621-P-002-032)
- 7. 張國鎮、林詠彬 (1997), "光纖感測器應用於混凝土橋梁自動監測系統之研究," 國科會成果報告。(NSC 85-2221-E-002-063)
- 8. 張國鎮, 陳振川, 田堯彰, 莫詒隆, (1996) "碧潭橋靜力及動力特性之監測及分

析(四)," 交通部台灣區國道新建工程局.

- 9. 張國鎮, 黃震興, 蔡孟豪, (1996) "混凝土橋梁隔震系統及耐震行為研究," 中華 民國結構工程學會, CSSE 83-08.
- 10.張國鎮, 蔡孟豪, 張耀輝, (1996) "加橡皮隔震元及黏彈性阻尼器橋梁之耐震行 為研究(二)," 國科會成果報告, (NSC-85-2621-P-002-038)
- 11.Chang,K.C., Lin,Y.Y. and Hsu,C.J., (1996) "Earthquake Resistant Design of Structure with Added Viscoelastic Dampers," NCREE-96-001, (NSC-84-2621-P-002-007-B)
- 12.張國鎮 蔡孟豪, (1996) "加黏彈性阻尼器橋梁之試驗與分析," 國科會成果報告, (NSC-84-2621-P-002-007-B)
- 13.張國鎮, (1995) "Earthquake Resistant Analysis and Design of Structures with Viscoelastic Dampers," 國科會成果報告, (NSC-83-0414-P-002-006-B)
- 14.張國鎮, 陳振川, 田堯彰, 莫詒隆, (1995) "碧潭橋靜力及動力特性之監測及分 析(三)," 交通部台灣區國道新建工程局.
- 15.張國鎮,林裕淵,許昌軍,(1995) "加黏彈性阻尼器結構之試驗與分析," CEER R84-07,台大工學院地震工程研究中心.(NSC-83-0414-P-002-002-B)
- 16.張國鎮,林裕淵,許昌軍,(1995) "加黏彈性阻尼器結構之耐震設計," CEER R84-06,台大工學院地震工程研究中心,(NSC-84-2621-P-002-007-B)
- 17.Chang, K.C., Lin,Y.Y. and Hsu,C.J., (1996) "Seismic Resistant Design of Structure with Added Viscoelastic Dampers, "國科會成果報告。 (NSC-84-2621-P-002-007-B)
- 18.張國鎮, (1995) "加橡皮隔震元及黏彈性阻尼器橋梁之抗震行為研究," 國科會 成果報告, (NSC-85-2621-P-002-038)
- 19.張國鎮, 陳振川, 田堯彰, 莫詒隆, (1994) "碧潭橋靜力及動力特性之監測及分 析(二)," 交通部台灣區國道新建工程局.
- 20.張國鎮, (1994) "加黏彈性阻尼器極限狀態之研究," 國科會成果報告, (NSC-82-0414-E-002-419)
- 21.張國鎮, (1994) "鋼橋結構動力監測系統之研究(一),"國科會成果報告, (NSC-82-0414-P-002-031-BY)
- 22.盛力航, 黃震興, 張國鎮, (1994) "1994 年加州北嶺地震摘要報告," 土木水利第 二十卷第四期.
- 23.張國鎮, 陳振川, 莫詒隆, 洪宏基 (1993) "碧潭橋靜力及動力特性之監測及分 析(一)," 交通部台灣區國道新建工程局.
- 24. 張國鎮, (1993) "黏彈性阻尼器在抗震結構上之應用-加黏彈性阻尼器結構之分 析及設計,"國科會成果報告, (NSC-81-0410-E-002-540)
- 25.張國鎮, (1993) "黏彈性阻尼器在抗震結構上之應用-黏彈性阻尼器之力學行為 研究," 國科會成果報告, (NSC-81-0410-E-002-540)
- 26. Chang, K.C., Soong, T.T., Oh, S.T. and Lai, M.L., (1993)"Seismic Behavior and

Design Guidelines for Steel Structures with Added Viscoelastic Dampers,"NCEER12-93-0009, (NSC-81-0410-E-002-540)