中高樓層建築軟弱層及扭轉不規則效應 評估研究

內政部建築研究所委託研究報告

中華民國 106 年 12 月

(本報告內容及建議,純屬研究小組意見,不代表本機關意見)

中高樓層建築軟弱層及扭轉不規則效應 評估研究

 研究主持人: 鍾立來 協同主持人: 翁元滔 研究員: 蕭輔沛 研究助理: 周德光、翁樸文、李昭賢、沈文成、黃立宗、林智F 研究期程: 中華民國 106 年 1 月至 106 年 12 月 	受委託者	:	財團法人國家實驗研究院國家地震工程研究中心
協同主持人 : 翁元滔 研 究 員 : 蕭輔沛 研 究 助 理 : 周德光、翁樸文、李昭賢、沈文成、黃立宗、林智 研 究 期 程 : 中華民國 106 年 1 月 至 106 年 12 月	研究主持人	:	鍾立來
 研究員: 蕭輔沛 研究助理: 周德光、翁樸文、李昭賢、沈文成、黃立宗、林智同 研究期程: 中華民國 106 年 1 月至 106 年 12 月 	協同主持人	:	翁元滔
研究助理 : 周德光、翁樸文、李昭賢、沈文成、黃立宗、林智 研究期程 : 中華民國 106 年 1 月至 106 年 12 月	研究員	:	蕭輔沛
研究期程 : 中華民國 106 年 1 月至 106 年 12 月	研究助理	:	周德光、翁樸文、李昭賢、沈文成、黃立宗、林智隆
	研究期程	:	中華民國 106 年 1 月至 106 年 12 月

研究經費: 新臺幣 112.3 萬元

內政部建築研究所委託研究報告

中華民國 106 年 12 月

(本報告內容及建議,純屬研究小組意見,不代表本機關意見)

表次・・・・	• • • • •	• • •	• • • • •	•••••	V
圖次・・・・	• • • • •	• • •	• • • • •	•••••XII	[]
摘要・・・・	• • • • •	• • •	• • • • •	•••••XX	Ι
ABSTRACT	• • • • •	• • • •	• • • • •	•••••XXV	V
第一章 緒論		• • •	••••	•••••	1
第一節	研究緣起身	専背景・	• • • • •	•••••	1
第二節 丙	开究內容·	• • • •	• • • • •	• • • • • • • •	1
第三節 丙	开究方法與	流程・・	• • • • •	•••••	2
第四節 石	研究進度•	• • •	• • • • •	• • • • • • • • •	4
第二章 資料	·蒐集與文鷛	犬回顧・	• • • • •	•••••	5
第一節 「	中高樓層震	害調查約	吉果・・・	•••••	5
第二節 即	死有中高樓	層建築物	之結構震損	機制・・・・・	5
第三節 买	建築結構特	性篩檢指	貢標介紹・・	•••••1	1
第四節 相	_{僉核程} 序・	• • • •	• • • • •	•••••2	6
第五節 玛	見有結構耐	震初步評	F估方法介紹	g••••3	0
第三章 建築	結構特性節	。 檢指標》	應用及初評爭	案例研討・・・・4	7
第一節 1	1 層住商混	合大樓第	案例•••	4	7

第二節	7 層住商沿	尼合建築	案例·	• • •	• • •	• •	••70
第三節	10 層辦公	室廠房	案例 ·	• • •	•••	••	••93
第四節	12 層住商浴	見合大樓	案例·	•••	• • •	••	•• 126
第五節	13 層住宅	大樓案	例••	• • •	•••	• • •	• 150
第六節	15 層集合	住宅案	例・・	• • •	•••	• •	• 178
第四章 結	論與建議・	• • •	• • •	• • • •	• • •	•••	• • 207
第一節	結論・・・	• • •	• • •	• • •	• • •	• •	• • 207
第二節	建議・・・	• • •	• • •	• • •	• • •	• •	• • 208
第三節	後續研究調	題規劃	建議・	• • •	• • •	• •	• • 209
參考書目 ·	• • • • •	• • • •	•••		• • •	•••	• 213
附錄一 第	一次工作會	議意見	與回覆	• • • •	• • •	•••	• • 217
附錄二 期	末審查會議	意見與「	回覆・	• • • •	• • •	•••	• 219
附錄 A 建	築樓層側向	勁度計:	算方法	• • •	• • •	• •	• • 225

表次

表 2-1	美濃地震中高樓建築物災損統計一覽表6
表 2-2	臺灣、美國及歐盟有關立面不規則性判定原則之比較·21
表 2-3	臺灣、美國及歐盟有關平面不規則性判定原則之比較·21
表 2-4	建築物樓地板單位靜載重建議值
表 2-5	耐震能力初步評估表35
表 2-6	平面對稱性折減修正因子如
表 2-7	立面對稱性折減修正因子 qa •••••••••••••••••••••••••••••36
表 2-8	R_{col} 、 R_{sw} 、 R_{bw} 之建議表
表 2-9	$C_{vcj} imes C_{Rcj} imes C_{sj} imes C_{vbj}$ 與 C_{Rbj} 之建議表 ····································
表 3-1	建築物基本資料48
表 3-2	結構分析樓層重49
表 3-3	結構週期及質量貢獻比49
表 3-4	X 向規範側向力計算表
表 3-5	Y 向規範側向力計算表
表 3-6	混凝土取值表
表 3-7	X 向穩定性因子計算表53
表 3-8	Y 向穩定性因子計算表54

表 3-9	X 向剛重比計算表	
表 3-10) Y 向剛重比計算表 ······	55
表 3-11	建築物相關資料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
表 3-12	結構物主要尺寸	57
表 3-14	11 層樓建築結構 Y 向 $\frac{V_{pi}}{V_{0i}}$ ······	
表 3-15	5 11 層樓建築結構 X 向 $\frac{M_{nc}}{M_{nb}}$ (A 柱線)······	
表 3-16	5 11 層樓建築結構 X 向立面 $\frac{M_{nc}}{M_{nb}}$ (C 柱線)······	
表 3-17	I 11 層樓建築結構 Y 向立面 $rac{M_{nc}}{M_{nb}}$ (Z 柱線)	60
表 3-18	建築物基本資料	71
表 3-19	・結構分析樓層重表	72
表 3-20) 結構週期及質量貢獻比表	72
表 3-21	X 向規範側向力計算表 ······	75
表 3-22	Y 向規範側向力計算表	75
表 3-23	X 向穩定性因子計算表 ······	76
表 3-24	Y 向穩定性因子計算表 ······	76
表 3-25	X 向剛重比計算表 ······	77
表 3-27	′X 向側向力+5%意外扭矩 Ax 計算表	····78

表 3-29	Y 向側向力+5%意外扭矩 Ax 計算表
表 3-30	Y 向側向力-5%意外扭矩 Ax計算表
表 3-31	建築物相關資料80
表 3-34	7 層樓建築結構 X 向立面 $rac{M_{nc}}{M_{nb}}$
表 3-35	7 層樓建築結構主軸 Y 向立面 $rac{M_{nc}}{M_{nb}}$
表 3-36	建築物基本資料95
表 3-37	結構分析樓層重表96
表 3-38	結構週期及質量貢獻比表96
表 3-39	X 向規範側向力計算表 ······99
表 3-40	Y 向規範側向力計算表 ······99
表 3-41	X 向穩定性因子計算表 ······100
表 3-42	Y 向穩定性因子計算表 ······100
表 3-43	X 向剛重比計算表 ······ 101
表 3-44	Y 向剛重比計算表 ······ 102
表 3-45	X 向側向力+5%意外扭矩 A _x 計算表 103
表 3-46	X 向側向力-5%意外扭矩 Ax 計算表 103
表 3-47	Y 向側向力+5%意外扭矩 Ax 計算表 104
表 3-48	Y 向側向力-5%意外扭矩 Ax 計算表 104

表 3-49 X 向質心剛心偏心距計算表 105
表 3-50 Y 向質心剛心偏心距計算表 105
表 3-51 建築物相關資料 106
表 3-51 建築物相關資料 106
表 3-52 10 層樓建築結構 X 向
$$\frac{V_{\mu}}{V_{01}}$$
 107
表 3-53 10 層樓建築結構 X 向 $\frac{M_{\mu}}{V_{01}}$ (第一列柱線) 107
表 3-54 10 層樓建築結構 X 向 $\frac{M_{\mu}}{M_{\mu0}}$ (第一列柱線) 109
表 3-55 10 層樓建築結構 X 向 $\frac{M_{\mu}}{M_{\mu0}}$ (第二列柱線) 109
表 3-57 10 層樓建築結構 X 向 $\frac{M_{\mu}}{M_{\mu0}}$ (第二列柱線) 110
表 3-57 10 層樓建築結構 X 向 $\frac{M_{\mu}}{M_{\mu0}}$ (第二列柱線) 110
表 3-58 10 層樓建築結構 X 向 $\frac{M_{\mu}}{M_{\mu0}}$ (第二列柱線) 111
表 3-59 10 層樓建築結構 X 向 $\frac{M_{\mu}}{M_{\mu0}}$ (第二列柱線) 112
表 3-60 10 層樓建築結構 X 向 $\frac{M_{\mu}}{M_{\mu0}}$ (第二列柱線) 112
表 3-61 10 層樓建築結構 Y 向 $\frac{M_{\mu}}{M_{\mu0}}$ (第二行柱線) 113
表 3-62 10 層樓建築結構 Y 向 $\frac{M_{\mu}}{M_{\mu0}}$ (第二行柱線) 114
表 3-63 10 層樓建築結構 Y 向 $\frac{M_{\mu}}{M_{\mu0}}$ (第二行柱線) 114

表 3-64	10 層樓建築結構 Y 向 $\frac{M_{nc}}{M_{nb}}$ (第四行柱線) 115
表 3-65	10 層樓建築結構 Y 向 $rac{M_{nc}}{M_{nb}}$ (第五行柱線)
表 3-66	10 層樓建築結構 Y 向 $rac{M_{nc}}{M_{nb}}$ (第六行柱線) 116
表 3-67	建築物基本資料 127
表 3-68	結構分析樓層重表 128
表 3-69	結構週期及質量貢獻比表
表 3-70	X 向規範側向力計算表 ······131
表 3-71	Y 向規範側向力計算表 ······132
表 3-72	X 向穩定性因子計算表 ······133
表 3-73	Y 向穩定性因子計算表 ······133
表 3-74	X 向剛重比計算表 ······134
表 3-75	Y 向剛重比計算表 ······135
表 3-76	X 向側向力+5%意外扭矩 Ax 計算表 136
表 3-77	X 向側向力-5%意外扭矩 Ax 計算表 136
表 3-78	Y 向側向力+5%意外扭矩 Ax 計算表 137
表 3-79	Y 向側向力-5%意外扭矩 Ax 計算表 138
表 3-80	X 向質心剛心偏心距計算表 ······138
表 3-81	Y 向質心剛心偏心距計算表 ······ 138

表 3-82	建築物相關資料
表 3-83	12 層大樓結構 X 向 $rac{V_{pi}}{V_{0i}}$
表 3-84	12 層大樓結構 Y 向 $\frac{V_{pi}}{V_{0i}}$
表 3-85	建築物基本資料 152
表 3-86	結構分析樓層重表 153
表 3-87	結構週期及質量貢獻比表
表 3-88	X 向規範側向力計算表 ······154
表 3-89	Y 向規範側向力計算表 ······155
表 3-90	X 向穩定性因子計算表 ······156
表 3-91	Y 向穩定性因子計算表 ······156
表 3-92	X 向剛重比計算表 ······157
表 3-93	Y 向剛重比計算表 ······158
表 3-94	13 層樓放大係數 Ax計算表
表 3-95	13 層樓偏心比值計算表 161
表 3-96	13 層樓 X 向修正後意外扭矩計算表 162
表 3-97	13 層樓 Y 向修正後意外扭矩計算表 163
表 3-98	建築物相關資料
表 3-99	13 層大樓結構 X 向 $\frac{V_{pi}}{V_{0i}}$

表 3-100	13 層大樓結構 Y 向 $\frac{V_{pi}}{V_{0i}}$
表 3-101	13 層建築結構 X 向 $rac{M_{nc}}{M_{nb}}$ (第一列柱線)
表 3-102	13 層建築結構 X 向 $rac{M_{nc}}{M_{nb}}$ (第二列柱線) \cdots \cdots 166
表 3-103	13 層建築結構 X 向立面 $rac{M_{nc}}{M_{nb}}$ (第三、四列柱線) 166
表 3-104	13 層建築結構 Y 向立面 $rac{M_{nc}}{M_{nb}}$ (第一行柱線) 167
表 3-105	13 層建築結構 Y 向立面 $rac{M_{nc}}{M_{nb}}$ (第二、三行柱線) 168
表 3-106	13 層建築結構 Y 向立面 $rac{M_{nc}}{M_{nb}}$ (第四行柱線) 168
表 3-107	13 層建築結構 Y 向立面 $rac{M_{nc}}{M_{nb}}$ (第五行柱線) 169
表 3-108	建築物基本資料
表 3-109	結構分析樓層重表181
表 3-110	結構週期及質量貢獻比表
表 3-111	X 向規範側向力計算表 ······184
表 3-112	Y 向規範側向力計算表 ······184
表 3-113	X 向穩定性因子計算表 185
表 3-114	Y 向穩定性因子計算表186

表 3-115	X 向剛重比計算表······187
表 3-117	X 向側向力+5%意外扭矩 A _x 計算表 189
表 3-119	Y 向側向力+5%意外扭矩 Ax 計算表 190
表 3-120	Y 向側向力-5%意外扭矩 Ax計算表 ·······191
表 3-121	建築物相關資料
表 3-122	15 層結構 X 向 $\frac{V_{pi}}{V_{0i}}$
表 3-123	15 層結構 Y 向 $\frac{V_{pi}}{V_{0i}}$
表 3-124	15 層建築結構 X 向 $rac{M_{nc}}{M_{nb}}$ (第一、四列柱線) 194
表 3-125	15 層建築結構 X 向 $rac{M_{nc}}{M_{nb}}$ (第二列柱線) \cdots \cdots 194
表 3-126	15 層建築結構 X 向立面 $rac{M_{nc}}{M_{nb}}$ (第三列柱線) 195
表 3-127	15 層樓建築結構 Y 向立面 $rac{M_{nc}}{M_{nb}}$ (第一、四行柱線)… 196
表 3-128	15 層樓建築結構 Y 向立面 $rac{M_{nc}}{M_{nb}}$ (第三行柱線) 196

圖次

圖	1-1	研究步驟流程3
圖	1-2	研究進度規劃4
圖	2-1	永康區維冠金龍大樓震損照片
圖	2-2	永康區維冠金龍大樓樓層平面示意圖9
圖	2-3	新化區京城銀行大樓震損照片9
圖	2-4	歸仁區旺林飯店震損照片10
圖	2-5	歸仁區幸福大樓震損照片11
圖	2-6	MOC-2008 之贅餘度因子對結構超強因子與韌性容量之
		影響
圖	2-7	強柱弱梁
圖	2-8	高軸力柱實驗結果
圖	2-9	柱桿件脆性破壞之判斷標準
圖	2-10	抗側力系統之面內不連續
圖	2-11	一般建築之典型面外錯位所造成立面不規則性19
圖	2-12	有限元素分析程式常用樓層勁度求取法23
圖	2-13	構架受側力變形分類
圖	2-14	Heidebrecht 樓層勁度次構架示意圖

圖	2-15	Pauley 樓層勁度次構架示意圖
圖	2-16	Cosenza 樓層勁度次構架示意圖25
圖	2-17	Muto 建議柱反曲點高度之無因次參數25
圖	2-18	Cosenza 一樓樓層勁度次構架示意圖26
圖	2-19	剪力檢核流程
圖	2-20	強柱弱梁檢核流程
圖	2-21	侧推分析無因次化結果(RC 牆與磚牆終止點皆為 0.85 的
		強度)
圖	2-22	中高樓層初步評估流程圖46
圖	3-1	11 層樓結構平面圖47
圖	3-2	結構立面圖47
圖	3-3	結構 3D 圖47
圖	3-4	基本資料62
圖	3-5	定性評估表(結構系統) ••••••62
圖	3-6	定性評估表(結構細部、結構現況)62
圖	3-7	額外增、減分
圖	3-8	參數設置
圖	3-9	X 向斷面資料······63
圖	3-10	評分分數63

圖 3-11	基本資料表
圖 3-12	耐震能力初步評估表64
圖 3-13	耐震能力初步評估分數65
圖 3-14	耐震能力初步評估結果判定65
圖 3-15	參數設置66
圖 3-16	柱極限層剪力強度計算66
圖 3-17	475 年地震回歸期耐震能力計算67
圖 3-18	2500 年地震回歸期耐震能力計算67
圖 3-19	7 層樓結構平面圖
圖 3-20	結構立面圖
圖 3-21	結構 3D 圖
圖 3-22	基本資料85
圖 3-23	定性評估表(結構系統)85
圖 3-24	定性評估表(結構細部、結構現況)85
圖 3-25	額外增、減分86
圖 3-26	參數設置86
圖 3-27	X 向斷面資料 ······86
圖 3-28	評分分數86
圖 3-29	基本資料表

圖 3-30	耐震能力初步評估表
圖 3-31	耐震能力初步評估分數
圖 3-32	耐震能力初步評估結果判定
圖 3-33	參數設置89
圖 3-34	柱極限層剪力強度計算
圖 3-35	475 年地震回歸期耐震能力計算90
圖 3-36	2500 年地震回歸期耐震能力計算90
圖 3-38	結構立面圖94
圖 3-39	結構 3D 圖94
圖 3-40	基本資料
圖 3-41	定性評估表(結構系統) 118
圖 3-42	定性評估表(結構細部、結構現況)118
圖 3-43	額外增、減分 119
圖 3-44	參數設置
圖 3-45	參數設置
圖 3-46	評分分數
圖 3-47	基本資料表
圖 3-48	耐震能力初步評估表
圖 3-49	耐震能力初步評估分數

圖 3-50	耐震能力初步評估結果判定
圖 3-51	參數設置
圖 3-52	柱極限層剪力強度計算
圖 3-53	475 年地震回歸期耐震能力計算
圖 3-54	2500 年地震回歸期耐震能力計算
圖 3-55	12 層樓結構平面圖 126
圖 3-56	結構立面圖
圖 3-57	結構 3D 圖
圖 3-58	基本資料
圖 3-59	定性評估表(結構系統)************************************
圖 3-60	定性評估表(結構細部、結構現況)143
圖 3-61	額外增、減分143
圖 3-62	參數設置
圖 3-63	參數設置
圖 3-64	評分分數
圖 3-65	基本資料表
圖 3-66	耐震能力初步評估表 145
圖 3-67	耐震能力初步評估分數
圖 3-68	參數設置

圖 3-69	柱極限層剪力強度計算
圖 3-70	475 年地震回歸期耐震能力計算147
圖 3-71	2500 年地震回歸期耐震能力計算
圖 3-72	13 層樓結構平面圖151
圖 3-73	結構立面圖151
圖 3-74	結構 3D 圖
圖 3-75	基本資料
圖 3-76	定性評估表(結構系統)
圖 3-77	定性評估表(結構細部、結構現況)・・・・・・・・・・・171
圖 3-78	額外增、減分
圖 3-79	參數設置
圖 3-80	參數設置
圖 3-81	評分分數
圖 3-82	基本資料表
圖 3-83	耐震能力初步評估表
圖 3-84	耐震能力初步評估分數
圖 3-85	耐震能力初步評估結果判定
圖 3-86	參數設置
圖 3-87	柱極限層剪力強度計算

圖 3-88	475 年地震回歸期耐震能力計算 175
圖 3-89	2500 年地震回歸期耐震能力計算 176
圖 3-90	15 層樓結構平面圖
圖 3-91	結構立面圖
圖 3-92	結構 3D 圖 ······ 179
圖 3-93	基本資料
圖 3-94	定性評估表(結構系統) 198
圖 3-95	定性評估表(結構細部、結構現況)198
圖 3-96	額外增、減分198
圖 3-97	參數設置
圖 3-98	參數設置
圖 3-99	評分分數
圖 3-100	基本資料表
圖 3-101	耐震能力初步評估表
圖 3-102	耐震能力初步評估分數
圖 3-103	參數設置
圖 3-104	柱極限層剪力強度計算
圖 3-105	475 年地震回歸期耐震能力計算
圖 3-106	2500 年地震回歸期耐震能力計算

摘要

一、研究緣起

在 0206 美濃地震之建築物震害調查結果發現:中高樓層建築物常因其商業用途及 使用機能所需,其結構特性常產生力傳遞路徑不良、贅餘度不足、底層軟弱、結構不規 則效應過大及非韌性配筋等問題,以致易產生震損甚至倒塌造成大量人命傷亡。本計畫 擬針對臺灣常見的鋼筋混凝土造之既有中高樓層建築物,蒐集 0206 美濃地震中臺南市 區中高樓層災損案例,探討例如結構贅餘度因子、穩定性因子及剛重比指標等參數,是 否可有效篩選及檢視中高樓層建築物是否有底層軟弱、平面與立面不規則效應、結構穩 定性不足、結構贅餘度不足及力傳遞路徑不良等問題,以研擬後續的既有中高樓層建物 耐震初評或篩檢之改進對策。

二、研究方法及過程

從近年來國際接連發生例如:台灣 0206 美濃地震、2016 年日本熊本地震及 2017 年墨西哥地震等重大震害的經驗與啟示,帶動世界各國重新檢視既有建物耐震評估與補 強程序是否可適切推動執行,尤其對於產權複雜,或因工程技術以外之因素而無法完成 整體評估及補強作業之建築物,又例如台灣常見之中高樓層住商混合建物,因其底層常 有挑高或挑空,導致底層軟弱而使其震害風險甚高,但又常因其所有權人間不易達成共 識,或現況不允許整體結構補強之情況,故台灣目前急需發展適用於既有中高樓層建物 之初評或篩檢程序。故本計畫針對國內習用之既有建物耐震初評程序,蒐集 0206 美濃 地震中臺南市區中高樓層災損案例,探討例如結構贅餘度因子、穩定性因子、剛重比指 標、結構不規則程度、柱構件破壞模式檢核、剪力強度檢核及強柱弱梁檢核及結構現況 檢討等定量參數或定性描述,並配合進行台灣習見之既有建物耐震初評結果,以檢視現 有的初評程序是否可有效篩選及檢視中高樓層建築物常見底層軟弱、平面與立面不規則 效應、結構穩定性不足、結構贅餘度不足及力傳遞路徑不良等問題,然後研討各個實際 災損案例研討諸般定量參數與結構現況定性描述與其災損原因之相關性,以提出力求簡 易且易於推動執行的耐震初評估程序改進方案,期以可有效篩檢出目前台灣震害風險較 高之既有中高樓層建物,以促進提高此類建築之抗震能力,以更加確保國內建築物之耐 震安全。

三、重要發現

經過對國內外有關既有建物之耐震初步評估程序之研討,以及綜整近年來國內外重 大震害調查結果與建築物耐震評估與補強之研究現況與發展方向,亦檢視國內外建築物 耐震設計規範修訂沿革後,隨即就本計畫所選定之既有中高樓層建物實際災損案例,示 範量化與展示其結構整體特性例如結構贅餘度因子、穩定性因子、剛重比指標、結構不 規則程度等定量參數或結構現況例如力傳遞路徑不良等定性描述,並就建物底層結構檢 核其例如梁柱構件破壞模式檢核、強柱弱梁檢核等局部特性指標;另外,各案例亦採用 兩種建物初評程序以研討其耐震初評結果與該案例實際災損狀態之相關性。本研究對於 既有建物耐震初評程序,以及現行建築物既有建物耐震評估與補強相關規範或指南修訂 主要有以下幾點重要發現:

- 目前國內外習見既有鋼筋混凝土建物耐震初評程序例如國內正在推行的 PSERCB 等,在結構不規則性、底層梁柱構件強度與韌性及 P-Δ 效應等往往僅倚靠工程師直 覺定性的判斷,在評估時易未能適切反應其對建物耐震能力之影響,但在實際建築 物震災調查結果發現這些結構特性常是導致既有中高樓層建物發生震損之重要因 素,故應將結構不規則性、底層梁柱構件強度與韌性及 P-Δ 效應加以量化後適度融 入建物耐震初評程序中,為提升國內既有中高樓層建物耐震評估準確度的最有效的 手段之一。
- 國內現行建築物耐震設計規範未來針對結構贅餘度、P-Δ效應及樓層非線性側向位 移限制等研擬相關規定。
- 對於產權複雜,或因工程技術以外之因素而無法完成整體評估及補強作業之建築物,例如建物低樓層為商場,其上為住宅之住商混合情況,常因其所有權人間不易達成共識,或現況不允許整體結構補強之情況,但經初評結果有耐震安全疑慮須緊

急補強者,須儘速另訂簡易的耐震評估程序與局部補強設計方法,以優先確保建物 無局部或整體崩塌之疑慮為其性能目標,以簡易的耐震補強工法如增加斜撐或框架 等施工方式快速施工,期於短時間內大幅提高此類建築軟弱樓層之抗震能力。為強 化既有建物耐震補強整合意願之誘因,故須儘速研議針對老舊公寓大廈之耐震能力 初步評估結果為危險度甚高者,可提供短期緊急性之處理措施,並將該措施定義為 階段性補強,其中須先建立建物崩塌潛能評估方法,藉由一系列之崩塌潛能量化指 標以呈現建物是否有局部或整體崩塌之疑慮,若有高度疑慮者,應儘速報請主管機 關同意後得優先進行階段性耐震補強,該補強設計應以優先確保無局部或整體崩塌 之疑慮為其性能目標。

四、主要建議事項

根據本計畫執行成果顯示,可針對建築物耐震設計規範檢討及修訂,提出下列具體 建議。以下分別從加以列舉。

建議一

增修「鋼筋混凝土建築物耐震能力初步評估平台(PSERCB)」:中長期建議

主辦機關:內政部營建署、建築研究所

協辦機關:中華民國全國建築師公會、中華民國土木技師公會全國聯合會、中華民 國結構工程技師公會全國聯合會

鑒於目前習見之既有建物初評流程中未能將結構不規則性、底層梁柱構件強度與韌 性及 P-△效應等加以量化作為評估之具體依據,尤其對既有中高樓層建物有可能影響其 評估結果之準確度,故建議在例如 PSERCB 初評流程中有關結構系統之平面對稱性與立 面對稱性,可參考本計畫所擬之結構不規則性量化等級作為評分標準;並將剛重比指標 或結構穩定性因子列入評估項目中以適切反映 P-Δ 效應;另外,亦可將本計畫所採用之 柱構件剪力比指標與強柱弱梁檢核指標列入評估項目中以適切考量梁柱破壞模式之影 響。後續將持續與 PSERCB 研究團隊、專家學者,與建築師及專業技師公會研商取得共 識後,由主辦機關進行「鋼筋混凝土建築物耐震能力初步評估平台(PSERCB)」增修訂 工作。建議內政部建築研究所未移交評估平台(PSERCB)至內政部營建署前,本項業務仍由內政部建築研究所主辦,俟評估平台(PSERCB)移交至內政部營建署後,本項業務改由內政部營建署主辦。

建議二

增訂「建築物耐震設計規範及解說」有關結構贅餘度相關規定:中長期建議

主辦機關:內政部營建署

協辦機關:內政部建築研究所

由於國內現行建築物耐震設計規範尚未訂定有關結構贅餘度之相關規定,然而結構 贅餘度之良窳與否著實會影響中高樓層建物之耐震性能,故建議應儘速納入國內現行建 築物耐震設計規範修訂規劃內容中。建議增訂條文及解說內容如下:

條文部份:

任一結構可依其配置,以下列方式決定結構贅餘度因子ρ,並以ρ值乘以結構韌性 容量 R 以反映結構贅餘度之影響:

在考慮的地震方向上,至少有兩個平行的單跨度抗震構架,ρ=0.8。

在考慮的地震方向上,至少有兩個平行的雙跨度抗震構架,p=1.0。

在考慮的地震方向上,至少有三個平行的三跨度抗震構架,ρ=1.25。

解說部份:

在 MOC-2008 規範(Comisión Federal de Electricidad, 2009)條文之規定中,使用抗震 構架之跨度數來反應結構贅餘度之大小,並用結構贅餘度因子 p 來修正結構韌性容量以 反映結構贅餘度對耐震能力之影響,根據 Tena-Colunga and Cortés-Benítez (2015)之研 究,結構贅餘度越大,可有效確保結構韌性容量及抗側力強度。

ABSTRACT

The M_w 6.6 Meinong earthquake occurred on 6 February 2016 in the southern region of Taiwan. The earthquake caused significant damage in and around Tainan city, with a number of collapsed and severely damaged buildings and 117 deaths. Building reconnaissance includes commercial/residential buildings and school buildings. The observed structural damage was characteristic of non-ductile and poorly configured buildings. The collapsed buildings all contained irregularities and soft-stories. The majority of older mixed-use buildings performed adequately, but severe column failures were observed in several taller apartment buildings constructed in the 1990s. The building damage modes for the this earthquake can be summarized as follows: (1) presence of soft and weak first story, (2) lack of redundancy, (3) lack of lateral reinforcement, and (4) imbedded pipelines in column. Almost all of the collapsed and severely damaged buildings observed were constructed within a 10-year window between 1988 and 1998. No significant damage was reported to buildings designed and constructed post-1999 and most of the older mixed-use privately owned buildings performed adequately of the collapsed and severely damaged buildings, the majority appeared to be due to column failures on the ground floor due to a combination of poor structural configuration and detailing. In order to reduce the risk posed by critical structural weaknesses and improve the safety and resilience of these buildings, the efficient seismic performance evaluation and monitoring methods for mid-to-high rise buildings have to be developed for emergency need. The objective of this project is to survey the effects of soft/weak first story, non-ductile reinforcement, structural irregularity and structural redundancy on the seismic performance of mid-to-hgh rise buildings in Taiwan. In order to upgrade the applicability of the current seismic design code and preliminary seismic evaluation procedure of building structures, some revised drafts corresponding to $P-\Delta$ effect, redundancy factor, stiffness-to-weight ratio and structural irregularity in the current issued seismic design codes are proposed. Finally, some revised recommendations are referenced for the future modification.

Keywords: soft and weak story, non-ductile reinforcement, structural irregularity

第一章 緒論

第一節 研究緣起與背景

一、研究緣起

在 0206 美濃地震之建築物震害調查結果發現:中高樓層建築物常因其商業用途及 使用機能所需,其結構特性常產生力傳遞路徑不良、贅餘度不足、底層軟弱、結構不規 則效應過大及非韌性配筋等問題,以致易產生震損甚至倒塌造成大量人命傷亡。本計畫 擬針對臺灣常見的鋼筋混凝土造之既有中高樓層建築物,蒐集 0206 美濃地震中臺南市 區中高樓層災損案例,探討例如結構贅餘度因子、穩定性因子及剛重比指標等參數,是 否可有效篩選及檢視中高樓層建築物是否有底層軟弱、平面與立面不規則效應、結構穩 定性不足、結構贅餘度不足及力傳遞路徑不良等問題,以研擬後續的改進補強對策。

二、研究背景

本計畫乃鑒於臺灣 921 地震及 2016 年 0206 美濃地震等相關之勘災記錄與調查結果 等顯示:中高樓層建築物常存有力傳遞路徑不良、贅餘度不足、底層軟弱、結構不規則 效應過大及非韌性配筋等問題。故本計畫預先進行彙整比較近年來日本、美國及歐洲、 紐澳等最新中高樓層建築結構耐震設計技術指針及專案報告文獻,以及研討結構系統超 強因子、贅餘度因子、穩定性因子、結構不規則效應、高模態效應及剛重比指標等參數 之設計與應用現況及可行性;其次,透過蒐集 0206 美濃地震之實際震損案例進行相關 設計與分析研討,據以研修中高樓層建築結構分析與設計相關規定,並提出檢視中高樓 層建築物耐震能力是否足夠的量化指標與簡易篩選方法。

第二節 研究內容

本研究將蒐集歷年來之建築物震損資料進行整理分析,歸納判斷建築結構構件性能 之指標及其估算方法,透過量化的方式,建立一可供判斷整體建築物結構損壞程度之標 準,並利用研究成果研擬既有中高樓層建築物初步評估使用表單之修定建議,期能透過 此方式建立更客觀且具有一致性的中高樓層建築結構初步評估與性能篩檢方法,以改善 日後初步評估與快速篩檢之作業。其中關鍵研究項目為:

(1) 提出可有效檢視既有中高樓層建築結構耐震能力良窳的篩選量化指標及程序,並提

1

中高樓層建築軟弱層及扭轉不規則效應評估研究

出將其納入既有建築耐震初評表格之可行性方案以及改進補強對策建議。

- (2)提出國內建築物耐震設計規範與解說有關中高樓層建築結構分析與設計相關規定 修正草案。
- (3) 提出後續研究課題及規範修訂方案之規劃建議。

第三節 研究方法及流程

一、研究採用之方法

- (一)蒐集彙整臺、美、日等國內外耐震設計規範與評估補強指南等參考文獻及技術報告,以及國內外類似本計畫的研究計畫或案例之成果。
- (二)邀集專家學者舉辦諮詢會議,彙整耐震設計規範之修正建議與內容需求。
- (三)研擬耐震設計規範修訂草案,提供內政部修正之參考。

二、研究採用方法之原因

- (一)近年來建築物耐震設計規範已有更新,例如美國ASCE 7-16 規範草案已有大幅度更 新,為求國內相關規範能與國際接軌,擬針對美、日等國外建築物耐震設計規範及 耐震評估與補強技術指南,進行資料蒐集和研析,俾利耐震設計規範更臻完善。
- (二)為廣納學術研究與工程實務執行經驗,並達研發創新之需求,擬邀結構耐震設計與 評估專長之學校教授、研發中心、技術團體、工程顧問或營造施工專業廠生等舉辦 專家學者諮詢會議,力求規範修正成果符合大眾所需。
- (三)有效完成草案章節架構、條文與解說,提供內政部執行修訂之重要參考依據。
- (四)藉由專家學者座談進行雙向溝通,除可對外宣導規範修訂之精神,亦可接受各界執行所遭遇之議題來進行研議,俾使規範或技術指南更能滿足各方期待。

圖 1-1 研究步驟流程 (資料來源:本研究整理)

三、預計可能遭遇之困難及解決途徑

- (一)國外規範制定過程與其所在地理環境、生活條件或社會變遷有關,並非完全符合國內需求。本案執行過程將提前研析各先進國家規範制定精神,並參酌國內學者與專家之意見,同時以我國各種在地因素為主要考量,通盤研議各條文之適用性,確保滿足國內之所需。
- (二)建築物耐震設計規範涵蓋範疇未能概括各種實務需求。為此,擬於相關條文之解說 內容說明修訂緣由與適用範圍,避免造成誤用或產生爭議。

第四節 研究進度

日	第	第	第	第	第	第	第	第	第	第	第	第
万八	1	2	3	4	5	6	7	8	9	10	11	12
工作历日	個	個	個	個	個	個	個	個	個	個	個	個
工作项目	月	月	月	月	月	月	月	月	月	月	月	月
蒐集文獻資料												
研擬章節架構												
舉辦專家學者諮												
詢會議												
撰寫期中報告												
案例分析及探討												
研擬規範草案及建												
立篩檢方法												
撰寫期末報告												
撰寫成果報告												
預 定 進 度 (累積數)	5.56%	16.67%	27.78%	44.44%	55.56%	61.11%	66.67%	77.78%	83.33%	88.89%	94.44%	100%

本研究規劃之研究進度如圖 1-2 所示:

說明:

1.工作項目請視計畫性質及需要自行訂定,預定研究進度以粗線表示其起訖日期。
 2.預定研究進度百分比一欄,係為配合追蹤考核作業所設計。請以每1小格粗組線為1分,統計求得本計畫之總分,再將各月份工作項目之累積得分(與之前各月加總)除以總分,即為各月份之預定進度。
 3.科技計畫請註明查核點,作為每1季所預定完成工作項目之查核依據。

圖 1-2 研究進度規劃 (資料來源:本研究整理)

第二章 資料蒐集與文獻回顧

本研究案主要工作重點在蒐集及歸納建築構件震損資料,以建立可供判斷整體建築 物結構損壞程度之標準,並與國內外相關研究進行比較。本章針對震害資料、結構實驗 資料、建物損傷等級判斷與震後評估方法等研究重點,將所蒐集之相關研究資料分述於 本節及以下各節之中。

第一節 中高樓層震害調查結果

本研究案主要工作重點在蒐集及歸納建築構件震損資料,以建立可供判斷整體建築 物結構損壞程度之標準,並與國內外相關研究進行比較。本章針對震害資料、結構實驗 資料、建物損傷等級判斷與震後評估方法等研究重點,將所蒐集之相關研究資料分述於 本節及以下各節之中。

歷次國內外重大地震,國家地震工程研究中心皆組成勘災團隊進行震損資料蒐集, 目前所蒐集之建築物震損資料中,國內震災包括1999年9月21日南投集集大地震,2006 年4月1日臺東地震及12月26日屏東恆春地震,2009年12月19日花蓮磯崎地震,2010 年3月4日高雄甲仙地震,2013年3月27日南投仁愛地震,2013年6月2日南投地震 等;國外震災包括2008年5月12日中國汶川地震,2013年4月20日中國蘆山地震, 2006年5月27日印尼日惹地震等。

由這些地震勘災經驗可知,建築物震損略可分為小害、中害及大害,其中有結構系統損壞、柱梁構件損壞或牆構件損害等。本研究將參考這些建築物破壞模式資料,建立 建築物震損等級。

第二節 既有中高層建築物之結構震損機制

2016年2月6日上午3時57分臺灣發生災害性地震,震央位於高雄市美濃區。於 此次勘災調查中以7層樓(含)以上建物區分為中高樓建物,共計調查棟數為16棟,樓層 數分 在7樓至24樓,建造年代皆為921集集大地震之前,座落區域分別在臺南市區(2 棟)、新化區(3棟)、永康區(3棟)、歸仁區(3棟)、安平區(5棟),調查結果顯示倒塌4棟、 具結構性損壞6棟、非結構性損壞6棟,詳表2-1所示:其中倒塌4棟分別為永康區維 冠金龍大樓、新化區京城銀行、歸仁區幸福大樓及歸仁區旺林飯店等建物,本研究將針 對倒塌或震損之建築物分別以結構系統不良及構件強度及韌性不足之方向進行探討,謀 求本次地震中高樓建築物震損原因,提供爾後研究作參考,以利後續改善措施,在下一 個劇災型地震來臨前,能有效提昇既有中高樓建築物之耐震能力,藉以避免憾事再次發 生。

編號	地點	樓層狀態	損傷狀態	損傷描述
A01	永康區	地上16層	倒塌	完全倒塌
	(維冠金龍)	地下1層		
A02	永康區	地上12層	非結構性	非結構RC外牆開裂
		地下1層	損壞	
A03	永康區	地上15層	具結構性	地下室柱軸力破壞
		地下3層	損壞	
B01	新化區	地上11層	倒塌	底部樓層嚴重倒塌
	(京城銀行)	地下1層		
B02	新化區	地上12層	具結構性	一樓牆面損壞,部分短梁出現
			損壞	剪力裂縫,並發現柱剪力裂縫
B03	新化區	地上12層	非結構性	非結構RC外牆剪力裂縫
			損壞	
C01	歸仁區	地上7層	倒塌	底部樓層嚴重倒塌
	(幸福大樓)			
C02	歸仁區	地上10層	倒塌	底部樓層嚴重倒塌
	(旺林飯店)			
C03	歸仁區	地上12層	具結構性	地下室柱軸力破壞,一樓柱軸
		地下2層	損壞	力破壞
D01	安平區	地上24層	非結構性	非結構RC外牆剪力裂縫
		地下4層	損壞	
D02	安平區	地上22層	非結構性	A棟南北側非結構RC外牆剪力
		地下4層	損壞	裂縫
D03	安平區	地上27層	非結構性	非結構RC外牆剪力裂縫
			損壞	
D04	安平區	地上24層	非結構性	梯間牆裂縫
		地下4層	損壞	
D05	安平區	地上20層	具結構性	電梯RC牆開裂
		地下2層	損壞	
E01	臺南市區	地上13層	具結構性	短梁剪力裂縫,梯間RC牆剪力
		地下1層	損壞	裂縫
E02	臺南市區	地上14層	具結構性	地下室角隅柱軸力破壞
		地下1層	損壞	

表 2-1 美濃地震中高樓建築物災損統計一覽表

(資料來源:本研究整理)

2.1 結構系統不良

(1) 單垮結構贅餘度低

維冠金龍大樓為地上 16 層、地下 1 層建築物。該大樓興建年代約於 1994 年(民國 83 年),主要用途為住商混合之集合住宅,於此次地震中不幸發生建築物倒塌之現象, 造成共 115 人罹難,96 人受傷。

圖 2-1 顯示柱主筋於柱底部同位續接,而且鋼筋自續接器脫離,柱箍筋彎鉤似乎僅 有 90 度。由目前掌握的樓層平面圖(圖 2-2)推測,沿短向多數僅有一跨,結構贅餘度明 顯較少。結構長向沿永大路側,牆量較少,而建築後側有樓梯間及電梯間牆量較多,故 傾向於往永大路側破壞。

(2) 軟弱底層

維冠金龍大樓低樓層作商業用途, 牆量可能較少, 相對其他樓層, 其勁度可能較低, 破壞較易集中於低樓層。新化區京城銀行大樓為地上 11 層、地下 1 層建築物。該大樓 興建年代約於 1996 年(民國 85 年), 主要用途為住商混合使用, 底部 1、2 層為銀行, 3 層以上正進行出租飯店裝修, 該大樓因底層為商業使用空間, 底層挑空且挑高, 致使底 層柱承受極高之軸力, 遂造成車道出口附近的柱構件產生軸力破壞致使建築物倒塌(圖 2-3)。

歸仁區旺林飯店大樓為地上 10 層建築物。該大樓主要用途為飯店使用,該大樓因 底層為商業使用空間,底層挑空且挑高,致使底層柱承受極高之軸力,遂造成底層柱構 件產生軸力破壞致使建築物倒塌(圖 2-4)。

(3) 偏心扭轉

幸福大樓為一棟7層樓鋼筋混凝土建築,地下室為停車場用途。該大樓興建年代約 於1992年(民國81年),主要用途為住商混合使用,底部1-2層為商業用途,3層以上為 公寓住宅。該大樓因底層為商業使用空間,底層挑空且挑高,騎樓柱數量不足,致使僅 有底層柱承受極高之軸力,遂造成街口附近的柱構件產生軸力破壞致使建築物倒塌(圖 2-5),使結構物上部仍然維持良好,無破壞之情形,而於下方騎樓處柱產生破壞,使結 構往其騎樓處產生崩塌。

本棟建築物為在街口處,為三角窗式建築,兩側皆有騎樓;此建築物平面對稱性不 佳,建築物右側有完整牆,背側則將牆改為為開窗,為勁度不對稱結構,因其勁度不對 稱會造成偏心之扭轉,結構亦於底層柱頭承受不住偏心扭轉引致的大變形而斷裂,在於 立面對稱性上,中高樓層因低樓層為開放式空間之拆除,因此造成某一樓層因為地震力 無法連續傳遞的關係而形成弱層的破壞,此即立面間的不對稱性;幸福大樓之平面對稱 性也較為不良,其平面為一梯形狀,具凹角性,對結構物耐震能力產生疑慮;立面對稱 性亦因牆量於低樓層無延續,形成一軟弱層,地震來襲時,會往強度低側倒塌即為背側 經多次開窗及低樓層軟弱處坍塌。

7

2.2 構件強度及韌性不足

(1) 梁柱接頭錨定強度不足

永康區維冠金龍大樓配筋細節可能不良(接頭箍筋可能較疏鬆、梁彎鉤可能未插入 柱核心混凝土而未錨定於柱內),以致梁柱接頭錨定強度不足,由倒塌照片可看出接頭 均有發生嚴重損害(圖 2-1)。

(2) 柱非韌性配筋,導致韌性不足

以上介紹永康區維冠金龍大樓、新化區京城銀行、歸仁區幸福大樓及歸仁區旺林飯 店等4棟倒塌建物皆為民國86年以前所興建,可知當時興建時應採非韌性配筋設計, 導致柱構件韌性不足,使得在高軸力作用下,發生脆性破壞而迅速坍塌。

(b)地震後建築物破壞照片(取自東森新聞)

(c)續接器位置於同一平面

(d)柱箍筋 90°彎鉤

圖 2-1 永康區維冠金龍大樓震損照片 (資料來源:本研究整理)

圖 2-2 永康區維冠金龍大樓樓層平面示意圖 (資料來源:本研究整理)

(a)地震前建築物照片(取自 Google 街景)

(b)地震後建築物破壞照片

(c)底層垂直桿件破壞

(d)一樓柱軸力破壞

圖 2-3 新化區京城銀行大樓震損照片 (資料來源:本研究整理)

(a)地震前建築物照片(取自 Google 街景)

(c)底層垂直桿件破壞

(b)地震後建築物破壞照片

(d)梁保護層剝落鋼筋外露

圖 2-4 歸仁區旺林飯店震損照片 (資料來源:本研究整理)

(a)地震前建築物照片(取自 Google 街景)

(b)地震後建築物破壞照片

(c)底層垂直桿件主筋挫曲, 保護層混凝土剝落

(d)柱主筋挫曲保護層混凝土剝落

圖 2-5 歸仁區幸福大樓震損照片 (資料來源:本研究整理)

第三節 建築結構特性篩檢指標介紹

有關國外中高樓層建築物重大震害調查結果、結構贅餘度因子、結構穩定性因子、 剛重比指標、非韌性配筋及結構不規則效應之研究情況簡介如下:

◆ 贅餘度因子

一、美國 IBC 規範:

根據 IBC 2003 (2003)規範條文之規定,在下列載重組合中,水平向地震載重必須用 贅餘度因子 ρ 加以放大:

$$E = \rho E_h + E_v$$

$$E_m = \Omega E_h$$

其中 E 為經水平向與垂直向地震載重組合後之地震載重, Eh 為水平向地震載重, Ev 為

垂直向地震載重,Em為結構所能承受最大地震載重。贅餘度因子ρ可依下式計算:

$$\rho = 2 - \frac{6.10}{r_{\max}\sqrt{A_g}}$$

其中 A_g 為一樓剪力牆最小的水平斷面積(單位: m^2); r_{max} 為構件與樓層剪力比例之最大 值。構件與樓層剪力比例 r_i 之定義為第i樓層中受剪力最大單一構件與設計樓層剪力之比 值; r_{max} 會產生在任何樓層或總樓高 2/3 以下的樓層中。若為抗彎構架,則取相鄰柱構 件所承受剪力之和的最大值除以該樓層之設計樓層剪力即為其 r_i ;若為剪力牆構架系 統,則求取該樓層中剪力牆所承受之剪力值乘以 $3.3/\ell_w$ 後之最大值(ℓ_w 為剪力牆之長 度,單位為m),再除以該樓層之設計樓層剪力即得其 r_i ;若結構抗側力系統為二元系統, 則採前述計算方式求取各個抗側力構件之 r_i ,取其最大值以計算 ρ ,但二元系統之 ρ 值 應不得大於各個 ρ 值的 80%;當所在震區為 Zone 0 或 Zone 1 或 Zone 2,則 ρ =1.0;贅 餘度因子 ρ 之值應介於 1.0 至 1.5 之間。但若某樓層具有柔性樓版,則該樓層的 ρ 值應 不大於 1.25。

依據美國 IBC 2006 (2006)規範條文之規定,除了考慮雙向水平地震力效應外,還必須同時增加考量垂直地震力效應之場合有三種類型:

1. 一般場合 (ρ =1.0)

針對一般場合,地震載重效應E由下式定義,且其贅餘度因子 p 值取為 1.0。

$E = \rho Q_E \pm 0.2 S_{DS} D$

同時,依照 ASCE 7-05 (2005)第12.3.4.1 節之規定, 贅餘度因子ρ之值取為1.0 的 條件如下:針對下列狀況,可允許贅餘度因子ρ值取為1.0:

1. 指定為耐震設計類別B或C的結構。

- 2. 當計算變位及 P-∆ 效應時。
- 3. 非結構元件之設計。

4. 非建築結構之設計。

```
• • • • • •
```

- 省使用 12.10-1 式以決定橫隔版載重時。
- 8. 當依第18章之規定設計具阻尼系統之結構時。
- 2. 懲罰性場合 (ρ=1.3)

依照 ASCE 7-05 (2005)第 12.3.4.2 節之條文規定, 耐震設計類別 D 之贅餘度因子 ρ 定義如下:

針對耐震設計類別 D 的結構,除了符合下列任一條件而可允許其贅餘度因子ρ值為 1.0 外,ρ值應等於 1.3:

- 在所考慮的地震力的方向上承受超過該方向35%的基底剪力之任一樓層,其地震力 抵抗系統中的抗側力構材必須滿足下列贅餘度要求:
- (1) 斜撐:移除一個單獨的斜撐或與之聯結的接頭,不得導致超過 33%樓層強度之折減,也不得使系統產生極端扭轉不規則性。
- (2) 抗彎構架:位於單一梁兩端之梁柱接頭損失其抗彎能力時,不得導致超過33%樓層 強度之折減,也不得使系統產生極端扭轉不規則性。
- (3) 剪力牆或高長比大於 1.0 之牆墩:移除一個剪力牆或任何樓層內具有高長比大於 1.0 之牆墩,或是與之聯結的匯集接頭,不得導致超過 33%樓層強度之折減,也不得使 系統產生極端扭轉不規則性。
- (4) 懸臂柱:任何單一懸臂柱之底部接頭損失其抗彎能力時,不得導致超過33%樓層強度之折減,也不得使系統產生極端扭轉不規則性。
- (5) 其他構材:無要求。
- 所有樓層均為平面規則之結構,且其中承受超過任一正交方向上35%基底剪力之任 一樓層的地震力抵抗系統,必須具有至少兩跨的周圍構架,且需位於沿該正交方向 之結構兩側。剪力牆之跨數應按牆之長度除以樓層高來計算;或針對輕構架構造而 言,其跨數為兩倍剪力牆之長除以樓層高。

二、墨西哥 MOC-2008 規範:

在 MOC-2008 規範(Comisión Federal de Electricidad, 2009)條文之規定中,用贅餘度 因子 ρ 修正結構超強因子 Ω 及韌性容量Q,內容如下:

在考慮的地震方向上,至少有兩個平行的單跨度抗震構架,ρ=0.8。

- 2. 在考慮的地震方向上,至少有兩個平行的雙跨度抗震構架,ρ=1.0。
- 3. 在考慮的地震方向上,至少有三個平行的三跨度抗震構架, p=1.25。

(b)

圖 2-6 MOC-2008 之贅餘度因子對結構超強因子與韌性容量之影響 (資料來源:本研究整理)

由圖 2-6(a)可看出 MOC-2008 所訂定之贅餘度因子,當結構抗震構架跨度數越多,結構超強因子亦越大,設計地震力需求可折減較多;由圖 2-6(b)可看出 MOC-2008 所訂

定之贅餘度因子,當結構抗震構架跨度數越多,結構韌性容量亦越大,設計地震力需求 亦可折減較多。

◆ 穩定性因子

美國 ASCE 7-10 (2010)及 IBC 2012 (2012)中主要以下列公式估算所得之穩定性因子 θ來評量 P-Δ 效應:

$$\theta = \frac{P_x \Delta I_e}{V_x h_x C_d}$$

其中 P_x 為樓層高度 x 及以上的垂直向設計載重, Δ 為樓層側位移角, I_e 為重要性因子, V_x 為樓層高度 x 所在之設計剪力, h_x 為樓層所在高度, C_a 為變位放大係數。

穩定性因子 θ 不得超過下列公式計算所得之 θ_{max} :

$$\theta_{\max} = \frac{0.5}{\beta C_d} \le 0.25$$

其中 β 為樓高度x所在之剪力需求與剪力容量的比值, β 採保守估計時可取為1.0;

穩定性因子 θ 大於 0.1 但小於 θ_{max} 。P- Δ 效應對位移及構件受力所產生的增量可用合理方法估計之,亦可允許用 1/(1- θ)放大位移及構件受力以簡易考慮 P- Δ 效應; $\Xi \theta$ 小於 0.1,即可不需考慮 P- Δ 效應; 而當 θ 大於 θ_{max} ,則結構視為不穩定而必須重新設計。

◆ 剛重比指標

由於建築在風荷載或地震荷載作用下產生水平位移後,重力荷載會因該側移而引起 的附加效應稱為 P-Δ 效應,一般中高樓層建築物的重力荷載會隨著高度增加,側向剛度 相對減小,導致結構內力、位移增加,故 P-Δ 效應會逐漸明顯,甚至導致結構失穩。故 結構側向剛度和重力荷載是影響結構整體穩定和 P-Δ 效應的主要因素,側向剛度與重力 荷載的比值稱之為剛重比,目前中國現行 JGJ3-2010 高層建築混凝土結構技術規程(2010) 即採用剛重比此一指標來描述中高樓層建築物的整體穩定性,對剪力牆結構、框架-剪 力牆結構或筒體結構等,其剛重比應滿足下式:

$$EJ_d / H^2 \sum G_i \ge 1.4$$

其中 EJ_d 為結構等效側向剛度, H為結構總高度, G_i 為第i層的重力設計荷載值。當剛 重比 ≥ 2.7 時,可不考慮 $P-\Delta$ 效應; $1.4 \leq$ 剛重比< 2.7時,應考慮 $P-\Delta$ 效應之影響;當剛 重比< 1.4時, $P-\Delta$ 效應引起的附加側向變形將呈現非線性急劇增大以致結構整體失穩。

◆ 非韌性配筋

對於中高樓之建築物,其柱構件之主要功能除乘載建築物本身之自重外,其也同時 為抵抗地震力之構材。民國 63 年之建築技術規則(1974)即開始有相關之耐震特別規定, 其針對受撓柱構件的配筋規定也訂有緊密圍束區等相關需求,然而由過去的勘災經驗可 發現,建築物的倒塌主因多為一樓柱構件之脆性破壞,顯示國內對於老舊建築物之柱構 件,採用之配筋可能並非完全達到韌性行為之要求。

現行混凝土結構設計規範[土木 401-100](2011)中,為避免結構物受震後發生柱端破 壞之行為,即設定了強柱弱梁(圖 2-7)之檢核條款,以避免建築物受到超越設計地震時發 生柱構件之破壞。

圖 2-7 強柱弱梁 (資料來源:本研究整理)

另於既有建築之柱桿件試驗研究[NCREE-09-025](2009)也顯示,老舊建築物中之非 韌性配筋柱,其在受到地震力之作用下,雖然較易發生脆性之剪力破壞行為,但在低軸 力之情況下仍有一定之位移能力,然而實驗[NCREE-10-002](2010)也顯示隨著軸力提 高,建築物中柱構件將提前發生崩塌破壞。美國 ACI 318-14 (2014)規範也針對柱構件的 耐震設計,新增了對高軸力柱(軸力大於 $0.3f'_cA_g$)之橫向圍束鋼筋量需求條款,要求受高 軸力之柱構件,其主筋均須配置具耐震彎鉤之橫向鋼筋,且提高橫向鋼筋量之需求,其 目的就在於提高新建建物之高軸力柱韌性行為。而在文獻[蔡宛婷 2015]中也顯示對高軸 力柱配置較多具耐震彎鉤之橫向鋼筋,確實可以延緩強度點後之強度衰減,增加高軸力 柱之韌性行為(圖 2-8)。

圖 2-8 高軸力柱實驗結果 (資料來源:文獻[蔡宛婷 2015])

目前在ASCE 41-13 (2013)建築物耐震評估與補強指南中針對建築物之柱構件破壞 行為判斷準則如圖 2-9 所示,其建議以柱構件之撓曲強度 V_P與剪力強度 V_o之比值作為破 壞行為之區分,當撓曲強度 V_P與剪力強度 V_o之比值小於 0.6 時為撓曲破壞(Condition i), 若介於 0.6 至 1.0 之間為撓剪破壞(Condition ii),當剪力強度 V_o小於撓曲強度 V_P則判斷 為剪力破壞(Condition iii)。在本案研究中,可利用其撓曲強度 V_P與剪力強度 V_o之比值關 係,計算該棟建築構件之撓曲與剪力強度比值,以做為整體建築可能發生非韌性破壞之 程度探討。

 Table 10-11. Transverse Reinforcement Details: Condition to Be Used for Columns in Table 10-8

Shear Capacity Ratio	ACI 318 Conforming Seismic Details with 135-Degree Hooks	Closed Hoops with 90-Degree Hooks	Other (Including Lap-Spliced Transverse Reinforcement)
$V_p/V_o \le 0.6$	i ^a	ii	ii
$1.0 \ge V_p/V_o > 0.6$	ii	ii	iii
$V_p/V_o > 1.0$	iii	iii	iii

^{*a*}To qualify for condition i, a column should have $A_v/b_w s \ge 0.002$ and $s/d \le 0.5$ within flexural plastic hinge region. Otherwise, the column is assigned to condition ii.

圖 2-9 柱桿件脆性破壞之判斷標準 (資料來源: ASCE41-13 2013)

中高樓層建築軟弱層及扭轉不規則效應評估研究

建築結構不規則之定義詳如現行建築物耐震設計規範及解說表 1.2。若平面不規則 結構具有上述表中所定義之凹角性或橫隔版不連續性時,則在建立結構分析模型時,應 特別注意對於相關樓板的模擬,因為該樓板可能不適用剛性樓板的假設。

ASCE 41-13 (2013)建築物耐震評估與補強指南針對結構不規則效應之檢核方法建 議如下:若建築結構依現行建築物耐震設計規範之規定判定為不規則性結構時,則需檢 核其需求-容量比值等以選擇適當的分析程序。若至少有一項需求-容量比值大於 2.0,則 不得使用線性分析程序。使用線性分析程序時須針對下列四種不規則配置的狀況加以限 制與檢核主要構件與抗側力系統構件:

- (1) 面內不連續所造成之不規則性
- (2) 面外不連續所造成之不規則性
- (3) 弱層所造成之不規則性
- (4) 扭轉強度所造成之不規則性

非線性需求的分佈及大小可用需求-容量比值(Demand-to-Capacity Ratio, DCR)來加以簡單量化,但各種 DCR 值不能用來決定構件行為是否可接受,但應可用以判別受震反應是否過大。DCR 值之定義如下:

$$DCR = \frac{Q_{UD}}{Q_{CE}}$$

其中QUD是結構或主要構件在承受靜載重與地震荷載同時作用下的內力,而QCE是結構 或主要構件之強度。

各種不同的內力例如軸力、彎矩及剪力等皆須計算其相對應之 DCR 值,若所有的 DCR 值皆小於或等於 1.0, 即顯示在該地震危害等級下結構保持彈性;若至少有一項 DCR 值大於 1.0, 即該構件的受震反應已進入非線性。若至少有一項需求-容量比值大於 2.0, 則表示其受震效應甚大。

不論是線性靜力分析程序或是線性動力分析程序,皆須查驗抗側力系統之主要構件 或元件之非線性需求之分佈及大小。須注意例如具有開孔剪力牆建築等在型式或行為上 較複雜之結構,建議採用結構非線性分析程序較容易確定結構之規則性程度。

若在抗側力系統之主要構件配置具有在面內呈現不同樓層之錯位分佈或偏移產生 不連續(圖 2-10); 而圖 2-11 為結構抗側力系統之主要構件配置具有面外偏移產生不連續 之範例; 若建築物具有現行建築物耐震設計規範所訂之弱層,則須用下式計算各樓層側 向剪力方向上之 DCR 平均值:

$$(DCR)_{AVG} = \frac{\sum_{i=1}^{n} DCR_{i}V_{i}}{\sum_{i=1}^{n} V_{i}}$$

其中(DCR)_{AVG}為某一樓層側向剪力方向上 DCR 之平均值; DCR,為某一樓層中構件 i 之 DCR 最大值, V_i則為假設結構保持彈性時構件 i 之最大側向剪力; n 為某一樓層之抗側 力構件總數。

若建築物具有柔性樓版,則每一個平面構件需各自單獨進行檢核。若在所考慮的地 震輸入方向上,建築物某一樓層勁度中心某一側的主要構件在側向剪力方向的最大 DCR 值為另一側的主要構件在側向剪力方向的最大 DCR 值的 1.5 倍以上,則視為扭轉強度不 規則。

圖 2-10 抗側力系統之面內不連續 (資料來源: ASCE41-13 2013)

圖 2-11 一般建築之典型面外錯位所造成立面不規則性 (資料來源: ASCE41-13 2013)

具有下列任一種結構特性,方可採用線性靜力分析程序,否則須採用線性動力分析

程序:

- 結構基本週期大於或等於設計反應譜中等譜加速度段與等譜速度段交界週期值的 3.5倍。
- 因扭轉向勁度不規則致使某一樓層之某一側邊的樓層側位移角大於該樓層之平均 樓層側位移角的 1.5 倍。
- 相鄰樓層的水平最大尺度之比值大於 1.4。(屋突層不計入)
- 因結構立面勁度不規則引致某一樓層之平均樓層側位移角大於其上下相鄰樓層之 平均樓層側位移角的1.5倍。
- 5. 豎向側力抵抗構材不平行或對稱於側力抵抗系統之兩正交主軸者。

建築物各層樓版通常可假設為剛性樓版,但當樓版最大側向變位大於該層層間變位 平均值之兩倍時,應視樓版為柔性。除非樓版為柔性樓版,平面不規則中高樓層結構應 在分析過程中必須考慮下列不規則扭轉效應:

- 某一樓層之總扭矩等於實際扭矩與意外扭矩之和。實際扭矩為該樓層剪力與偏心距 的乘積,偏心距為在垂直於地震力作用方向上,樓層質量中心與勁度中心的距離。 質量中心必須考慮該樓層以上之所有樓層的貢獻。意外扭矩為該樓層剪力與該樓層 在垂直於地震力作用方向上的水平尺度的5%的乘積。
- 2. 每一樓層的位移乘子 η ,為該樓層樓板上所有位置的最大位移與平均位移的比值 $(\delta_{\max}/\delta_{avg})$ 。
- 除非以下兩種情形之一成立,否則必須考慮由意外扭矩所引致而增加的力量與位 移。第一種情形是意外扭矩小於實際扭矩的25%;第二種情形是由施加的載重與意 外扭矩所造成的每一樓層的位移乘子71均小於1.1。進行線性分析時,由意外扭矩所

引致的力量與位移必須再乘上因子A, 如下所示:

$$A_x = \left(\frac{\eta}{1.2}\right)^2 \le 3.0$$

其中位移乘子η是由總扭矩所造成,並且在任一樓層的η值必須大於1.2。

表 2-2 及表 2-3 分別是現行臺灣建築物耐震設計規範、美國 IBC 2012 規範及歐盟 Eurocode 8 有關平面及立面不規則性判定原則之比較:

表 2-2 臺灣、美國及歐盟有關立面不規則性判定原則之比較

	臺灣	美國 IBC	Eurocode 8		
勁度不規則性—— 軟層	該層之側向勁度低於其 上三層平均勁度之 80%				
勁度不規則性— 極軟層	極軟層者係指該層之側 者之 60%或其上三層平	向勁度低於其上一層 ·均勁度之 70%	退縮控制		
質量不規則性	任一層之質量,若超過 者	其相鄰層質量的 150%	的 150%		
立面幾何不規則 性	任一層抵抗側力結構系 其相鄰層者之130%以_				
抵抗側力的豎向 構材立面內不連 續	抵抗侧力的豎向構材立 構材長度者	某樓之磚牆抗剪強 度若大於其上層的			
強度不連續性— 弱層	該層強度與該層設計層 層比值 80%者	0.1 倍,則須放大地 震力			
強度不連續性— 極弱層	無	比值低於其上層比 值 65%者			

(資料來源:本研究整理)

表 2-3 臺灣、美國及歐盟有關平面不規則性判定原則之比較

	臺灣	美國	Eurocode 8
扭轉不規則性	沿地震力方向最大側邊層變位大於兩側邊平 均層變位的 1.2 倍以上		區域在地板輪廓和 包圍地板的凸多邊
具凹角性	超過凹角部分之結構尺 總長之15%以上	迢過凹角部分之結構尺寸大於沿該方向結構 息長之15%以上	
橫隔版不連續性	橫隔版具有切角或開孔其面積超過全部面積 50%以上者,或兩層間有效橫隔版勁度之變 化超過50%者。		平面最大尺度比 L _{max} /L _{min} ≦4
面外之錯位性	側向力傳遞之路徑具不 有面外錯位者	連續性,如豎向構材	$e_{ox} \leq 0.3 r_x$ 樓板迴轉半徑 $l_x \leq r_x$

	臺灣	美國	Eurocode 8
非平行結構系統	豎向側力抵抗構材不平 系統之兩正交主軸者	行或對稱於側力抵抗	區域

(資料來源:本研究整理)

◆ 側向勁度文獻回顧

由近期地震災害的勘查報告中,因為結構系統不規則或非結構元件損害造成的傷亡 使得結構系統規則與否成為日漸重視的課題。不論臺灣,美國,歐洲之耐震規範也都針 對規則與不規則建築物有不同之設計要求。期使在不規則構造中,增加更多之分析深度 與設計強度。在眾多導致不規則之因素中,結構側向勁度之垂直分布均勻亦列為重要指 標之一。以臺灣耐震設計規範(2006)為例:

勁度不規則性-軟層,軟層者係指該層之側向勁度低於其上一層者之 70%或其上三 層平均勁度之 80%。結構體如檢討有軟層,必須改採用動力反應譜分析,以求取不規則 構造之動力特性。

勁度不規則性-極軟層,極軟層者係指該層之側向勁度低於其上一層者之 60%或其 上三層平均勁度之 70%。規範不允許。

但各國規範中對於各樓層勁度之求取並無明確說明,業界求取的方式亦有多種。因 多自由度之勁度為多維矩陣,如單以對角線勁度矩陣來定義,則各層之勁度為僅僅單位 力作用於該樓層,其他各層無外力時之樓層位移的倒數。但實際情形工程師所擔心的是 在地震外力作用下是否有相對軟層,如只限制該樓層才有外力難免過於嚴謹,是故一般 樓層勁度求取的廣義方式常如圖 2-12。其中樓層的單位外力改換成該樓層所受剪力和, 而位移為該樓層之相對位移[ETABS 2013]。

圖 2-12 有限元素分析程式常用樓層勁度求取法 (資料來源: ETABS 2013)

以上之作法在現今有限元素程式廣泛運用的時代相當常見,但在設計初期,或耐震 初步評估快篩程序,簡易算法應仍有助益

隨著強梁弱柱或弱柱強梁之變形型態不同,一般結構受側力作用變形常可分類為剪 力型態及撓曲型態兩類(圖 2-13)。當梁之勁度高於柱勁度時,變位主要來自於柱之彎矩 變形,反曲點位在柱高之中點;反之,當柱勁度高於梁時,變形類似於直立柱受側力產 生之懸臂梁,柱所受彎矩愈往基面愈高,反曲點不一定在中央,而梁產生大量的撓曲變 形。一般變形多介於兩者間之組合。

圖 2-13 構架受側力變形分類 (資料來源: Caterino et. al 2013)

各樓層之側向勁度可視為每一根柱之勁度總和,而每根柱勁度可記為:

$$k_{ij} = \alpha \frac{12EI_{ij}}{h_i^3}$$

其中 *I_{ij}*為第 *i* 層第 *j* 根柱之二次斷面模數, *h_i*表第 *i* 層樓高, α 為一係數, 其值約介於 0.25~1.0 間,當變形模式接近剪力型態, α接近 1.0,反之撓曲型態α接近 0.25。 過去許多學者文獻說明如下: (一)Heidebrecht and Stafford Smith (1973)之樓層勁度近似法

Smith 假定梁柱之反曲點均位於中點,因此每根柱之次模型為上層之半加上下層之 半,而梁之模型亦為左右之半(圖 2-14),此時α可計為

圖 2-14 Heidebrecht 樓層勁度次構架示意圖 (資料來源: Heidebrecht and Stafford Smith 1973)

(二)Paulay and Priestley (1992)之樓層勁度近似法

反曲點之假設與 Heidebrecht 相同,均位於梁柱跨距之中點,次模型與前者不同的 是柱為樓層全高,除考慮當層梁之撓曲勁度又增列下層樓梁之勁度,次結構表示如圖 2-15。

圖 2-15 Pauley 樓層勁度次構架示意圖 (資料來源: Paulay and Priestley 1992)

其中 $k_i = I_i/l_i$,分別代表第i個梁或柱的二次彎矩斷面模數除以桿件全長,前述 α 可定義 為 $\alpha = K/(K+2)$,而K(又稱之為梁柱勁度比),定義為 $K = (k_1 + k_2 + k_3 + k_4)(2k_c)$ 。

(三)Cosenza and Caterino (Caterino et. al 2013)之樓層勁度近似法

類似 Paulay 的次模型, Cosenza 建立另一種次模型涵蓋所考慮樓層外, 柱又向上及向下各考慮到反曲點的高度(圖 2-16)。

圖 2-16 Cosenza 樓層勁度次構架示意圖 (資料來源: Caterino et. al 2013)

另又參考 Muto (1965)求取無因次化參數 η(如圖 2-17)推導柱反曲點高度,進而建立 α值可以下式表示:

圖 2-17 Muto 建議柱反曲點高度之無因次參數 (資料來源: Muto 1965)

$$\alpha = \frac{1}{1 - 3\left(1 + \frac{2h_1}{h}\right)\left[1 - \left(1 + \frac{EI_c\left(h + 2h_2\right)}{A\left(2hh_1 + h^2\right)}\right)\right]\left[\frac{\frac{h}{EI_c} + \frac{1}{B}}{\frac{h}{EI_c} - \frac{EIc}{ABh}}\right]}$$

$$\ddagger \Psi A = \left(\frac{EI_c}{h} + \frac{6EI_{b3}}{b_1} + \frac{6EI_{b4}}{b_2}\right); B = \left(\frac{EI_c}{h} + \frac{6EI_{b1}}{b_1} + \frac{6EI_{b2}}{b_2}\right) \circ$$

上式中當梁勁度遠高於柱勁度時,α接近1。另外對於1樓次模型,因柱底受完全圍束, 無下層梁勁度參數,且反曲點常發生於頂端,如圖2-18。

圖 2-18 Cosenza 一樓樓層勁度次構架示意圖 (資料來源: Caterino et. al 2013)

有關樓層勁度之簡易計算方式可參見附錄A,其中是假設各層之柱及牆構件上下均為固接,則樓層側向剛度可按圖A.2 至圖A.5 所對應之樓層類別據以計算其側向剛度。

第四節 檢核程序

◆ 局部構件檢核程序

欲確認建築物結構破壞發生之行為及降低災害造成人員傷亡,我們將檢核剪力、以 及強柱弱梁。為了解柱於破壞時,其行為為剪力主控或其他行為主控,故於分析時,將 施做剪力檢核,以確認其之破壞行為。

強柱弱梁的設計理念為避免柱先於梁破壞,因柱破壞時為無預警破壞,如今設計強 柱弱梁,則可排除柱構件破壞而導致樓層崩塌,減少地震災害造成人員傷亡之情形。

檢核對象為其樓層有挑高之情形、牆量突然極具縮減、或該建築物樓層之樓高較其 他樓層不一者致使其為軟弱層。對象常為一樓,因其一樓柱所承受之軸力為每層樓之重 量相加,故其所承受重量為最大值,各柱所承受軸力較其他樓層柱為大,故於考量上, 會先對於一樓進行檢核。

(一)柱破壞模式檢核

檢核 V_{μ} 與 V_{0i} 之比值可以知道該柱之行為由彎矩主控或剪力主控或為撓剪行為。 V_{μ} 之計算為柱頂及柱底彎矩相加並再與淨高相除,如式(2-1),故柱頂及柱底之彎矩受軸力作用後,彎矩愈大,則 V_{μ} 愈大; V_{0i} 則是由本本身考慮軸壓力之 V_c 及與 V_s 相加而得,

由式(2-3)知若受軸力愈大,則混凝土抗剪強度亦愈高。其中 $\frac{V_{pi}}{V_{0i}} \leq 0.6$ 表示其行為為撓曲

主控、 $0.6 < \frac{V_{pi}}{V_{0i}} \le 1.0$ 示其破壞行為是撓剪行為, 而 $\frac{V_{pi}}{V_{0i}} > 1.0$ 為剪力行為。故以下列出其檢核程序:

$$V_{pi} = \frac{M_{\text{IIII}} + M_{\text{IIIIII}}}{l_n}$$
(2-1)

$$V_{0i} = V_c + V_s \tag{2-2}$$

$$V_c = 0.53(1 + \frac{N_u}{140A_g})\sqrt{f'_c}b_w d$$
(2-3)

其中 N_u 為柱受壓力值,單位為kgf; A_g 為混凝土外圍所包含之面積,單位為 cm^2 ; f'_c 為混凝土設計抗壓強度,單位為 kgf/cm^2 ; b_w 為混凝土寬度,單位為cm; d為有效深度,單位為cm。

$$V_s = \frac{A_v f_{vt} d}{s}$$
(2-4)

其中 A_i 為待求方向之箍筋數量,單位為 cm^2 ; f_{yt} 為箍筋抗拉強度,單位為 kgf/cm^2 ; S為箍筋間距,單位為cm。

依據結構物建模後可以得到結構物的重量,或於 PSERCB 提供建議值(表 2-4)再乘 上樓地板面積即為結構物重量。再除以提供垂直力之總斷面積得其每單位之垂直力,每 單位垂直力乘上該柱之面積即為該柱所受之軸壓力。由式(2-3)及式(2-4)相加可得 V_n ;柱 端彎矩相加除上淨高得出 V_{pi} (式(2-1)),兩者之比值 V_{pi}/V_{0i} 即可判別行為剪力控制、彎 矩控制亦或撓剪控制,流程圖如圖 2-19 所示:

	5 樓以下建築物: 1.2tf/m ²
臺灣省結構工程技師公會	12 樓以上建築物: 1.4 <i>tf / m²</i>
	5樓至12樓建築物:建議以內插法求出評估值。
	5 樓以下建築物: 1.1 <i>tf / m²</i>
中華民國建築師公會 全國聯合會	12 樓建築物:1.3 <i>tf/m</i> ²
	17 樓建築物:1.5 <i>tf/m</i> ²
	其他樓層:建議以內插法求出評估值。
中華民國土木技師公會	5 樓以下建築物: 1.25f/m ²
全國聯合會	6至12樓建築物:1.35tf/m ²

表 2-4 建築物樓地板單位靜載重建議值

(資料來源:PSERCB 網站)

圖 2-19 剪力檢核流程 (資料來源:本研究整理)

(二)強柱弱梁檢核

強柱弱梁在結構耐震設計中相當重要,為避免柱先於梁破壞,因其梁破壞為局部 性,屬構件破壞;而柱破壞將危害整體結構,使結構物產生坍塌,使後果產生非預期性 之破壞。為保證柱子相對於梁更加安全,故須強柱弱梁。

依據混凝土結構設計規範(ACI 318-08 2008),對於強柱弱梁之規定為:接頭處各柱 考慮軸壓力之計算彎矩強度總和,不小於接頭處各梁之計算彎矩強度總和之 1.2 倍,如 式(2-5),流程圖如圖 2-20 所示:

$$\sum M_{nc} \ge 1.2 \sum M_{nb} \tag{2-5}$$

圖 2-20 強柱弱梁檢核流程 (資料來源:本研究整理)

第五節 現有結構耐震初步評估方法介紹

現今之耐震設計規範經由長年來多次修訂,諸多老舊建築物之耐震能力多不符合現 今耐震設計規範。若這些建築物經由詳細耐震詳評估,將需花大量時間及金錢,故今為 解決時間及金錢上之問題,開發了初步評估。初步評估僅需短時間即可完成,為一種簡 單、快速、經濟、有效、具鑑別力及客觀之方法。目前常見之初步評估方法有鋼筋混凝 上結構耐震能力初步評估之應用平台(Preliminary Seismic Evaluation of RC Building, PSERCB)、街屋之初步評估及中高樓層初步評估。

(-)PSERCB

PSERCB 讓建築結構之耐震能力以分數呈現,讓安全程度一目了然,讓使用者可以 藉由此平台了解了哪些建築物耐震能力較差進而進行耐震詳細評估或補強。

PSERCB 依據定性評估及定量評估為兩大基礎,其總分若大於 60 分,表示此建築 物耐震能力大有問題或進行拆除;分數為 30 分至 60 分,則表是該建築物耐震能力有疑 慮,建議補強或進行詳細評估;若分數低於 30 分則表示此建築物之耐震能力尚無疑慮。

表 2-5 為耐震能力初步評估表格,分為定性評估及定量評估:

一、結構系統

(一)靜不定程度

較低的靜不定度於地震來時,愈容易發生扭轉之情形。故愈高的靜不定度對於結構 較為優良,故跨數愈高,權重愈小。

(二)地下室面積比

r_a=地下室面積與建築面積之比值,地下室面積愈大,表示當地震來臨時,承受土 壓力較小,較不易發生差異沉陷,故地下室較建築面積大時,權重會較小。 (三)平面對稱性

如建築物平面有構材配置不對稱,很有可能產生多餘之偏心量,當地震發生時,可 能產生大量扭轉,對結構物產生破壞。

(四)立面對稱性

建築物於立面有顯著之退縮或如剪力牆至某一層中止,造成結構立面有大量之勁度 變化,不易掌握動態反應,始結構物之耐震安全受到疑慮。

(五)梁之跨深比

為梁之淨跨度與有效梁深之比值,其值於大,表示發生彎距降伏的機會亦愈大,即 結構韌性愈佳。

(六)柱之高深比

柱淨高與沿地震力方向方向之柱深比值,值愈大表示發生彎矩降伏機會愈大, 韌性 愈加。

(七)軟弱層顯著性

因住商大樓常因商業用途,經常使低樓層之牆並無延續其高樓層之牆,造成中斷, 地震來襲時,使低樓層產生塑鉸,結構體破壞。

二、結構細部

(一) 塑鉸區箍筋細部(由設計年度評估)

現今耐震設計規範嚴格規定箍筋之圍束配置情形,由於早期規範尚未完整,故於評 分時,分數亦較高。

(二)窗台、氣窗造成短柱嚴重性

由於開窗,可能使得柱形成短柱,受力行為會從原本之彎矩破壞,轉而剪力破壞, 使結構體韌性大為降低。

31

中高樓層建築軟弱層及扭轉不規則效應評估研究

(三)牆體造成短梁嚴重性

有時需留走道空間,隔間非結構牆未於兩柱間填滿,進而產生短梁,短梁會引致高 剪力,進而降低結構體耐震能力。

三、結構現況

(一)柱之損害程度

由於柱混凝土保護層剝落等會影響結構,將損害列入評分標準。

(二)牆之損害程度

由於牆混凝土保護層剝落等會影響結構,將損害列入評分標準。

(三)裂縫鏽蝕滲水程度

亦即混凝土產生裂縫,水氣進入,使內部鋼筋產生鏽蝕,進而降低強度。

- 四、定量評估
- (一)475年耐震能力初步評估

一樓之牆與柱抵抗地震之水平力及變形,進而估計容許韌性容量,即可評估現有建築物耐震能力 A_{c1} ,在與建築物耐震設計規範規定之 50 年使用期限內 10%超越機率即地震回歸週期 475 年之耐震需求 A_{475} ,即可知道是否有耐震不足或具餘裕。

(二)2500年耐震能力初步評估

一樓之牆與柱抵抗地震之水平力及變形,進而估計容許韌性容量,即可評估現有建築物耐震能力 A_{c2} ,在與建築物耐震設計規範規定之 50 年使用期限內 2%超越機率即地震回歸週期 2500 年之耐震需求 A_{2500} ,即可知道是否有耐震不足或具餘裕。

建築物耐震能力 A_{c1} 、 A_{c2} ,以研究探討 RC 牆(j=1)、磚牆(j=2)與柱(j=3)等構件各 自強度與韌性充分發揮時,對應其餘構材之強度與韌性折減係數,利用式(2-6)至式(2-11) 推求之。

一樓極限剪力強度 V 時,應給予適當折減係數如下式:

$$V_{uj} = (C_{vcj} \sum V_{coli} \times N_{ci} + C_{vsj} \sum V_{swi} \times N_{swi} + C_{vbj} \sum V_{bwi} \times N_{bwi}) \times \phi_{pl} \times \phi_{fa}; j = 1 \sim 3$$
(2-6)

上式中 $\sum V_{bwi} \times N_{bwi} = \sum V_{bw4i} \times V_{bw4i} + \sum V_{bw3i} \times V_{bw3i} + \sum V_{bw2i} \times V_{bw2i}$; V_{coli} 為桂剪力強度; V_{swi} 為 RC 牆剪力強度; V_{bwi} 為磚牆剪力強度; N_{ci} 為實際柱子數量; N_{swi} 為 RC 牆體數 量; N_{bwi} 為磚牆數量; C_{vcj} 為桂之水平剪力強度係數; C_{vsj} 為 RC 牆之水平剪力強度係數; C_{vbj} 為磚牆之水平剪力強度係數; ϕ_{pl} 為平面對稱性折減修正因子,如表 2-6; ϕ_{fa} 為立面對稱性折減修正因子,如表 2-7。

加權平均韌性容量經乘上各自對應係數可表示如下:

$$R_{j}^{*} = \frac{C_{Rcj} \times R_{col}(C_{vcj} \sum V_{coli} \times N_{ci}) + C_{Rsj} \times R_{sw}(C_{vcj} \sum V_{swi} \times N_{swi}) + C_{Rbj}R_{bw}(C_{vbj} \sum V_{bwi} \times N_{bwi})}{C_{vcj} \sum V_{coli} \times N_{ci} + C_{vsj} \sum V_{swi} \times N_{swi} + C_{vbj} \sum V_{bwi} \times N_{bwi}}$$
(2-7)

上式中 C_{Rcj} 為柱之韌性折減係數; C_{Rsj} 為 RC 牆之韌性折減係數; C_{Rbj} 為磚牆之韌性折減條數; R_{col} 、 R_{sw} 、 R_{hw} 如表 2-8 所示,與設計年度有關。

(1) 當 RC 牆充分發揮強度與韌性時(j=1)

圖 2-21 顯示,當 RC 牆韌性充分發揮時,強度為 0.85;磚牆韌性比發揮其韌性容量的 45%,水平剪力強度為 0.95;構架韌性比發揮其韌性容量的 35%,水平剪力強度為 0.65。因此,可將其訂定 C_{w1} 為 0.65、 C_{Rc1} 為 0.35、 C_{vs1} 為 0.85、 C_{Rs1} 為 1.0、 C_{vb1} 為 0.95、

 C_{R01} 為 0.45 共六個係數。

(2) 當磚牆充分發揮強度與韌性時(j=2)

圖 2-21 顯示,當磚牆韌性充分發揮時,強度為 0.85; RC 牆韌性比發揮其韌性容量的 0%,水平剪力強度為 0;構架韌性比發揮其韌性容量的 70%,水平剪力強度為 0.95。 因此,可將其訂定 C_{w2} 為 0.95、 C_{Rc2} 為 0.7、 C_{w2} 為 0、 C_{Rc2} 為 0、 C_{b2} 為 0.85、 C_{Rb2} 為 1.0 共六個係數。

(3) 當構架充分發揮強度與韌性時(j=3)

圖 2-21 顯示,當構架韌性充分發揮時,強度為 1.0; RC 牆韌性比發揮其韌性容量的 0%,水平剪力強度為 0;磚牆韌性比發揮其韌性容量的 0%,水平剪力強度為 0。因此,可將其訂定 C_{vc3} 為 1.0、 C_{RS} 為 1.0、 C_{vs3} 為 0、 C_{RS} 為 0、 C_{vb3} 為 0、 C_{RB} 為 0、 C_{RB} 為 0 共六個係數。

經由上述即可擬定出計算建築物一層極限剪力強度V_{uj}與加權平均韌性容量各自之 係數如(資料來源: PSERCB 網站)

表 2-所示:

根據建築物耐震設計規範及解說計算可得其設計地震力 V_{100} ,考慮新設計建築物之 極限剪力強度為 $(V_{100})_u = V_{100} \times 1.4 \alpha_v$ 。受評估建築物之降伏地表加速度 A_{vi} ,因受建築物 中之構件破壞順序不同,故分別以下式計算A_{vi}:

$$A_{yj} = \frac{V_{uj}}{(V_{100})_u} \frac{A_{475}}{F_u}; j = 1 \sim 3$$
(2-8)

上式中根據建築物耐震設計規範及解說可由週期與韌性容量 R 計算得 F_u,此F_u與 j 無 關, A₄₇₅ 為地震回歸期為 475 年之水平地表加速度,定義如下

$$A_{475} = 0.4S_{DS} \tag{2-9}$$

由下式計算獲得 R_{ai}^{*} ,並且根據建築物耐震設計規範及解說獲得 F_{ui}^{*}

$$R^{*}_{aj} = \begin{cases} 1 + \frac{(R^{*}_{j} - 1)}{1.5} (- \frac{1}{2} \times 1 \times 1) \\ 1 + \frac{(R^{*}_{j} - 1)}{2.0} (\frac{1}{2} \times 1 \times 1) \end{cases}; j = 1 \sim 3 \end{cases}$$
(2-10)

建築物具構架與 RC 牆時, RC 牆主要靠強度抵抗地震, 至 RC 牆壞掉後, 靠構架強 度與韌性抵抗地震, 如果後者的 A, 較大, 其耐震能力為後者主導。如果 RC 牆主導的 A。 較大,則 RC 牆壞掉後,構架能抵抗的 A。較小, 表示 RC 牆壞掉後,構架也跟隨壞掉, 故 A,以 RC 牆主導。最後計算建築物耐震能力 A.應取大值, 如下式計算:

$$A_{c} = \max\left[A_{yj}F_{uj}^{*}; j = 1 \sim 3\right]$$
(2-11)

上式中 F_{uj}^{*} 於計算475年地震回歸期之耐震能力 A_{c1} 由式(2-7)與式(2-10)求得 R_{aj}^{*} 後依規範結構系統地震力折減係數 F_{u} 之公式計算之;計算2500年地震回歸期之耐震能力 A_{c2} 時, 由式(2-7)及式(2-10)求得 R_{j}^{*} 後依規範結構系統地震力折減係數 F_{u} 之公式計算之。其中 475年地震回歸期之耐震能力 A_{c1} 係用容許韌性容量 R_{aj}^{*} ,2500年地震回歸期之耐震能力 A_{c2} 係用韌性容量 R_{j}^{*} 。

項次		項目	配分	評估內容	權重	評分
B101		靜不定程度	5	□單跨(1.0) □雙跨(0.67) □三跨(0.33) □四跨以上(0)		
B102	紶	地下室面積比,ra	2	$0 \leq (1.5 - r_a)/1.5 \leq 1.0$; r_a :地下室面積奧建築面積之比		
B103	减横	平面對稱性	3	□不良(1.0) □尚可(0.5) □良(0)		
B104	20	立面對稱性	3	□不良(1.0) □尚可(0.5) □良(0)		
B105	統	梁之跨深比b	3	営 b < 3 · w = 1.0 ; 営 3 ≤ b < 8 · w = (8 − b) / 5 ; 営 b ≥ 8 · w = 0		
B106		柱之高深比c	3			
B107		軟弱層顯著性	3	□高(1.0) □中(0.67) □低(0.33) □無(0)		
D 200	結	塑鲛匾箍筋细部(由設計年	5	□63年2月以前(1.0) □63年2月至71年6月(0.67) □71年6月至86年5月(0.33) □86年5月		
D208	樽	度評估)	2	以後(0)		
B209	綯	窗台、氣窗造成短柱嚴重性	3	□高(1.0) □中(0.67) □低(0.33) □無(0)		
B210	部	牆體造成短梁嚴重性	3	□高(1.0) □中(0.67) □低(0.33) □無(0)		
B311	紺	柱之損害程度	2	□高(1.0) □中(0.67) □低(0.33) □無(0)		
B312	構	牆之損害程度	2	□高(1.0) □中(0.67) □低(0.33) □無(0)		
B313	現況	裂缝鏽蚀渗水等程度	3	□高(1.0) □中(0.67) □低(0.33) □無(0)		
B414	定	475年耐震能力初步評估	30	當 $\frac{A_{e1}}{IA_{e12}} \le 0.25$, w=1;當 $0.25 \le \frac{A_{e1}}{IA_{e12}} \le 1$, w= $\frac{4}{3} \left(1 - \frac{A_{e1}}{IA_{e12}} \right)$;當 $\frac{A_{e1}}{IA_{e12}} > 1$, w=0 (詳參、定量評估表)		
	튤			$A_{c1} = \min[A_{c1,x}, A_{c1,y}]$		
B415	分析	2500年耐震能力初步評估	30			
				$A_{c2} = \min[A_{c2,x}, A_{c2,y}]$		
分数	悤言	ł	100	评分總計	(P):	

表 2-5 耐震能力初步評估表

(資料來源:PSERCB 網站)

圖 2-21 側推分析無因次化結果(RC 牆與磚牆終止點皆為 0.85 的強度) (資料來源: PSERCB 網站)

平面對稱性於定量評估基底剪力強度折減修正係數 ϕ_{pl}					
不良 尚可 良					
修正係數	0.85	0.95	1.0		

表 2-6 平面對稱性折減修正因子 ϕ_{pl}

(資料來源:PSERCB 網站)

表 2-7 立面對稱性折減修正因子 ϕ_{ia}

立面對稱性於定量評估基底剪力強度折減修正係數 $\phi_{\!_{\!$					
建築物總樓層數 不良 尚可 良					
七樓(含)以上	0.85	0.95	1.0		
七樓至二樓(含)	1.0				
一樓 1.0 1.0 1.0					

(資料來源:PSERCB 網站)

表 2-8 R_{col} 、 R_{sw} 、 R_{bw} 之建議表

設計年度	R _{col}	$R_{_{SW}}$	R_{bw}
63年2月以前	2.4	2.0	3.0
63年2月至71年6月	3.2	2.0	3.0
71年6月至86月5月	4.0	2.0	3.0

設計年度	R_{col}	$R_{_{SW}}$	R_{bw}
86年5月以後	4.8	2.0	3.0

(資料來源:PSERCB 網站)

表 2-9 $C_{vcj} \cdot C_{Rcj} \cdot C_{Rsj} \cdot C_{vsj} \cdot C_{vbj} 與 C_{Rbj}$ 之建議表

į,	i	1	2	3
V_{coli}	$C_{_{vcj}}$	0.65	0.95	1
	C_{Rcj}	0.35	0.70	1
V _{swi}	C_{vsj}	0.85	0	0
	C_{Rsj}	1	0	0
V _{bwi}	C_{vbj}	0.95	0.85	0
	C_{Rbj}	0.45	1	0

(資料來源:PSERCB 網站)

(二)街屋初步評估

典型街屋型態為整棟透天或為公寓式建築,其樓層數通常為6層樓以下之建築,常為評估 RC 鋼筋混凝土之建築及加強磚造之建物。一般此類建築物因地震來臨時常為沿騎樓柱方向破壞,破壞模式多為底層坍塌。評分方式為耐震指標 I_s; I_s大於 100 分代表 耐震能力暫無疑慮;小於 100 分代表耐震能力有疑慮,需進行詳細評估。

此方法為輸入資料含建物基本資料、藉由資料可查耐震設計規範與解說(2006),得 S_s^D 、 S_1^D ;地盤種類藉由地表面下 30 公尺之土層剪力波速決定,依序分類為第一類地盤, $V_{s30} \ge 270(m/s)$ 、第二類地盤, $180 \le V_{s30} \le 270(m/s)$ 、第二類地盤, $V_{s30} < 180(m/s)$,藉由地盤種類查表得知工址放大係數 F_a ,以及由距離地盤之距離來查表得知設計地震之調整因子,再由耐震規範公式求出工址短週期設計水平譜加速度係數,如式(2-12):

$$S_{DS} = F_a N_a S_S^{\ D} \tag{2-12}$$

其中 S_{DS} 為工址短週期設計水平譜加速度係數; N_a 為反應譜等加速度段之近斷層調整因子; F_a 為短週期結構之工址放大係數; S_s^D 為震區短週期設計水平譜加速度係數。求出 S_{DS} 並推求出耐震需求 A_b

$$A_T = 0.4S_{DS} \tag{2-13}$$

藉由輸入各層樓地板面積及一樓柱量、牆量,便可得等效柱量比:

$$CFR = \left(\sum A_c + 0.36 \sum A_{bw3} + 0.45 \sum A_{bw4} + 1.36 \sum A_{rcw3} + 2.38 \sum A_{rcw4}\right) / A_f$$
(2-14)

其中 A_c 為一樓柱斷面積,單位為 cm^2 ; A_{bN3} 為一樓三面圍束磚牆面積,單位為 cm^2 ; A_{bN4} 為一樓四面圍束磚牆面積,單位為 cm^2 ; A_{rc3} 為一樓三面圍束 RC 牆面積,單位為 cm^2 ; A_{rc4} 為一樓四面圍束 RC 牆面積,單位為 cm^2 ; A_f 為 $A_c + A_{bN3} + A_{bN4} + A_{rc3} + A_{rc4}$,單位為 cm^2 。由等效柱量比可得性能地表加速度 A_p :

$$A_{p} = (100CFR - 0.4 + 0.05N_{f})/(1.62 - 0.24N_{f})$$
(2-15)

其中 N_f 為樓層數,此處為6層樓以下。

藉此我們即可得基本耐震性能 E 如下所示:

$$E = A_p / A_T \tag{2-16}$$

◆ 調整因子調查項目:

調整因子調查項目分表為三角窗轉角騎樓 q_1 、軟弱層顯著性 q_2 、興建年代 q_3 、短柱顯著性 q_4

(一)三角窗扭轉效應 q1

可分為雙向有騎樓及僅單向有騎樓或全無騎樓,雙向接有騎樓會放大其扭轉效應, 故因子 *q*₁ 為 0.9,其值將較單向騎樓或全無騎樓 1.0 小,折減較多。

 $(二) 軟弱底層 q_2$

分別為底層有無牆體中段, 牆體於低樓層中斷將會使勁度不一, 使結構軟弱, 故折減係數為 0.9 較無牆體中斷 1.0 小。

(三)興建年代*q*₃

其將 1974 年前 q₃ 設為 0.9,1975 年至 1982 年為 0.95,1983 年至 1999 年為 1.0,2000 年後為 1.05,其值年代愈久,折減愈多。 (四)短柱顯著性 q₄

極短柱: $H_n/D≤2(H_n為柱之淨高; D 為柱深), 調整因子<math>q_4$ =1-極短柱占整體柱量的比例,故短柱愈多,折減亦愈多,強度低。

將所有調整因子相乘再與基本耐震性能E相乘即為耐震指標 I_{s} :

$$I_{\rm s} = E \times Q \tag{2-17}$$

其中 $Q=q_1 \times q_2 \times q_3 \times q_4$; I_s 大於 100 分代表耐震能力暫無疑慮;小於 100 分代表耐震能力有疑慮,需進行詳細評估。

(三)中高樓層初步評估

為建立一套適用於中高樓層之快速且簡單之初步評估,張筑媛、劉俊秀等人(2017) 提出以簡易詳細評估分析多棟結構得到其側向強度、單位樓地板重、韌性容量等參數, 再藉由套裝軟體 ETABS 進行側推分析以驗證簡易詳細評估之合理性。藉由初步評估可 知其建築結構有無疑慮,再決定是否進行詳細評估,流程圖如圖 2-22。

考量許多中高樓層建築為民國 88 年以前興建的老舊建築,考量當時耐震設計規範 並未強調韌性設計、震區之劃分與地震力之計算與現今不同等因素,且老舊建築普遍有 弱柱強梁的現象,故本評估程序主要假設建築物之要破壞在底層。

其研究基本假設為#6~#10 鋼筋降伏強度為 4200kgf / cm², #3~#5 鋼筋降伏強度為

2800kgf/cm²,由於以簡易詳細評估分析案例時,混凝土抗壓強度是採用抗壓強度試驗

值,使用之試驗值範圍在100~280kgf/cm²,雖然混凝土抗壓強度數值差異較大,但 也希望能藉此反應出中高樓層建築物之實際情形。

此種方法只需藉由結構物之平面圖及所在位置,得知其平面尺寸、柱面尺寸、及牆 面尺寸就可推算極限基底剪力及重量;中高樓層極限基底剪力強度可透過下式計算

$$V_{bs} = \sum_{j=1}^{N_{CE}} \tau_{CE} A_{CE} + \sum_{j=1}^{N_{CI}} \tau_{CI} A_{CI} + \sum_{j=1}^{N_{BW3}} \tau_{BW3} A_{BW3} + \sum_{j=1}^{N_{BW4}} \tau_{BW4} A_{BW4}$$
(2-18)

其中 T_{CE} 、 T_{C} 、 T_{BV3} 、 T_{BV4} 分別代表外柱、内柱、三面圍束磚牆及四面圍束磚牆之單位 面積側向強度,為垂直構件之極限基底剪力除上垂直構件斷面積值,其藉由分析其建築 結構加權平均歸納平均後而得之單位面積側向強度。 T_{CE} 為外柱單位斷面積側向強度, 其值為143.82-7.92 N_f (tf/m^2); T_{CI} 為內柱單位斷面積側向強度,其值為131.77-3.7 N_f (tf/m^2); T_{BVB} 為三面圍束磚牆斷面積側向強度,其值為 29.78(tf/m^2); T_{BVA} 為四面圍 束磚牆斷面積側向強度,其值為 37.9(tf/m^2)。此處 N_f 適用樓層數為 8 至 12 樓。除此 之外, A_{CE} 為一樓處外柱面積,單位為 m^2 ; A_{BV4} 為四面圍束磚牆斷面積,單位為 m^2 ; A_{BV3} 為 三面圍束磚牆斷面積,單位為 m^2 ; A_{BV4} 為四面圍束磚牆斷面積,單位為 m^2 。

張筑媛、劉俊秀等人(2017)亦提出單位斷面積側向強度之求法可用 $\tau_j = \frac{\beta_j V_{c,j}}{A_j}$ 求得,其

中 $V_{c,j}$ 為簡易詳細評估求之其垂直構件之側向強度, β_j 為側向強度折減因子,若其為一樓剪力破壞,則 β 為0.85;若為一樓撓曲破壞,則為1.0;若為其他層撓曲破壞,則用0.85。

依照建築物耐震設計規範及解說,結構最小設計水平總橫力,定義如下:

$$V = \frac{I}{1.4\alpha_{y}} \left(\frac{S_{aD}}{F_{u}}\right)_{m} W$$
(2-19)

I為用途係數,若為公眾適用之建築物,用途係數取I=1.25,因多為住宅,故用途係數 取I=1.0; α 為起始降伏地震力放大係數; F_u 為結構系統地震力折減係數;W為建築物

總重量。

高樓層之單位樓地板面積重,考量低樓層梁柱構件尺寸較大以及將屋突重量放置頂 樓計算,故建議分為頂樓 W_{RF} 、其他樓層(三樓以上) W_{iF} 及二、三樓 W_{LF} 三種單位樓地板 面積重,為案例分析將各樓層單位樓地板面積重平均後可得 W_{RF} =1.7 f/m^2 、 W_{iF} =1.4 f/m^2 (i=4,5... N_F)及 W_{LF} =1.5 f/m^2 (LF=2,3F),故W可由下式計算:

$$W = \sum_{2}^{3} W_{LF} A_{LF} + \sum_{i=4}^{N_F} W_{iF} A_{iF} + W_{RF} A_{RF}$$
(2-20)

其中 W_{RF} 為屋頂每平方重量,其值為1.7 tf/m^2 ; W_{iF} 為三層樓以上每平方單位重量,其值為1.4 $tf/m^2(i=4,5...N_F)$; W_{LF} 為二、三層每平方單位重量,其值為1.5 $tf/m^2(LF=2,3F)$ 。

建築物基本振動週期T,單位為秒,可以下列經驗公式計算之: 1. 鋼構架構造物,無非結構剛性牆、剪力牆或加勁構材者: 鋼構造建築物

$$T = 0.085 h_n^{3/4} \tag{2-21}$$

鋼筋混凝土建築物、鋼骨鋼筋混凝土建築物及鋼造偏心斜撐建築物:

$$T = 0.07 h_r^{3/4} \tag{2-22}$$

其中 h, 為基面至屋頂面高度, 單位為公尺。

2. 其他建築物:

$$T = 0.050 h_n^{3/4} \tag{2-23}$$

依據耐震設計規範與解說(2006)[33],欲求址短週期設計水平譜加速度係數及震區 一秒週期設計水平譜加速度係數,可利用所在位置可利用建築物耐震設計規範得知水平 譜加速度係數等資料,如式(2-12)及式(2-24a):

$$S_{DS} = F_a N_a S_S^D \cdot S_{D1} = F_v N_v S_1^D$$
(2-24a)

$$S_{MS} = S_s^M F_a N_a \cdot S_{M1} = S_1^M F_v N_v$$
(2-25b)

 S_{D1} 為工址一秒週期設計水平譜加速度係數; S_{MS} 為工址短週期最大考量水平譜加速度 係數; S_{M1} 為一秒週期最大考量最大考量水平譜加速度係數; F_{v} 為反應譜等速度段之工 址放大係數; N_{v} 為反應譜等速度段之近斷層調整因子; S_{1}^{D} 為震區一秒週期設計水平譜 加速度係數。

工址設計水平加速度反應譜短週期與中長週期之分界決定方式如下:

$$T_0^D = \frac{S_{D1}}{S_{DS}}$$
(2-26a)

$$T_0^M = \frac{S_{M1}}{S_{MS}}$$
(2-27b)

依建築物耐震設計規範及解說,建築物座落之地盤(第一、二、三類地盤)可知工址 設計水平譜加速度係數如下:

$$S_{aD} = \begin{cases} S_{DS} \left(0.4 + \frac{3T}{T_0^D} \right), T \le 0.2T_0^D \\ S_{DS} , 0.2T_0^D \le T \le T_0^D \\ \frac{S_{D1}}{T}, T_0^D \le T \le 2.5T \\ 0.4S_{DS} , 2.5T_0^D \le T \end{cases}$$
(2-28a)

$$S_{aM} = \begin{cases} S_{MS}(0.4 + 3T / T_0^M), T \le 0.2 T_0^M \\ S_{MS}, 0.2T_0^M < T \le T_0^M \\ S_{M1} / T, T_0^M < T \le 2.5T_0^M \\ 0.4S_{MS}, T > 2.5T_0^M \end{cases}$$
(2-29b)

若工址位於臺北盆地,工址設計水平譜加速度係數則為:

$$S_{aD} = \begin{cases} S_{DS} \left(0.4 + 3T / T_0^{D} \right), & T \le 0.2 T_0^{D} \\ S_{DS}, & 0.2 T_0^{D} \le T \le T_0^{D} \\ S_{DS} T_0^{D} / T, & T_0^{D} \le T \le 2.5 T_0^{D} \\ 0.4 S_{DS}, & 2.5 T_0^{D} \le T \end{cases}$$
(2-30a)

$$S_{aM} = \begin{cases} S_{MS} (0.4 + 3T / T_0^M), T \le 0.2 T_0^M \\ S_{MS}, 0.2T_0^M < T \le T_0^M \\ S_{MS} T_0^M / T, T_0^M < T \le 2.5T_0^M \\ 0.4S_{MS}, T > 2.5T_0^M \end{cases}$$
(2-31b)

結構系統地震力折減係數 F_u與結構系統韌性容量 R 以及結構基本振動週期 T 有 關, R 值與抵抗地震力之各種結構系統有關。

若結構物之振動週期越長,越能發揮韌性,則其地震力折減係數越高。案例分析建築物之韌性容量平均為R=3.08。故建議中高樓層建築物之結構韌性容量使用R=3.08結構系統容許韌性容量R。與韌性容量R之關係如下:

一般工址與近斷層區域:
$$R_a = 1 + \frac{R-1}{1.5}$$

臺北盆地: $R_a = 1 + \frac{R-1}{2.0}$

(2-32)

結構系統地震力折減係數 F_u 與容許韌性容量 R_a 及結構基本週期T的關係式如下:

$$F_{u} = \begin{cases} R_{a} & ; \quad T \ge T_{0}^{D} \\ \sqrt{2R_{a}-1} + \left(R_{a} - \sqrt{2R_{a}-1}\right) \times \frac{T - 0.6T_{0}^{D}}{0.4T_{0}^{D}} & ; \quad 0.6T_{0}^{D} \le T \le T_{0}^{D} \\ \sqrt{2R_{a}-1} & ; \quad 0.2T_{0}^{D} \le T \le 0.6T_{0}^{D} \\ \sqrt{2R_{a}-1} + \left(\sqrt{2R_{a}-1} - 1\right) \times \frac{T - 0.2T_{0}^{D}}{0.2T_{0}^{D}} & ; \quad T \le 0.2T_{0}^{D} \end{cases}$$
(2-33)

求得
$$S_{aD}$$
與 F_u 後,即可得依下式修正 $\frac{S_{aD}}{F_u}$ 為 $\left(\frac{S_{aD}}{F_u}\right)_m$:

$$\left(\frac{S_{aD}}{F_{u}}\right)_{m} = \begin{cases} \frac{S_{aD}}{F_{u}}, \frac{S_{aD}}{F_{u}} \le 0.3\\ 0.52\frac{S_{aD}}{F_{u}} + 0.144, 0.3 \le \frac{S_{aD}}{F_{u}} \le 0.8\\ 0.7\frac{S_{aD}}{F_{u}}, 0.8 \le \frac{S_{aD}}{F_{u}} \end{cases}$$
(2-34a)

$$\left(\frac{S_{aM}}{F_{uM}}\right)_{m} = \begin{cases} \left(\frac{S_{aM}}{F_{uM}}\right) & ; \left(\frac{S_{aM}}{F_{uM}}\right) \le 0.3 \\ 0.52\left(\frac{S_{aM}}{F_{uM}}\right) + 0.144 & ; 0.3 \le \left(\frac{S_{aM}}{F_{uM}}\right) \le 0.8 \\ 0.7\left(\frac{S_{aM}}{F_{uM}}\right); 0.8 \le \left(\frac{S_{aM}}{F_{uM}}\right) \end{cases}$$
(2-35b)

重新整理後可得設計極限地震力,即為結構之耐震需求。 結構耐震容量需求比*R_{CD}(CDR)*定義為:

$$R_{CD} = \frac{V_{bs}}{I\left(\frac{S_{aD}}{F_u}\right)_m W}$$
(2-36a)

$$R_{CD,2500} = \frac{V_{bs}}{I(\frac{S_{aM}}{F_{uM}})_m W}$$
(2-37b)

為方便溝通,將耐震容量需求比放大100倍作為中高樓層建築物之基本耐震性能:

$$E = 100 R_{CD} \tag{2-38}$$

基本耐震性能為進行分析結構物是否安全評估之一項指標,以基本耐震性能 E 值是 否大於 100 分為評估標準,評估分數 E 大於 100 分表示並無疑慮;若 E 值小於 100,表 示建築物之耐震能力不足,須再進行詳細評估。

為求出 475 年及 2500 年之性能地表加速度 A_p ,故將其容量需求比 R_{CD} 乘上其工址目標性能地表加速度 A_r ,如式(2-33)、式(2-34)。
$$A_{p,475} = R_{CD,475} \times 0.4S_{DS} \tag{2-39}$$

$$A_{p,2500} = R_{CD,2500} \times 0.4S_{MS} \tag{2-40}$$

(資料來源:本研究整理)

第三章 建築結構特性篩檢指標應用及初評案例研討

第一節 11層住商混合大樓案例

1. 基本資料

位於臺南之地上 11 層樓鋼筋混凝土建築物,約於民國 83 年興建。屬住商混合大樓, 低樓層為商家,故在一樓處多為挑高設計,也有騎樓。由樓層平面圖(圖 3-1)可知,短向 處僅有一垮,結構贅餘度明顯少出很多,地震發生時,將由該方向主控。於調整因子上, 其平面並無凹角,無平面及立面不規則之情況,而其為住商混合大樓,低樓層為商業用 途,牆量可能較少,使牆量中斷不連續,形成軟弱層。相對於其他樓層,其勁度可能較 低,破壞較易集中於低樓層。建築物基本資料蒐集如表 3-1 所示:

圖 3-1 11 層樓結構平面圖(資料來源:本研究整理)

圖 3-2 結構立面圖 (資料來源:本研究整理)

圖 3-3 結構 3D 圖 (資料來源:本研究整理)

表 3-1 建築物基本資料

建築物名稱	11 層住商混合大樓案例
興建年代	民國 83 年
分期興建	無
構造型式	鋼筋混凝土造基礎為筏式基礎(單層版)
結構系統	RC 梁柱構架,磚牆隔間及外牆 RC 電梯牆
平面尺寸	一字型平面 BxL=9.2mx49.6m
建築規模	地面11層、地下1層
樓高(m)	35
基本振動週期	$0.8634 \sec (0.06 h_n^{0.75})$
大梁尺寸(cm)	70×50、60×40
柱尺寸(cm)	80×80 \ 60×100 \ 220×50
樓版(cm)	15 cm (1~11F)
現況用途	商場(1F)、住宅(2~11F)
總樓地板(m ²)	4817.12 (1FL~RFL)

2. 重量計算

(1)靜載重:

- ◆ 鋼筋混凝土單位體積自重 2.4 t/m³。
- ◆ 1B 磚牆 0.440 *t/m²*; 1/2B 磚牆 0.220 *t/m²*。

◆ 深、柱、樓板依各自斷面尺寸乘以各材質單位重量計算。

◆ 所有牆重依各自材料性質及厚度照實計算。

(2)活載重:

- 今 一般層住宅(2F~11F): 200 kgf/m²
- 今 一般層商場(1F): 300 kgf/m²

結構分析樓層重如表 3-2 所示:

樓層	柱重 (kgf)	梁重 (kgf)	RC 牆重 (kgf)	樓板重 (kgf)	磚牆重及 其他重量 (kgf)	合計 (kgf)
12FL	66840	138902	70749	183926	101527	561945
11FL	66840	138902	70749	183926	101527	561945
10FL	66840	138463	70749	183926	101966	561945
9FL	66840	138902	70749	183926	101527	561945
8FL	66840	138902	70749	183926	101527	561945
7FL	66840	138902	70749	183926	101527	561945
6FL	66840	138902	70749	183926	101527	561945
5FL	62103	140354	42294	183926	119540	548217
4FL	65076	150678	44319	183926	134985	578985
3FL	65133	149909	44358	183926	136165	579492
2FL	109847	148191	92082	183926	88582	622628
1FL	89667	189867	69899	191654	277958	819045
SUM	859707	1750873	788194	2214845	1468360	7081978

表 3-2 結構分析樓層重

3. 週期及質量貢獻比計算

結構週期及質量貢獻比計算如表 3-3 所示:

表 3-3 結構週期及質量貢獻比(資料來源:本研究整理)

Mode	Mode 方向		質量貢獻比(%)
1	Y向平移	1.216497	83.9636
2	X向平移	1.152052	65.2788
3	Z向扭轉	1.048161	69.8563

4. 規範側向力計算

依據標的物規模及興建設計年代,推估採用之規範及設計方法概述如下。 (1)設計規範:鋼筋混凝土設計規範。

(2)設計方法:鋼筋混凝土極限應力法(USD)

(3) 地震力規範:標的物 83 年興建,設計年代應為民國 81~82 年間

民國 71 年~86 年:設計地震力 V=ZKCIW

民國 71 年 6 月 15 日~民國 86 年 6 月建築技術規則設計地震力之規定:

V=ZKCIW;

其中 Z 為震區係數|(強震區 1.00、中震區 0.80、弱震區 0.60); K 為組構係數(由韌性優劣 區分為 0.67、0.80、1.00、1.33), K \geq 1.0 構材得不滿足韌性要求; C 為地震力係數(臺北 盆地之外地區公式說明)= $1/8\sqrt{T} \leq 0.15$; T 為建築物周期(sec)= 0.06 h_n^{0.75}(鋼筋混凝土 構架), h_n為建物高度; I 為用途係數(依重要度分別為 1.00、1.25、1.50); W 為建築物全 部靜載重, 倉庫書庫加 1/4 活載重水箱水池則應加全部水載重。

$$T_x = T_y = 0.06h_n^{0.75} = 0.06 \times 35^{0.75} = 0.8634 \text{ sec} \quad (code)$$

$$T_x = 1.152 \quad (dynamic)$$

$$T_y = 1.216 \quad (dynamic)$$

$$T_{x,design} = \min(0.8634 \times 1.4 = 1.20876, 1.152) = 1.152$$

$$T_{y,design} = \min(0.8634 \times 1.4 = 1.20876, 1.216) = 1.20876$$

$$V_x = ZKC_x IW = 0.8 \times 1.0 \times \frac{1}{8\sqrt{1.152}} \times 1.0 \times W = 0.0932W$$

$$V_y = ZKC_y IW = 0.8 \times 1.0 \times \frac{1}{8\sqrt{1.20876}} \times 1.0 \times W = 0.09096W$$

$$F_x = \frac{(V - F_t)W_x h_x}{\sum_{i=1}^n W_i h_i} \qquad V_x = 0.0932W = 0.0932 \times 7081.978 = 660.04 tf$$
$$V_y = 0.09096W = 0.0932 \times 7081.978 = 644.177 tf$$

X 向規範側向力計算如表 3-4 所示、Y 向規範側向力計算如表 3-5 所示:

表 3-4 X 向規範側向力計算表

建晶	h_x	W_{x}	$w_x h_x$	F_x
按信	m	tf	tf-m	tf
12FL	35	561944.593	19668060.75	102.0269
11FL	32.1	561944.593	18038421.43	93.57326
10FL	29.2	561944.593	16408782.11	85.1196
9FL	26.3	561944.593	14779142.79	76.66594
8FL	23.4	561944.593	13149503.48	68.21229
7FL	20.5	561944.593	11519864.16	59.75863
6FL	17.6	561944.593	9890224.836	51.30497

建晶	h_x	W_{x}	$w_x h_x$	F_x
按信	m	tf	tf-m	tf
5FL	14.7	548216.6725	8058785.085	41.80448
4FL	11.8 578984.9111		6832021.951	35.44072
3FL	8.9	579491.8826	5157477.755	26.75412
2FL	6	622627.9407	3735767.644	19.37908
1FL	0	819044.6805	0	0
總和		7081978.238	127238052	660.04

表 3-5	Y	向規範側向力計算:	表
125	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	v

建品	h_y	w_y	$w_y h_y$	F_y
按信	m	tf	tf-m	tf
12FL	35	561944.593	19668060.75	99.57487
11FL	32.1	561944.593	18038421.43	91.32438
10FL	29.2	561944.593	16408782.11	83.07389
9FL	26.3	561944.593	14779142.79	74.8234
8FL	23.4	561944.593	13149503.48	66.57291
7FL	20.5	561944.593	11519864.16	58.32242
6FL	17.6	561944.593	9890224.836	50.07193
5FL	14.7	548216.6725	8058785.085	40.79978
4FL	11.8	578984.9111	6832021.951	34.58896
3FL	8.9	579491.8826	5157477.755	26.11112
2FL	6	622627.9407	3735767.644	18.91333
1FL	0	819044.6805	0	0
總和		7081978.238	127238052	644.177

(資料來源:本研究整理)

5. 材料強度

◆ 混凝土:取各樓層混凝土試體之平均抗壓強度、各層試體最低強度除以 0.75
 之較低者且不超過原設計強度 210 kgf/cm² 進行評估分析,混凝土取值算如表
 3-6 所示:

表 3-6 混凝土取值表

			计队上	與 210	旦丨仕	历计队页	與 210 原	
樓層	編號	範圍	武领机	原設計	取小值	原 訊 驗 十	設計比較	fc取值
			壓蚀及	比較	/0./5	均值	後平均值	
	11-1		150	150		174.33	174.33	174.33
12FL	11-2	11F	165	165	200.00			
	11-3		208	208				
	10-1		156	156				
11FL	10-2	10F	191	191	208.00	193.00	185.67	193.00
	10-3		232	210				
	9-1		161	161				
10FL	9-2	9F	232	210	214.67	198.33	191.00	198.33
	9-3		202	202				
	8-1		151	151				
OEI	8-2	٩E	194	194	201.22	237.50	179.50	201.33
9FL	8-3	бГ	163	163	201.55			
	8-4		442	210				
	7-1	7F	192	192	256.00			
8FL	7-2		213	210		199.00	198.00	199.00
	7-3		192	192				
	6-1		289	210	137.33		157.25	137.33
751	6-2	4 E	103	103		177.00		
/FL	6-3	ог	143	143				
	6-4		173	173				
	5-1		119	119				
	5-2		173	173				
6FL	5-3	5F	233	210	158.67	168.80	164.20	158.67
	5-4		129	129				
	5-5		190	190				
	4-1		225	210				
	4-2		177	177				
	4-3		203	203				
5 E I	4-4	4E	155	155	132.00	190.25	172 12	122.00
JL	4-5	4 Г	99	99		180.25	1/2.13	152.00
	4-6		260	210				
	4-7		161	161				
	4-8		162	162				

樓層	編號	範圍	試驗抗 壓強度	與 210 原設計 比較	最小值 /0.75	原試驗平 均值	與 210 原 設計比較 後平均值	fc取值
	3-1		158	158				
4FL	3-2	3F	241	210	210.67	196.33	186.00	196.33
	3-3		190	190				
	2-1		180	180				
	2-2		225	210	240.00	221.60	204.00	210.00
3FL	2-3	2F	236	210				
	2-4		248	210				
	2-5		219	210				
2EI	1-1	11	163	163	217 22	106.00	196 50	106.00
ZΓL	1-2	ΙГ	229	210	217.33	190.00	180.30	190.00
1FL	B1-1		263	210				
	B1-2	B1F	306	210	350.67	292.00	210.00	210.00
	B1-3		307	210				

◆ 鋼筋: f_y=2800 kgf/cm²、f_{yh}=2800 kgf/cm²
 (資料來源:本研究整理)

6. 穩定性因子計算

X 向穩定性因子計算如表 3-7 所示、Y 向穩定性因子計算如表 3-8 所示:

樓層	樓 重	Px為樓層高 度 x 及以上 的垂直向設 計載重	<i>Ie</i> 為重要 性因子	Δ/h_x 樓層側位 移角	V _x 為樓層高 度 x 所在之 設計剪力	C _d 為變位 放大係數	θ 穩定性因子
	kgf	kgf			kgf		
12FL	561945	561945	1	0.000768	102796	5.6	0.000749702
11FL	561945	1123889	1	0.00098	197261	5.6	0.000997059
10FL	561945	1685834	1	0.001236	283301	5.6	0.001313398
9FL	561945	2247778	1	0.001514	360910	5.6	0.001683805
8FL	561945	2809723	1	0.001811	430076	5.6	0.002112752
7FL	561945	3371668	1	0.00212	490782	5.6	0.002600784
6FL	561945	3933612	1	0.002339	543002	5.6	0.003025744
5FL	548217	4481829	1	0.002521	585677	5.6	0.00344494
4FL	578985	5060814	1	0.002466	621902	5.6	0.003583468

表 3-7 X 向穩定性因子計算表

中高樓層建築軟弱層及扭轉不規則效應評估研究

樓層	樓層重量	Px為樓層高 度 x 及以上 的垂直向設 計載重	Ie為重要 性因子	Δ/h_x 樓層側位 移角	 Vx 為樓層高 度 x 所在之 設計剪力 	<i>Cd</i> 為變位 放大係數	<i>θ</i> 穩定性因子
	kgf	kgf			kgf		
3FL	579492	5640306	1	0.002293	649309	5.6	0.003556865
2FL	622628	6262934	1	0.001491	669116	5.6	0.002492103
1FL	819045	7081978	1	0	0	5.6	

(資料來源:本研究整理)

表 3-8 Y 向穩定性因子計算表

樓層	樓層重	Px為樓層高 度 x 及以上 的垂直向設 計載重	<i>Ie</i> 為重要 性因子	Δ/h_x 樓層側位 移角	 V_x為樓層高 度 x 所在之 設計剪力 	C _d 為變位 放大係數	<i>θ</i> 穩定性因子
	kgf	kgf			kgf		
12FL	561945	561945	1	0.000689	100260	5.6	0.000689596
11FL	561945	1123889	1	0.000709	192383	5.6	0.00073963
10FL	561945	1685834	1	0.000724	276296	5.6	0.000788842
9FL	561945	2247778	1	0.000729	352007	5.6	0.000831268
8FL	561945	2809723	1	0.000732	419526	5.6	0.000875442
7FL	561945	3371668	1	0.000691	478866	5.6	0.000868802
6FL	561945	3933612	1	0.000774	530049	5.6	0.001025719
5FL	548217	4481829	1	0.002644	572097	5.6	0.003698786
4FL	578985	5060814	1	0.00403	607936	5.6	0.005990726
3FL	579492	5640306	1	0.003804	635093	5.6	0.006032782
2FL	622628	6262934	1	0.002311	654681	5.6	0.003947845
1FL	819045	7081978	1	0	0	5.6	

(資料來源:本研究整理)

7. 剛重比計算

X 向剛重比計算如表 3-9 所示、Y 向剛重比計算如表 3-10 所示:

樓層	樓層 重量	G _i 為第 i 層的重 力設計 荷載值	<i>F_i</i> 第 <i>i</i> 層 水平力	<i>H_i</i> 第 <i>i</i> 層 高度	H 總 層 度	$\gamma_i = H_i / H$	<i>u_i</i> 第 <i>i</i> 層 頂部 位移	<i>EJ_d</i> 等效側向 剛度	剛重比 側向剛度與 重力荷載的 比值
1251	Kg1	Kg1	Kg1	2500	2500	1	CIII	Kg1-CIII	25 220(5520
12FL	301945	301943	102027	3300	3300	1	0.0141	2.4243E+14	35.22065558
11FL	561945	1123889	93573	3210	3500	0.9171429	5.7935	2.0221E+14	14.68714977
10FL	561945	1685834	85120	2920	3500	0.8342857	5.5121	1.6634E+14	8.054624938
9FL	561945	2247778	76666	2630	3500	0.7514286	5.1572	1.3487E+14	4.898170716
8FL	561945	2809723	68212	2340	3500	0.6685714	4.7213	1.0759E+14	3.125878076
7FL	561945	3371668	59759	2050	3500	0.5857143	4.1995	8.4220E+13	2.039085147
6FL	561945	3933612	51305	1760	3500	0.5028571	3.5881	6.4518E+13	1.338914247
5FL	548217	4481829	41804	1470	3500	0.42	2.9137	4.6660E+13	0.849880373
4FL	578985	5060814	35441	1180	3500	0.3371429	2.1952	3.4919E+13	0.56324927
3FL	579492	5640306	26754	890	3500	0.2542857	1.4999	2.2630E+13	0.327522943
2FL	622628	6262934	19379	600	3500	0.1714286	0.8544	1.3473E+13	1.7561E-01
1FL	819045	7081978	0	0	3500	0	0	0.0000E+00	0
	7081978	7081978	660040		3500			1.1199E+15	12.90867475

表 3-9 X 向剛重比計算表

如計算整體剛重比,將整體剛重除以屋頂位移後所得之剛重比=10.7202(與12.9086 接近) (資料來源:本研究整理)

表 3-10 Y 向剛重比計算表

樓層	樓層重量	G _i 為第 i 層的重 力設計 荷載值	F _i 第 <i>i</i> 層 水平力	<i>H_i</i> 第 <i>i</i> 層 高度	H 總樓 層 度	$\gamma_i = H_i/H$	u _i 第 <i>i</i> 層 頂部 位移	EJ _d 等效側向 剛度	剛重比 側向剛度與 重力荷載的 比值
	kgf	kgf	kgf	cm	cm		cm	kgf-cm ²	
12FL	561945	561945	99575	3500	3500	1	0.0038	2.6561E+14	38.58410523
11FL	561945	1123889	91324	3210	3500	0.917143	0.004	2.2029E+14	16.00065525
10FL	561945	1685834	83074	2920	3500	0.834286	0.0045	1.7814E+14	8.625976158
9FL	561945	2247778	74823	2630	3500	0.751429	0.0056	1.3986E+14	5.079266184
8FL	561945	2809723	66573	2340	3500	0.668571	0.0063	1.0585E+14	3.075243581
7FL	561945	3371668	58322	2050	3500	0.585714	0.0071	7.6479E+13	1.851672092
6FL	561945	3933612	50072	1760	3500	0.502857	0.0083	5.1902E+13	1.077094023
5FL	548217	4481829	40800	1470	3500	0.42	0.0087	3.1767E+13	0.578606775
4FL	578985	5060814	34589	1180	3500	0.337143	0.0045	2.1363E+13	0.344592603

樓層	樓 重量	G _i 為第 i 層的重 力設載 値	F _i 第 <i>i</i> 層 水平力	<i>H_i</i> 第 <i>i</i> 層 高度	H 總 層 度	$\gamma_i = H_i / H$	u _i 第 <i>i</i> 層 頂部 位移	EJ _d 等效側向 剛度	剛重比 側向剛度與 重力荷載的 比值
	kgf	kgf	kgf	cm	cm		cm	kgf-cm ²	
3FL	579492	5640306	26111	890	3500	0.254286	0.002	1.3785E+13	0.199511139
2FL	622628	6262934	18913	600	3500	0.171429	0.0013	8.3746E+12	0.109156584
1FL	819045	7081978	0	0	3500	0	0	0.0000E+00	0
	7081978	7081978	644177		3500			1.1134E+15	12.83410813

如計算整體剛重比,將整體剛重除以屋頂位移後所得之剛重比=11.7439(與12.8341 接近) (資料來源:本研究整理)

8. 檢核結果

本案例為一於民國 83 年興建完成之住商大樓,其地上結構型式為十一層之鋼筋混 凝土造建築物,其二樓樓地板面積至頂樓樓地板面積為 4412.32 m²,相關資料如表 3-11 及表 3-12。本案用途係數 1.0,以民國 100 年公佈之「耐震設計規範與解說」做為耐震 標準進行耐震初步評估,根據結構物情形給予適當之定性及定量評估。

構造種類	鋼筋混凝土造
地樓層數	地上11 樓地下1 樓
平面配置	矩形
X向尺度	43.6 m
Y向尺度	9.2 m
總樓高	35 m
層高	2F~11F : H=2.9 m/1F : H=6 m

表 3-11 建築物相關資料

(資料來源:本研究整理)

本例採用之材料強度參數如下:

- 1. 混凝土抗壓強度: $f'_{c} = 210 kgf / cm^{2}$
- 2. 主筋降伏強度: $f_y = 2800 kgf / cm^2$

3. 箍筋降伏強度: $f_v = 2800 kg f / cm^2$

表 3-12 結構物主要尺寸

方向	X 向	Y 向					
標準跨度	8 m	9.2 m					
大梁主要尺寸	70x50 cm \ 50x30 cm \ 60x35 cm						
柱尺寸	80x80 cm \$ 60x100 cm \$ 220x50 cm \$ 50x80 cm \$ 50x50 cm						
樓板厚度	15 cm						
構造系統	鋼筋混凝土梁柱立體鋼構架系統						

由圖 3-3 知建築結構之一樓平面圖 B 柱線柱為至二樓,並未向上延伸,C 柱線由左 至右柱號分別為 C2、C3、C1、C3、C6、C3、C7;B 柱線線之柱均為 C9,因其柱並未 向上延伸,故於計算時,僅需檢核其樓層上版、梁及其本身柱重。A 柱線上柱由左至右 分別為 C1、C1、C1、C1、C6、C6、C7。

(一)柱破壞模式檢核

由初評重量公式式 2-20 計算總重為 6150 tf, C9 僅至二樓,並未向上延伸,故 C9 僅承擔一樓樓板、一樓梁重及自身柱重,所得單根 C9 須承受 tf,其值小於 0.1f'_c A_g 為 52.5tf,故在檢核時,並未將其進行檢核計算;將建築結構整體重量減去 C9 須承擔之柱 梁即為他處須承擔之重量,再依其 RC 面積量進行分配,即可得到各柱所需承受之重量, 如表 3-14。

依照各柱所承受軸力,可算出各柱之剪力強度,即為V_{0i};依照各柱軸力納入並計算 出柱端、底彎矩,兩者相加除上淨高,即可得到剪力V_{pi}。兩者相除即可檢核剪力。

表 3-13 11 層樓建築結構 X 向
$$\frac{V_{pi}}{V_{0i}}$$

(單位:kgf)

	軸力	V _c	V_s	V _{0ix}	V_{pi}	V _{pi} / V _{0i}
Ac1	301567	52223	105668	157891	71000	0.51
Ac2	282719	62725	118457	181183	66666	0.42
Ac3	518319	78941	170378	249320	349666	1.59
Ac6	301567	51223	120921	172145	101666	0.67
Ac7	188479	33506	79096	112602	47952	0.48

表 3-14 11 層樓建築結構 Y 向
$$\frac{V_{pi}}{V_{0i}}$$

(單位:kgf)

	軸力	V _c	V_s	V _{0iy}	V_{pi}	V_{pi} / V_{0i}
Ac1	301567	52223	105668	157892	71000	0.51
Ac2	282719	50917	114473	165390	107333	0.73
AC3	518319	86521	127323	213844	87000	0.46
AC6	301567	51224	120921	172145	101666	0.67
AC7	188479	33495	90365	123861	74666	0.68

(二)強柱弱梁檢核

將各軸力納入並計算柱端、底彎矩,以及算出梁端彎矩,將柱彎矩總合與梁端彎矩 總合相除,其值需大於1.2,表示為強柱弱梁;若小於1.2,即表示不符合強柱弱梁。計 算值如表 3-15、表 3-16 及表 3-17,可知其值皆大於1.2,皆符合強柱弱梁。

表 3-15 11 層樓建築結構 X 向
$$\frac{M_{nc}}{M_{nb}}$$
(A 柱線)

(單位:tonf-m)

柱線	A5	A7	A9	A10	A11	A13	A16
С	C1	C1	C1	C1	C6	C7	C7
$M_{nc,ar{ m K}}$	213	213	213	213	305	143	143
$M_{nc, III}$	213	213	213	213	305	143	143
$\sum M_{nc}$	426	426	426	426	610	286	286
M _{nb}	80.102	80.102	80.102	80.102	80.102	80.102	80.102
M _{nb}	109.08	109.08	109.08	109.08	109.08	109.08	109.08
$\sum M_{nb}$	0	189	189	189	189	189	0
M _{nb,max}	109.08						109.08
$rac{M_{ m kt}}{ m M_{ m R}}$	3.9	2.3	2.3	2.3	3.2	1.5	2.6

表 3-16 11 層樓建築結構 X 向立面
$$\frac{M_{nc}}{M_{nb}}$$
(C 柱線)

(單位:tonf-m)

柱線	C5	C7	С9	C10	C11	C13	C16
С	C2	C3	C1	C3	C6	C3	C7
$M_{nc,ar{ m c}}$	200	1049	213	1049	305	1049	143
$M_{nc, III}$	200	1049	213	1049	305	1049	143
$\sum M_{nc}$	400	2098	426	2098	610	2098	286
M_{nb}	136	136	136	136	136	136	136
M_{nb}	170	170	170	170	170	170	170
$\sum M_{nb}$	0	306	306	306	306	306	0
M _{nb,max}	170						170
$rac{M_{ m k\pm}}{ m M_{ m R}}$	2.35	6.856	1.3	6.8	2	6.8	1.6

(資料來源:本研究整理)

表 3-17 11 層樓建築結構 Y 向立面
$$\frac{M_{nc}}{M_{nb}}$$
(Z 柱線)

(單位:tonf-m)

柱線	A5	A7	A9	A10	A11	A13	A16
С	C1	C1	C1	C1	C6	C7	C7
$M_{nc, ar{ m K}}$	213	213	213	213	305	224	224
$M_{nc, \mathrm{III}}$	213	213	213	213	305	224	224

$\sum M_{nc}$	426	426	426	426	610	448	448
M_{nb}	54	54	54	54	54	54	54
M_{nb}	92	92	92	92	92	92	92
$\sum M_{nb}$		146	146	146	146	146	
M _{nb,max}	92						92
$rac{M_{k\pm}}{\mathrm{M}_{_{\!$	4.6	3	3	3	4.2	3	4.9

9. 初步評估結果(PSERCB)

利用 PSERCB 將此建築物進行耐震能力初步評估,輸入資料分別為建築物之基本資 料、定性評估、參數設置、X 向斷面資料、Y 向斷面資料等......。圖 3-4 為輸入建築之 基本性質;圖 3-5 為結構系統之定性評分,靜不定程度為單跨,得分為5分、地下室面 積比為1,得分0.7分、平面對稱性由於內部隔間配置並無對稱及立面屬於一樓挑高, 故均選擇不良,分數皆為3.0分、柱之高深比為2.4,得分為2.7,軟弱層嚴重性高,得 分 3.0 分。由圖 3-6 可知結構細部之定性評分,由設計年份可知其建造年分,得分為 1.7, 窗台及氣窗造成短柱性低、牆體造成短梁嚴重性低,得分皆為 1.0。圖 3-6 為結構現況 方面:柱及牆之損害程度分別為高等,得分為2.0、裂縫鏽蝕程度高,得分為3.0。圖3-7 為額外增、減分,分別為分期興建或工程品質有疑慮、曾經受災害者,如土石流、火災、 震災、人為破壞等、使用用途由低活載重改為高活載重使用者、傾斜程度明顯者、使用 用途由高活載重改為低活載重使用者五項,分別得分為2、0、0、2、0分。圖3-8、圖 3-9 為輸入參數及斷面資料,輸入建築結構基本資料,如混凝土抗壓強度、鋼筋降伏強 度及柱、牆斷面資料等。將上述之得分得加總而得,為定性評估分數為32分,如圖3-10。 由圖 3-10 可知定量評分為 21.3。其總分為定性評分與定量評分相加,故可得知建築物 耐震能力為 53.3 分,結果為為結於 30 分至 60 分,表示建築物之耐震能力確有疑慮,優 先進行詳細評估。其餘操作過程如圖 3-11 至圖 3-16 所示:圖 3-17 及圖 3-18 算出定量 評分之 X 向建築物 475 年地震回歸期耐震能力為 0.242 g, Y 向為 0.175 g, X、Y 項不

符合耐震標準 $0.4 S_{DS}$; X 向建築物 2500 年地震回歸期耐震能力為 0.318g, Y 向建築物

2500 年地震回歸期耐震能力為 0.231g, X、Y 方向上不符合耐震標準 $0.4S_{MS}$, PSERCB

顯示,Y向A,較小,於Y方向顯示為弱向。

建物名稱		建物编辑		評估日期	評估者
11FL無C9 · 外導R=3.08 END		DC083TAO00020		2017/04/18	林智险
縣市		鄉鎮市區		村里	地址(講職人完整地址,帶含縣市和鄉鎮市區)
喜東市	٣	永憲国	٣	수립	▼ 西弗站4號
調		地盤種類		建備年度	設計規範
新化新霉	•	第三组	٠	1995/01/01	71年6月至86年5月
建物高度[m]		用途儀數[]		X向勁性容量[Rx] ●	Y向朝性容星[Ry] ●
35		1.0	•	3.08	3.08
地上棲層數		地下棲層數		建築物X向週期T計算公式:	建築物Y向週期T計算公式:
11		1		◎ T=0.05h _n ^{0.75} (剪力/篇) ● T=0.07h _n ^{0.75}	◎ T=0.05hn ^{0.75} (四力編) ◎ T=0.07hn ^{0.75}
建築物依結構型式分類:		建築物依使用用途分類:		建築物依樓層分類:	本評估參考資料:
異頭層連初	۲	件商语合		大樽以上	▼ 現場調面或推估

圖 3-4 基本資料 (資料來源: PSERCB 網站提供)

圖 3-5 定性評估表(結構系統) (資料來源: PSERCB 網站提供)

結構細部 (單位: kgf-cm)					
8.塑鉸圆釉筋細部(由設計年度評估)		9.窗台、氣窗造成短柱嚴重性		10.總體造成短梁嚴重性	
O 63年2月以前(1.0)		○ 凝(1.0)		〇 凝(1.0)	
O 63年2月至71年6月(0.67)		O (\$\$\Phi(0.67)\$		O Φ(0.67)	
9 71年6月至86年5月(0.33)		(0.33)		(0.33)	
O 86年5月以後(0)	⇔#0:17	○ 篇(0)	⊕ #::10	O m(0)	⇔≋:10
请構現況 (単位:kgf.cm)					
11.柱之損害程度		12.牆之損害程度		13.裂蜡鏽蝕滲水等程度	
🤫 憲(1.0)		⊛ 蕉(1.0)		🛞 ح(1.0)	
○ Φ(0.67)		O (\$\$(0.67))		O Φ(0.67)	
O (f5(0.33)		〇 低(0.33)		〇 低(0.33)	
O m(0)		O m(0)		O m(0)	
	分數:2.0		分数:2.0		分數: 3.0

圖 3-6 定性評估表(結構細部、結構現況) (資料來源: PSERCB 網站提供)

陳外增分(音項最高配分為2分,所有項目相總合題多加8分) (第0: suftern)						
分期與建或工程品質有疑慮 分期與違或工程品質有疑慮 2	曾經受災害者,如土石流、火災、震災、人為破壞等 曾經受災害者,如土石流、火災、震災、人為破壞等 0	使用用透由低活载重改為高活載重使用者 使用用适由低活氧重改為高活氧重使用者 0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			
額外減分(所有項目相總合最多減2分) (單位:kgf-d	201)			0		
使用用途由高活载重改為低活载重使用者 使用用途由高活载重改為低活载重使用者 0						

圖 3-7 額外增、減分 (資料來源: PSERCB 網站提供)

建築物重量(未使用之欄位請填0)(#位:tl-m)			
2樓~!樓之樓地板筆位面積靜數■[tt/m ²] ●	(i+1)樓~k根之樓地板單位面積靜數量[tt/m ²]	(k+1)標~屋頂之標地板單位面積靜軟層[tt/m ²]	
12		13	
* 推伏値 ○ 101+値	● 推估值 ○ 設計値	* 排估值 0 10計值	
- /		- /	
2樓~j樓之樓地板單位面積活載量[tf/m*]	(j+1)棲~k樓之棲地板單位面積活載重[tf/m ²]	(k+1)樓~屋頂之樓地板單位面積活載量[tl/m²]	
0.3	0	0.3	
◎ 推估值 ○ 設計值	◎ 推估值 ○ 設計值	◎推估值 ○ 設計值	
2樓~j樓之 <mark>總</mark> 棲地板面積[m ²]	(J+1)棲~k根之 <mark>總</mark> 棲地扳面積[m ²]	(k+1)樓~屋頂之總樓地板面積[m ²]	
1203.36	0	2807.84	
 ○ 推估值 = 段計值 	◎ 推估值 ◎ 段計值	◎ 推估值 ◎ 設計值	
柱材料參數(未使用之欄位請填0)(単位:kgf-cm)			
混凝土抗壓強度(fc)	主筋降伏强度(ty) ●	館筋降伏強度(fyv)	保護層厚度(c)
280	2800	2800	4
 ○ 推估值 * 股計值 	◎ 推估值 * 段計值	◎ 推估值 ◎ 股計值	◎ 推估值 ○ 設計値

圖 3-8 參數設置 (資料來源: PSERCB 網站提供)

一般性 拒住 RC编 凹環蛋果磷脂 三環蛋果磷脂 用刻壞蛋果磷脂 傳導爆響之RC编 標準爆響之降倍

name	type	Bc	Ho	lo(%)	No1	Num1	No2	Num2	ht	No	Num	S Nei
FC2;	RECT	100	60	÷	#10	20	#9	0	530	#4	7	1 1 2
FC3,	RECT	50	220		#10	28	#9	0	530	#4	4	1 3 2
1FC1	RECT	80	80	*	#10	20	#9	0	530	#4	6	1 4 2
1FC7	RECT	80	50	Ċ.	#10	20	26	0	530	#4	7	1 1 2
1FC6	RECT	80	80		#10	24	#6	0	530	#4	7	1 2 2
FC1,	RECT	80	80	21	#10	20	#6	0	530	#4	6	1 1 2
1FC7,	RECT	80	50	a	W10	20	#6	0	530	#4	7	1 1 2
1FC6.	RECT	80	80	42	#10	24	RE	0	530	#4	7	1 1

圖 3-9 X 向斷面資料

(資料來源:PSERCB 網站提供)

11FL無C9,外磚R=3.08 END	林智隆	2017-04-18	32.0	21.3	評估	53.3	分數介於45至60分!

圖 3-10 評分分數

(資料來源:PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/12/2

鋼筋混凝土建築物耐震能力初步評估表

壹、建築物基本資料表	
------------	--

建物名稱	11FL 無 C9,外磚 R=3.08 END	建物編號	DC083TAO0003 6	建物地址	臺南市永康區永大路二段	
評估者	林智隆	評估日期	2017-4-18	e-mail	clot00001.cv04g@g2.nctu.edu.tw	
設計年度	71年6月至86年5月	建物高度 h _n (m)	35	用途係數I	1	
地盤種類	第三類地盤	地上樓層數	11	地下樓層數	1	
建築物依樓層分類: □五樓以下 ■六樓以上						
建築物依結構形式分類: □一般 RC 建物 □加强磚造(透天厝) ■具弱層建物□其它:						
建築物依使用用途分類: □辦公室 □公寓 □集合住宅 □商場 ■住商混合□其它:						
本評估參考資料: □設計圖説 □計算書 ■現場調査或推估						

11FL 無 C9, 外磚 R=3.08 END[1]

圖 3-11 基本資料表 (資料來源: PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/12/2

貳、建築物耐震能力初步評估表

項次	項目	配分	評估内容	權重	評分
1	靜不定程度	5	■單跨(1.0) □雙跨(0.67) □三跨(0.33) □四跨以上(0)	1.00	5.00
2	地下室面積比, r.	2	$0 \leq (1.5 - r_a) / 1.5 \leq 1.0; r_a: 地下室面積與建築面積之比 r_a=1$	0.33	0.66
3	結平面對稱性	3	■不良(1.0) □尚可(0.5) □良(0)	1.00	3.00
4	雙立面對稱性	3	■不良(1.0) □尚可(0.5) □良(0)	1.00	3.00
5	赤 梁之跨深比b	3	$ $ $\exists b < 3, w = 1.0; \exists 3 ≤ b < 8, w = (8-b) / 5; \exists b ≥ 8, w = 0 b = 9.43$	0	0.00
6	‴ [™] 柱之高深比 c	3		0.90	2.70
7	軟弱層顯著性	3	■高(1.0) □中(0.67) □低(0.33) □無(0)	1.00	3.00
8	塑鉸區箍筋細部(由 結設計年度評估)	5	□63 年 2 月以前(1.0) □63 年 2 月至 71 年 6 月(0.67) ■71 年 6 月至 86 年 5 月(0.33) □86 年 5 月以後(0)	0.33	1.65
9	冊 窗台、氣窗造成短柱	3	□高(1.0) □中(0.67) ■低(0.33) □無(0)	0.33	0.99
10	" 牆體造成短梁嚴重性	3	□高(1.0) □中(0.67) ■低(0.33) □無(0)	0.33	0.99
11	結柱之損害程度	2	■高(1.0) □中(0.67) □低(0.33) □無(0)	1.00	2.00
12	構牆之損害程度	2	■高(1.0) □中(0.67) □低(0.33) □無(0)	1.00	2.00
13	況裂縫鏽蝕滲水等程度	3	■高(1.0) □中(0.67) □低(0.33) □無(0)	1.00	3.00
14	475 年耐震能力初步 定評估 量	30	$\begin{split} & \underbrace{\mathfrak{A}_{c1}}{\mathcal{H}_{a75}} \le 0.25 \ , \ w = 1 \ ; \underbrace{\mathfrak{B}}{0.25} \le \frac{\mathcal{A}_{c1}}{\mathcal{H}_{a75}} \le 1, \ w = \frac{4}{3} \left(1 - \frac{\mathcal{A}_{c1}}{\mathcal{H}_{a75}} \right) \ ; \underbrace{\mathfrak{B}}{\mathcal{H}_{a75}} > 1 \ , \ w = 0 \\ & A_{c1} = \min[A_{c1,x}, \ A_{c1,y}] \ A_{c1,x} = 0.24 \ A_{c1,y} = 0.18 \ A_{c1} = 0.18 \end{split}$	0.58	17.40
15	分 析 2500 年 耐 震 能 力 初 步評估	30	$ \frac{\text{iff} A_{c2}}{M_{2500}} \le 0.25 \text{ , } w = 1 \text{ ; } \text{iff} 0.25 \le \frac{A_{c2}}{M_{2500}} \le 1 \text{ , } w = \frac{4}{3} \left(1 - \frac{A_{c2}}{M_{2500}} \right) \text{ ; } \text{iff} \frac{A_{c2}}{M_{2500}} > 1 \text{ , } w = 0 $ $ A_{c2} = \min[A_{c2,x_1}, A_{c2,y_1}] A_{c2,x_2} = 0.32 A_{c2,y} = 0.23 A_{c2} = 0.23 $	0.57	17.10
分數總	計	100	評分	▶總計(P):	62.49

圖 3-12 耐震能力初步評估表 (資料來源: PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/12/2

阁	沙	評估項目:此部分為外加評分項目,評估人員應就表列「額外增分」、「額外減分」事項 各項最高配分為2分,總共最高配分為8分;減分最高配分為2分					
		A 分期興建或工程品質有疑慮	2				
1	額 B 曾經受災害者,如土石流、火災、震災、人為破壞等						
1	增 C 使用用途由低活載重改為高活載重使用者						
			2				
	領小咸分	a 使用用途由高活載重改為低活載重使用者	0				
			: 4				
		總評估分數(R)=P+:	$S = \begin{bmatrix} 66.49000000000\\001 \end{bmatrix}$				

註:評估内容中w為計算之權重。

圖 3-13 耐震能力初步評估分數 (資料來源: PSERCB 網站)

			耐震能力初步評估[Preliminary Seismic Evaluation of RC Building				
F	SERCE	評估者:林智					
				列印日期:201	7/12/2		
	重要註記						
房国	2倒塌						
					_		
	□ R ≤ 30 ; 建築物耐震能力尚無疑慮						
評估	□ 30 < R ≤ 45; 建築物耐震能力稍有疑慮, 宜進行詳評		河仕老筌音				
結 果	□45 <r≤60;建築物耐震能力有疑慮,優先進行詳評< td=""><td></td><td>山口文子</td><td></td><td></td></r≤60;建築物耐震能力有疑慮,優先進行詳評<>		山口文子				
	■ R > 60; 建築物的耐震能力確有疑慮, 逕自進行補强或拆除						

圖 3-14 耐震能力初步評估結果判定

(資料來源:PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/12/2

参、定量評<u>估表</u>

建築物資訊						
2 樓~j 樓之樓地板面積靜載重 w1D (tf/m2)	1.300	■推估值 □設計值				
(j+1)樓~k 樓之樓地板面積靜載重 W2D (tf/m2)	0.000	■推估值 □設計值				
(k+1)樓~屋頂之樓地板面積靜載重 W3D (tf/m ²)	0.000	■推估值 □設計值				
2 樓~j 樓之樓地板面積活載重 w _{1L} (tf/m ²)	0.300	■推估值 □設計值				
(j+1)樓~k 樓之樓地板面積活載重 W _{2L} (tf/m ²)	0.000	■推估值 □設計值				
(k+1)樓~屋頂之樓地板面積活載重 W3L (tf/m2)	0.000	■推估值 □設計值				
2 樓~j 樓之總樓地板面積 A1 (m ²)	4817.000	□推估值 ■設計值				
(j+1)樓~k 樓之總樓地板面積 A2 (m²)	0.000	■推估值 □設計值				
(k+1)樓~屋頂之總樓地板面積 A ₃ (m ²)	0.000	■推估值 □設計值				
建築物靜載重 $W_D = \sum_{i=1}^{3} w_{iD} \times A_i$ (kgf)	6262100.00					
建築物總載重 $W = \sum_{i=1}^{3} (w_{iD} + \frac{1}{2} w_{iL}) \times A_i$ (kgf)	6984650.00					
	·					
	一樓柱材料參數					
混凝土抗壓强度 fc(kgf/cm ²)	210	□推估值 ■設計值				
主筋降伏强度 f _y (kgf/cm ²)	2800	□推估值 ■設計值				
箍筋降伏强度 fyv (kgf/cm ²)	2800	■推估值 □設計值				
柱之保護層厚度 c (cm)	4	■推估值 □設計值				

RC 牆混凝土抗壓强度 fc (kgf/cm ²)	210	□推估值 ■設計值
RC 牆主筋降伏强度 fy (kgf/cm ²)	2800	□推估值 ■設計值
磚牆砂漿塊抗壓强度 fmc (kgf/cm ²)	100	■推估值 □設計值
磚牆紅磚之單軸抗壓强度 f₅ (kgf/cm²)	150	■推估值 □設計值

圖 3-15 參數設置 (資料來源: PSERCB 網站提供)

短柱 類別	柱型式 (type)	短柱寬 /直徑 (cm) (Bsc)/(Dsc)	短柱深 /直徑 (cm) (H _{sc})/(D _{sc})	短柱 淨長 (cm) (<i>h</i> _{sl})	橫向箍、 繫筋號數 No	橫向箍、 繫筋根數 Num	橫向箍、繫 筋總斷面積 (cm ²) A _v	橫向箍、 繁筋間 (cm) S	短柱 根數 (Nsci)	V _{scoli} (kgf)	V _{scoli} ×N _{sci} (kgf)
	短柱(短柱澤長與短柱澤深之比值(hu/Hs)≦2)										
	短柱之極限强度 <i>ΣV</i> _{scit} ×N _{sci} (kgf) 0.00										

註: 柱深(H_c)平行地震力作用方向。

圖 3-16 柱極限層剪力強度計算 (資料來源: PSERCB 網站)

175 年地會同歸期耐雪能力計算

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/12/2

(達容許韌性容量地震之地表加速度)			
一樓屬極限前力强度	j=1	j=2	j=3
$V_{uj} = C_{vcj} \Sigma V_{coli} \times N_{ci} + C_{vg} (\Sigma V_{swi} \times N_{swi} + \Sigma V_{scoli} \times N_{sci}) + C_{vbj} \Sigma V_{bwi} \times N_{bwi}; j=1\sim3 \text{ (kgf)}$		1117445.242	1129822.854
新設計建築物之極限剪力强度 (V_{100}) _a =I($\frac{S_{aD}}{F_u}$) _m W _D (kgf)		1667090.328	
受評估建築物之降伏地表加速度 $A_{jj,x} = \frac{V_{ij}}{(V_{100})_u} \frac{IA_{475}}{Fu}$ (g); j=1~3		0.090	0.091
$\begin{array}{l} r_{i}= \frac{C_{in}\times R_{m}(C_{in}\times \sum Y_{m}\times N_{n})+C_{in}\times R_{m}(C_{m}\times \sum Y_{m}\times N_{m}+\sum Y_{m}\times N_{m})+C_{in}\times R_{m}(C_{in}\times \sum Y_{m}\times N_{m})}{C_{in}\times \sum Y_{m}\times N_{m}+C_{m}\times N_{m}+\sum Y_{m}\times N_{m})+C_{in}\times \sum Y_{m}\times N_{m}};\\ j=1\sim3 \end{array}$		2.504	3.496
$\mathbf{R}_{iij}^{*} = \begin{cases} 1 + \frac{(R_{j}^{*} - 1)}{1.5} (- \frac{1}{2} \pounds \pounds \pounds \end{pmatrix} \\ 1 + \frac{(R_{j}^{*} - 1)}{2.0} (\acute{\otimes} \pounds \pounds \pounds \end{pmatrix} ; j = 1 \sim 3 \end{cases}$		2.003	2.664
$F_{iij}^* = F_x(T, R_{ij}^*); j=1-3$		2.003	2.664
V _{uj} /W _D		0.178	0.180
建築物 X 向耐震能力 $A_{cl,x} = \max[A_{ij,x}F_{ij}^*; j = 1 \sim 3]_{(g)}$		0.242	
<u>A_{e1,x}</u> <u>IA_{e75}</u>		0.756	

圖 3-17 475 年地震回歸期耐震能力計算 (資料來源: PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/12/2

建築物 2500 年地震回歸期耐震能力計算 (達韌性容量地震之地表加速度)

一樓屬極限剪力强度	j=1	j=2	j=3
$V_{uj} = C_{vij} \Sigma V_{coli} \times N_{ci} + C_{vij} (\Sigma V_{swi} \times N_{swi} + \Sigma V_{scoli} \times N_{sci}) + C_{vbj} \Sigma V_{bwi} \times N_{bwi}; j=1\sim3 \text{ (kgf)}$		1117445.242	1129822.854
新設計建築物之極限剪力强度 $(V_{100})_u = I (\frac{S_{aD}}{F_u})_m W_D (kgf)$		1667090.328	
受評估建築物之降伏地表加速度 $A_{_{3j,x}} = \frac{V_{_{3j}}}{(V_{_{100}})_u} \frac{IA_{_{475}}}{Fu}$ (g); $j = 1 \sim 3$		0.090	0.091
$\begin{aligned} & R_j^r = \frac{c_{nj} \times R_{ni}(C_{nj} \times \sum_{i} V_{ni} \times N_i) + c_{nj} \times R_{ni} [C_{nj} \times \sum_{i} V_{ni} \times N_{ni} + \sum_{i} V_{ni} \times N_{ni} + \sum_{i} V_{ni} \times N_{ni} + C_{nj} \times \sum_{i} V_{ni} \times N_{ni} + C_{nj} \times \sum_{i} V_{ni} \times N_{ni} + \sum_{i} V_{ni} \times N_{ni} + C_{nj} \times \sum_{i} V_{ni} \times N_{ni} + \sum_{i} V_{ni} \times N_{ni} + \sum_{i} V_{ni} \times N_{ni} + C_{nj} \times \sum_{i} V_{ni} \times N_{ni} + \sum_{i} V_{ni} \times N_{ni} \times N_{ni} + \sum_{i} V_{ni} \times N_{ni} \times N_{ni} + \sum_{i} V_{ni} \times N_{ni} \times N_{n$		2.504	3.496
$F_{uj}^* = F_u(T, R_j^*)$; j=1~3		2.504	3.496
V _{uj} /W _D		0.178	0.180
建築物 X 向耐震能力 $A_{c2,x} = \max[A_{yj,x}F_{ij}^*; j = 1 \sim 3]_{(g)}$		0.318	
$\frac{A_{c_{2,x}}}{IA_{2500}}$		0.794	
$ \ddagger \cdot \Sigma V_{kmi} \times N_{kmi} \Sigma V_{kmi} \times N_{kmi} \times \Sigma V_{kmi} \times \Sigma V_{kmi} \times N_{kmi} \times \Sigma V_{kmi} \times \Sigma V_{kmi} \times \Sigma V_{kmi} \times N_{kmi} \times N_{kmi}$			

R _{col} 、R _{sw} 及R _{bw} 與設計年度有關,建議如下:					
設計年度	R _{col}	R _{sw}	R _{bw}		
63年2月以前	2.4	2.0	3.0		
63年2月至71年6月	3.2	2.0	3.0		
71年6月至86年5月	4.0	2.0	3.0		
86年5月以後	4.8	2.0	3.0		

系數 C _{vcj} 、 C _{rcj} 、 C _{vsj} 、 C _{rsj} 、 C _{vbj} 與 C _{Rbj} 建議如下:					
	j	1	2	3	
	C_{vcj}	0.65	0.95	1	
V coi	C_{Rcj}	Rcj 0.35	0.70	1	
	C_{vsj}	0.85	0	0	
V swi	C_{Rsj}	1	0	0	
N/	C_{vbj}	0.95	0.85	0	
V bwi	C_{Rbj}	0.45	1	0	

註: j=1 為 RC 牆 朝 性 充 分 發 揮 : j=2 為 磚 牆 朝 性 充 分 發 揮 : j=3 為構架朝性充分發揮;

圖 3-18 2500 年地震回歸期耐震能力計算 (資料來源: PSERCB 網站提供)

10.中高樓層初步評估結果

由案例建築共有 4 根外柱、10 內柱。由式(2-18)可知,外柱、內柱之單位面積側向 強度分別為 $\tau_{CE} = 121.86 - 6.12(11) = 54.5tf / m^2 \cdot \tau_{CI} = 125.9 - 3.49(11) = 87.5tf / m^2$,計算極 限基底剪力強度 X 向及 Y 向分別為

$$V_{bs,x} = \sum_{j=1}^{N_{CE}} \tau_{CE} A_{CE} + \sum_{j=1}^{N_{CI}} \tau_{CI} A_{CI} + \sum_{j=1}^{N_{BW3}} \tau_{BW3} A_{BW3} + \sum_{j=1}^{N_{BW4}} \tau_{BW4} A_{BW4} + \sum \tau_{RC} A_{RC} = 991 tf$$

$$V_{bs,y} = \sum_{j=1}^{N_{CE}} \tau_{CE} A_{CE} + \sum_{j=1}^{N_{CI}} \tau_{CI} A_{CI} + \sum_{j=1}^{N_{BW3}} \tau_{BW3} A_{BW3} + \sum_{j=1}^{N_{BW4}} \tau_{BW4} A_{BW4} \sum \tau_{RC} A_{RC} = 607 tf$$

透過面積計算,可知此建築物2樓至頂樓層面積皆為401.12m²,透過式(2-20)算得 此建築物總靜載重

$$W = 1.33(2 \times 9.2 \times 47.6) + 1.24(8 \times 47.6 \times 9.2) + 1.54(47.6 \times 9.2) = 6183tf$$

由案例介紹其為鋼筋混凝土建築物,該建物基面至屋頂高度為35公尺,由式(2-22) 可知週期

$$T = 0.07 h_n^{\frac{3}{4}} = 1.007 s$$

根據建築物耐震設計規範及解說[33]可知建築物為第二類地盤,鄰近新化斷層計算 工址短週期、一秒設計水平譜加速度係數如式(2-12)、式(2-24a)

 $S_{DS} = F_a N_a S_S^D = 1.0 \times 1.0 \times 0.8 = 0.8$ $S_{D1} = F_v N_v S_1^D = 1.0 \times 1.6 \times 0.4 = 0.64$ $S_{MS} = F_a N_a S_s^M = 1.0 \times 1.0 \times 1.0 = 1.0$ $S_{M1} = F_v N_v S_1^M = 1.4 \times 1.0 \times 0.55 = 0.77$

計算工址設計水平加速度反應譜短週期與中長週期之分界 T_0^D 、 T_0^M

$$T_D^0 = \frac{S_{D1}}{S_{DS}} = 0.8$$

$$T_0^M = \frac{S_{M1}}{S_{MS}} = 0.77$$

由式(2-28a)判別, $T_0^D \leq T \leq 2.5T_0^D$,故工址設計水平譜加速度係數

$$S_{AD} = \frac{S_{D1}}{T} = 0.635$$

式(2-28a)判別,工址設計水平譜加速度係數

$$S_{am} = \frac{S_{M1}}{T} = 0.764$$

以本研究建議之結構系統韌性容量R=3.08計算,且為一般工址與近斷層區域,故容許韌性容量,如式(2-33)

$$R_a = 1 + \frac{(R-1)}{1.5} = 1 + \frac{(3.08-1)}{1.5} = 2.387$$

再代入地盤種類可得結構系統地震力折減係數(式(2-33)),得 $F_u = R_a = 2.387$,及 $F_{u,m} = R = 3.08$ 並透過式(2-34a)對工址設計水平譜加速度係數進行修正可得

$$\left(\frac{S_{AD}}{F_u}\right) = \frac{0.502}{2.387} = 0.266 \le 0.3, \left(\frac{S_{AD}}{F_u}\right)_m = 0.266$$
$$\left(\frac{S_{aM}}{F_{u,m}}\right) = \frac{0.546}{3.08} = 0.248 \le 0.3, \left(\frac{S_{aM}}{F_{u,m}}\right)_m = 0.248$$

為算出耐震容量需求比,將結果代入式(2-36a),可得

$$R_{CD,475x} = \frac{991}{(1.0)(0.266)(6377)} = 0.602$$

$$R_{CD,475y} = \frac{607}{(1.0)(0.266)(6183)} = 0.369$$

$$R_{CD,2500x} = \frac{991}{(1.0)(0.248)(6183)} = 0.646$$

$$R_{CD,2500y} = \frac{607}{(1.0)(0.248)(6183)} = 0.396$$

代入式(2-38)並計算耐震能力

 $A_{p,475x} = 0.192 < 0.4S_{DS} = 0.32$ $A_{p,475y} = 0.118 < 0.4S_{DS} = 0.32$ $A_{p,2500x} = 0.258 < 0.4S_{MS} = 0.4$

 $A_{p,2500x} = 0.158 < 0.4S_{MS} = 0.4$

以基本耐震性能之 E 值是否大於 100 分為評估標準,評估分數 E 大於 100 分表示並 無疑慮;若 E 值小於 100,表示建築物之耐震能力不足,須再進行詳細評估。故此結果 為小於 100 分,故須進行詳細評估。

第二節 7層住商混合建築案例

1. 基本資料

位於臺南歸仁區之地上7層樓鋼筋混凝土建築物,約於民國81年興建。一、二樓 屬辦公室用途使用,3至7樓為住家,由樓層平面圖(圖3-19)可知主要為RC梁柱構架 系統,建築物基本資料蒐集如表3-18所示:

圖 3-19 7 層樓結構平面圖(資料來源:本研究整理)

圖 3-20 結構立面圖 (資料來源:本研究整理)

圖 3-21 結構 3D 圖 (資料來源:本研究整理)

表 3-18 建築物基本資料

建築物名稱	7 層樓住商混合建築
興建年代	民國 79 年
分期興建	無
構造型式	鋼筋混凝土造
結構系統	RC 梁柱構架,磚牆外牆及 RC 電梯牆
平面尺寸	不規則
建築規模	地面7層、地下1層
樓高(m)	28.3 m
基本振動週期	$0.859 \sec (0.07 h_n^{0.75})$
大梁尺寸(cm)	55×65 、 55×80
柱尺寸(<i>cm</i>)	55×65 、 55×80
樓版(cm)	15 cm
現況用途	商業(1F)、住宅(2F~7F)

(資料來源:本研究整理)

2. 重量計算

(1)靜載重:

中高樓層建築軟弱層及扭轉不規則效應評估研究

◆ 鋼筋混凝土單位體積自重 2.4 t/m³。

◆ 1B 磚牆 0.440 t/m²; 1/2B 磚牆 0.220 t/m²。

◆ 梁、柱、樓板依各自斷面尺寸乘以各材質單位重量計算。

◆ 所有牆重依各自材料性質及厚度照實計算。

(2)活載重:

- ◆ 住宅 (1F~2F): 200 kgf/m²
- ◆ 辨公室 (3F~7F): 300 kgf/m²

結構分析樓層重如表 3-19 所示:

樓層	柱重+梁重	樓板重	增加靜載	合計
	(kgf)	(kgf)	(kgf)	(kgf)
Roof	85080	70360	48860	204300
7FL	99150	70360	48860	218370
6FL	99300	70360	48860	218520
5FL	99300	70360	48860	218520
4FL	99300	70360	48860	218520
3FL	97480	70360	48860	216700
2FL	100500	93800	48860	243160
SUM	680110	515960	342020	1538090

表 3-19 結構分析樓層重

(資料來源:本研究整理)

3. 週期及質量貢獻比計算

結構週期及質量貢獻比計算如表 3-20 所示:

表 3-20 結構週期及質量貢獻比

Mode	方向	週期	質量貢獻比(%)
1	Y向平移	0.8805	84.1569
2	X向平移	0.8385	84.3155
3	Y向平移	0.2792	7.3574

(資料來源:本研究整理)

4. 規範側向力計算

*** DIR - X ***

Site Type(II) 近斷層區域=	2
晨區加速度係數 S_D_S,S_D_1,S_M_S,S_M_1.=	0.70 0.40 0.90 0.50
近斷層調登因于 Na/Nv/Na_M/Nv_M=	1.00 1.00 1.00 1.00
第二類地盤∶軟夠地盤=	3
工址放大係數 Fa, Fv, Fa_M, Fv_M =	1.10 1.60 1.00 1.40
建築物構造種類 Stype =	2
經驗公式週期 : 0.070*(Hn**0.75) Tcode =	1.1795
動力分析基本振動週期	1.8872
週期上限係數Cu=	1.4000
設計週期 : Min(Cu*Tcode,Tdyn) T=	1.6513
工址設計水平譜加速度係數SaD=	0.3876
(S_DS=0.7700 S_D1=0.6400 T_D_0=0.8312)	
結構系統地震力折減係數Fu=	3.0000
(SaD/Fu)m =	0.1292
(避免中小度地震降伏)(SaD/Fu)m`=	0.1292
用途係數I=	1.0000
起始降伏地震力放大倍數ay=	1.0000
韌性容量R=	4.0000
容許韌性容量Ra=	3.0000
工址最大水平譜加速度係數 SaM =	0.4239
(S_MS=0.9000 S_M1=0.7000 T_M_0=0.7778)	
結構系統地震力折減係數 FuM =	4.0000
(SaM/FuM)m =	0.1060
最小設計水平總橫力係數	
I /1.4/ay*(SaD/Fu)m=	0.0923
I*Fu/4.2/ay*(SaD/Fu)m`=	0.0923
I /1.4/ay*(SaM/FuM)m=	0.0757
檢討 Story Drift 之地震力係數	
I"*Fu/4.2 *(SaD/Fu)m"=	0.0808
頂層之外加集中橫力 Min(0.07TV,0.25V) Ft = 1	22.6490
外加橫力分配至 PH 者 Ft(PH) = 3	57.5315

外加橫力分配至 RF 者 Ft(RF) =	85.1175
設計地震力 =	1061.03 T
檢討 Story Drift 之地震力 =	928.53 T
*** DIR - Y ***	
Site Type(II) 近斷層區域 =	2
電區加速度係數 SDSSD1SMSSM1 =	- 0 70 0 40 0 90 0 50
近斷層調整因子 Na/Nv/Na M/Nv M=	1.00 1.00 1.00 1.00
第三類地盤: 軟弱地盤=	3
工址放大係數 Fa, Fv, Fa M, Fv M=	1.10 1.60 1.00 1.40
建築物構造種類Stype =	2
經驗公式週期 :0.070*(Hn**0.75) Tcode =	1.1795
動力分析基本振動週期	1.9200
週期上限係數Cu=	1.4000
設計週期 : Min(Cu*Tcode,Tdyn) T =	1.6513
工址設計水平譜加速度係數SaD=	0.3876
(S_DS=0.7700 S_D1=0.6400 T_D_0=0.8312)	
結構系統地震力折減係數Fu=	3.0000
(SaD/Fu)m =	0.1292
(避免中小度地震降伏)(SaD/Fu)m`=	0.1292
用途係數I=	1.0000
起始降伏地震力放大倍數ay=	1.0000
韌性容量R =	4.0000
容許韌性容量Ra=	3.0000
	0.4020
上址取大水半譜加速度係數	0.4239
(5_MS=0.9000 5_M1=0./000 1_M_0=0.//8) 体構会体は電力と実体教	4 0000
結構系統地長刀折减係數	4.0000
(SaM/FuM)m =	0.1060

最小设计水平總橫力係數

I /1.4/ay*(SaD/Fu)m =	0.0923
I*Fu/4.2/ay*(SaD/Fu)m=	0.0923
I /1.4/ay*(SaM/FuM)m=	0.0757

檢討 Story Drift 之地震力係數

I"*Fu/4.2	*(SaD/Fu)m"	=	0.0794
-----------	-------------	---	--------

- 頂層之外加集中橫力 Min(0.07TV,0.25V) Ft = 122.6490
 外加橫力分配至 PH者 Ft(PH) = 37.5315
 外加橫力分配至 RF者 Ft(RF) = 85.1175
- 設計地震力 = 1061.03 T檢討 Story Drift 之地震力 = 912.57 T

X 向規範側向力計算如表 3-21 所示、Y 向規範側向力計算如表 3-22 所示:

樓層	h_x	W_X	$w_x h_x$	F_x
單位	m	tf	tf-m	tf
Roof	20.65	253.8072678	5241.12008	49.85576
7FL	17.85	261.0049358	4658.938105	44.3178
6FL	15.05	261.150693	3930.31793	37.38686
5FL	12.25	261.150693	3199.095989	30.43116
4FL	9.45	261.1331859	2467.708606	23.47389
3FL	6.65	262.8805832	1748.155879	16.6292
2FL	3.85	282.3191065	1086.92856	10.33933
總和		1843.446465	22332.26515	212.434

表 3-21 X 向規範側向力計算表

表 3-22 Y 向規範側向力計算表

樓層	h_y	w_y	$w_y h_y$	F_y
單位	m	tf	tf-m	tf
Roof	20.65	253.8072678	5241.12008	49.85576
7FL	17.85	261.0049358	4658.938105	44.3178
6FL	15.05	261.150693	3930.31793	37.38686
5FL	12.25	261.150693	3199.095989	30.43116
4FL	9.45	261.1331859	2467.708606	23.47389
3FL	6.65	262.8805832	1748.155879	16.6292
2FL	3.85	282.3191065	1086.92856	10.33933
總和		1843.446465	22332.26515	212.434

⁽資料來源:本研究整理)

5. 材料強度

- ♦ 混凝土: $f'_c = 210 kgf / cm^2$
- ♦ 鋼筋: f_y =4200 kgf/cm² 、 f_{yh} =2800 kgf/cm²

6. 穩定性因子計算

X 向穩定性因子計算如表 3-23 所示、Y 向穩定性因子計算如表 3-24 所示:

樓層	樓層重量	<i>P_x為樓層高度 x</i> 及以上的垂直 向設計載重	<i>Ie</i> 重要 性因子	△/h _x 樓層側位 移角	V _x 為樓層 高度 x 所在 之設計剪 力	<i>C</i> d 變位放 大係數	θ 穩定性因子
單位	kgf	kgf			kgf		
7FL	253807	253807	1	0.0024	49860	5.6	0.002181599
6FL	261005	514812	1	0.0032	94180	5.6	0.003123576
5FL	261151	775963	1	0.004	131570	5.6	0.004212656
4FL	261151	1037114	1	0.0047	162000	5.6	0.005373053
3FL	261133	1298247	1	0.0052	185500	5.6	0.006498732
2FL	262881	1561127	1	0.0055	202100	5.6	0.007586591
1FL	282319	1843446	1	0.0071	212400	5.6	0

表 3-23 X 向穩定性因子計算表

表 3-24 Y 向穩定性因子計算表

樓層	樓層重量	P _x 為樓層高度x 及以上的垂直 向設計載重	I _e 重要 性因子	 △/h_x 樓層側位 移角 	 Vx 為樓層高 度 x 所在之 設計剪力 	<i>Cd</i> 變位放 大係數	∂ 穩定性因子
單位	kgf	kgf			kgf		
7FL	253807	253807	1	0.0024	49856	5.6	0.002181774
6FL	261005	514812	1	0.0034	94173	5.6	0.003319046
5FL	261151	775963	1	0.0044	131560	5.6	0.004634274
4FL	261151	1037114	1	0.0051	161991	5.6	0.005830658
3FL	261133	1298247	1	0.0057	185464	5.6	0.007124993

樓層	樓層重量	Px為樓層高度x 及以上的垂直 向設計載重	I _e 重要 性因子	△/h_x樓層側位移角	 Vx為樓層高 度x所在之 設計剪力 	<i>C</i> d 變位放 大係數	∂ 穩定性因子
2FL	262881	1561127	1	0.0061	201993	5.6	0.008418677
1FL	282319	1843446	1	0	0	5.6	0

7. 剛重比計算

X 向剛重比計算如表 3-25 所示、Y 向剛重比計算如表 3-26 所示:

樓層	樓層重量	G _i 為第 i 層的重力 設計荷載 值	F _i 第 <i>i</i> 層 水平力	H _i 第i層 高度	H 總 層 度	$\gamma_i = H_i / H$	u _i 第i層 頂部位 移	EJ _d 等效側向 剛度	剛重比 側向剛度與 重力荷載的 比值
	kgf	kgf	kgf	cm	cm		cm	kgf-cm ²	
Roof	253807	253807	49856	2065	2065	1	3.1552	4.6380E+13	4.2853E+01
7FL	261005	514812	44318	1785	2065	0.8644068	2.92	3.5543E+13	1.6191E+01
6FL	261151	775963	37387	1505	2065	0.7288136	2.5974	2.5484E+13	7.70182457
5FL	261151	1037114	30431	1225	2065	0.5932203	2.1934	1.7246E+13	3.899523681
4FL	261133	1298247	23474	945	2065	0.4576271	1.7259	1.0628E+13	1.919746143
3FL	262881	1561127	16629	665	2065	0.3220339	1.2296	5.5122E+12	0.82803039
2FL	282319	1843446	10339	385	2065	0.1864407	0.7088	2.0937E+12	2.6634E-01
	1843446	7284517	212434		2065			1.4289E+14	4.599927281
整體剛重比3									3.884808331

表 3-25 X 向剛重比計算表

表 3-26 Y 向剛重比計算表

樓層	樓層	Gi 為第 i 層的重力 設計荷載 值	Fi 第i層 水平力	Hi 第 i 層 高度	H 總樓 層 度	γi=Hi/H	ui 第i層 頂部位 移	EJd 等效側向 剛度	剛重比 側向剛度與 重力荷載的 比值
	kgf	kgf	kgf	cm	cm		cm	kgf-cm ²	
ROOF	253807	253807	49856	2065	2065	1	3.4317	4.2643E+13	39.40041477
7FL	261005	514812	44318	1785	2065	0.864407	3.1988	3.2446E+13	14.77971091
6FL	261151	775963	37387	1505	2065	0.728814	2.8594	2.3149E+13	6.99612476

樓層	樓層	Gi 為第 i 層的重力 設計荷載 值	Fi 第i層 水平力	Hi 第 i 層 高度	H 總 層 度	γi=Hi/H	ui 第i層 頂部位 移	EJd 等效側向 剛度	剛重比 側向剛度與 重力荷載的 比值
	kgf	kgf	kgf	cm	cm		cm	kgf-cm ²	
5FL	261151	1037114	30431	1225	2065	0.59322	2.4242	1.5604E+13	3.528263032
4FL	261133	1298247	23474	945	2065	0.457627	1.914	9.5833E+12	1.731081435
3FL	262881	1561127	16629	665	2065	0.322034	1.3518	5.0139E+12	0.753178109
2FL	282319	1843446	10339	385	2065	0.186441	0.7491	1.9811E+12	0.252016023
	1843446	7284517	212434		2065			1.3042E+14	67.44078904
								整體剛重比	3.571800346

8. 意外扭矩

依建築物耐震設計規範及解說,為計及質量分布不確定性,應將地震力加在計算所 得質心位置向左及向右偏移 5%位置進行結構分析與設計,質心偏移造成之扭矩,稱為 意外扭矩。建築物若具扭轉不規則性時,各層施加之意外扭矩應以係數 Ax 放大。

$$d_{avg} = \frac{d_A + d_B}{2}$$
$$d_{max} = \{d_A, d_B\}_{max}$$

扭轉放大係數 $Ax = (d_{max} / 1.2 d_{avg})^2$

Ax? 1.0 扭轉規則性建築

 $A_x > 1.0$? 扭轉不規則性建築

取當層最大變位,除以兩最外點平均值之 1.2 倍,檢核結果 X 向意外扭矩如表 3-27、表 3-28 所示、Y 向意外扭矩如表 3-29、表 3-30 所示:

	准品	樓層最大位移量	平均層間位移	放大係數 Ax
X 側向力	倭僧	δ_{max} (cm)	$\delta_{avg} ({ m cm})$	$\left(\delta_{max}/1.2\delta_{avg}\right)^2$
+5%	ROOF	3.1597	3.1485	0.6994
	7FL	2.9232	2.9176	0.6971

表 3-27 X 向側向力+5%意外扭矩 Ax 計算表

	6FL	2.5998	2.5954	0.6968
	5FL	2.1952	2.1916	0.6967
	4FL	1.7253	1.7243	0.6953
	3FL	1.2249	1.2154	0.7053
	2FL	0.7048	0.6804	0.7451
	1FL	0	0	

表 3-28 X 向側向力-5%意外扭矩 Ax 計算表

	• -	•••••		• -
	神區	樓層最大位移量	平均層間位移	放大係數 Ax
	倭僧	δ_{max} (cm)	$\delta_{avg} ({ m cm})$	$\left(\delta_{max}/1.2\delta_{avg}\right)^2$
	ROOF	3.1537	3.1485	0.6967
	7FL	2.918	2.9178	0.6945
X 側向力	6FL	2.5957	2.5956	0.6945
-5%	5FL	2.192	2.1918	0.6946
	4FL	1.7289	1.7245	0.6980
	3FL	1.235	1.2154	0.7170
	2FL	0.7138	0.6802	0.7647
	1FL	0	0	

(資料來源:本研究整理)

	中国	樓層最大位移量	平均層間位移	放大係數 Ax
	倭僧	δ_{max} (cm)	$\delta_{avg} ({ m cm})$	$\left(\delta_{max}/1.2\delta_{avg} ight)^2$
	ROOF	3.4356	3.4317	0.6960
	7FL	3.1981	3.1974	0.6947
Y 側向力	6FL	2.8586	2.8578	0.6948
+5%	5FL	2.4234	2.4227	0.6948
	4FL	1.9129	1.911	0.6958
	3FL	1.3494	1.3453	0.6987
	2FL	0.7472	0.7368	0.7142
	1FL	0	0	

表 3-29 Y 向側向力+5%意外扭矩 Ax 計算表

放大係數 Ax 樓層最大位移量 平均層間位移 樓層 $(\delta_{max}/1.2\delta_{avg})^2$ Y侧向力 δ_{max} (cm) δ_{avg} (cm) -5% ROOF 3.4334 3.4326 0.6948 7FL 3.2022 3.1983 0.6961

表 3-30 Y 向側向力-5%意外扭矩 Ax 計算表

中高樓層建築軟弱層及扭轉不規則效應評估研究

6FL	2.862	2.8585	0.6961
5FL	2.4263	2.4233	0.6962
4FL	1.9165	1.9118	0.6979
3FL	1.3558	1.3468	0.7038
2FL	0.7529	0.7369	0.7249
1FL	0	0	

(資料來源:本研究整理)

9. 檢核結果

本案例為一於民國 80 年興建完成之住商大樓,其地上結構型式為七層之鋼筋混凝 土造建築物,一樓樓地板面積為 172.02m²,其標準樓地板面積為 238.3m²,相關資訊如 表 3-31。本案用途係數 1.0,以民國 100 年公佈之「耐震設計規範與解說」做為耐震標 準進行耐震初步評估,根據結構物情形給予適當之定性及定量評估。

表 3-31 建築物相關資料

構造種類	鋼筋混凝土造
地樓層數	地上7樓地下1樓
平面配置	不規則
總樓高	20.65 m
層高	2F~7F : H=2.8 m/1F : H=3.85 m

(資料來源:本研究整理)

本例採用之材料強度參數如下:

- 1. 混凝土抗壓強度: $f'_{c} = 210 kg f / cm^{2}$
- 2. 主筋降伏強度: $f_v = 4200 kgf / cm^2$
- 3. 箍筋降伏強度: $f_y = 2800 kgf / cm^2$

(一)柱破壞模式檢核

檢核重量由初評公式,式 2-20,總重為 2550 tf,依再依其柱面積量進行分配,即可 得到各柱所需承受之重量,如表 3-32 及表 3-33。

依照各柱所承受軸力,可算出各柱之剪力強度,即為V_{0i};依照各柱軸力納入並計算 出柱端、底彎矩,兩者相加除上淨高,即可得到剪力V_{pi}。兩者相除即可檢核剪力。
表 3-32 7 層樓建築結構柱構件主軸
$$\frac{V_{pi}}{V_{0i}}$$

1	出.	120	•	1raf
U	₽′	Ш	•	Kgr)

	軸力	V _c	V_s	V _{0iy}	V_{pi}	V _{pi} / V _{0i}
Ac1	210564	20334	24089	44424	59221	1.33
Ac2	210564	27525	32607	60133	56571	0.94
AC3	210564	29041	43005	72047	65455	0.91
AC4	210564	27862	24755	52617	52779	1.00
AC5	210564	27525	32607	60133	56571	0.94
AC6	210564	28704	42506	71211	71688	1.01
AC7	210564	29041	51606	80648	77922	0.97
AC8	210564	28536	33805	62342	59221	0.95
AC9	210564	27525	32607	60133	56571	0.94
AC10	210564	28536	33805	62342	59221	0.95
AC11	285071	39366	65581	104948	78026	0.74
AC12	210564	27525	32607	60133	56571	0.94

表 3-33 7 層樓建築結構柱構件弱軸
$$\frac{V_{pi}}{V_{0i}}$$

(單	位	:	kgf)	
١.					

	軸力	V _c	V_s	V _{0iy}	V_{pi}	V _{pi} / V _{0i}
Ac1	210564	29670	40573	70244	57846	0.82
Ac2	210564	29356	33453	62810	52308	0.83
AC3	210564	27822	38047	65870	60000	0.91
AC4	210564	28553	39046	67599	56000	0.83
AC5	210564	29352	33449	62802	58462	0.93
AC6	210564	28553	52061	80614	70769	0.88
AC7	210564	29210	53259	82470	73231	0.89
AC8	210564	29648	40543	70192	57908	0.82
AC9	210564	29356	33453	62810	52492	0.84
AC10	210564	29648	40543	70192	57908	0.82
AC11	285071	37569	50596	88165	122277	1.39
AC12	210564	29356	33453	62810	52308	0.83

(二)強柱弱梁檢核

將各軸力納入並計算柱端、底彎矩,以及算出梁端彎矩,將柱彎矩總合與梁端彎矩 總合相除,其值需大於1.2,表示為強柱弱梁;若小於1.2,即表示不符合強柱弱梁。依 圖說將其其不為正交之梁與柱進行投影並疊加,值如表 3-34 及表 3-35,可知其值皆大 於 1.2,皆符合強柱弱梁。

表 3-34 7 層樓建築結構 X 向立面
$$\frac{M_{nc}}{M_{nb}}$$

(單位:tonf)

柱	$M_{nc,ar{ m K}}$	$M_{nc,III}$	$\sum M_{nc}$	M_{nb}	$M_{\it nb}$	$\sum M_{nb}$	M _{nb,max}	$rac{M_{ m kt}}{ m M_{ m cm}}$
AC1	108	108	216				98	2.2
AC2	102	102	204				87	2.3
AC3	121	121	242	27	51		78	3.1
AC4	96	96	192				82	2.3
AC5	102	102	204				82	2.5
AC6	133	133	266	89	93		182	1.4
AC7	145	145	290	82+14	71		167	1.7
AC8	108	108	216	82	71		153	1.4
AC9	102	102	204	72	72		144	1.4
AC10	108	108	216				93	2.3
AC11	142	142	284	53+61	78		192	1.5
AC12	102	102	204				67	3.1

(資料來源:本研究整理)

表 3-35 7 層樓建築結構主軸 Y 向立面
$$\frac{M_{nc}}{M_{nb}}$$

(單位:tonf)

柱	$M_{ m nc, ar{ m K}}$	$M_{nc, \mathrm{III}}$	$\sum M_{nc}$	M_{nb}	M_{nb}	$\sum M_{nb}$	$M_{\rm nb,max}$	$rac{M_{ m kt}}{ m M_{ m R}}$
AC1	88	88	166				64	2.6
AC2	80	80	160	64	45		109	1.5
AC3	93	93	186	74	79		153	1.2
AC4	85	85	170	79	72		151	1.1
AC5	80	80	160				64	2.5
AC6	110	110	220				70	3.1
AC7	115	115	230	30	64		94	2.4

柱	$M_{ m nc, ar{ m K}}$	$M_{nc, \mathrm{III}}$	$\sum M_{nc}$	M_{nb}	M_{nb}	$\sum M_{nb}$	$M_{nb,\max}$	$rac{M_{ m k\pm}}{ m M_{ m sm}}$
AC8	89	89	178	45	64		109	1.6
AC9	80	80	160				61	2.6
AC10	89	89	178				72	2.5
AC11	189	189	378	80	61+39		180	2.1
AC12	80	80	160				72	2.2

11.初步評估結果(PSERCB)

利用 PSERCB 將此建築物進行耐震能力初步評估,輸入資料分別為建築物之基本資 料、定性評估、參數設置、X向斷面資料、Y向斷面資料等.....。圖 3-22 為輸入建築之 基本性質;圖 3-23 為結構系統之定性評分,靜不定程度為雙跨,得分為 3.4 分、地下室 面積比為1.53,得分0分、平面對稱性配置不良及立面對稱性不良,分數皆為3分、柱 之高深比為5,得分為0.8,軟弱層嚴重性高,得分3.0分。由圖 3-24 可知結構細部之 定性評分,由設計年份可知其建造年分,得分為 1.7,窗台及氣窗造成短柱性低、牆體 造成短梁嚴重性低,得分皆為1.0。圖3-24為結構現況方面:柱及牆之損害程度分別為 高等,得分皆為2.0、裂縫鏽蝕程度高,得分為3.0。圖3-25為額外增、減分,分別為 分期興建或工程品質有疑慮、曾經受災害者,如土石流、火災、震災、人為破壞等、使 用用途由低活載重改為高活載重使用者、傾斜程度明顯者、使用用途由高活載重改為低 活載重使用者五項,分別得分為2、0、0、2、0分。圖3-26、圖3-27為輸入參數及斷 面資料,輸入建築結構基本資料,如混凝土抗壓強度、鋼筋降伏強度及柱、牆斷面資料 等。將上述之得分得加總而得,為定性評估分數為 29.6 分,如圖 3-28。由圖 3-28 可知 定量評分為22.5。其總分為定性評分與定量評分相加,故可得知建築物耐震能力為52.1 分,結果為為結於30分至60分,表示建築物之耐震能力確有疑慮,優先進行詳細評估。 其餘操作過程如圖 3-29 至圖 3-34 所示:圖 3-35 及圖 3-36 算出定量評分之 X 向建築物 475 年地震回歸期耐震能力為 0.253 g, Y 向為 0.210 g, X、Y 向不符合耐震標準 $0.4 S_{DS}$; X 向建築物 2500 年地震回歸期耐震能力為 0.329 g, Y 向建築物 2500 年地震回歸期耐震 能力為0.273g, X、Y方向上不符合耐震標準 $0.4S_{MS}$ 。由於此結果是將柱C3、C4、C5、

C8、C9、C12 直接轉成與主軸 X、Y 相同之方向,故須將其投影至 X、Y 向。

X向475年耐震能力0.253g經由桂投影後強度為0.187g,Y向475年耐震能力0.201 g經由桂投影後強度為0.169g,皆不符合0.4*S*_{DS};X向2500耐震能力原為0.331g,經 由投影後為0.240g,Y向2500耐震能力原為0.263g,經由投影後為0.222g。經由計算 定量分數由增加至,進而大大增加不合格之分數,總分變為60.679分。

建物名稱	建物编號	評估日期	評估者
C01幸福外碍禮+電梯RC禮柱直接轉正R=3.08END	DC080TAO00021	2017/08/10	林智隆
縣市	鄉鎮市區	村里	地址(語輸入完整地址-需会縣市和鄉鎮市區)
喜南市	 ▼ □ ⊕ □ ⊠ 	 人名格兰 · · · · · · · · · · · · · · · · · · ·	▼
新聞	地盤種類	建構年度	設計規範
新作動質	* 91.218	• 1991/07/23	71年6月至86年5月 *
建物嘉度[m]	用途係數[1]	X向助性容量[Rx]	Y向韌性容量[Ry] ●
20.65	1.0	۳ 3.08	3.08
地上棲層數	地下楼層數	建築物X向週期T計算公式:	建築物Y向週期T計算公式:
7	1	◎ T=0.05hn ^{0.75} (卿力繮) * T=0.07hn ^{0.75}	◎ T=0.05hn ^{0.75} (劉力編) ◎ T=0.07hn ^{0.75}
建築物依結構型式分類:	建築物依使用用進分類:	建築物依樓層分類:	本評估參考資料:
島防管注:47	(中華現合)	▼ 六様以上	▼ 環場講習或推估 ▼

圖 3-22 基本資料 (資料來源: PSERCB 網站提供)

.結構系統 (単位 : kgf-cm)			
1.靜不定程度	2.地下至面積比ra	3.平面對稱性	4.立面對稱性
○ 濉浔(1.0)	ra(地下至南横與建築面積之比)	● 不良(1.0)	● 不良(1.0)
雙跨(0.67)	1.53	○ 尚可(0.5)	○ 尚可(0.5)
○ 三時(0.33)		O 民(0)	O 民(0)
O 四時以上(0)			
分數:3.4	分數:0.0	分數:3.0	分數:3.0
5.梁之跨深比b	6.柱之高深比c	7.軟弱層顯著性	
5.梁之鹃深比b	6.桂之嘉深比c	● 毫(1.0)	
4.81	5	○ Φ(0.67)	
		〇 低(0.33)	
		O Ⅲ(0)	
7730. + 1.4	77,80.1 0.0	77 80 1 5.0	

圖 3-23 定性評估表(結構系統) (資料來源: PSERCB 網站提供)

/結構細部 (単位:kgf.cm)						
8.塑鼓圆踏筋编部(由設計年度評估)		9.窗台、氣窗造成短柱嚴重性		10.總體造成短梁嚴重性		
○ 63年2月以前(1.0)		〇 産(1.0)		〇 蚕(1.0)		
O 63年2月至71年6月(0.67)		〇 中(0.67)		○ \$\phi(0.67)		
71年6月至86年5月(0.33)		(i) (0.33)		● 1話(0.33)		
O 86年5月以後(0)	分數:1.7	O ≡(0)	分数:1.0	O ∰(0)	分數:1.0	
結構現況 (單位 : kgf-cm)						0
11.柱之損害程度		12. 牆之損害程度		13.裂缝鏽触渗水等程度		
● 毫(1.0)		● 高(1.0)		(1.0)		
○ ⊕(0.67)		〇 中(0.67)		○ Φ(0.67)		
〇 1世(0.33)		O 1世(0.33)		○ 億(0.33)		
〇 用(0)	0.000	O m(0)		O m(0)		
	25.62 : 2.0		22.0		22386 1 3.0	

圖 3-24 定性評估表(結構細部、結構現況) (資料來源: PSERCB 網站提供)

額外增分(各項最高配分為2分,所有項目相総合最多	708分) (单位:kgf.cm)			4
分期與建或工程品質有疑慮 分期與建成工程品質有疑慮 2	曾經受災害者,如土石流,火災,震災,人為破壞等 曾經受災害者,如土石流,火災,震災,人為破壞等 0	使用用途由低活載重改為高活載重使用者 使用用途由低活載重改為高活載重使用者 0	倾斜程度明顯者 倾斜程度明顯者 2	
語外減分(所有項目相總合最多減2分) (單位: kgf-cm)				0
使用用途由高活載重改為低活載重使用者 使用用途由高活載重改為低活載重使用者 0				

圖 3-25 額外增、減分 (資料來源: PSERCB 網站提供)

建築物重量(未使用之欄位請填0)(#位:tf-m)			
2根~j根之根地板葉位面積靜數重[tf/m ²] ●	(j+1)模~k模之模地板董位面積靜數重[tf/m ²]	(k+1)硬~屋顶之梗地板单位面積靜較重[tt/m ²]	
1.26	0	0	
◎推估值◎ 設計值	◎ 推估值 ◎ 設計值	◎ 推估值 ◎ 設計值	
2楼~j楼之楼地板墓位面積活載量[tf/m ²]	(j+1)梗-K嗖之稜地板單位面積活載置[tf/m ²]	(K+1)樓~屋頂之樓地板單位面積活載置[#/m ²]	
0.5	0	0	
● 推估值 ◇ 設計值	◎ 推估值 ◎ 設計值	● 推估值 ◇ 設計值	
2樓~j樓之總樓地板面積[m ²]	(j+1)樓~k樓之總樓地板面積[m ²]	(k+1)樓~屋頂之總樓地板面積[m ²]	
1722.7	0	0	
◎ 推估值 ○ 設計值	◎ 推估值 ◎ 設計值	◎ 擔估值 ◎ 設計值	
性材料參數(末使用之欄位請填0)(單位: kgf.cm)			
混凝土抗壓強度(fc) ❷	主筋降伏強度(ty) ●	離筋降伏強度(fyv)	
210	4200	2000	
● 推估值 ○ 設計值	# 推估值 ○ 設計值	◎ 推估值 ○ 設計值	

圖 3-26 參數設置 (資料來源: PSERCB 網站提供)

一般柱 短柱 RC编 回邊重束導稿 三邊重束導稿 用肉邊重束導信 標準僅層之RC编 標準僅層之滿編 新橋 医人 下数数量 CI RECT 50 325 #3 65 #8 16 0 C2 RECT 50 65 #8 14 325 #3 C3 RECT #8 325 325 C4 RECT

C5	RECT	50	65	5	#8	14	O	325	#3	4	1 1 2
C6	RECT	50	65	2	#8	22	0	325	#3	5	1 1 2
C7	RECT	50	65		#8	24	0	325	#3	6	1 1 2
C8	RECT	50	65	12	#8	16	0	325	#3	4	1 1

圖 3-27 X 向斷面資料 (資料來源: PSERCB 網站提供)

C01幸福外磚牆+電梯RC牆柱直接轉正R=3.08END	林智隆	2017-08-10	29.6	22.5	評估	52.1	分數介於45至60分!

圖 3-28 評分分數 (資料來源: PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/7

鋼筋混凝土建築物耐震能力初步評估表

壹、建築物基本資料表

建物名稱	C01 幸福外磚牆+電梯 RC 牆柱直接轉正 R=3.08END	建物編號	DC080TAO0002 1	建物地址	歸仁路1號		
評估者 林智隆		評估日期	2017-8-10	e-mail	clot00001.cv04g@g2.nctu.edu.tw		
設計年度	71年6月至86年5月	建物高度 h _n (m)	20.65	用途係數I	1		
地盤種類	第二類地盤	地上樓層數	7	地下樓層數	1		
建築物依樓層分類	頁: □五樓以下 ■六	要以上					
建築物依結構形式	式分類: □一般 RC 建物	□加强磚造(透天	厝)■具弱層建物□]其它:			
建築物依使用用途分類:□辦公室 □公寓 □集合住宅 □商場 ■住商混合□其它:							
本評估參考資料: □設計圖説 □計算書 ■現場調查或推估							

圖 3-29 基本資料表 (資料來源:PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆

貳、建築物耐震能力初步評估表

列印日期:2017/10/8

項次	項日	配分	評估內谷	催重	評分
1	靜不定程度	5	□單跨(1.0) ■雙跨(0.67) □三跨(0.33) □四跨以上(0)	0.67	3.35
2	,地下室面積比, ra	2	$0 \leq (1.5 - r_a) / 1.5 \leq 1.0; r_a: 地下室面積與建築面積之比 r_a=1.53$	0	0.00
3	結平面對稱性	3	■不良(1.0) □尚可(0.5) □良(0)	1.00	3.00
4	響立面對稱性	3	■不良(1.0) □尚可(0.5) □良(0)	1.00	3.00
5	疥 梁之跨深比 b	3		0.64	1.92
6	‴ 柱之高深比 c	3		0.25	0.75
7	軟弱層顯著性	3	■高(1.0) □中(0.67) □低(0.33) □無(0)	1.00	3.00
8	趨鉸區箍筋細部(由 結設計年度評估)	5	□63 年 2 月以前(1.0) □63 年 2 月至 71 年 6 月(0.67) ■71 年 6 月至 86 年 5 月(0.33) □86 年 5 月以後(0)	0.33	1.65
9	偶窗台、氣窗造成短柱	3	□高(1.0) □中(0.67) ■低(0.33) □無(0)	0.33	0.99
10	牆體造成短梁嚴重性	3	□高(1.0) □中(0.67) ■低(0.33) □無(0)	0.33	0.99
11	結柱之損害程度	2	■高(1.0) □中(0.67) □低(0.33) □無(0)	1.00	2.00
12	槽 牆之損害程度	2	■高(1.0) □中(0.67) □低(0.33) □無(0)	1.00	2.00
13	況裂縫鏽蝕滲水等程度	3	高(1.0) □中(0.67) □低(0.33) □無(0)	1.00	3.00
14	475 年耐震能力初步 定評估 量	30	$\begin{split} & \underbrace{\mathfrak{M}}_{\mathcal{A}_{475}} \leq 0.25 \ , \ w=1 \ ; \underbrace{\mathfrak{M}}_{0.25} \leq \frac{\mathcal{A}_{c1}}{\mathcal{A}_{475}} \leq 1, \ w=\frac{4}{3} \Big(1 - \frac{\mathcal{A}_{c1}}{\mathcal{A}_{475}} \Big) \ ; \underbrace{\mathfrak{M}}_{\mathcal{A}_{475}} > 1 \ , \ w=0 \\ & A_{c1} = \min[A_{c1,x}, \ A_{c1,y}] \ A_{c1,x} = 0.25 \ A_{c1,y} = 0.20 \ A_{c1} = 0.20 \end{split}$	0.38	11.40
15	分 析2500 年 耐 震 能 力 初 步評估	30	$ \overset{\text{\tiny{(1)}}}{=} \frac{A_{c_2}}{IA_{2500}} \le 0.25 , w = 1 ; \overset{\text{\tiny{(2)}}}{=} 0.25 \le \frac{A_{c_2}}{IA_{2500}} \le 1, w = \frac{4}{3} \left(1 - \frac{A_{c_2}}{IA_{2500}} \right) ; \overset{\text{\tiny{(2)}}}{=} \frac{A_{c_2}}{IA_{2500}} > 1 , w = 0 $ $A_{c_2} = \min[A_{c_2x_1}, A_{c_2x_2}] = A_{c_2x} = 0.33 A_{c_2x_2} = 0.26 A_{c_2} = 0.26 $	0.37	11.10
分數總	割計	100	評分	·總計(P):	48.15

圖 3-30 耐震能力初步評估表 (資料來源:PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/8

額外	評	估項目: 此部分為外加評分項目,評估人員應就表列「額外增分」、「額外減分」事項 各項最高配分為2分,總共最高配分為8分;減分最高配分為2分						
	A 分期興建或工程品質有疑慮							
額外	в	曾經受災害者,如土石流、火災、震災、人為破壞等	0					
增 分	С	使用用途由低活載重改為高活載重使用者	0					
	D	傾斜程度明顯者	2					
額外減分	a	使用用途由高活載重改為低活載重使用者	0					
		額外評分總計(S):	4					
		總評估分數(R)=P+S=	52.15					

註:評估內容中w為計算之權重。

圖 3-31 耐震能力初步評估分數 (資料來源: PSERCB 網站提供)

		耐震能力初	步評估[Prelin	minary Seismic Evaluation of RC I	Building]
F	DSERCE			評估者:	林智隆
				列印日期:2	017/10/7
	重要註記				
C01					
	□ R ≤ 30; 建築物耐震能力尚無疑慮				
評估	□ 30 < R ≤ 45; 建築物耐震能力稍有疑慮, 宜進行詳評		誣估考簽音		
結	■45 <r≤60;建築物耐震能力有疑慮,優先進行詳評< td=""><td></td><td>11111日双平</td><td></td><td></td></r≤60;建築物耐震能力有疑慮,優先進行詳評<>		11111日双平		
	□ R > 60; 建築物的耐震能力確有疑慮, 逕自進行補强或拆除				

圖 3-32 耐震能力初步評估結果判定 (資料來源: PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/7

念 、定量評估表		241111774	
	建築物資訊		7
2 樓~j 樓之樓地板面積靜載重 w _{1D} (tf/m ²)	1.260	■推估值 □設計值	7
(j+1)樓~k 樓之樓地板面積靜載重 W2D (tf/m2)	0.000	■推估值 □設計值	7
(k+1)樓~屋頂之樓地板面積靜載重 W3D (tf/m	²) 0.000	■推估值 □設計值	7
2 樓~j 樓之樓地板面積活載重 w ₁₁ (tf/m ²)	0.500	■推估值 □設計值	
(j+1)樓~k 樓之樓地板面積活載重 W _{2L} (tf/m ²)	0.000	■推估值 □設計值	7
(k+1)樓~屋頂之樓地板面積活載重 W3L (tf/m2	²) 0.000	■推估值 □設計值	7
2 樓~j 樓之總樓地板面積 A1 (m ²)	1722.700	■推估值 □設計值	
(j+1)樓~k 樓之總樓地板面積 A2 (m ²)	0.000	■推估值 □設計值	
(k+1)樓~屋頂之總樓地板面積 A ₃ (m ²)	0.000	■推估值 □設計值	
建築物靜載重 $W_D = \sum_{i=1}^{3} w_{iD} \times A_i$ (kgf)	2170602.00		
建築物總載重 $W = \sum_{i=1}^{3} (w_{iD} + \frac{1}{2} w_{iL}) \times A_i$ (kgf)	2601277.00		
	into i.i. i. i. visi etc.		_
	一樓柱材科奓數		-
花 傑 工 九 堅 独 度 t c (kgf/cm ²)	210		-
_ 土肋降伏强度 f _y (kgf/cm ²)	4200		_
箍筋降伏强度 fyv (kgf/cm ²)	2800	■推估值 □設計值	
柱之保護層厚度 c (cm)	4	■推估值 □設計值	
	lability 1. J. de. ab.		
	一要牆材科參數		
	210		

RC 牆混凝土抗壓强度 fc (kgf/cm ²)	210	■推估值 □設計值
RC 牆主筋降伏强度 fy (kgf/cm ²)	4200	■推估值 □設計值
磚牆砂漿塊抗壓强度 fmc (kgf/cm ²)	100	■推估值 □設計值
磚牆紅磚之單軸抗壓强度 f₅ (kgf/cm²)	150	■推估值 □設計值

圖 3-33 參數設置 (資料來源: PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building]

評估者:林智隆 列印日期:2017/10/8

X向定量評估			建築物週期(sec): ■0.07 <i>h</i> _n ^{0.75} □0.05 <i>h</i> _n ^{0.75}									系統韌物	生容量 R	3.08
一般 柱類 別	柱型 式 (type)	柱寬 / 直徑 (cm) (<i>B_c</i>)/(<i>D_c</i>)	柱深 / 直徑 (cm) (<i>H_c</i>) /(<i>D_c</i>)	柱í (%) (Ps)	一樓柱 淨高 (cm) (h _i)	橫向箍、 繫筋號數 No	橫向箍、 繫筋根數 Num	橫向箍、 繫筋總斷 面積 (cm ²) A _v	橫向箍、 繫筋間距 (cm) S	柱根數 (N _{ci})	撓曲破壞控 制 (kgf) (V _{m,coli})	剪力破壞控 制 (kgf) (V _{sui})	V _{coli} (kgf)	V _{coli} ×N _{ci} (kgf)
						一般	柱(一樓柱湾	爭高與柱淨	深之比值(h	1 / H_c)>2)				
C1	RECT	50	65	2.49	325	#3	4	2.84	12	1	63514.33	60972.91	52923.83	52923.83
C2	RECT	50	65	2.18	325	#3	4	2.84	12	1	58434.71	61094.32	52591.24	52591.24
C3	RECT	50	65	2.81	325	#3	5	3.55	12	1	68531.96	70491.43	61678.76	61678.76
C4	RECT	50	65	2.18	325	#3	3	2.13	12	1	58434.71	51424.49	41346.66	41346.66
C5	RECT	50	65	2.18	325	#3	4	2.84	12	1	58434.71	61094.32	52591.24	52591.24
C6	RECT	50	65	3.43	325	#3	5	3.55	12	1	78328.84	70247.68	57424.97	57424.97
C7	RECT	50	65	3.74	325	#3	6	4.26	12	1	83152.94	79717.88	69111.57	69111.57
C8	RECT	50	65	2.49	325	#3	4	2.84	12	1	63514.33	60972.91	52923.83	52923.83
C9	RECT	50	65	2.18	325	#3	4	2.84	12	1	58434.71	61094.32	52591.24	52591.24
C10	RECT	50	65	2.49	325	#3	4	2.84	12	1	63514.33	60972.91	52923.83	52923.83
C11	RECT	80	55	2.76	325	#3	9	6.39	12	1	73897.20	100744.03	66507.48	66507.48
C12	RECT	50	65	2.18	325	#3	4	2.84	12	1	58434.71	61094.32	52591.24	52591.24
										一般柱さ	t 極限强度 Σ	Vcali×Nci (kgf)	665	205.91

圖 3-34 柱極限層剪力強度計算 (資料來源: PSERCB 網站提供) PSERCE

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/8

建築物 475 年地震回歸期耐震能力計算 (達容許韌性容量地震之地表加速度)			기가 티 개 1.2017/10
一	j=1	j=2	j=3
$V_{uj} = C_{voj} \Sigma V_{coli} \times N_{ci} + C_{voj} (\Sigma V_{swi} \times N_{swi} + \Sigma V_{scoli} \times N_{sci}) + C_{vbj} \Sigma V_{bwi} \times N_{bwi}; j=1\sim3 \text{ (kgf)}$	493098.027	495905.861	480611.273
新設計建築物之極限剪力强度 $(V_{100})_u = I \left(\frac{S_{aD}}{F_u} \right)_m W_D (kgf)$		657609.758	
受評估建築物之降伏地表加速度 $A_{jj,x} = \frac{V_{ij}}{(V_{100})_u} \frac{IA_{475}}{Fu}$ (g); $j = 1 \sim 3$	0.092	0.092	0.089
$\begin{array}{l} R_{j} = \frac{C_{\mu,\nu} \times R_{\mu,0}(C_{\nu,\nu} \times \sum_{j' = \omega} \times N_{\nu,i}) + C_{\mu,\nu} \times R_{\mu,i}(C_{\nu,\nu} \times \sum_{j' = \omega} \times N_{\nu,i}) + C_{\mu,\nu} \times R_{\mu,i}(C_{\nu,\nu} \times \sum_{j' = \omega} \times N_{\nu,i}) + C_{\mu,\nu} \times R_{\mu,i}(C_{\nu,\nu} \times \sum_{j' = \omega} \times N_{\nu,i}) + C_{\mu,\nu} \times R_{\mu,i}(C_{\nu,\nu} \times \sum_{j' = \omega} \times N_{\nu,i}) + C_{\mu,\nu} \times R_{\mu,i}(C_{\nu,\nu} \times \sum_{j' = \omega} \times N_{\nu,i}) + C_{\mu,\nu} \times R_{\mu,i}(C_{\nu,\nu} \times \sum_{j' = \omega} \times R_{\mu,i}) + C_{\mu,\nu} \times R_{\mu,i}(C_{\nu,\nu} \times \sum_{j' = \omega} \times R_{\mu,i}) + C_{\mu,\nu} \times R_{\mu,i}(C_{\nu,\nu} \times R_{\mu,i}) + C_{\mu,\nu} \times R_{\mu,i}(C_{\nu,\nu} \times \sum_{j' = \omega} \times R_{\mu,i}) + C_{\mu,\nu} \times R_{\mu,i}(C_{\nu,\nu} \times R_{\mu,i}) + C_{\mu,\nu} \times R_{\mu,i}(C_{\mu,\nu} \times R_{\mu,i}) + C_{\mu,\nu} \times R_{\mu,\mu} $	1.562	2.816	4.000
$\mathbf{R}_{ij}^{*} = \begin{cases} 1 + \frac{(R_{j}^{*} - 1)}{1.5} (-\frac{4}{5} \mathbf{I} \cdot \mathbf{k}) \\ 1 + \frac{(R_{j}^{*} - 1)}{2.0} (\hat{\mathbf{G}} \cdot \mathbf{k} \cdot \mathbf{k}) \\ i = 1 - 3 \end{cases}; j = 1 - 3 \end{cases}$	1.375	2.211	3.000
$F_{zj}^* = F_u(T, R_{zj}^*); j=1\sim3$	1.363	2.132	2.833
V_{uj}/W_D	0.227	0.228	0.221
建築物 X 向耐震能力 $A_{cl,s} = \max[A_{y,s}F_{aj}^{*}; j = 1 \sim 3]_{(g)}$		0.253	
$\frac{A_{cl,x}}{IA_{475}}$		0.904	

圖 3-35 475 年地震回歸期耐震能力計算 (資料來源: PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/8

プラヒドに日本
 建築物 2500 年地震回歸期耐震能力計算
 (達朝性容量地震之地表加速度)

	j=1	j=2	j=3
$\sum_{u_{j}=0}^{128/HT} \sum_{v_{ij} \in \mathcal{V}_{coli} \times N_{ci}} \sum_{v_{ij} \in \mathcal{V}_{swi} \times N_{swi}} \sum_{v_{ij} \in \mathcal{V}_$	493098.027	495905.861	480611.273
新設計建築物之極限剪力强度 $(V_{100})_u = I \left(\frac{S_{aD}}{F_u} \right)_m W_D (kgf)$		657609.758	
受評估建築物之降伏地表加速度 $A_{jj,x} = \frac{V_{uj}}{(V_{100})_u} \frac{IA_{475}}{Fu}$ (g); $j = 1 - 3$	0.092	0.092	0.089
$\begin{array}{l} R_{j} = \frac{C_{2i} \times R_{iii}(C_{iij} \times \sum_{i' = i'} N_{ii}) + C_{2i} \times R_{ii}(C_{ii'} \times \sum_{i' = i'} N_{ii'} + \sum_{i' = i'} N_{ii'} + \sum_{i' = i'} N_{ii'} + C_{iii'} \times R_{ii'} (C_{ii'} \times \sum_{i' = i'} N_{ii'} + C_{ii'} \times N_{ii'} + \sum_{i' = i'} N_{ii'} + \sum_{i' = i'} N_{ii'} + C_{ii'} \times \sum_{i' = i'} N_{ii'} + \sum_{i' = i' = i' = i'} N_{ii''} + \sum_{i' = i' = i' = i' = i'} N_{ii''} + \sum_{i' = i' = i' = i' = i' = i' = i'} N_{ii''} + \sum_{i' = i' =$	1.562	2.816	4.000
$F_{uj}^* = F_u(T, R_j^*)_{; j=1\sim3}$	1.539	2.671	3.705
V_{uj}/W_D	0.227	0.228	0.221
建築物 X 向耐震能力 $A_{c2,x} = \max[A_{jj,x}F_{ij}^*; j=1~3]_{(g)}$		0.331	
$\frac{A_{c2,s}}{IA_{2500}}$		0.920	
it: $\Sigma V_{bwi} \times N_{bwi} \times \Sigma V_{bwdi} \times N_{bwdi} \times \Sigma V_{bw3i} \times N_{bw3i} \times \Sigma V_{bw2i} \times N_{bw2i}$			

R _{col} > R _{sw}	及Rbw與設計	年度有關,建	議如下:	_
設計年度	R _{col}	R _{sw}	R_{bw}	
63年2月以前	2.4	2.0	3.0	
63年2月至71年6月	3.2	2.0	3.0	
71年6月至86年5月	4.0	2.0	3.0	
86年5月以後	4.8	2.0	3.0	
註: j=1 為 RC 牆 朝 性	充分發揮	; j=2 為 碍	「牆 韌 性 充 分	發揮;

係數 Cvcj、CRcj、Cvcj、CRcj、Cvbj與 CRbj 建議如下:				
	j	1	2	3
V	C_{vcj}	0.65	0.95	1
V _{coi}	C_{Rcj}	0.35	0.70	1
V	C_{vsj}	0.85	0	0
V _{swi}	C_{Rsj}	1	0	0
$\mathbf{V}_{\mathrm{bwi}}$	C_{vbj}	0.95	0.85	0
	Car	0.45	1	0

j=3 為構架韌性充分發揮;

圖 3-36 2500 年地震回歸期耐震能力計算 (資料來源: PSERCB 網站提供)

12.中高樓層初步評估結果

案例建築共有 3 根外柱、9 內柱。由式(2-18)可知,外柱、內柱之單位面積側向強度 分別為 $\tau_{CE} = 121.86 - 6.12 \times (7) = 79.05 tf / m^2 \cdot \tau_{CI} = 125.9 - 3.49 \times (7) = 101.47 tf / m^2, 計算$ 極限基底剪力強度 X 向及 Y 向分別為

$$V_{bs,x} = \sum_{j=1}^{N_{CE}} \tau_{CE} A_{CE} + \sum_{j=1}^{N_{CI}} \tau_{CI} A_{CI} + \sum_{j=1}^{N_{BW3}} \tau_{BW3} A_{BW3} + \sum_{j=1}^{N_{BW4}} \tau_{BW4} A_{BW4} + \sum \tau_{RC} A_{RC} = 415 tf$$

$$V_{bs,y} = \sum_{j=1}^{N_{CE}} \tau_{CE} A_{CE} + \sum_{j=1}^{N_{CI}} \tau_{CI} A_{CI} + \sum_{j=1}^{N_{BW3}} \tau_{BW3} A_{BW3} + \sum_{j=1}^{N_{BW4}} \tau_{BW4} A_{BW4} + \sum \tau_{RC} A_{RC} = 407 t f$$

透過面積計算,由式(2-20)算得此建築物總靜載重

 $W = 1.33 \times (238.63 + 238.3) + 1.24(4 \times 238.63) + 1.54(238.3) = 2180 tf$

由案例介紹其為鋼筋混凝土建築物,該建物基面至屋頂高度為 20.65 公尺,由式 (2-22)可知週期

$$T = 0.07 h_n^{\frac{3}{4}} = 0.678 s$$

根據建築物耐震設計規範及解說可知建築物為第二類地盤,鄰近新化斷層計算工址 短週期、一秒設計水平譜加速度係數如式(2-12)、式(2-24a)

$$S_{DS} = F_a N_A S_S^D = 1.0 \times 1.0 \times 0.7 = 0.7$$
$$S_{D1} = F_v N_v S_1^D = 1.3 \times 1.0 \times 0.4 = 0.52$$
$$S_{MS} = 1.0 \times 1.0 \times 0.9 = 0.9$$
$$S_{M1} = 1.0 \times 1.0 \times 0.5 = 0.5$$

計算工址設計水平加速度反應譜短週期與中長週期之分界 T_0^D 、 T_M^0

$$T_0^D = \frac{S_{D1}}{S_{DS}} = \frac{0.506}{1.032} = 0.743s$$

$$T_0^M = 0.611$$

由式(2-28a)判別, $T_0^D \leq T \leq 2.5T_0^D$,故工址設計水平譜加速度係數

$$S_{aD} = \frac{S_{D1}}{T} = \frac{0.52}{0.678} = 0.767$$

由式(2-28a)判別,故工址設計水平譜加速度係數

$$S_{aM} = \frac{S_{M1}}{T} = \frac{0.55}{0.678} = 0.811$$

以本研究建議之結構系統韌性容量 R=3.08計算,且為一般工址與近斷層區域,故 容許韌性容量,如式(2-33)

$$R_a = 1 + \frac{(R-1)}{1.5} = 1 + \frac{(3.08-1)}{1.5} = 2.387$$

再代入地盤種類可得結構系統地震力折減係數(式(2-33)),得 $F_u = \sqrt{2R_a - 1} + \left(R_a - \sqrt{2R_a - 1}\right) \times \frac{T - 0.6T_0^D}{0.4T_0^D} = 2.29 \cdot F_{u,m} = 3.08, 並透過式(2-34a)對工址$

設計水平譜加速度係數進行修正可得

$$\left(\frac{S_{AD}}{F_u}\right) = \frac{0.767}{2.29} = 0.335, 0.3 \le \frac{S_{aD}}{F_u} \le 0.8$$
$$\left(\frac{S_{AD}}{F_u}\right)_m = 0.52\frac{S_{aD}}{F_u} + 0.144 = 0.318$$

$$(\frac{S_{AM}}{F_{u,M}}) = 0.263, (\frac{S_{AM}}{F_{u,M}})_m < 0.3 = 0.263,$$

為算出耐震容量需求比,將結果代入式(2-36a),可得

 $R_{CD,475r} = 0.63$

$$R_{CD,475y} = 0.407$$

$$R_{CD,2500x} = 0.723$$

 $R_{CD,2500y} = 0.62$

代入式(2-38)並計算耐震能力

 $A_{p,475x} = 0.176 \le 0.4S_{DS} = 0.28$ $A_{p,475y} = 0.173 \le 0.4S_{DS} = 0.28$ $A_{p,2500x} = 0.26 \le 0.4S_{MS} = 0.36$

$$A_{p,2500y} = 0.22 \le 0.4 S_{MS} = 0.36$$

以基本耐震性能之 E 值是否大於 100 分為評估標準,評估分數 E 大於 100 分表示並 無疑慮;若 E 值小於 100,表示建築物之耐震能力不足,須再進行詳細評估。故此結果 為小於 100 分,故須進行詳細評估。

第三節 10 層辦公室廠房案例

1. 基本資料

位於臺南之地上 10 層樓鋼筋混凝土建築物,約於民國 83 年興建。屬辦公室廠房, 由樓層平面圖(圖 3-37)可知主要為 RC 梁柱構架系統,建築物基本資料蒐集如表 3-36 所 示:

圖 3-37 10 層樓結構平面圖 (資料來源:本研究整理)

圖 3-38 結構立面圖 (資料來源:本研究整理)

圖 3-39 結構 3D 圖 (資料來源:本研究整理)

表 3-36 建築物基本資料

建築物名稱	10 層辦公室、廠房案例
興建年代	民國 83 年
分期興建	無
構造型式	鋼筋混凝土造基礎為筏式基礎
結構系統	RC 梁柱構架,磚牆隔間及外牆 RC 電梯牆
平面尺寸	矩型平面 BxL=33.4mx30.0m
建築規模	地面 10 層、地下 1 層
樓高(m)	43.2 <i>m</i>
基本振動週期	1.1795 sec $(0.07 h_n^{0.75})$
大梁尺寸(cm)	55×90 \ 4 0×80
柱尺寸(cm)	85ϕ > 90ϕ > 100ϕ
樓版(cm)	40 cm (1F) \ 15 cm (2~10F)
現況用途	廠房(1F~8F)、辦公室(9F~10F)
總樓地板(m ²)	10822.18 (BFL~RFL)

2. 重量計算

(1)靜載重:

- ◆ 鋼筋混凝土單位體積自重 2.4 t/m³。
- ◆ 1B 磚牆 0.440 t/m²; 1/2B 磚牆 0.220 t/m²。
- ◆ 梁、柱、樓板依各自斷面尺寸乘以各材質單位重量計算。
- ◆ 所有牆重依各自材料性質及厚度照實計算。

(2)活載重:

- ◆ 廠房 (2F~10F): 300 kgf/m²
- ◆ 辦公室 (9F~10F): 300 kgf/m²

結構分析樓層重如表 3-37 所示:

曲回	柱重	梁重	RC 牆重	樓板重	鋪面重	合計
倭僧	(kgf)	(kgf)	(kgf)	(kgf)	(kgf)	(kgf)
PRF	7962	38322		22914	1273	70471
R3F	14476	38322	12730	22914	1273	89715
R2F	144007	131478	14970	26140	1497	318091
R1F	143263	376568	195710	351472	19571	1086583
10FL	143263	376568	195710	351472	19571	1086583
9FL	143263	376568	195710	351472	19571	1086583
8FL	143263	376568	195710	351472	19571	1086583
7FL	151223	376235	195710	351472	19571	1094211
6FL	151223	377221	195710	351472	19571	1095196
5FL	151223	376235	195710	351472	19571	1094211
4FL	154188	375760	195710	351472	19571	1096701
3FL	161134	374041	195710	351472	19571	1101927
2FL	244180	377976	195710	351472	19571	1188908
1FL	205538	370004	196446	942941	19645	1734574
BASE		1488211	525800	1239600	20660	3274271
SUM	1958206	5830077	2707046	5769224	240058	16504611

表 3-37 結構分析樓層重

3. 週期及質量貢獻比計算

結構週期及質量貢獻比計算如表 3-38 所示:

表 3-38 結構週期及質量貢獻比

Mode	方向	週期	質量貢獻比(%)
1	Y向平移	1.919962	64.5607
2	X 向平移	1.887185	64.7930
3	Z向扭轉	1.501684	72.2706

(資料來源:本研究整理)

4. 規範側向力計算

*** DIR - X ***

Site Type(II) 近斷層區域 = 2

震區加速度係數 S_D_S,S_D_1,S_M_S,S_M_1.= 0.700.400.900.50

近斷層調整因子	1.00 1.00 1.00 1.00
第三類地盤 : 軟弱地盤=	3
工址放大係數 Fa, Fv, Fa_M, Fv_M=	1.10 1.60 1.00 1.40
建築物構造種類 Stype =	2
經驗公式週期:0.070*(Hn**0.75)Tcode =	1.1795
動力分析基本振動週期	1.8872
週期上限係數 Cu =	1.4000
設計週期 : Min(Cu*Tcode,Tdyn) T =	1.6513
工址設計水平譜加速度係數 SaD=	0.3876
(S_DS=0.7700 S_D1=0.6400 T_D_0=0.8312)	
結構系統地震力折減係數Fu=	3.0000
(SaD/Fu)m =	0.1292
(避免中小度地震降伏)(SaD/Fu)m`=	0.1292
用途係數I=	1.0000
起始降伏地震力放大倍數ay =	1.0000
韌性容量R=	4.0000
容許韌性容量 Ra =	3.0000
工址最大水平譜加速度係數 SaM=	0.4239
(S_MS=0.9000 S_M1=0.7000 T_M_0=0.7778)	
結構系統地震力折減係數 FuM=	4.0000
(SaM/FuM)m =	0.1060
最小設計水平總橫力係數	
I /1.4/ay*(SaD/Fu)m=	0.0923
I*Fu/4.2/ay*(SaD/Fu)m` =	0.0923
I /1.4/ay*(SaM/FuM)m =	0.0757
檢討 Story Drift 之地震力係數	
I"*Fu/4.2 *(SaD/Fu)m" =	0.0808
頂層之外加集中橫力 Min(0.07TV,0.25V) Ft =	122.6490
外加横力分配至 PH 者 Ft(PH)=:	37.5315
外加橫力分配至 RF 者 Ft(RF) =	85.1175
設計地震力 =	1061.03 T

檢討 Story Drift 之地震力 = 928.53 T

*** DIR - Y ***

Site Type(II)	近斷層區域=	2	
震區加速度	係數 S_D_S,S_D_1,S_M_S,S_M_1.=		0.70 0.40 0.90 0.50
近斷層調整	因子 Na/Nv/Na_M/Nv_M=		1.00 1.00 1.00 1.00
第三類地盤:	軟弱地盤=	3	
工址放大	係數 Fa, Fv, Fa_M, Fv_M=		1.10 1.60 1.00 1.40

建築物構造種類 Stype =	2
經驗公式週期 : 0.070*(Hn**0.75) Tcode =	1.1795
動力分析基本振動週期	1.9200
週期上限係數Cu=	1.4000
設計週期 : Min(Cu*Tcode,Tdyn) T=	1.6513

工址設計水平譜加速度係數SaD=	0.3876
(S_DS=0.7700 S_D1=0.6400 T_D_0=0.8312)	
結構系統地震力折減係數Fu=	3.0000
(SaD/Fu)m =	0.1292

(避免中小度地震降伏)(SaD/Fu)m`=	0.1292
------------------------	--------

用途係數I=	1.0000
起始降伏地震力放大倍數ay=	1.0000
勃性容量R =	4.0000
容許韌性容量Ra=	3.0000

工址最大水平譜加速度係數SaM=	0.4239
(S_MS=0.9000 S_M1=0.7000 T_M_0=0.7778)	
結構系統地震力折減係數FuM=	4.0000
(SaM/FuM)m =	0.1060

最小設計水平總橫力係數	
A 1 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

$I / 1.4/ay*(SaD/Fu)m \dots =$	0.0923
I*Fu/4.2/ay*(SaD/Fu)m=	0.0923
I /1.4/ay*(SaM/FuM)m=	0.0757
檢討 Story Drift 之地震力係數	
I"*Fu/4.2 *(SaD/Fu)m"=	0.0794

頂層之外加集中橫力 Min(0.07TV,0.25V)	Ft = 122.6490
外加横力分配至 PH 者	Ft(PH) = 37.5315
外加横力分配至 RF 者	Ft(RF) = 85.1175

設計地震力	=	1061.03 T
檢討 Story Drift 之地震力	=	912.57 T

X 向規範側向力計算如表 3-39 所示、Y 向規範側向力計算如表 3-40 所示:

塘區	h_x	W_{x}	$w_x h_x$	F_x
後信	m	tf	tf-m	tf
R1F	43.2	1086583.439	46940404.56	237.47
10FL	39.06	1086583.439	42441949.13	137.75
9FL	34.92	1086583.439	37943493.69	123.15
8FL	30.78	1086583.439	33445038.25	108.55
7FL	26.64	1094210.83	29149776.51	94.63
6FL	22.5	1095196.33	24641917.43	80
5FL	18.36	1094210.83	20089710.84	65.22
4FL	14.22	1096701.042	15595088.82	50.6
3FL	10.08	1101927.049	11107424.65	36.03
2FL	5.94	1188908.312	7062115.373	22.91
1FL	0	1734573.678	0	0
總和		12752061.83	268416919.3	956.31

表 3-39 X 向規範側向力計算表

表 3-40 Y 向規範側向力計算表

塘區	h_y	w_y	$w_y h_y$	F_y
1安/盲	m	tf	tf-m	tf
R1F	43.2	1086583.439	46940404.56	237.47
10FL	39.06	1086583.439	42441949.13	137.75
9FL	34.92	1086583.439	37943493.69	123.15
8FL	30.78	1086583.439	33445038.25	108.55
7FL	26.64	1094210.83	29149776.51	94.63
6FL	22.5	1095196.33	24641917.43	80
5FL	18.36	1094210.83	20089710.84	65.22
4FL	14.22	1096701.042	15595088.82	50.6

建品	h_y	w_y	$w_y h_y$	F_y
按信	m	tf	tf-m	tf
3FL	10.08	1101927.049	11107424.65	36.03
2FL	5.94	1188908.312	7062115.373	22.91
1FL	0	1734573.678	0	0
總和		12752061.83	268416919.3	956.31

5. 材料強度

- ◆ 混凝土: $f'_c = 280 kgf / cm^2$
- ♦ 鋼筋: $f_y=2800 \ kgf/cm^2 \cdot f_{yh}=2800 \ kgf/cm^2$

6. 穩定性因子計算

X 向穩定性因子計算如表 3-41 所示、Y 向穩定性因子計算如表 3-42 所示:

樓層	樓層重量	Px為樓層高 度x及以上 的垂直向設 計載重	<i>Ie</i> 為重要 性因子	Δ/h_x 樓層側位 移角	 Vx為樓層高 度x所在之 設計剪力 	C _d 為變位 放大係數	<i>θ</i> 穩定性因子
	kgf	kgf			kgf		
R1F	1086583	1086583	1	0.001624	244160	5.6	0.001290584
10FL	1086583	2173167	1	0.002018	398790	5.6	0.001963729
9FL	1086583	3259750	1	0.002397	537031	5.6	0.002598154
8FL	1086583	4346334	1	0.002722	658883	5.6	0.003206381
7FL	1094211	5440545	1	0.002926	764699	5.6	0.003717392
6FL	1095196	6535741	1	0.003148	854477	5.6	0.004299728
5FL	1094211	7629952	1	0.003342	927671	5.6	0.004908472
4FL	1096701	8726653	1	0.003516	984412	5.6	0.005565852
3FL	1101927	9828580	1	0.003526	1024753	5.6	0.006039014
2FL	1188908	11017488	1	0.003537	1049584	5.6	0.006629986
1FL	1734574	12752062	1	0.000871	1049584	5.6	0.001889703

表 3-41 X 向穩定性因子計算表

樓層	樓層重 量	Px為樓層高 度 x 及以上 的垂直向設 計載重	<i>Ie</i> 為重要 性因子	Δ/h_x 樓層側位 移角	<i>V_x為樓層高</i> 度 <i>x</i> 所在之 設計剪力	C _d 為變位 放大係數	<i>θ</i> 穩定性因子
	kgf	kgf			kgf		
R1F	1086583	1086583	1	0.001862	244160	5.6	0.001479721
10FL	1086583	2173167	1	0.002247	398790	5.6	0.00218657
9FL	1086583	3259750	1	0.002619	537031	5.6	0.002838784
8FL	1086583	4346334	1	0.002936	658883	5.6	0.003458463
7FL	1094211	5440545	1	0.003092	764699	5.6	0.00392829
6FL	1095196	6535741	1	0.003299	854477	5.6	0.004505973
5FL	1094211	7629952	1	0.003455	927671	5.6	0.005074438
4FL	1096701	8726653	1	0.0035	984412	5.6	0.005540524
3FL	1101927	9828580	1	0.003518	1024753	5.6	0.006025313
2FL	1188908	11017488	1	0.003522	1049584	5.6	0.006601869
1FL	1734574	12752062	1	0.001045	1049584	5.6	0.00226721

表 3-42 Y 向穩定性因子計算表

7. 剛重比計算

X 向剛重比計算如表 3-43 所示、Y 向剛重比計算如表 3-44 所示:

樓層	樓層	G _i 為第 i 層的重力 設計荷載 值	F _i 第 <i>i</i> 層 水平力	<i>H_i</i> 第 <i>i</i> 層 高度	H 總 層 度	$\gamma_i = H_i / H$	u _i 第 <i>i</i> 層 頂部位 移	EJ _d 等效側向 剛度	剛重比 側向剛度與 重力荷載的 比值
	kgf	kgf	kgf	cm	cm		cm	kgf-cm ²	
R1F	1086583	1086583	237470	4320	4320	1	12.8531	4.9651E+14	24.48500947
10FL	1086583	2173167	137750	3906	4320	0.9041667	12.1885	2.6019E+14	6.4156E+00
9FL	1086583	3259750	123150	3492	4320	0.8083333	11.359	2.0862E+14	3.429240591
8FL	1086583	4346334	108550	3078	4320	0.7125	10.3708	1.6332E+14	2.013528738
7FL	1094211	5440545	94630	2664	4320	0.6166667	9.2459	1.2464E+14	1.227596115
6FL	1095196	6535741	80000	2250	4320	0.5208333	8.0436	8.9876E+13	0.736852322
5FL	1094211	7629952	65220	1836	4320	0.425	6.7475	6.0408E+13	0.424232269
4FL	1096701	8726653	50600	1422	4320	0.3291667	5.3749	3.6607E+13	0.224772624

表 3-43 X 向剛重比計算表

樓層	樓層 重量	G _i 為第 i 層的重力 設計荷載 值	<i>F_i</i> 第 <i>i</i> 層 水平力	<i>H_i</i> 第 <i>i</i> 層 高度	H 總 層 度	$\gamma_i = H_i / H$	u _i 第 <i>i</i> 層 頂部位 移	EJ _d 等效側向 剛度	剛重比 側向剛度與 重力荷載的 比值
	kgf	kgf	kgf	cm	cm		cm	kgf-cm ²	
3FL	1101927	9828580	36030	1008	4320	0.2333333	3.9625	1.8404E+13	0.100333768
2FL	1188908	11017488	22910	594	4320	0.1375	2.5255	6.5967E+12	3.2083E-02
1FL	1734574	12752062	0	0	4320	0	0.433	0.0000E+00	0
	12752062	12752062	956310		4320			1.4652E+15	6.156627056
								整體剛重比	5.291516473

表 3-44 Y 向剛重比計算表

-										
			G _i 為第 i	F	H	Н		u_i	FI.	剛重比
		樓層	層的重力	」 ¹ i 学:局	11 _i	總樓	n - H/H	第 i 層	EJd 笙放侧向	侧向刚度舆
ł	樓層	重量	設計荷載	中レ石	 中 <i>1</i> 「 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	層高	$\gamma_i - 1 I_i / 1 I$	頂部位	寻双侧问	重力荷載的
			值	ホイカ	同戊	度		移	們反	比值
		kgf	kgf	kgf	cm	cm		cm	kgf-cm ²	
	R1F	1086583	1086583	237470	4320	4320	1	13.3234	4.7899E+14	23.62071808
1	l0FL	1086583	2173167	137750	3906	4320	0.904167	12.5657	2.5238E+14	6.22297516
	9FL	1086583	3259750	123150	3492	4320	0.808333	11.6556	2.0331E+14	3.341976721
	8FL	1086583	4346334	108550	3078	4320	0.7125	10.5981	1.5982E+14	1.970344103
	7FL	1094211	5440545	94630	2664	4320	0.616667	9.4147	1.2241E+14	1.205586043
	6FL	1095196	6535741	80000	2250	4320	0.520833	8.1644	8.8546E+13	0.725949897
	5FL	1094211	7629952	65220	1836	4320	0.425	6.8306	5.9673E+13	0.419071126
	4FL	1096701	8726653	50600	1422	4320	0.329167	5.434	3.6208E+13	0.222328004
	3FL	1101927	9828580	36030	1008	4320	0.233333	4.0127	1.8173E+13	0.099078564
	2FL	1188908	11017488	22910	594	4320	0.1375	2.5885	6.4362E+12	0.031302406
	1FL	1734574	12752062	0	0	4320	0	0.5001	0.0000E+00	0
		12752062	12752062	956310		4320			1.4259E+15	5.991755739
			<u> </u>						整體剛重比	5.104732304

(資料來源:本研究整理)

8. 意外扭矩

依建築物耐震設計規範及解說,為計及質量分布不確定性,應將地震力加在計算所 得質心位置向左及向右偏移 5%位置進行結構分析與設計,質心偏移造成之扭矩,稱為 意外扭矩。建築物若具扭轉不規則性時,各層施加之意外扭矩應以係數Ax放大。

$$d_{avg} = \frac{d_A + d_B}{2}$$
$$d_{max} = \{d_A, d_B\}_{max}$$

扭轉放大係數 $Ax = (d_{max}/1.2d_{avg})^2$

A_x?1.0 扭轉規則性建築

A_x > 1.0? 扭轉不規則性建築

取當層最大變位,除以兩最外點平均值之 1.2 倍,檢核結果 X 向意外扭矩如表 3-45、表 3-46 所示, Y 向意外扭矩如表 3-47、表 3-48 所示:

	神园	樓層最大位移量	平均層間位移	放大係數 Ax
	<u></u> 楼 僧	δ_{max} (cm)	$\delta_{avg} ({ m cm})$	$\left(\delta_{max}/1.2\delta_{avg}\right)^2$
	R1F	13.7288	12.87605	0.7895
	10FL	13.0391	12.2093	0.7920
	9FL	12.1679	11.37795	0.7942
V间台上	8FL	11.1222	10.38785	0.7961
▲ 1則 回 刀	7FL	9.925	9.26095	0.7976
+3%	6FL	8.6356	8.0563	0.7979
	5FL	7.2414	6.7579	0.7974
	4FL	5.7633	5.383	0.7960
	3FL	4.2423	3.9685	0.7936
	2FL	2.6925	2.5296	0.7868
	1FL	0	0	

表 3-45 X 向侧向力+5%意外扭矩 Ax 計算表

表 3-46 X 向侧向力-5%意外扭矩 Ax 計算表

X 側向力 -5%	神區	樓層最大位移量	平均層間位移	放大係數 Ax
	倭僧	δ_{max} (cm)	$\delta_{avg} ({ m cm})$	$\left(\delta_{max}/1.2\delta_{avg}\right)^2$
	R1F	13.6704	12.84005	0.7872
	10FL	12.9683	12.17615	0.7877
	9FL	12.0877	11.3476	0.7880

中高樓層建築軟弱層及扭轉不規則效應評估研究

8FL	11.0358	10.3604	0.7879
7FL	9.8369	9.2366	0.7876
6FL	8.5561	8.03565	0.7873
5FL	7.1751	6.7411	0.7867
4FL	5.7109	5.3699	0.7854
3FL	4.2015	3.95865	0.7823
2FL	2.667	2.5229	0.7760
1FL	0	0	

(資料來源:本研究整理)

表 3-47 、	Y 向側向力+5%意外扭矩 Ax計算表
----------	---------------------

	 唐 區	樓層最大位移量	平均層間位移	放大係數 Ax
	传信	$\delta_{max} ({ m cm})$	$\delta_{avg} ({ m cm})$	$\left(\delta_{max}/1.2\delta_{avg}\right)^2$
	R1F	14.0636	13.28025	0.7788
	10FL	13.2828	12.52465	0.7811
	9FL	12.3397	11.618	0.7834
V间石力	8FL	11.2391	10.56465	0.7859
1 1則四刀	7FL	10.0028	9.38595	0.7887
+3%	6FL	8.6846	8.1399	0.7905
	5FL	7.2754	6.811	0.7924
	4FL	5.7962	5.41925	0.7944
	3FL	4.2809	4.00245	0.7944
	2FL	2.7642	2.58305	0.7953
	1FL	0	0	

表 3-48 Y 向側向力-5%意外扭矩 Ax 計算表

	中日	樓層最大位移量	平均層間位移	放大係數 Ax
	(安/晋	δ_{max} (cm)	$\delta_{avg} ({ m cm})$	$\left(\delta_{max}/1.2\delta_{avg}\right)^2$
	R1F	14.6618	13.38155	0.8337
	10FL	13.8505	12.61915	0.8366
Y側向力	9FL	12.86	11.70415	0.8384
-5%	8FL	11.6972	10.6411	0.8391
	7FL	10.3872	9.4515	0.8388
	6FL	9.0011	8.1952	0.8377
	5FL	7.518	6.8554	0.8352
	4FL	5.9618	5.45245	0.8303

Y側向力	神民	樓層最大位移量	平均層間位移	放大係數 A _x
-5%		δ_{max} (cm)	δ_{avg} (cm)	$\left(\delta_{\textit{max}}/1.2\delta_{\textit{avg}} ight)^2$
	3FL	4.3819	4.02555	0.8228
	2FL	2.7914	2.59535	0.8033
	1FL	0	0	

9. 偏心距

X 向質心剛心偏心距計算如表 3-49 所示、Y 向質心剛心偏心距計算如表 3-50 所示:

樓層	質心 (m)	剛心 (m)	偏心 e (m)	$D_{x}(\mathbf{m})$	e/D_x
R1F	16.925	17.579	0.654	33.4	0.01958
10F	16.883	17.53	0.647	33.4	0.01937
9F	16.883	17.478	0.595	33.4	0.01781
8F	16.883	17.422	0.539	33.4	0.01614
7F	16.88	17.363	0.483	33.4	0.01446
6F	16.858	17.315	0.457	33.4	0.01368
5F	16.872	17.259	0.387	33.4	0.01159
4F	16.864	17.19	0.326	33.4	0.00976
3F	16.862	17.113	0.251	33.4	0.00751
2F	16.895	16.996	0.101	33.4	0.00302
1F	16.376	16.578	0.202	33.4	0.00605

表 3-49 X 向質心剛心偏心距計算表

表 3-50 Y 向質心剛心偏心距計算表

中高樓層建築軟弱層及扭轉不規則效應評估研究

樓層	質心 (m)	剛心 (m)	偏心 e (m)	$D_{x}(\mathbf{m})$	e/D_x
R1F	14.824	14.683	-0.141	30	-0.00470
10F	14.874	14.696	-0.178	30	-0.00593
9F	14.874	14.707	-0.167	30	-0.00557
8F	14.874	14.715	-0.159	30	-0.00530
7F	14.868	14.724	-0.144	30	-0.00480
6F	14.853	14.742	-0.111	30	-0.00370
5F	14.864	14.76	-0.104	30	-0.00347
4F	14.869	14.776	-0.093	30	-0.00310
3F	14.873	14.791	-0.082	30	-0.00273
2F	14.876	14.789	-0.087	30	-0.00290
1F	15.348	14.794	-0.554	30	-0.01847

(資料來源:本研究整理)

10. 檢核結果

本案例為一於民國 83 年興建完成之住商大樓,其地上結構型式為十層之鋼筋混凝 土造建築物,其二樓樓地板面積至頂樓樓地板面積為 10585 m²,相關資訊詳表 3-51。 本案用途係數 1.0,以民國 100 年公佈之「耐震設計規範與解說」做為耐震標準進行耐 震初步評估,根據結構物情形給予適當之定性及定量評估。

表 3-51 建築物相關資料

構造種類	鋼筋混凝土造
地樓層數	地上 10 樓地下 1 樓
平面配置	矩形
X向尺度	33.4 m
Y向尺度	30 m
總樓高	43.2 m
層高	2F~9F : H=4.14m/1F : H=5.94m/

(資料來源:本研究整理)

本例採用之材料強度參數如下:

- 1. 混凝土抗壓強度: $f'_{c} = 210 kg f / cm^{2}$
- 2. 主筋降伏強度: $f_y = 4200 kgf / cm^2$
- 3. 箍筋降伏強度: $f_y = 2800 kgf / cm^2$

(一)柱破壞模式檢核

檢核重量由初評公式計算總重為 15397tf,再依其鋼筋混凝土面積量進行分配,即 可得到各柱所需承受之重量,如表 3-52 及表 3-53。

依照各柱所承受軸力,可算出各柱之剪力強度,即為V_{0i};依照各柱軸力納入並計算 出柱端、底彎矩,兩者相加除上淨高,即可得到剪力V_{Di}。兩者相除即可檢核剪力。

表 3-52 10 層樓建築結構 X 向
$$\frac{V_{pi}}{V_{0i}}$$

	軸力	V_c	V_s	V _{0ix}	V_{pi}	V _{pi} / V _{0i}
C0	137655	21026	5230	26256	36548	1.39
C1(Hn=5.04m)	312450	53379	13885	67264	89123	1.32
C1(Hn=5.14m)	312450	53379	13885	67264	87389	1.30
C2	312450	53873	14013	67886	107540	1.58
C3(Hn=5.04m)	312450	53797	13993	67790	98413	1.45
C3(Hn=5.14m)	312450	53797	13993	67790	96498	1.42
C4	432450	73520	16256	89777	139603	1.55
C5	523270	91580	18410	109991	187103	1.70
C6	523270	91580	18410	109991	187103	1.70
С7	432450	75232	16635	91868	145040	1.58
C8	350290	60472	14858	75330	109524	1.45
С9	155684	27150	10009	37160	44644	1.20

(單位:kgf)

⁽資料來源:本研究整理)

表 3-53 10 層樓建築結構 Y 向
$$\frac{V_{pi}}{V_{0i}}$$

(單	位	:	kgf)
×				-

	軸力	V _c	V_s	V _{0ix}	V_{pi}	V _{pi} / V _{0i}
C0	137655	24232	5230	29463	34494	1.17
C1	312450	61520	13885	75405	87389	1.16
C2	312450	62090	14013	76103	105447	1.39
C3(H _n =5.04m)	312450	62001	13993	75995	98413	1.29
C3(H _n =5.14m)	312450	62001	13993	75995	96498	1.27
C4	432450	84733	16256	100990	139603	1.38
C5	523270	105548	18410	123958	187103	1.51
C6	523270	105548	18410	123958	187103	1.51
C7	432450	86706	16635	103342	145040	1.40
C8	350290	69695	14858	84553	109524	1.30
С9	155684	31290	10009	41300	44644	1.08

(二)強柱弱梁檢核

將各軸力納入並計算柱端、底彎矩,以及算出梁端彎矩,將柱彎矩總合與梁端彎矩 總合相除,其值需大於1.2,表示為強柱弱梁;若小於1.2,即表示不符合強柱弱梁。計 算值如表 3-54~表 3-66,可知其值皆大於1.2,為符合強柱弱梁。

表 3-54 10 層樓建築結構 X 向
$$\frac{M_{nc}}{M_{nb}}$$
(第一列柱線)

(單位:tonf-m)

柱	С9	С9
$M_{nc,ar{ m K}}$	119	119
$M_{nc, \mathrm{III}}$	119	119
$\sum M_{nc}$	238	238
M _{nb}	89	89
M _{nb}	77	77
$\sum M_{nb}$		
M _{nb,max}	89	89
$rac{M_{k\pm}}{\mathrm{M}_{\mathrm{R}}}$	2.7	2.7

(資料來源:本研究整理)

表 3-55 10 層樓建築結構 X 向
$$\frac{M_{nc}}{M_{nb}}$$
(第二列柱線)

С	C1	C0	C3	C3	C3	C1
$M_{nc,ar{ m K}}$	225	92	248	248	248	225
$M_{nc, \mathrm{III}}$	225	92	248	248	248	225
$\sum M_{nc}$	450	184	496	496	496	450

中高樓層建築軟弱層及扭轉不規則效應評估研究

С	C1	C0	C3	C3	C3	C1
M _{nb}	181	97	181	235	233	257
M _{nb}	208	120	208	233	235	255
$\sum M_{nb}$		217	389	468	468	
M _{nb,max}	208					257
$rac{M_{ m kt}}{ m M_{ m R}}$	2.2	0.85	1.3	1.1	1.1	1.8

(資料來源:本研究整理)

表 3-56 10 層樓建築結構 X 向
$$\frac{M_{nc}}{M_{nb}}$$
(第三列柱線)

(單位:tonf-m)

С	C2	C6	C7
$M_{nc,ar{ m K}}$	271	471	365
$M_{nc, \mathrm{III}}$	271	471	365
$\sum M_{nc}$	542	942	730
M_{nb}	368	375	375
M_{nb}	339	392	392
$\sum M_{nb}$		767	767
M _{nb,max}	368		
$rac{M_{k\pm}}{\mathrm{M}_{\mathrm{R}}}$	1.5	1.2	0.95

表 3-57 10 層樓建築結構 X 向
$$\frac{M_{nc}}{M_{nb}}$$
(第四列柱線)

(單位:tonf-m)

С	C8	C1
$M_{nc,ar{ m K}}$	276	225
$M_{nc, III}$	276	225
$\sum M_{nc}$	552	450
M _{nb}	401	401
M _{nb}	402	402
$\sum M_{nb}$		
$M_{nb,\max}$	401	401
$rac{M_{ m kt}}{ m M_{ m R}}$	1.4	1.1

(資料來源:本研究整理)

表 3-58 10 層樓建築結構 X 向
$$\frac{M_{nc}}{M_{nb}}$$
(第五列柱線)

С	C2	C5	C7	C8	C2
$M_{nc,ar{ m K}}$	271	471	365	276	271
$M_{nc, \mathrm{III}}$	271	471	365	276	271
$\sum M_{nc}$	542	942	730	552	542

中高樓層建築軟弱層及扭轉不規則效應評估研究

С	C2	C5	C7	C8	C2
M _{nb}	368	392	392	351	377
M _{nb}	339	375	375	344	372
$\sum M_{nb}$		767	767	695	
$M_{nb,\max}$	368				377
$rac{M_{ m kt}}{{ m M}_{ m R}}$	1.5	1.2	0.95	0.8	1.4

(資料來源:本研究整理)

表 3-59 10 層樓建築結構 X 向
$$\frac{M_{nc}}{M_{nb}}$$
(第六列柱線)

С	C1	C4	C4	C8	C1
$M_{nc,ar{ m c}}$	225	352	352	276	225
$M_{nc, \mathrm{III}}$	225	352	352	276	225
$\sum M_{nc}$	450	704	704	552	450
M _{nb}	344	368	386	368	374
M _{nb}	310	339	374	339	386
$\sum M_{nb}$		707	760	707	
M _{nb,max}	344				386
$rac{M_{ au}}{{ m M}_{ m R}}$	1.3	0.996	0.996	0.78	1.17

⁽資料來源:本研究整理)

表 3-60 10 層樓建築結構 X 向
$$\frac{M_{nc}}{M_{nb}}$$
(第七列柱線)

(單位:tonf-m)

С	C1	C3	C3	C1	C1
$M_{nc,ar{ m K}}$	225	248	248	225	225
$M_{nc, III}$	225	248	248	225	225
$\sum M_{nc}$	450	496	496	450	450
M _{nb}	197	191	208	208	234
M _{nb}	181	157	213	213	235
$\sum M_{nb}$		348	421	421	
M _{nb,max}	197				235
$rac{M_{ m kt}}{ m M_{ m R}}$	2.3	1.4	1.178	1.07	1.9

(資料來源:本研究整理)

表 3-61 10 層樓建築結構 Y 向
$$\frac{M_{nc}}{M_{nb}}$$
(第一行柱線)

С	C1	C1	C2	C2	C1
$M_{nc,ar{ m K}}$	225	225	271	271	225
$M_{nc, \mathrm{III}}$	225	225	271	271	225
$\sum M_{nc}$	450	450	542	542	450

中高樓層建築軟弱層及扭轉不規則效應評估研究

С	C1	C1	C2	C2	C1
M _{nb}	256	257	257	179	179
M _{nb}	258	258	258	197	197
$\sum M_{nb}$		515	515	376	
M _{nb,max}	258				197
$rac{M_{ m kt}}{ m M_{ m R}}$	1.7	0.87	1.05	1.44	2.3

(資料來源:本研究整理)

表 3-62 10 層樓建築結構 Y 向
$$\frac{M_{nc}}{M_{nb}}$$
(第二行柱線)

С	C0	С9
$M_{nc,ar{ m K}}$	92	119
$M_{nc, III}$	92	119
$\sum M_{nc}$	184	238
M _{nb}	56	56
M _{nb}	40	40
$\sum M_{nb}$		
M _{nb,max}	56	56
$rac{M_{k\pm}}{{ m M}_{_{\!$	3.3	4.3

(資料來源:本研究整理)

表 3-63 10 層樓建築結構 Y 向
$$\frac{M_{nc}}{M_{nb}}$$
(第三行柱線)

(單位:1	tonf-m)
-------	---------

С	C3	C4	C5	C6	C3	С9
$M_{nc,ar{ m K}}$	248	352	472	472	248	119
$M_{nc, III}$	248	352	472	472	248	119
$\sum M_{nc}$	496	704	944	944	496	238
M _{nb}	323	323	328	349	105	105
M _{nb}	334	334	349	350	350	105
$\sum M_{nb}$		657	677	699	455	
M _{nb,max}	334					105
$rac{M_{ m kt}}{ m M_{ m R}}$	1.5	1.07	1.4	1.35	1.1	2.3

表 3-64 10 層樓建築結構 Y 向
$$\frac{M_{nc}}{M_{nb}}$$
(第四行柱線)

С	C3	C4	C7	C7	C3
$M_{nc,ar{ m K}}$	248	352	365	365	248
$M_{nc, \mathrm{III}}$	248	352	365	365	248
$\sum M_{nc}$	496	704	730	730	496

中高樓層建築軟弱層及扭轉不規則效應評估研究

С	C3	C4	C7	C7	C3
M _{nb}	313	324	368	374	377
M _{nb}	313	368	339	368	372
$\sum M_{nb}$		692	707	742	
$M_{nb,\max}$	313				377
$rac{M_{ m k\pm}}{ m M_{ m R}}$	1.6	1.02	1.03	0.9	1.3

(資料來源:本研究整理)

表 3-65 10 層樓建築結構 Y 向
$$\frac{M_{nc}}{M_{nb}}$$
(第五行柱線)

С	C1	C8	C8	C8	C3
$M_{nc,ar{ m K}}$	225	276	276	276	248
$M_{nc, III}$	225	276	276	276	248
$\sum M_{nc}$	450	552	552	552	496
M _{nb}	288	287	287	287	332
M _{nb}	287	308	308	308	322
$\sum M_{nb}$		595	595	595	
M _{nb,max}	288				332
$rac{M_{ m kt}}{ m M_{ m R}}$	1.6	0.9	0.9	0.9	1.5

⁽資料來源:本研究整理)
表 3-66 10 層樓建築結構 Y 向
$$\frac{M_{nc}}{M_{nb}}$$
(第六行柱線)

(單位:tonf-m)

С	C1	C1	C2	C1	C1
$M_{ m nc, ar{ m K}}$	225	225	271	225	225
$M_{nc, \mathrm{III}}$	225	225	271	225	225
$\sum M_{nc}$	450	450	542	450	450
M _{nb}	208	208	189	189	189
M _{nb}	208	190	165	165	166
$\sum M_{nb}$		398	354	354	
M _{nb,max}	208				189
$rac{M_{ m kt}}{ m M_{ m R}}$	2.2	1.1	1.5	1.3	2.4

(資料來源:本研究整理)

13.初步評估結果(PSERCB)

利用 PSERCB 將此建築物進行耐震能力初步評估,輸入資料分別為建築物之基本資料、定性評估、參數設置、X 向斷面資料、Y 向斷面資料等......。圖 3-40 為輸入建築之基本性質;圖 3-41 為結構系統之定性評分,靜不定程度為 4 跨,得分為 0 分、地下室面積比為 1.016,得分 0.6 分、平面對稱性內部配置不對稱及立面屬於一樓挑高,故分數分別為 3.0 及 1.5 分、柱之高深比為 4.582,得分為 1.1,較弱層嚴重性高,得分 3.0 分。由圖 3-42 可知結構細部之定性評分,由設計年份可知其建造年分,得分為 1.65,窗台及氣窗造成短柱性、牆體造成短梁嚴重性低,得分皆為 1.0 及 1.0。圖 3-42 為結構現況方面:柱及牆之損害程度皆為高等,得分為 2.0、裂縫鏽蝕程度高,得分為 3.0。圖 3-43 為額外增、減分,分別為分期興建或工程品質有疑慮、曾經受災害者,如土石流、火災、震災、人為破壞等、使用用途由低活載重改為高活載重使用者、傾斜程度明顯者、使用用途由高活載重改為低活載重使用者五項,分別得分為 2、0、0、2、0 分。圖 3-44、圖

3-45 為輸入參數及斷面資料,輸入建築結構基本資料,如混凝土抗壓強度、鋼筋降伏強 度及柱、牆斷面資料等。將上述之得分得加總而得,為定性評估分數為 25.9 分,如圖 3-46。由圖 3-46 可知定量評分為 60。其總分為定性評分與定量評分相加,故可得知建 築物耐震能力為 85.9 分,結果大於 60 分,表示建築物之耐震能力確有疑慮,宜進行詳 細評估及補強。其餘操作過程如圖 3-46 至圖 3-52 所示:圖 3-53 及圖 3-54 算出定量評 分之 X 向建築物 475 年地震回歸期耐震能力為 0.070 g, Y 向為 0.090 g, X、Y 向均無 項符合耐震標準; X 向建築物 2500 年地震回歸期耐震能力為 0.093 g, Y 向建築物 2500 年地震回歸期耐震能力為 0.106 g, X、Y 方向上不符合耐震標準。

建物名稱	罐物细腻		利信日期	群估者	
002日**#EIIG重把用+3.08END T+0.07	DC082TA000024		2017/08/12	11 M M	
縣市	鄉鎮市區		村里	地址(建築人同整地址-最高额市和相關市區)	
喜葉市	• (HCX		9 B	• BCB18	
	地질補調		建模年度	822115880	
新行業業	• 8:8		1994/01/01	71#6用〒00#5用	*
建物高度[m]	用法法制则		x向却性容量[Rx] ●	Y向超性容量[Ry] ●	
43.2	10	•	3.08	3.08	
地上模磨假	地下橡着数		罐筒枪X向槽期T計算公式:	推脱损人印福姆 TH 篇 公式:	
10			○ T=0.05hn ^{0.73} (数力圖) = T=0.07hn ^{0.75}	◎ T=0.05hn ^{0.75} (剪力圖) = T=0.07hn ^{0.75}	
建铸物设括模型式分類:	建築物侨使用用进分類:		建築物療機屬分類:	本評估參考實料:	
最限制持(F)	• 88		394821 F	* \$92+#3H	•
	46.75				

圖 3-40 基本資料 (資料來源: PSERCB 網站提供)

/ / / / / / / / / / / / / / / / / / /				11
 第年定程度 第時(1.0) 夏時(0.67) 三時(0.33) ● 四期以上の) 		2.地下瓷面積比ra ra(地下瓷面積與建築面積 2比) 1.016	3.平爾對納性 ● 不良(1.0) ○ 尚可(0.0) ○ 良(0)	 4.立面劈躺性 ○ 不良(1.0) ● 尚可(0.6) ○ 贯(0)
• million (v)	分數:0.0	分數:0.6	分數:3.0	分散:1.5
5.梁之终深比b 6.梁之转深比b 4.55	分散:2.1	6.柱之高深比c 8.柱之高深比c 4.582	7.軟弱層顕著性 ● 変(1.0) ○ 年(0.57) ○ 低(0.33) ○ 無(0) 分割:30	

编稿细部 (單位: kgf.cm)						
8.塑胶圆缩筋细部(由設計年度評估)		9.窗台·氢窗造成短柱巖重性		10.禮體造成短梁嚴重性		
O 63年2月以前(1.0)		O 毫(1.0)		O 蛋(1.0)		
O 63每2月至71年6月(0.67)		O ≑(0.67)		O ==(0.67)		
71年6月至86年5月(0.33)		(0.33)		 eff(0.33) 		
Q 66年5月以後(0)	分数:1,7	O #(0)	分数:10	O ≡(0)	99 BE = 1.0	
结構現況 (単位: kgf.cm)						
11.柱之損害程度	1	12.譬之損害程度	1	13.裂蜡编般渗水等程度	Ľ	
● 蔵(1.0)		一 兩(1.0)		● 〒(1.0)		
○ 年(0.67)		O ≢(0.67)		O (#(0.67)		
O (5(0.33)		O (E(0.33)		O (É(0.33)		
O III(0)	分数:20	O ##(0)	分款:20	O =(0)	分數:3.0	

圖 3-42 定性評估表(結構細部、結構現況) (資料來源: PSERCB 網站提供)

額外增分(各項最高配分為2分,所有項目相總含最多加	08分) (11位 : kgf-cm)			4
分期與建或工程品質有疑慮 分類與建成工程品質有疑慮 2	曾經受兴富者,如土石造、火災、震災、人為破壞等 曾經受兴富者,如土石造、火災、震災、人為破壞等 0	使用用途由低活载重改為高活載重使用者 使用用途由低活载重改為高活載重使用者 0	鏡斜程度明顯者 鏡斜環度明顯者 2	
額外減分(所有項目相総合最多減2分) (單位: kgf-cm)				0
使用用途由高活載重改為低活載重使用者 使用用途由高活載重改為低活載重使用者 0				

圖 3-43 額外增、減分

(資料來源:PSERCB 網站提供)

建築物重量(未使用之欄位請填0)(單位: tf-m)			
2模~)模之根地板草位面積靜數重[tf/m ²] ●	(j+1)根~k模之模地板革位面積 <mark>發軟重</mark> [tfim ²]	(k+1)硬~屋顶之硬地板靠位面積靜戰重[tt/m ²]	
1.3	0	0	
*推估值○股計值	● 推估值 ◎ 股計值	◎ 推估值 ◎ 設計值	
2模~j硬之使地板草位面積活載重[tt/m ²]	(j+1)根~k楼之楼地板董位面積活戰重[tf/m ²]	(k+1)硬~屋顶之硬地板攀位面積 <mark>活载重</mark> [#/m ²]	
0.3	0	0	
※推估值◇設計值	※推估值◇設計值	◎ 推估值 ○ 設計值	
2樓一樓之總樓地板面積[m ²]	(j+1)樓~k樓之總樓地板面積[m ²]	(k+1)樓~屋頂之 <mark>總</mark> 棲地板面積[m ²]	
10585	0	0	
◎ 推估值 ○ 設計值	◎ 推估值 ○ 設計值	◎ 推估值 ○ 設計值	
柱材料参数(未使用之欄位請填0)(單位: kgf.cm)			
混凝土抗壓強度(fc)	主筋降伏強度(fy) ●	箱筋降伏強度(tyv)	保護層厚度(c)
210	4200	2800	4
◎ 推估值 ◎ 段計值	◎ 推估值 ○ 股計值	● 推估值 ○ 設計值	◎ 推估值 ◎ 設計值

圖 3-44 參數設置 (資料來源: PSERCB 網站提供)

												單位kgf-cn
name	type	Bo	Ho	lo(%)	No1	Num1	No2	Num2	h1	No	Num	S No
01 Hn=504	CIRL	85	85	1573	#10	24	#6	0	504	#4	2	3 5 0
00	RECT	50	50	278	#8	20	#6	0	504	#3	2	3 1 0
C3 Hn=504	CIRL	85	85	15%	#10	28	#6	0	504	#4	2	3 3 0
06	CIRL	110	110	•	#10	36	#6	0	504	#4	2	3 1 0
57	CIRL	100	100	•	#10	32	#6	0	504	#4	2	3 2 0
28	CIRL	90	90		#8	28	щß	0	504	#3	2	3 3 0
54	CIRL	100	100		#10	30	#6	0	504	#4	2	3 2 0
35	CIRL	110	110	14	#10	36	#6	0	504	#4	2	3 1

圖 3-45 參數設置

(資料來源:PSERCB 網站提供)

C02旺林飯店依團說R=3.08END T=0.07	林智隆	2017-08-12	25.9	60.0	評估	85.9	分數大於60分!

圖 3-46 評分分數 (資料來源: PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/8

鋼筋混凝土建築物耐震能力初步評估表

壹、建築物基本資料表

建物名稱	建物名稱 C02 旺林飯店依圖説 R=3.08END T=0.07		DC082TAO0002 4	建物地址	歸仁路1號				
評估者	林智隆	評估日期	2017-8-12	e-mail	clot00001.cv04g@g2.nctu.edu.tw				
設計年度	71年6月至86年5月	建物高度 h _n (m)	43.2	用途係數I	1				
地盤種類	第二類地盤	地上樓層數	10	地下樓層數	1				
建築物依樓層分類	頃: □五樓以下 ■六	樓以上							
建築物依結構形式	式分類:□一般 RC 建物	□加强磚造(透天	ि厝)■具弱層建物□]其它:					
建築物依使用用這	建築物依使用用途分類: □辦公室 □公寓 □集合住宅 □商場 □住商混合■其它: <u>飯店</u>								
本評估參考資料:	本評估參考資料: ■設計圖說 □計算書 □現場調查或推估								

圖 3-47 基本資料表 (資料來源: PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/8

貳、建築物耐震能力初步評估表

項次	項目	配分	評估内容	權重	評分
1	靜不定程度	5	□單跨(1.0) □雙跨(0.67) □三跨(0.33) ■四跨以上(0)	0.00	0.00
2	地下室面積比, r.	2	$0 \leq (1.5 - r_s) / 1.5 \leq 1.0; r_s: 地下室面積與建築面積之比 r_s=1.016$	0.32	0.64
3	結平面對稱性	3	■不良(1.0) □尚可(0.5) □良(0)	1.00	3.00
4	帶立面對稱性	3	□不良(1.0) ■尚可(0.5) □良(0)	0.50	1.50
5	赤 梁之跨深比 b	3		0.69	2.07
6	柱之高深比c	3		0.35	1.05
7	軟弱層顯著性	3	■高(1.0) □中(0.67) □低(0.33) □無(0)	1.00	3.00
8	結設計年度評估)	5	□63 年 2 月以前(1.0) □63 年 2 月至 71 年 6 月(0.67) ■71 年 6 月至 86 年 5 月(0.33) □86 年 5 月以後(0)	0.33	1.65
9	 細窗台、氣窗造成短柱 郵嚴重性	3	□高(1.0) □中(0.67) ■低(0.33) □無(0)	0.33	0.99
10	牆體造成短梁嚴重性	3	□高(1.0) □中(0.67) ■低(0.33) □無(0)	0.33	0.99
11	結柱之損害程度	2	■高(1.0) □中(0.67) □低(0.33) □無(0)	1.00	2.00
12	帶牆之損害程度	2	■高(1.0) □中(0.67) □低(0.33) □無(0)	1.00	2.00
13	況裂縫鏽蝕滲水等程度	3	■高(1.0) □中(0.67) □低(0.33) □無(0)	1.00	3.00
14	475 年耐震能力初步 定評估 量	30	$\begin{split} & \underbrace{\widehat{m}}_{\underline{\mathcal{M}}_{475}} \leq 0.25 \ , \ w = 1 \ ; \underbrace{\widehat{m}}_{0.25} \leq \underbrace{\mathcal{A}_{cl}}_{\underline{\mathcal{M}}_{475}} \leq 1, \ w = \frac{4}{3} \left(1 - \underbrace{\mathcal{A}_{cl}}_{\underline{\mathcal{M}}_{475}} \right) \ ; \underbrace{\widehat{m}}_{\underline{\mathcal{M}}_{475}} > 1, \ w = 0 \\ & A_{cl} = \min[A_{cl,x}, A_{cl,y}] \ A_{cl,x} = 0.07 \ A_{cl,y} = 0.09 \ A_{cl} = 0.07 \end{split}$	1.00	30.00
15	分 析2500 年耐震能力初 步評估	30	$ \stackrel{\text{\tiny{(1)}}}{\boxplus} \frac{A_{c_2}}{A_{2500}} \le 0.25 , \ w = 1 \ ; \stackrel{\text{\tiny{(2)}}}{\boxplus} 0.25 \le \frac{A_{c_2}}{A_{2500}} \le 1, \ w = \frac{4}{3} \left(1 - \frac{A_{c_2}}{A_{2500}} \right) ; \stackrel{\text{\tiny{(2)}}}{\boxplus} \frac{A_{c_2}}{A_{2500}} > 1 \ , \ w = 0 $ $ A_{c_2} = \min[A_{c_2x}, A_{c_2y}] A_{c_2x} = 0.09 \ A_{c_2y} = 0.11 \ A_{c_2} = 0.09 $	1	30
分數紙	83	100	評分	♪總計(P):	81.89

圖 3-48 耐震能力初步評估表 (資料來源: PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/8

額夕	評	估項目:此部分為外加評分項目,評估人員應就表列「額外增分」、「額外減分」事項 各項最高配分為2分,總共最高配分為8分;減分最高配分為2分	
	A	分期興建或工程品質有疑慮	2
額外	в	曾經受災害者,如土石流、火災、震災、人為破壞等	0
増分	С	使用用途由低活載重改為高活載重使用者	0
	D	傾斜程度明顯者	2
額外減分	a	使用用途由高活載重改為低活載重使用者	0
		額外評分總計(S):	4
		總評估分數(R)=P+S=	85.89

註:評估內容中w為計算之權重。

圖 3-49 耐震能力初步評估分數 (資料來源: PSERCB 網站提供)

		耐震能力初步評估[Preliminary Seismic Evaluation of RC Bu			
F	SERCE			評估者:	林智隆
	1			列印日期:20	17/10/8
	重要註記				
C02					
	□ R ≤ 30; 建築物耐震能力尚無疑慮				
評估	□ 30 < R ≤ 45; 建築物耐震能力稍有疑慮,宜進行詳評	亚估	去答音		
結果	□45 <r≤60; td="" 建築物耐震能力有疑慮,優先進行詳評<=""><td></td><td>'н XX +Р</td><td></td><td></td></r≤60;>		'н XX +Р		
	■R>60; 建築物的耐震能力確有疑慮, 逕自進行補强或拆除				

圖 3-50 耐震能力初步評估結果判定 (資料來源: PSERCB 網站提供)

参、定量評估表

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/8

	建築物資訊	
2 樓~j 樓之樓地板面積靜載重 W1D (tf/m2)	1.300	■推估值 □設計值
(j+1)樓~k 樓之樓地板面積靜載重 W2D (tf/m2)) 0.000	■推估值 □設計值
(k+1)樓~屋頂之樓地板面積靜載重 w3D (tf/m	²) 0.000	■推估值 □設計值
2 樓~j 樓之樓地板面積活載重 w11 (tf/m2)	0.300	■推估值 □設計值
(j+1)樓~k 樓之樓地板面積活載重 W2L (tf/m2)	0.000	■推估值 □設計值
(k+1)樓~屋頂之樓地板面積活載重 w3L (tf/m	²) 0.000	■推估值 □設計值
2 樓~j 樓之總樓地板面積 A1 (m ²)	10585.000	■推估值 □設計值
(j+1)樓~k 樓之總樓地板面積 A2 (m ²)	0.000	■推估值 □設計值
(k+1)樓~屋頂之總樓地板面積 A ₃ (m ²)	0.000	■推估值 □設計值
建築物靜載重 $W_D = \sum_{i=1}^{3} w_{iD} \times A_i$ (kgf)	13760500.00	
建築物總載重 $W = \sum_{i=1}^{3} (w_{iD} + \frac{1}{2} w_{iL}) \times A_i$ (kgf)	15348250.00	
[
退艇土拉厩强度 fo (hof/mil)	一一個性材料多数 210	■掛什店 □乳詰店
能眾上沉壓强度 f (kg/cm) 主笛隊伏强度 f (kg/cm^2)	4200	■推伯祖 □設計祖
	4200	■推门值 □ 設訂 值
11) 11) 11) 11) 11) 11) 11) 11) 11) 11)	2800	■推估值 □設計值
柱之保護層厚度 c (cm)	4	■推估值 □設計值
	一樓牆材料參數	
RC 牆混凝土抗壓强度 fc (kgf/cm ²)	210	■推估值 □設計值
RC 牆主筋降伏强度 fy (kgf/cm ²)	4200	■推估值 □設計值
傳牆砂漿塊抗壓强度 fmc (kgf/cm ²)	100	■推估值 □設計值

圖 3-51 參數設置 (資料來源: PSERCB 網站提供)

150

磚牆紅磚之單軸抗壓强度 f_∞ (kgf/cm²)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆

■推估值 □設計值

	列印日期:2017/10/8													
X向定	量評估		建築物週期(sec): ■0.07 <i>h</i> _n ^{0.75} □ 0.05 <i>h</i> _n ^{0.75}					1.18	系統韌	生容量 R	3.08			
一般 柱類 別	柱型 式 (type)	柱寬 / 直徑 (cm) (<i>B_c</i>)/(<i>D_c</i>)	柱 深 直徑 (cm) (H _c)/(D _c)	柱鋼 筋比 (%) (Ps)	一樓桂 淨高 (cm) (h _l)	橫向箍、 繫筋號數 No	橫向箍、 繫筋根數 Num	橫向箍、 繫筋總斷 面積 (cm ²) A _v	橫向箍、 繫筋間距 (<i>cm</i>) S	柱根數 (N _{ci})	撓曲破壞控 制 (kgf) (V _{m,coli})	剪力破壞控 制 (kgf) (V _{sui})	V _{coli} (kgf)	V _{coli} ×N _{ci} (kgf)
						一般 [,]	柱(一樓柱灣	高與柱淨	深之比值(h	1 / H _c)>2)				
C1 Hn=5 04	CIRL	85	85	3.44	504	#4	2	2.54	30	5	95182.15	39724.88	19862.44	99312.21
C0	RECT	50	50	4.05	504	#3	2	1.42	30	1	32021.56	22233.13	14572.79	14572.79
C3 Hn=5 04	CIRL	85	85	4.02	504	#4	2	2.54	30	3	104940.57	39808.08	19904.04	59712.12
C6	CIRL	110	110	3.08	504	#4	2	2.54	30	1	198413.66	64107.45	32053.72	32053.72
C7	CIRL	100	100	3.32	504	#4	2	2.54	30	2	154530.82	53651.17	26825.59	53651.17
C8	CIRL	90	90	2.23	504	#3	2	1.42	30	3	88787.04	41730.95	20865.47	62596.42
C4	CIRL	100	100	3.11	504	#4	2	2.54	30	2	148569.28	53613.10	26806.55	53613.10
C5	CIRL	110	110	3.08	504	#4	2	2.54	30	1	198413.66	64107.45	32053.72	32053.72
C2	CIRL	85	85	4.59	504	#4	2	2.54	30	3	114590.54	39885.52	19942.76	59828.29
C9	CIRL	60	60	4.30	534	#3	2	1.42	30	2	34603.08	19559.98	10801.29	21602.58
C1 Hn=5 14	CIRL	85	85	3.44	514	#4	2	2.54	30	3	93330.35	39724.88	19862.44	59587.32
C3 Hn=5	CIRL	85	85	4.59	514	#4	2	2.54	30	2	112361.16	39885.52	19942.76	39885.52

圖 3-52 柱極限層剪力強度計算 (資料來源: PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/8

建築物 475 年地震回歸期耐震能力計算 (達容許割性容量地震之地表加速度)			УЛЧ+ Ц 19].2017/ К
	j=1	j=2	j=3
$V_{uj} = C_{vcj} \Sigma V_{coli} \times N_{ci} + C_{vg} (\Sigma V_{swi} \times N_{swi} + \Sigma V_{scoli} \times N_{sci}) + C_{vbj} \Sigma V_{bwi} \times N_{bwi}; j=1\sim3 \text{ (kgf)}$	951353.364	563613.486	475188.696
新設計建築物之極限剪力强度 (V_{100}) _u =I($\frac{S_{aD}}{F_u}$) _m W_D (kgf)		2541762.339	
受評估建築物之降伏地表加速度 $A_{yj,x} = \frac{V_{uj}}{(V_{100})_u} \frac{IA_{475}}{Fu}$ (g); $j = 1 \sim 3$	0.044	0.026	0.022
$\begin{array}{l} \kappa_{j} = \underbrace{C_{u,i} \times R_{u,i}(C_{u,i} \times \underbrace{Y'_{u,i} \times N_{i}} + C_{u,i} \times R_{u,i}(C_{u,i} \times \underbrace{Y'_{u,i} \times N_{u,i}} + \underbrace{Y'_{u,i} \times N_{u,i}} + C_{u,i} \times R_{u,i}(C_{u,i} \times \underbrace{Y'_{u,i} \times N_{u,i}} + \underbrace{Y'_{u,i} \times Y'_{u,i}} + \underbrace{Y''_{u,i} \times Y''_{u,i}} + \underbrace{Y''_{u,i} \times Y''_{u,i}} + \underbrace{Y''_{u,i} \times Y''_{u,i}} + \underbrace{Y''_{u,i}} + \underbrace{Y''_{u,i} \times Y''_{u,i}} + \underbrace{Y''_{u,i} \times Y''_{u,i}} + \underbrace{Y''_{u,i} \times Y''_{u,i}} + \underbrace{Y''_{u,i}} + \underbrace{Y'''_{u,i}} + \underbrace{Y'''_{u,i}} + \underbrace{Y'''_{u,i}} + \underbrace{Y'''_{u,i}} + \underbrace{Y''''_{u,i}} + \underbrace{Y'''_{u,i}} + \underbrace{Y''''_{u,i}} + \underbrace{Y'''''_{u,i}} + \underbrace{Y''''''_{u,i}} + Y''''''''''''''''''''''''''''''''''''$	1.720	2.840	4.000
$\mathbf{R}_{ij}^{*} = \begin{cases} 1 + \frac{(R_{j}^{*} - 1)}{1.5} (-\frac{1}{2} \pm \frac{1}{2}) \\ 1 + \frac{(R_{j}^{*} - 1)}{2.0} (\div \pm \frac{1}{2} \pm \frac{1}{2}) \\ \vdots & j = 1 - 3 \end{cases}$	1.480	2.227	3.000
$F_{uj}^* = F_u(T, R_{uj}^*)_{j}_{j=1\sim3}$	1.480	2.227	3.000
V _{uj} /W _D	0.069	0.041	0.035
建築物 X 向耐震能力 $A_{cl,x} = \max[A_{yj,x}F_{yj}^*; j = 1 \sim 3]_{(g)}$		0.066	
<u>A_{e1,x}</u> <u>IA₄₇₅</u>		0.235	

圖 3-53 475 年地震回歸期耐震能力計算 (資料來源: PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/8

PSERCB 建築物 2500 年地震回歸期耐震能力計算

(建制任任重地质之地农加坯区)			
一樓層極限剪力强度	j=1	j=2	j=3
$V_{uj} = C_{voj} \Sigma V_{coli} \times N_{ci} + C_{voj} (\Sigma V_{swi} \times N_{swi} + \Sigma V_{scoli} \times N_{sci}) + C_{vbj} \Sigma V_{bwi} \times N_{bwi}; \ j=1-3 \ (\text{kgf})$	951353.364	563613.486	475188.696
新設計建築物之極限剪力强度 $(V_{100})_u = I \left(\frac{S_{aD}}{F_u} \right)_m W_D (kgf)$		2541762.339	
受評估建築物之降伏地表加速度 $A_{jj,s} = \frac{V_{uj}}{(V_{100})_u} \frac{IA_{475}}{Fu}$ (g); $j = 1 - 3$	0.044	0.026	0.022
$\begin{array}{l} \kappa_{j}^{*} = \frac{C_{ij} \times \mathcal{R}_{iii}(C_{ij} \times \overline{\Sigma}) F_{iji} \times \mathcal{N}_{ij} + C_{iji} \times \overline{\mathcal{R}}_{ij}(C_{ij} \times \overline{\Sigma}) \overline{F}_{iji} \times \mathcal{N}_{iii} + \overline{\Sigma} F_{iji} \times \overline{\mathcal{N}}_{iii} + C_{iji} \times \overline{\mathcal{R}}_{iji} C_{iji} \times \overline{\Sigma} F_{iji} \times \overline{\mathcal{N}}_{iii} \\ c_{iji} \times \overline{\Sigma} F_{iji} \times \overline{\mathcal{N}}_{iii} + C_{iji} \times \overline{\Sigma} F_{iji} \times \overline{\mathcal{N}}_{iii} + \overline{\Sigma} F_{iji} \times \overline{\mathcal{N}}_{iii} + \overline{\Sigma} F_{iji} \times \overline{\mathcal{N}}_{iii} \\ j = 1 \sim 3 \end{array} ;$	1.720	2.840	4.000
$F_{uj}^* = F_u(T, R_j^*)$; j=1~3	1.720	2.840	4.000
V_{uj}/W_D	0.069	0.041	0.035
建築物 X 向耐震能力 $A_{c_{2,x}} = \max[A_{y_{j,x}}F_{y_{j}}^{*}; j=1\sim3]_{(g)}$		0.088	
$\frac{A_{e2,x}}{IA_{2500}}$		0.244	
$\dot{\tau}$ $\Sigma V \rightarrow N - \Sigma V \rightarrow N - \Sigma V \rightarrow N - \Sigma V \rightarrow N$			

注: $\Sigma V_{bwi} \times N_{bwi} - \Sigma V_{bwdi} \times N_{bwdi} \times \Sigma V_{bw3i} \times N_{bw3i} \times \Sigma V_{bw2i} \times N_{bw2i}$ **R** 小 **R** 及 **R** 版約計在度有關 建議加下

K _{col} K _{sw} 次 K _{bw} 與說司 半皮 有 厕 , 建酸 如 「:									
	設計年度	R _{col}	R_{sw}	R_{bw}					
	63年2月以前	2.4	2.0	3.0					
	63年2月至71年6月	3.2	2.0	3.0					
	71年6月至86年5月	4.0	2.0	3.0					
	86年5月以後	4.8	2.0	3.0					
	註: j=1 為 RC 牆 朝 性	充分發揮	; j=2 為 碉	牆 韌 性 充 分	發揮;				

係數 C _{vcj} 、 C _{Rcj} 、 C _{vsj} 、 C _{Rsj} 、 C _{vbj} 與 C _{Rbj} 建議如下:					
	j	1	2	3	
V	C_{vcj}	0.65	0.95	1	
V coi	C_{Rcj}	0.35	0.70	1	
$\mathbf{V}_{\mathrm{swi}}$	C_{vsj}	0.85	0	0	
	C_{Rsj}	1	0	0	
$\mathbf{V}_{\mathrm{bwi}}$	C_{vbj}	0.95	0.85	0	
	C_{Rhi}	0.45	1	0	

j=3 為構架韌性充分發揮;

圖 3-54 2500 年地震回歸期耐震能力計算 (資料來源: PSERCB 網站提供)

14.中高樓層初步評估結果

案例建築共有 6 根外柱、22 內柱。由式(2-18)可知,外柱、內柱之單位面積強度分別為 10 樓柱線 $\tau_{CE} = 121.86 - 6.12(10) = 60.66tf / m^2 \cdot \tau_{CI} = 125.9 - 3.49(10) = 91tf / m^2$,計算極限基底剪力強度 X 向及 Y 向分別為

$$V_{bs,x} = \sum_{j=1}^{N_{CE}} \tau_{CE} A_{CE} + \sum_{j=1}^{N_{CI}} \tau_{CI} A_{CI} + \sum_{j=1}^{N_{BW3}} \tau_{BW3} A_{BW3} + \sum_{j=1}^{N_{BW4}} \tau_{BW4} A_{BW4} + \sum \tau_{RC} A_{RC} = 1899 tf$$

$$V_{bs,y} = \sum_{j=1}^{N_{CE}} \tau_{CE} A_{CE} + \sum_{j=1}^{N_{CI}} \tau_{CI} A_{CI} + \sum_{j=1}^{N_{BW3}} \tau_{BW3} A_{BW3} + \sum_{j=1}^{N_{BW4}} \tau_{BW4} A_{BW4} + \sum \tau_{RC} A_{RC} = 2148 tf$$

透過面積計算,可知此建築物2樓至頂樓層面積皆為1037.8m²,透過式(2-20)算得 此建築物總靜載重

W = 13685tf

由案例介紹其為鋼筋混凝土建築物,該建物基面至屋頂高度為35公尺,由式(2-22) 可知週期

$$T = 0.07 h_n^{\frac{3}{4}} = 0.98s$$

根據建築物耐震設計規範及解說可知建築物為第二類地盤,鄰近新化斷層計算工址 短週期、一秒設計水平譜加速度係數如式(2-12)、式(2-24a)

$$S_{DS} = F_a N_A S_S^D = 1.0 \times 1.0 \times 0.7 = 0.7$$
$$S_{D1} = F_v N_v S_1^D = 1.3 \times 1.0 \times 0.4 = 0.52$$
$$S_{MS} = 1.0 \times 1.0 \times 0.9 = 0.9$$
$$S_{M1} = 0.5 \times 1.1 \times 1.0 = 0.55 T_0^M$$

計算工址設計水平加速度反應譜短週期與中長週期之分界 T_0^D 、 T_0^M

$$T_0^D = \frac{S_{D1}}{S_{DS}} = \frac{0.52}{0.7} = 0.743s$$

$$T_0^M = 0.611$$

由式(2-28a)判別, $T_0^D \leq T \leq 2.5T_0^D$,故工址設計水平譜加速度係數

$$S_{aD} = \frac{S_{D1}}{T} = \frac{0.52}{1.18} = 0.441$$
$$S_{aM} = \frac{S_{M1}}{T} = 0.56$$

以本研究建議之結構系統韌性容量R=3.08計算,且為一般工址與近斷層區域,故容許韌性容量,如式(2-33)

$$R_a = 1 + \frac{(R-1)}{1.5} = 1 + \frac{(3.08-1)}{1.5} = 2.387$$

再代入地盤種類可得結構系統地震力折減係數(式(2-33)),得 $F_u = R_a = 2.387$ 、 $F_{u,m} = 3.08$,並透過式(2-34a)對工址設計水平譜加速度係數進行修正可得

$$\left(\frac{S_{AD}}{F_u}\right) = \frac{0.441}{2.387} = 0.185 \le 0.3, \left(\frac{S_{AD}}{F_u}\right)_m = 0.185$$
$$\left(\frac{S_{AM}}{F_{u,M}}\right) = 0.182 \le 0.3, \left(\frac{S_{AD}}{F_u}\right)_m = 0.182$$

為算出耐震容量需求比,將結果代入式(2-36a),可得

$$R_{CD,475x} = 0.625$$

$$R_{CD,475y} = 0.707$$

$$R_{CD,2500x} = 0.76$$

 $R_{CD,2500y} = 0.86$

代入式(2-38)並計算耐震能力

 $A_{p,475x} = 0.175 \le 0.4S_{DS} = 0.28$ $A_{p,475y} = 0.197 \le 0.4S_{DS} = 0.28$ $A_{p,2500x} = 0.27 \le 0.4S_{MS} = 0.36$

$$A_{p,2500y} = 0.309 \le 0.4S_{MS} = 0.36$$

以基本耐震性能之 E 值是否大於 100 分為評估標準,評估分數 E 大於 100 分表示並 無疑慮;若 E 值小於 100,表示建築物之耐震能力不足,須再進行詳細評估。故此結果 為小於 100 分,故須進行詳細評估。

第四節 12 層樓住商混合大樓案例

1. 基本資料

位於臺南之地上 12 層樓鋼筋混凝土建築物,約於民國 80 年代興建。屬住商混合大樓,低樓層為商家。由樓層平面圖(圖 3-55)可知,主要側向為剪力牆系統,其他垂直系統為無梁版系統,建築物基本資料蒐集如表 3-67 所示:

甲棟

乙楝

圖 3-56 12 層樓結構平面圖 (資料來源:本研究整理)

圖 3-57 結構立面圖 (資料來源:本研究整理)

圖 3-58 結構 3D 圖 (資料來源:本研究整理)

表	3-67	建築物基本	資料
v -			~ ' '

建築物名稱	12 層住商混合大樓案例
興建年代	約民國 80 年代
分期興建	無
構造型式	鋼筋混凝土造基礎為筏式基礎(單層版)
結構系統	RC 剪力牆以及無梁版構架,磚牆隔間及外牆 RC 電梯牆
平面尺寸	矩型平面甲棟:BxL=29.16mx19.76m,乙棟:BxL=28.92mx27.2m
建築規模	一幢兩棟,地面12層、地下2層
樓高(m)	34.25 m
基本振動週期	$0.9910 \sec(0.07 h_n^{0.75})$
大梁尺寸(cm)	30×65 \ 40×60
柱尺寸(cm)	60×60、40×216、40×140
剪力牆(cm)	$66 \ cm \cdot 50 \ cm \cdot 45 \ cm \cdot 35 \ cm$
樓版(cm)	26 cm \ 24 cm \ 22 cm \ 20 cm \ 14 cm
現況用途	商店(1F)、住宅(2F~12F)
總樓地板(m ²)	13335.92 m ² (B1FL~RFL)

(資料來源:本研究整理)

2. 重量計算

(1)靜載重:

◆ 鋼筋混凝土單位體積自重 2.4 t/m³。

中高樓層建築軟弱層及扭轉不規則效應評估研究

◆ 1B 磚牆 0.440 t/m²; 1/2B 磚牆 0.220 t/m²。

◆ 梁、柱、版、剪力牆依各自斷面尺寸乘以各材質單位重量計算。

◆ 所有牆重依各自材料性質及厚度照實計算。

(2)活載重:

- ◆ 停車空間 (B2F~B1F):500 kgf/m²
- ◆ 商店 (1F): 300 kgf/m²
- ◆ 住宅 (2F~12F): 200 kgf/m²

結構分析樓層重如表 3-68 所示:

表 3-68 結構分析樓層重

曲尽	柱重	梁重	RC 牆重	樓版重	鋪面重	SUM
	(kgf)	(kgf)	(kgf)	(kgf)	(kgf)	(kgf)
R2FL	0	4646	150339	69461	30281	254727
R1FL	0	0	150339	42393	30281	223013
RFL	78973	0	150340	691224	293057	1213594
12FL	78973	0	150340	691224	109896	1030433
11FL	78973	0	193294	691224	109896	1073387
10FL	78973	0	193294	691224	109896	1073387
9FL	78973	0	245608	691224	109896	1125701
8FL	78973	0	245608	691224	109896	1125701
7FL	78973	0	245608	691224	109896	1125701
6FL	78973	0	245608	691224	109896	1125701
5FL	78973	0	245608	691224	109896	1125701
4FL	100988	84117	351972	899230	147527	1583834
3FL	100988	117208	355265	875136	149161	1597758
2FL	115415	105597	406017	262089	65336	954454
1FL	123534	651269	806974	1334032	564213	3480022
B1FL	111579	632088	728880	1357262	117544	2947353
B2FL	0	0	0	5960414	118270	6078684
SUM	1263261	1594925	4865094	17021033	2394840.3	27139153

(資料來源:本研究整理)

3. 週期及質量貢獻比計算

結構週期及質量貢獻比計算如表 3-69 所示:

Mode	方向	週期	質量貢獻比(%)
1	Y 向	1.089	57.45
2	X 向	0.799	51.07
3	Y向(雨楝交互)	0.683	0.11
4	X向(雨楝交互)	0.643	0.04
5	Z 向扭轉(乙棟)	0.401	7.54
6	Z 向扭轉(甲棟)	0.333	3.13

表 3-69 結構週期及質量貢獻比

4. 規範側向力計算

*** DIR - X ***

Site Type(II)	近斷層區域=	2	
震區加速度	_ 係數 S_D_S,S_D_1,S_M_S,S_M_1 .=		0.70 0.40 0.90 0.50
近斷層調整	因子 Na/Nv/Na_M/Nv_M=		1.00 1.00 1.00 1.00
第三類地盤 :	軟弱地盤=	3	
工址放大	. 係數 Fa, Fv, Fa_M, Fv_M =		1.10 1.60 1.00 1.40
建筑物楼洪拜	新新新新的 Styne =	2	

廷 祭 初 稱 這 裡 類 Stype -	2
經驗公式週期 : 0.070*(Hn**0.75) Tcode =	0.9910
動力分析基本振動週期	0.7987
週期上限係數Cu=	1.4000
設計週期 : Min(Cu*Tcode,Tdyn) T=	0.7987

工址設計水平譜加速度係數	SaD =	0.7700
(S_DS=0.7700 S_D1=0.6400 T_D_	_0=0.8312)	
結構系統地震力折減係數	Fu =	2.9254
	(SaD/Fu)m =	0.2632
(避免由小庭地雪路件)	$(S_{2}D/F_{11})m' =$	0 2632

把始降伏地震力放大倍數	000
	000
勃性容量 R = 4.0	000
容許韌性容量 Ra= 3.0	000

工址最大水平譜加速度係數	SaM =	0.8764
--------------	-------	--------

(S_MS=0.9000 S_M1=0.7000 T_M_0=0.7778)	
結構系統地震力折減係數 FuM =	4.0000
(SaM/FuM)m =	0.2191

最小設計水平總橫力係數	
I /1.4/ay*(SaD/Fu)m =	0.1880
I*Fu/4.2/ay*(SaD/Fu)m`=	0.1833
I /1.4/ay*(SaM/FuM)m =	0.1565
檢討 Story Drift 之地震力係數	
I"*Fu/4.2 *(SaD/Fu)m"=	0.1833

頂層之外加集中橫力 Min(0.07TV,0.25V)	Ft = 153.6572
外加横力分配至 PH 者	Ft(PH) = 43.4030
外加橫力分配至 RF 者	Ft(RF) = 110.2542

- 設計地震力 = 2748.35 T
- 檢討 Story Drift 之地震力 = 2680.00 T

*** DIR - Y ***

Site Type(II)	近斷層區域	= 2	
震區加速度	係數 S_D_S,S_D_1,S_M_S,S_M_1.	=	0.70 0.40 0.90 0.50
近斷層調整	因子 Na/Nv/Na_M/Nv_M	=	1.00 1.00 1.00 1.00
第三類地盤:	軟弱地盤	= 3	
工址放大	係數 Fa, Fv, Fa_M, Fv_M	. =	1.10 1.60 1.00 1.40

建築物構造種類 Stype =	2
經驗公式週期 : 0.070*(Hn**0.75) Tcode =	0.9910
動力分析基本振動週期Tdyn=	1.0809
週期上限係數 Cu=	1.4000
設計週期 : Min(Cu*Tcode, Tdyn) T=	1.0809
工址設計水平譜加速度係數 SaD=	0.5921
(S_DS=0.7700 S_D1=0.6400 T_D_0=0.8312)	
結構系統地震力折減係數Fu=	3.0000
(SaD/Fu)m =	= 0.1974

(避免中小度地震降伏)......(SaD/Fu)m`= 0.1974

用途係數I=	1.0000
起始降伏地震力放大倍數ay=	1.0000
勃性容量R =	4.0000
容許韌性容量Ra=	3.0000
工址最大水平譜加速度係數 SaM =	0.6476
(S_MS=0.9000 S_M1=0.7000 T_M_0=0.7778)	
結構系統地震力折減係數FuM=	4.0000
(SaM/FuM)m =	0.1619
最小設計水平總橫力係數	
I /1.4/ay*(SaD/Fu)m =	0.1410
I*Fu/4.2/ay*(SaD/Fu)m =	0.1410
I /1.4/ay*(SaM/FuM)m=	0.1156
檢討 Story Drift 之地震力係數	
I"*Fu/4.2 *(SaD/Fu)m"=	0.1410
頂層之外加集中橫力 Min(0.07TV,0.25V) Ft=	155.9272
外加橫力分配至 PH 者 Ft(PH) =	44.0442
外加橫力分配至 RF 者 Ft(RF)=	111.8830

設計地震力	=	2060.81 T
檢討 Story Drift 之地震力	=	2060.81 T

X 向規範側向力計算如表 3-70 所示、Y 向規範側向力計算如表 3-71 所示:

塘區	h_x	W_{x}	$w_x h_x$	F_x
按眉	m	tf	tf-m	tf
RFL	34.25	1213.5938	41565.58765	502.91
12FL	31.45	1030.4333	32407.12729	306.14
11FL	28.65	1073.3873	30752.54615	290.52
10FL	25.85	1073.3873	27747.06171	262.12
9FL	23.05	1125.7013	25947.41497	245.12
8FL	20.25	1125.7013	22795.45133	215.34
7FL	17.45	1125.7013	19643.48769	185.57

表 3-70 X 向規範側向力計算表

建品	h_x	W_{x}	$w_x h_x$	F_x
按信	m	tf	tf-m	tf
6FL	14.65	1125.7013	16491.52405	155.79
5FL	11.85	1125.7013	13339.56041	126.01
4FL	9.05	1583.83401	14333.69779	135.41
3FL	6.25	1597.75787	9985.986688	94.33
2FL	3.45	954.45395	3292.866128	31.11
1FL	0	3480.02212	0	0
總和		17635.37615	258302.3118	2550.37

表 3-71 Y 向規範側向力計算表

建晶	h_y	w_y	$w_y h_y$	F_y
接信	m	tf	tf-m	tf
RFL	34.25	1213.5938	41565.58765	400.15
12FL	31.45	1030.4333	32407.12729	224.75
11FL	28.65	1073.3873	30752.54615	213.28
10FL	25.85	1073.3873	27747.06171	192.44
9FL	23.05	1125.7013	25947.41497	179.95
8FL	20.25	1125.7013	22795.45133	158.09
7FL	17.45	1125.7013	19643.48769	136.23
6FL	14.65	1125.7013	16491.52405	114.37
5FL	11.85	1125.7013	13339.56041	92.51
4FL	9.05	1583.83401	14333.69779	99.41
3FL	6.25	1597.75787	9985.986688	69.26
2FL	3.45	954.45395	3292.866128	22.84
1FL	0	3480.02212	0	0
總和		17635.37615	258302.3118	1903.28

(資料來源:本研究整理)

5. 材料強度

◆ 混凝土:

樓版: $f'_{c} = 280 kgf / cm^{2}$ 梁: $f'_{c} = 280 kgf / cm^{2}$ 剪力牆: $f'_{c} = 350 kgf / cm^{2}$

 $#6, #7, #8, #10: f_v=4200 kgf/cm^2$

6. 穩定性因子計算

乙棟 X 向穩定性因子計算如表 3-72 所示、Y 向穩定性因子計算如表 3-73 所示:

樓層	樓層重量	Px 為樓層高 度 x 及以上 的垂直向設 計載重	Ie為重要 性因子	Δ/h_x 樓層側位 移角	V _x 為樓層高 度 x 所在之 設計剪力	C _d 為變位 放大係數	θ 穩定性因子
	kgf	kgf			kgf		
RFL	677436	677436	1	0.001944	307372	5.6	0.000765089
12FL	574207	1251642	1	0.001969	488058	5.6	0.000901709
11FL	595792	1847434	1	0.001962	740127	5.6	0.000874528
10FL	595792	2443225	1	0.00196	917420	5.6	0.000932102
9FL	621465	3064690	1	0.001934	1081315	5.6	0.00097882
8FL	621465	3686155	1	0.001912	1230968	5.6	0.001022413
7FL	621465	4307619	1	0.001875	1362482	5.6	0.00105857
6FL	621465	4929084	1	0.001821	1475856	5.6	0.001086035
5FL	621465	5550548	1	0.001734	1571091	5.6	0.001093946
4FL	956514	6507062	1	0.001655	1847433	5.6	0.001040941
3FL	960543	7467605	1	0.001757	1930265	5.6	0.001213803
2FL	546591	8014196	1	0.001399	1897041	5.6	0.00105539
1FL	3480022	11494219	1	0.000616	3290908	5.6	0.000384199

表 3-72 X 向穩定性因子計算表

表 3-73 Y 向穩定性因子計算表

樓層	樓 層 重	Px為樓層高 度 x 及以上 的垂直向設 計載重	Ie為重要 性因子	Δ/h_x 樓層側位 移角	 Vx 為樓層高 度 x 所在之 設計剪力 	C _d 為變位 放大係數	θ 穩定性因子
	kgf	kgf			kgf		

中高樓層建築軟弱層及扭轉不規則效應評估研究

樓層	樓 層 重 量	Px為樓層高 度 x 及以上 的垂直向設 計載重	Ie為重要 性因子	Δ/h_x 樓層側位 移角	 Vx 為樓層高 度 x 所在之 設計剪力 	C _d 為變位 放大係數	θ 穩定性因子
	kgf	kgf			kgf		
RFL	677436	677436	1	0.002566	236440	5.6	0.001312852
12FL	574207	1251642	1	0.002584	375429	5.6	0.001538354
11FL	595792	1847434	1	0.002573	569329	5.6	0.001490932
10FL	595792	2443225	1	0.002562	705708	5.6	0.001583908
9FL	621465	3064690	1	0.002507	831780	5.6	0.001649469
8FL	621465	3686155	1	0.002466	946899	5.6	0.001714253
7FL	621465	4307619	1	0.002408	1048063	5.6	0.001767332
6FL	621465	4929084	1	0.002332	1135274	5.6	0.001808031
5FL	621465	5550548	1	0.002201	1208531	5.6	0.001805136
4FL	956514	6507062	1	0.002081	1421102	5.6	0.001701546
3FL	960543	7467605	1	0.001953	1484819	5.6	0.00175397
2FL	546591	8014196	1	0.001829	1459262	5.6	0.001793711
1FL	3480022	11494219	1	0.001654	2531468	5.6	0.00134108

(資料來源:本研究整理)

7. 剛重比計算

乙棟X向剛重比計算如表 3-74 所示、Y 向剛重比計算如表 3-75 所示:

樓層	樓層	Gi 為第 i 層的重力 設計荷載 值	Fi 第i層 水平力	Hi 第 i 層 高度	H 總 層 度	γi=Hi/H	ui 第i層 頂部位 移	EJd 等效側向 剛度	剛重比 側向剛度與 重力荷載的 比值
	kgf	kgf	kgf	cm	cm		cm	kgf-cm ²	
RFL	677436	677436	251958	3425	3425	1	6.3695	5.2976E+14	66.66437819
12FL	574207	1251642	153376	3145	3425	0.9182482	5.8302	3.0921E+14	2.1060E+01
11FL	595792	1847434	163853	2865	3425	0.8364964	5.2866	3.1419E+14	14.49789125
10FL	595792	2443225	147836	2585	3425	0.7547445	4.7461	2.6677E+14	9.3079E+00
9FL	621465	3064690	138248	2305	3425	0.6729927	4.208	2.3186E+14	6.449459922
8FL	621465	3686155	121452	2025	3425	0.5912409	3.6771	1.8623E+14	4.306817147
7FL	621465	4307619	104661	1745	3425	0.5094891	3.1534	1.4368E+14	2.843400309
6FL	621465	4929084	87866	1465	3425	0.4277372	2.6408	1.0485E+14	1.813408876

表 3-74 X 向剛重比計算表

樓層	樓層	Gi 為第 i 層的重力 設計荷載 值	Fi 第i層 水平力	Hi 第 i 層 高度	H 總 層 度	γi=Hi/H	ui 第i層 頂部位 移	EJd 等效側向 剛度	剛重比 側向剛度與 重力荷載的 比值
	kgf	kgf	kgf	cm	cm		cm	kgf-cm ²	
5FL	621465	5550548	71070	1185	3425	0.3459854	2.1438	7.0526E+13	1.08315885
4FL	956514	6507062	84225	905	3425	0.2642336	1.6686	6.4562E+13	0.84580114
3FL	960543	7467605	58390	625	3425	0.1824818	1.2133	3.0235E+13	0.345148403
2FL	546591	8014196	18573	345	3425	0.1007299	0.7833	4.6707E+12	4.9682E-02
1FL	3480022	11494219	0	0	3425	0	0.0034	0.0000E+00	0
	11494219	11494219	1401507		3425			2.2566E+15	16.73577855
整體剛重比								12.56821878	

表 3-75 Y 向剛重比計算表

樓層	樓層 重量	Gi 為第 i 層的重力 設計荷載 值	Fi 第i層 水平力	Hi 第 i 層 高度	H 總 層 度	γi=Hi/H	ui 第i層 頂部位 移	EJd 等效側向 剛度	剛重比 側向剛度與 重力荷載的 比值
	kgf	kgf	kgf	cm	cm		cm	kgf-cm ²	
RFL	677436	677436	200475	3425	3425	1	8.7674	3.3346E+14	41.961879
12FL	574207	1251642	112600	3145	3425	0.918248	8.0515	1.5095E+14	10.2812231
11FL	595792	1847434	120290	2865	3425	0.836496	7.332	1.5145E+14	6.988413416
10FL	595792	2443225	108536	2585	3425	0.754745	6.6162	1.2678E+14	4.423474061
9FL	621465	3064690	101492	2305	3425	0.672993	5.9044	1.0826E+14	3.011366103
8FL	621465	3686155	89163	2025	3425	0.591241	5.2079	8.5145E+13	1.969091029
7FL	621465	4307619	76834	1745	3425	0.509489	4.5236	6.3867E+13	1.263919522
6FL	621465	4929084	64505	1465	3425	0.427737	3.8562	4.4937E+13	0.777176387
5FL	621465	5550548	52176	1185	3425	0.345985	3.211	2.8784E+13	0.442079665
4FL	956514	6507062	61833	905	3425	0.264234	2.5708	2.4630E+13	0.322670703
3FL	960543	7467605	42872	625	3425	0.182482	2.0374	1.0477E+13	0.119601996
2FL	546591	8014196	13635	345	3425	0.10073	1.53	1.3183E+12	0.014023266
1FL	3480022	11494219	0	0	3425	0	0.0097	0.0000E+00	0
	11494219	11494219	1044410		3425			1.1301E+15	8.381130577
		•			•	•	•	整體剛重比	6.878911703

(資料來源:本研究整理)

8. 意外扭矩

依建築物耐震設計規範及解說,為計及質量分布不確定性,應將地震力加在計算所 得質心位置向左及向右偏移 5%位置進行結構分析與設計,質心偏移造成之扭矩,稱為 意外扭矩。建築物若具扭轉不規則性時,各層施加之意外扭矩應以係數 Ax 放大。

$$d_{avg} = \frac{d_A + d_B}{2}$$
$$d_{max} = \{d_A, d_B\}_{max}$$

扭轉放大係數 $Ax = (d_{max}/1.2d_{avg})^2$

A_x?1.0 扭轉規則性建築

Ax > 1.0? 扭轉不規則性建築

取當層最大變位,除以兩最外點平均值之 1.2 倍,檢核結果乙棟 X 向意外扭矩如表 3-76、表 3-77 所示、Y 向意外扭矩如表 3-78、表 3-79 所示:

	바묘	樓層最大位移量	平均層間位移	放大係數 A _x
	棲僧	δmax (cm)	δavg (cm)	$(\delta max/1.2\delta avg)^2$
	RFL	6.4521	6.3699	0.7125
	12FL	5.9078	5.8306	0.7130
	11FL	5.3565	5.2869	0.7128
	10FL	4.8072	4.7464	0.7123
V间台力	9FL	4.2584	4.2082	0.7111
▲ 1則 円 <i>八</i> ↓ 50/	8FL	3.717	3.6772	0.7096
+370	7FL	3.1817	3.1535	0.7069
	6FL	2.6566	2.6409	0.7027
	5FL	2.1468	2.1438	0.6964
	4FL	1.6741	1.6677	0.6998
	3FL	1.2172	1.2139	0.6982
	2FL	0.7897	0.784	0.7046
	1FL	0	0	

表 3-76 X 向側向力+5%意外扭矩 Ax 計算表

	中日	樓層最大位移量	平均層間位移	放大係數 A _x
	棲僧	δmax (cm)	δavg (cm)	$(\delta max/1.2\delta avg)^2$
	RFL	6.7218	6.3893	0.7686
	12FL	6.1713	5.8488	0.7731
	11FL	5.6103	5.3038	0.7770
	10FL	5.0498	4.7618	0.7810
V向人力	9FL	4.4874	4.2219	0.7845
A 1則回刀	8FL	3.9323	3.6892	0.7890
-3%0	7FL	3.3814	3.1638	0.7933
	6FL	2.8381	2.6493	0.7969
	5FL	2.3069	2.1502	0.7994
	4FL	1.8108	1.6815	0.8054
	3FL	1.3009	1.2227	0.7861
	2FL	0.8134	0.7963	0.7246
	1FL	0	0	

表 3-77 X 向側向力-5%意外扭矩 Ax 計算表

表 3-78 Y 向側向力+5%意外扭矩 Ax 計算表

	坤 豆	樓層最大位移量	平均層間位移	放大係數 A _x
	棲僧	δmax (cm)	δavg (cm)	$(\delta max/1.2\delta avg)^2$
	RFL	8.8022	8.7659	0.7002
	12FL	8.0613	8.05	0.6964
	11FL	7.3429	7.3304	0.6968
	10FL	6.6282	6.6144	0.6973
V间石力	9FL	5.9179	5.9025	0.6981
I 1則四刀	8FL	5.2228	5.2058	0.6990
+3%	7FL	4.5401	4.5214	0.7002
	6FL	3.8744	3.8537	0.7019
	5FL	3.2311	3.2082	0.7044
	4FL	2.667	2.5946	0.7337
	3FL	2.0927	2.0508	0.7231
	2FL	1.5547	1.5428	0.7052
	1FL	0	0	

	中国	樓層最大位移量	平均層間位移	放大係數 A _x
	棲僧	δmax (cm)	δavg (cm)	$(\delta max/1.2\delta avg)^2$
	RFL	9.1856	8.9234	0.7359
	12FL	8.188	8.0675	0.7153
	11FL	7.4618	7.3463	0.7165
	10FL	6.7383	6.6287	0.7176
Valtab	9FL	6.0176	5.9152	0.7187
Y 1則 向 刀	8FL	5.3123	5.2169	0.7201
-3%0	7FL	4.6183	4.5309	0.7215
	6FL	3.9401	3.8616	0.7230
	5FL	3.2834	3.214	0.7248
	4FL	2.7661	2.654	0.7543
	3FL	2.1656	2.0926	0.7437
	2FL	1.5907	1.5564	0.7254
	1FL	0	0	

表 3-79 Y 向侧向力-5%意外扭矩 Ax 計算表

9. 偏心距

乙棟 X 向質心剛心偏心距計算如表 3-80 所示、Y 向質心剛心偏心距計算如表 3-81 所示:

樓層	質心 (x 座標)	剛心 (x 座標)	偏心e	Dx	e/Dx
RFL	55.126	56.494	1.368	28.92	0.04730
12FL	55.151	56.523	1.372	28.92	0.04744
11FL	55.168	56.553	1.385	28.92	0.04789
10FL	55.184	56.577	1.393	28.92	0.04817
9FL	55.203	56.607	1.404	28.92	0.04855
8FL	55.221	56.628	1.407	28.92	0.04865
7FL	55.221	56.657	1.436	28.92	0.04965
6FL	55.221	56.7	1.479	28.92	0.05114
5FL	55.221	56.775	1.554	28.92	0.05373
4FL	59.979	56.845	-3.134	45.16	-0.06940
3FL	60.349	56.817	-3.532	45.16	-0.07821
2FL	61.223	56.474	-4.749	42.16	-0.11264

表 3-80 X 向質心剛心偏心距計算表

樓層	質心(y 座標)	剛心 (y 座標)	偏心e	Dx	e/Dx
RFL	55.126	56.494	1.368	28.92	0.04730
12FL	55.151	56.523	1.372	28.92	0.04744
11FL	55.168	56.553	1.385	28.92	0.04789
10FL	55.184	56.577	1.393	28.92	0.04817
9FL	55.203	56.607	1.404	28.92	0.04855
8FL	55.221	56.628	1.407	28.92	0.04865
7FL	55.221	56.657	1.436	28.92	0.04965
6FL	55.221	56.7	1.479	28.92	0.05114
5FL	55.221	56.775	1.554	28.92	0.05373
4FL	59.979	56.845	-3.134	45.16	-0.06940
3FL	60.349	56.817	-3.532	45.16	-0.07821
2FL	61.223	56.474	-4.749	42.16	-0.11264

表 3-81 Y 向質心剛心偏心距計算表

10. 檢核結果

本案例為一於民國 85 年興建完成之集合住宅,其地上結構型式為十二層之鋼筋混 凝土造建築物,其二樓樓地板面積至頂樓樓地板面積為 4695m²,相關資料詳表 3-82。 為一棟平面凹型之鋼筋混土建築,立面有急遽縮減之情形。本案用途係數 1.0,以民國 100 年公佈之「耐震設計規範與解說」做為耐震標準進行耐震初步評估,根據結構物情 形給予適當之定性及定量評估。

表 3-82 建築物相關資料

構造種類	鋼筋混凝土造
地樓層數	地上 12 樓地下 2 樓
平面配置	ビ形
總樓高	34.24 m
層高	2F~12F : H=2.8 m/1F : H=3.45 m

(資料來源:本研究整理)

本例採用之材料強度參數如下:

1. 混凝土抗壓強度: $f'_{c} = 350 kgf / cm^{2}$

2. 主筋降伏強度: $f_v = 4200 kgf / cm^2$

3. 箍筋降伏強度: $f_v = 2800 kgf / cm^2$

(一)柱破壞模式檢核

檢核重量計算如式 2-20,總重為 14511tf,再依其面積量進行分配,即可得到各柱所需承受之重量,如表 3-83 及表 3-84。

依照各柱所承受軸力,可算出各柱之剪力強度,即為 V_{0i} ;依照各柱軸力納入並計算出柱端、底彎矩,兩者相加除上淨高,即可得到剪力 V_{pi} 。兩者相除即可檢核剪力。

表 3-83 12 層大樓結構 X 向
$$\frac{V_{pi}}{V_{0i}}$$

(單位:kgf)

	軸力	V _c	V_s	V _{0ix}	V_{pi}	V _{pi} / V _{0i}
C1(Hn=3.45m)	191000	35261	10170	45431	95072	2.09
C1(Hn=2.85m)	191000	35261	10170	45431	115000	2.53
C2L	297000	57013	21144	78156	97971	1.25
C2S(Hn=3.45m)	297000	56302	36540	92842	340290	3.67
C2S(Hn=2.9m)	297000	56302	36540	92842	405000	4.36
C3	127000	25976	7877	33853	55652	1.64
C4	458000	89131	26784	115915	154286	1.33
C6(Hn=2.85m)	191000	37229	14317	51545	109474	2.12
C6(Hn=2.8m)	191000	37229	14317	51545	111000	2.16
C8	516000	104760	30036	134796	142857	1.06

⁽資料來源:本研究整理)

表 3-84 12 層大樓結構 Y 向
$$\frac{V_{pi}}{V_{0i}}$$

1	믱	120	٠	lraf	ŝ
U	甼	11	٠	Kgi)	,

	軸力	V _c	V_s	V _{0iy}	V_{pi}	V _{pi} / V _{0i}
C1	191000	35261	13560	48820	99710	2.04
C2L	297000	57013	10572	67585	340290	5.04
C2S	297000	56302	36540	92842	340290	3.67
C3	127000	25976	6302	32278	78841	2.44
C4	458000	89131	10714	99845	684638	6.86
C6	191000	37229	14317	51545	90435	1.75
C8	516000	104760	9011	113770	593043	5.21

(二)強柱弱梁檢核

將各軸力納入並計算柱端、底彎矩,以及算出梁端彎矩,將柱彎矩總合與梁端彎矩 總合相除,其值需大於1.2,表示為強柱弱梁;若小於1.2,由於此大樓為無梁板結構, 故於此不必計算。

11.初步評估結果(PSERCB)

利用 PSERCB 將此建築物進行耐震能力初步評估,輸入資料分別為建築物之基本資料、定性評估、參數設置、X 向斷面資料、Y 向斷面資料等......。圖 3-59 為輸入建築之基本性質;圖 3-60 為結構系統之定性評分,靜不定程度為 4 跨,得分為 0 分、地下室面積比為 3.8,得分 0 分、平面對稱性為匸型及立面有退縮,故選擇不良,故分數分別為 3.0 及 3.0 分、柱之高深比為 4.1,得分為 1.4,軟弱層嚴重性高,得分 3.0 分。由圖 3-61 可知結構細部之定性評分,由設計年份可知其建造年分,得分為 1.65,無窗台及氣窗造成短柱性、牆體造成短梁嚴重性,得分皆為 0 及 0。圖 3-61 為結構現況方面:柱及牆之損害程度皆為高等,得分為 2.0、裂縫鏽蝕程度高,得分為 3.0。圖 3-62 為額外增、

減分,分別為分期興建或工程品質有疑慮、曾經受災害者,如土石流、火災、震災、人 為破壞等、使用用途由低活載重改為高活載重使用者、傾斜程度明顯者、使用用途由高 活載重改為低活載重使用者五項,分別得分為0、0、0、0、0分。圖 3-63、圖 3-64 為 輸入參數及斷面資料,輸入建築結構基本資料,如混凝土抗壓強度、鋼筋降伏強度及柱、 牆斷面資料等。將上述之得分得加總而得,為定性評估分數為 18.6,如圖 3-65。由圖 3-65 可知定量評分為 60。其總分為定性評分與定量評分相加,故可得知建築物耐震能 力為 78.6分,結果表示建築物之耐震能力確有疑慮,宜進行詳細評估。其餘操作過程如 圖 3-66 至圖 3-70 所示:圖 3-71 及圖 3-72 算出定量評分之 X 向建築物 475 年地震回歸 期耐震能力為 0.050 g, Y 向為 0.128 g, X、Y 向均無項符合耐震標準; X 向建築物 2500 年地震回歸期耐震能力為 0.066 g, Y 向建築物 2500 年地震回歸期耐震能力為 0.153 g, X、Y 方向上不符合耐震標準。

圖 3-59 基本資料 (資料來源: PSERCB 網站提供)

結構系統 (單位 : kgf-cm)					10
1.靜不定程度 〇 單跨(1.0) ● 雙跨(0.67) 〇 三跨(0.33)	2.地下室面積比ra ra(地下室面積與建築面積之比) 3	 3.平面對稱性 ● 不良(1.0) ○ 尚可(0.5) ○ 良(0) 		 4.立面對稱性 不良(1.0) 尚可(0.5) 良(0) 	
O 四跨以上(0) 分數:	3.4 分數:0.0		分數:3.0		分數:3.0
5.梁之跨深比b 5.梁之跨深比b 12.68	6.柱之高深比 c 6.柱之高深比 c 7	 7.軟弱層顯著性 ○ 毫(1.0) ○ 中(0.67) ④ 低(0.33) ○ 無(0) 			
分數:	0.0 分數:0.0		分數:1.0		

圖 3-60 定性評估表(結構系統) (資料來源: PSERCB 網站提供)

結構細部 (單位: kgf-cm)			4
8.塑较區箍筋細部(由設計年度 評估) ○ 63年2月以前(1.0) ○ 63年2月至71年6月(0.67) ◎ 71年6月至86年5月(0.33) ○ 86年5月以後(0)	 9.窗台、氣窗造成短柱嚴重性 ○ 毫(1.0) ○ 中(0.67) ● 低(0.33) ○ 無(0) 	10.總體造成短梁嚴重性 ○ 毫(1.0) ○ 中(0.67) ● 低(0.33) ○ 無(0)	
分數:1.7	分數:1.) 分數:1.0	
結構現況 (單位 : kgf-cm)			5
11.柱之損害程度	12.牆之損害程度	13.裂縫鏽蝕滲水等程度	
○ 高(1.0)	〇 高(1.0)	〇 高(1.0)	
● 申(0.67)	● 申(0.67)	● 申(0.67)	
〇 低(0.33)	〇 低(0.33)	〇 低(0.33)	
〇 無(0) 分數:1.3	○ 無(0) 分數:1.	3 (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	

圖 3-61 定性評估表(結構細部、結構現況) (資料來源: PSERCB 網站提供)

分期與建或工程品質有疑慮 分期興建或工程品質有疑慮 0	曾經受災害者,如土石流、火 災、震災、人為破壞等 曾經受災害者,如土石流、火 災、震災、人為破壞等 0	使用用途由低活載重改為高活 載重使用者 使用用途由低活載重改為高活載 重使用者 0	傾斜程度明顯者 傾斜程度明顯者 0
外減分(<mark>所有項目相總合最多</mark> 減	2分) (單位:kgf-cm)		
使用用途由高活載重改為低活載	重使用者		

圖 3-62 額外增、減分 (資料來源: PSERCB 網站提供)

建筑物专用(主体中立现体结核)。			
建築物里里(木使用之間证词填0)(单位:tf-m)		
2樓~j樓之樓地板單位面積靜載重[tf/m ²] ②	(j+1)樓~k樓之樓地板單位面積 <mark>靜載重</mark> [tf/m ²]	(k+1)樓~屋頂之樓地板單位面積靜 <mark>載重</mark> [tf/m ²]	
1.4	0	0	
◎ 推估值 ◎ 設計值	◎ 推估值 ◎ 設計值	◎ 推估值 ◎ 設計值	
2樓~j樓之樓地板單位面積活載重[tf/m ²]	(j+1)樓~k樓之樓地板單位面積 <mark>活載重</mark>	(k+1)樓~屋頂之樓地板單位面積活載重	
0.3	[tf/m ²]	[tf/m ²]	
● 推估值 ◎ 設計值	0	0	
	● 推估值 ◎ 設計值	◎ 推估值 ◎ 設計值	
2樓~j樓之總樓地板面積[m ²]	(j+1)樓~k樓之總樓地板面積[m ²]	(k+1)樓~屋頂之 <mark>總</mark> 樓地板面積[m ²]	
10004	0	0	
◎ 推估值 ◎ 設計值	◎ 推估值 ◎ 設計值	◎ 推估值 ◎ 設計值	
柱材料參數(未使用之欄位請填0)。	單位:kgf-cm)		
混凝土抗壓強度(f'c) ❷	主筋降伏強度(fy) ❷	箍筋降伏強度(fyv)	保護層厚度(c)
350	4200	2800	4
◎ 推估值 ◎ 設計值	◎ 推估值 ◎ 設計值	◎ 推估值 ◎ 設計值	◎ 推估值 ◎ 設計值

圖 3-63 參數設置 (資料來源: PSERCB 網站提供)

一般柱	短柱	RC牆	四邊圍束磚	牆三邊	圍束磚牆	無側邊圍]束磚牆	標準樓層之	RC牆	標準樓層之	磚牆		
新増	匯入	下載範本									ŧ	lt∀kaf	-cm
name	type	Bc	Hc	lo(%)	No1	Num1	No2	Num2	h1	No	Num	S	Nci
C1 Hn= 3.45	RECT	60	60	-	#10	18	#6	0	345	#4	3	4 5	3
C2L	RECT	140	40	-	#10	28	#6	0	345	#4	8	4 0	2
C3	RECT	60	40	-	#8	18	#6	0	345	#3	5	4 0	2
C2S	RECT	40	140	-	#10	28	#6	0	345	#4	4	4 0	2
C6 Hn=2 85	RECT	60	60	-	#10	16	#6	0	285	#4	4	4 5	2
C8	RECT	216	45	-	#10	26	#6	0	280	#4	10	4 5	1
C4	RECT	216	40	-	#10	32	#6	0	280	#4	10	4 0	2
C1 Hn=2	RECT	60	60	-	#10	18	#6	0	285	#4	3	4	1

圖 3-64 參數設置

(資料來源:PSERCB 網站提供)

C03美國大樓乙	林智隆	2017-08-13	18.7	60.0	評估	78.7	分數大於60分!

圖 3-65 評分分數 (資料來源: PSERCB 網站提供)

PSERCE

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/9

鋼筋混凝土建築物耐震能力初步評估表

壹、建築物基2	本資料表					
建物名稱 C03 美國大樓乙		建物编號	DC085ROO0000 1	建物地址	歸仁路1號	
評估者 林智隆		評估日期	2017-8-13	e-mail	clot00001.cv04g@g2.nctu.edu.tw	
設計年度 71年6月至86年5月		建物高度 h _n (m)	34.24	用途係數I	1	
地盤種類 第二類地盤		地上樓層數	12	地下樓層數	2	
建築物依樓層分	類: □五樓以下 ■六	樓以上				
建築物依結構形	建築物依結構形式分類: □一般 RC 建物 □加强磚造(透天厝)■具弱層建物□其它:					
建築物依使用用途分類: □辦公室 □公寓 ■集合住宅 □商場 □住商混合□其它:						
本評估參考資料: ■設計圖説 □計算書 □現場調査或推估						

C03 美國大樓乙[1]

圖 3-66 基本資料表 (資料來源: PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/9

貳、建築物耐震能力初步評估表

項次	項目	配分	評估内容	權重	評分
1	靜不定程度	5	□單跨(1.0) ■雙跨(0.67) □三跨(0.33) □四跨以上(0)	0.67	3.35
2	地下室面積比, r.	2	0 ≤ (1.5-r _a)/1.5 ≤ 1.0; r _a :地下室面積與建築面積之比 r _a =3	0	0.00
3	結平面對稱性	3	■不良(1.0) □尚可(0.5) □良(0)	1.00	3.00
4	雙立面對稱性	3	■不良(1.0) □尚可(0.5) □良(0)	1.00	3.00
5	赤 梁之跨深比 b	3	$ $ $\exists b < 3$, w = 1.0; $\exists 3 ≤ b < 8$, w = (8−b) / 5; $\exists b ≥ 8$, w = 0 b = 12.68	0	0.00
6	‴ 柱之高深比 c	3		0	0.00
7	軟弱層顯著性	3	□高(1.0) □中(0.67) ■低(0.33) □無(0)	0.33	0.99
8	塑鉸區箍筋細部(由 結設計年度評估)	5	□63年2月以前(1.0)□63年2月至71年6月(0.67)■71年6月至86年5月(0.33)□86年5月以後(0)	0.33	1.65
9	御窗台、氣窗造成短柱 細嚴重性	3	□高(1.0) □中(0.67) ■低(0.33) □無(0)	0.33	0.99
10	牆體造成短梁嚴重性	3	□高(1.0) □中(0.67) ■低(0.33) □無(0)	0.33	0.99
11	結柱之損害程度	2	□高(1.0) ■中(0.67) □低(0.33) □無(0)	0.67	1.34
12	構牆之損害程度	2	□高(1.0) ■中(0.67) □低(0.33) □無(0)	0.67	1.34
13	況裂縫鏽蝕滲水等程度	3	□高(1.0) ■中(0.67) □低(0.33) □無(0)	0.67	2.01
14	475 年耐震能力初步 定評估 量	30	$\begin{split} & \underbrace{\mathbb{I}}_{\mathcal{H}_{415}}^{cd} \leq 0.25 \ , \ w = 1 \ ; \underbrace{\mathbb{I}}_{0}0.25 \leq \underbrace{\mathcal{A}_{e1}}_{\mathcal{H}_{015}} \leq 1, \ w = \frac{4}{3} \left(1 - \frac{\mathcal{A}_{e1}}{\mathcal{H}_{015}} \right) \ ; \underbrace{\mathbb{I}}_{\mathcal{H}_{015}}^{cd} > 1 \ , \ w = 0 \\ & A_{e1} = \min[A_{e1x}, \ A_{e1xy}] \ A_{e1x} = 0.05 \ A_{e1y} = 0.06 \ A_{e1} = 0.05 \end{split}$	1	30
15	分 析 2500 年耐震能力初 步評估	30	$ \frac{\text{d}_{c2}}{\text{d}_{2560}} \le 0.25 , \ w = 1 ; \frac{\text{d}}{\text{d}} 0.25 \le \frac{A_{c2}}{M_{2560}} \le 1, \ w = \frac{4}{3} \left(1 - \frac{A_{c2}}{M_{2560}} \right) ; \frac{\text{d}}{\text{d}} \frac{A_{c2}}{M_{2560}} > 1 , \ w = 0 $ $A_{c2} - \min[A_{c2,x}, A_{c2,y}] A_{c2,x} = 0.06 A_{c2,y} = 0.07 A_{c2} = 0.06 $	1	30
分數總	計	100	評分	♪總計(P):	78.66

C03 美國大樓乙[2]

圖 3-67 耐震能力初步評估表 (資料來源: PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/9

額外	、評	估項目:此部分為外加評分項目,評估人員應就表列「額外增分」、「額外減分」事項 各項最高配分為2分,總共最高配分為8分;減分最高配分為2分						
	A	分期興建或工程品質有疑慮 0						
額外	в	9 曾經受災害者,如土石流、火災、震災、人為破壞等 0						
增 分	С	C 使用用途由低活載重改為高活載重使用者 0						
	D	傾斜程度明顯者 0						
額外減分	a	使用用途由高活載重改為低活載重使用者	0					
		額外評分總計(S):	0					
		總評估分數(R)=P+S=	78.66					

註:評估內容中w為計算之權重。

C03 美國大樓乙[3]

圖 3-68 耐震能力初步評估分數 (資料來源: PSERCB 網站提供)

P

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/9

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building]

参、定量評估表2 樓~j 樓之樓地板面積請

	建築物質訊				
2 樓~j 樓之樓地板面積靜載重 W1D (tf/m2)	1.400	■推估值 □設計值			
(j+1)樓~k 樓之樓地板面積靜載重 W2D (tf/m2)	0.000	■推估值 □設計值			
(k+1)樓~屋頂之樓地板面積靜載重 W3D (tf/m ²)	0.000	■推估值 □設計值			
2 樓~j 樓之樓地板面積活載重 w _{1L} (tf/m ²)	0.300	■推估值 □設計值			
(j+1)樓~k 樓之樓地板面積活載重 W _{2L} (tf/m ²)	0.000	■推估值 □設計值			
(k+1)樓~屋頂之樓地板面積活載重 W3L (tf/m2)	0.000	■推估值 □設計值			
2 樓~j 樓之總樓地板面積 A1 (m ²)	10004.000	■推估值 □設計值			
(j+1)樓~k 樓之總樓地板面積 A2 (m²)	0.000	■推估值 □設計值			
(k+1)樓~屋頂之總樓地板面積 A ₃ (m ²)	0.000	■推估值 □設計值			
建築物靜載重 $W_D = \sum_{i=1}^{3} w_{iD} \times A_i$ (kgf)	14005600.00				
建築物總載重 $W = \sum_{l=1}^{3} (w_{lD} + \frac{1}{2} w_{lL}) \times A_l$ (kgf) 15506200.00					
混凝土抗壓强度 fc (kgf/cm ²)	350	■推估值 □設計值			
_ 主筋降伏强度 f _y (kgf/cm ²)	4200	■推估值 □設計值			
箍筋降伏强度 fyv (kgf/cm ²)	2800	■推估值 □設計值			
柱之保護層厚度 c (cm)	4	■推估值 □設計值			
	Lifetiate L. I. dut. dis dist.				
一樓牆材料參數					

	一個的科學家					
RC 牆混凝土抗壓强度 fc (kgf/cm ²)	350	■推估值 □設計值				
RC牆主筋降伏强度 fy (kgf/cm ²)	4200	■推估值 □設計值				
磚牆砂漿塊抗壓强度 fmc (kgf/cm ²)	100	■推估值 □設計值				
磚牆紅磚之單軸抗壓强度 f∞ (kgf/cm²)	150	■推估值 □設計值				

C03 美國大樓乙[5]

圖 3-69 參數設置 (資料來源: PSERCB 網站提供)

P	PSERCB 評估者:林智隆													
		1	ļi.										列印日	期:2017/10/8
X向定	量評估			建築物	勿週期(se	ec): 0.0 7	$h_n^{0.75}$	0.05 $h_n^{0.75}$			1.18	系統韌性	生容量 R	3.08
一般 相類	柱型 式 (type)	柱寬 / 直徑 (cm) (<i>B_c</i>)/(<i>D_c</i>)	柱 深 / 直徑 (cm) (H _c) /(D _c)	柱 作 (%) (%) (%)	一樓柱 淨高 (cm) (h _i)	橫向箍、 繫筋號數 No	橫向箍、 繫筋根數 Num	橫向箍、 繫筋總斷 面積 (<i>cm</i> ²) <i>A_v</i>	橫向箍、 繫筋間距 (cm) S	柱根數 (N _{ci})	撓曲破壞控 制 (kgf) (V _{m.coli})	剪力破壞控 制 (kgf) (V _{ssi})	V _{coli} (kgf)	V _{coli} ×N _{ci} (kgf)
						一般	主(一樓柱湾	『高與柱淨』	察之比值(h	1 / H_c)>2)				
C1 Hn=5 04	CIRL	85	85	3.44	504	#4	2	2.54	30	5	95182.15	39724.88	19862.44	99312.21
C0	RECT	50	50	4.05	504	#3	2	1.42	30	1	32021.56	22233.13	14572.79	14572.79
C3 Hn=5 04	CIRL	85	85	4.02	504	#4	2	2.54	30	3	104940.57	39808.08	19904.04	59712.12
C6	CIRL	110	110	3.08	504	#4	2	2.54	30	1	198413.66	64107.45	32053.72	32053.72
C7	CIRL	100	100	3.32	504	#4	2	2.54	30	2	154530.82	53651.17	26825.59	53651.17
C8	CIRL	90	90	2.23	504	#3	2	1.42	30	3	88787.04	41730.95	20865.47	62596.42
C4	CIRL	100	100	3.11	504	#4	2	2.54	30	2	148569.28	53613.10	26806.55	53613.10
C5	CIRL	110	110	3.08	504	#4	2	2.54	30	1	198413.66	64107.45	32053.72	32053.72
C2	CIRL	85	85	4.59	504	#4	2	2.54	30	3	114590.54	39885.52	19942.76	59828.29
C9	CIRL	60	60	4.30	534	#3	2	1.42	30	2	34603.08	19559.98	10801.29	21602.58
C1 Hn=5 14	CIRL	85	85	3.44	514	#4	2	2.54	30	3	93330.35	39724.88	19862.44	59587.32
C3 Hn=5	CIRL	85	85	4.59	514	#4	2	2.54	30	2	112361.16	39885.52	19942.76	39885.52

C02 旺林飯店依圖説 R=3.08END T=0.07[6]

圖 3-70 柱極限層剪力強度計算 (資料來源: PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/9

建築物 475 年地震回歸期耐震能力計算 (達容許朝性容量地震之地表加速度)			기다 디 까 J.2017/10
	j=1	j=2	j=3
$\sum_{u \neq v} \sum_{u \neq v} \sum_{u$	1133811.958	480737.529	492108.915
新設計建築物之極限剪力强度 $(V_{100})_{u} = I (\frac{S_{aD}}{F_u})_{m} W_D (kgf)$		4200180.512	
受評估建築物之降伏地表加速度 $A_{jj,s} = \frac{V_{ij}}{(V_{100})_u} \frac{IA_{475}}{Fu}$ (g); $j = 1 - 3$	0.032	0.014	0.014
$\begin{array}{l} R_{j} = \frac{C_{k,i} \times R_{mi}(C_{ij} \times \sum_{j' = i} \times N_{ij}) + C_{k,i} \times R_{mi}(C_{ij'} \times \sum_{j' = i} \times N_{ij'} + \sum_{j' = i} \times N_{ij'}) + C_{kij'} \times R_{mi}(C_{ij'} \times \sum_{j' = i} \times N_{ij'}) + C_{kij'} \times R_{mi}(C_{ij'} \times \sum_{j' = i} \times N_{ij'}) + C_{kij'} \times R_{mi}(C_{ij'} \times \sum_{j' = i} \times N_{ij'}) + C_{kij'} \times R_{mi}(C_{ij'} \times \sum_{j' = i} \times N_{ij'}) + C_{kij'} \times R_{mi}(C_{ij'} \times \sum_{j' = i} \times N_{ij'}) + C_{kij'} \times R_{mi}(C_{ij'} \times \sum_{j' = i} \times N_{ij'}) + C_{kij'} \times R_{mi}(C_{ij'} \times \sum_{j' = i} \times N_{ij'}) + C_{kij'} \times R_{mi}(C_{ij'} \times \sum_{j' = i} \times N_{ij'}) + C_{kij'} \times R_{mi}(C_{ij'} \times \sum_{j' = i} \times N_{ij''}) + C_{kij''} \times R_{mi}(C_{ij''} \times N_{ij'''}) + C_{kij''''''''''''''''''''''''''''''''''''$	1.822	2.806	4.000
$\mathbf{R}^*_{ij} = \begin{cases} 1 + \frac{(R_j^* - 1)}{1.5} (-\Re \mathcal{I} \mathcal{I} \mathcal{I}) \\ 1 + \frac{(R_j^* - 1)}{2.0} (\hat{\sigma} \mathcal{I} \mathcal{I} \mathcal{I}) \end{cases} ; j = 1 \sim 3 \end{cases}$	1.548	2.204	3.000
$F_{uj}^* = F_u(T, R_{uj}^*); j=1\sim3$	1.536	2.161	2.910
V_{ψ}/W_D	0.081	0.034	0.035
建築物 X 向耐震能力 $A_{zl,x} = \max[A_{yj,x}F_{aj}^*; j = 1 \sim 3]_{(g)}$		0.050	
$\frac{A_{c1,x}}{IA_{475}}$		0.178	

C03 美國大樓乙[10]

圖 3-71 475 年地震回歸期耐震能力計算 (資料來源:PSERCB 網站提供)

PSERCE	耐震能力初步評估[Preliminary Seismic Evaluation of RC Building 評估者:林智]					
建築物 2500 年地震回歸期耐震能力計算 (達韌性容量地震之地表加速度)			列印日期:2017/10			
—— # 國極限前力 品度	j=1	j=2	j=3			
$V_{uj} = C_{vcj} \Sigma V_{coli} \times N_{ci} + C_{vg} (\Sigma V_{swi} \times N_{swi} + \Sigma V_{scoli} \times N_{sci}) + C_{vbj} \Sigma V_{bwi} \times N_{bwi}; j=1\sim3 \text{ (kgf)}$	1133811.958	480737.529	492108.915			
新設計建築物之極限剪力强度 $(V_{100})_u = I (\frac{S_{aD}}{F_u})_m W_D (kgf)$		4200180.512				
受評估建築物之降伏地表加速度 $A_{jj,x} = \frac{V_{uj}}{(V_{100})_y} \frac{IA_{475}}{Fu}$ (g); $j = 1 \sim 3$	0.032	0.014	0.014			
$\begin{array}{l} \kappa_{j}^{*} = \frac{C_{a_{j}} \times \mathcal{R}_{a_{j}}(C_{u_{j}} \times \sum F_{u_{j}} \times \mathcal{R}_{u_{j}}) + C_{u_{j}} \times \mathcal{R}_{u_{j}}(C_{u_{j}} \times \sum F_{u_{j}} \times \mathcal{R}_{u_{j}}) + C_{u_{j}} \times \mathcal{R}_{u_{j}}(C_{u_{j}} \times \sum F_{u_{j}} \times \mathcal{R}_{u_{j}}) + C_{u_{j}} \times \mathcal{R}_{u_{j}} + C_{u_{j}} \times \mathcal{R}_{u_{j}}) + C_{u_{j}} \times \mathcal{R}_{u_{j}} \times \mathcal{R}_{u_{j}} \times \mathcal{R}_{u_{j}} \times \mathcal{R}_{u_{j}}) \\ j = 1 \sim 3 \end{array} ;$	1.822	2.806	4.000			
$F_{uj}^* = F_u(T, R_j^*)$; j=1~3	1.799	2.728	3.840			
V _{uj} /W _D	0.081	0.034	0.035			
建築物 X 向耐震能力 $A_{c_{2,x}} = \max[A_{y_{j,x}}F_{u_{j}}^{*}; j=1\sim3]_{(g)}$		0.058				
<u>A_{c2,x}</u> <u>IA₂₅₀₀</u>		0.162				
註: $\Sigma V_{bwi} \times N_{bwi} = \Sigma V_{bw4i} \times N_{bw4i} + \Sigma V_{bw3i} \times N_{bw3i} + \Sigma V_{bw2i} \times N_{bw2i}$						

$R_{col} > R_{sw}$	及Rbw與設計	年度有關,建	議如下:
設計年度	R _{col}	R_{sw}	R_{bw}
63年2月以前	2.4	2.0	3.0
3年2月至71年6月	3.2	2.0	3.0

2.0

2.0

3.0

3.0 j=2 為磚牆韌性充分發揮

4.0

4.8

係數C _{vcj} 、C _{Rcj} 、C _{vsj} 、C _{Rsj} 、C _{vbj} 與C _{Rbj} 建議如下:						
	j	1	2	3		
V _{coi}	C_{vej}	0.65	0.95	1		
	C_{Rcj}	0.35	0.70	1		
$\mathbf{V}_{\mathrm{swi}}$	C_{vsj}	0.85	0	0		
	C_{Rsj}	1	0	0		
\mathbf{V}_{bwi}	C_{vbj}	0.95	0.85	0		
	CRAI	0.45	1	0		

j=3 為構架韌性充分發揮;

註: j=1 為 RC 牆 韌 性 充 分 發 揮;

86年5

71

C03 美國大樓乙[11]

圖 3-72 2500 年地震回歸期耐震能力計算 (資料來源:PSERCB 網站提供)

12.中高樓層初步評估結果

案例建築共有 6 外柱、18 根內柱。由式(2-18)可知,外柱、內柱之單位面積強度分 別為 12 樓層 $\tau_{CE} = 121.86 - 6.12 \times (12) = 48.42 tf / m^2 \cdot \tau_{CI} = 125.9 - 3.49 \times 12 = 84.02 tf / m^2 \cdot 2$ 樓層 $\tau_{CE} = 121.86 - 6.12 \times (2) = 109.62 tf / m^2 \cdot \tau_{CI} = 125.9 - 3.49 \times 2 = 118.92 tf / m^2$

計算極限基底剪力強度 X 向及 Y 向分別為

$$V_{bs,x} = \sum_{j=1}^{N_{CE}} \tau_{CE} A_{CE} + \sum_{j=1}^{N_{CI}} \tau_{CI} A_{CI} + \sum_{j=1}^{N_{BW3}} \tau_{BW3} A_{BW3} + \sum_{j=1}^{N_{BW4}} \tau_{BW4} A_{BW4} + \sum \tau_{RC} A_{RC} = 1730 tf$$

$$V_{bs,y} = \sum_{j=1}^{N_{CE}} \tau_{CE} A_{CE} + \sum_{j=1}^{N_{CI}} \tau_{CI} A_{CI} + \sum_{j=1}^{N_{BW3}} \tau_{BW3} A_{BW3} + \sum_{j=1}^{N_{BW4}} \tau_{BW4} A_{BW4} + \sum \tau_{RC} A_{RC} = 2828 tf$$

透過面積計算,可知此建築物2樓至頂樓層面積皆為10004m²,透過式(2-20)算得 此建築物總靜載重

$$W = 11415tf$$

由案例介紹其為鋼筋混凝土建築物,該建物基面至屋頂高度為 34.24m。 式(2-22)可知週期如下:

$$T = 0.05h_n^{\frac{3}{4}} = 0.742s$$

根據建築物耐震設計規範及解說可知建築物為第二類地盤,鄰近新化斷層計算工址 短週期、一秒設計水平譜加速度係數如式(2-12)、式(2-24a)計算如下:

$$S_{DS} = F_a N_A S_S^D = 1.0 \times 1.0 \times 0.7 = 0.7$$
$$S_{D1} = F_v N_v S_1^D = 1.3 \times 1.0 \times 0.4 = 0.52$$
$$S_{MS} = 1.0 \times 1.0 \times 0.9 = 0.9$$
$$S_{M1} = 0.5 \times 1.1 \times 10 = 0.55$$

計算工址設計水平加速度反應譜短週期與中長週期之分界 T_0^D 、 T_0^M

$$T_0^D = \frac{S_{D1}}{S_{DS}} = \frac{0.52}{0.7} = 0.743s$$

$$T_0^D = 0.61 \, \text{ls}$$

由式(2-28a)判別, $0.2T_0^D \le T \le T_0^D$, 故工址設計水平譜加速度係數

$$S_{aD} = S_{DS} = 0.7$$

 $S_{aM} = \frac{S_{M1}}{T} = 0.78$

以本研究建議之結構系統韌性容量 R=3.08計算,且為一般工址與近斷層區域,故 容許韌性容量,如式(2-33)

$$R_a = 1 + \frac{(R-1)}{1.5} = 1 + \frac{(3.08-1)}{1.5} = 2.387$$

再代入地盤種類可得結構系統地震力折減係數(式(2-33)),得 $F_u = \sqrt{2R_a - 1} + \left(R_a - \sqrt{2R_a - 1}\right) \times \frac{T - 0.6T_0^D}{0.4T_0^D} = 2.333 \cdot F_{u,m} = 3.08, 並透過式(2-34a)對工址$

設計水平譜加速度係數進行修正可得

$$\left(\frac{S_{AD}}{F_{u}}\right) = 0.3 \le 0.3, \left(\frac{S_{AD}}{F_{u}}\right)_{m} = 0.3$$

 $\left(\frac{S_{AM}}{F_{u,m}}\right) = 0.25 \le 0.3, \left(\frac{S_{AD}}{F_{u}}\right)_{m} = 0.25$

為算出耐震容量需求比,將結果代入式(2-36a),可得

 $R_{CD,475x} = 0.505$ $R_{CD,475y} = 0.825$ $R_{CD,2500x} = 0.606$ $R_{CD,2500y} = 0.909$

代入式(2-38)並計算耐震能力

 $A_{p,475x} = 0.141 < 0.4S_{DS} = 0.28$ $A_{p,475y} = 0.231 < 0.4S_{DS} = 0.28$ $A_{p,2500x} = 0.218 < 0.4S_{MS} = 0.36$

$$A_{p,2500y} = 0.356 < 0.4S_{MS} = 0.36$$

以基本耐震性能之 E 值是否大於 100 分為評估標準,評估分數 E 大於 100 分表示並 無疑慮;若 E 值小於 100,表示建築物之耐震能力不足,須再進行詳細評估。故此結果 為小於 100 分,故須進行詳細評估。

第五節 13層住宅大樓案例

1. 基本資料

位於臺南之地上 13 層樓鋼筋混凝土建築物,約於民國 81~82 年間設計施工興建。 屬住宅大樓,所有樓層均為住宅,在一樓處有挑高設計。由樓層平面圖(圖 3-73)可知, X 向處有四跨,Y 向處有三跨,結構形狀為L,明顯有平面不規則,地震發生時,將會 有偏心產生。於調整因子上,其平面並有凹角,有平面不規則之情況,而其為住宅大樓, 除一樓有挑高樓層外,其餘樓層均為住宅用途,牆量可能較平均,使牆量不易中斷不連 續,而形成軟弱層。一樓相對於其他樓層,其勁度可能較低,破壞較易集中於低樓層。 建築物基本資料蒐集如表 3-85 所示:本棟建物案例,於 0206 美濃地震其一樓發生短梁 剪力裂縫產生及梯間 RC 牆剪力裂縫產生。

圖 3-73 13 層樓結構平面圖 (資料來源:本研究整理)

Y Z X

圖 3-74 結構立面圖 (資料來源:本研究整理)

圖 3-75 結構 3D 圖 (資料來源:本研究整理)

表 3-85 建築物基本資料

建築物名稱	13 層住宅大樓案例
興建年代	民國 81~82 年間
分期興建	無
構造型式	鋼筋混凝土造基礎為筏式基礎(單層版)
結構系統	RC 梁柱構架,磚牆隔間及外牆 RC 電梯牆
平面尺寸	L型平面 X x Y = 37.23 m x 24.45 m
建築規模	地面13層、地下1層
樓高(m)	43.2
基本振動週期	1.179 sec $(0.07 h_n^{0.75})$
大梁尺寸(cm)	$50 \times 30 \circ 60 \times 30 \circ 60 \times 40 \circ 60 \times 45 \circ 70 \times 40$
柱尺寸(cm)	40×40 、 75×75 、 60×100
樓版(cm)	12cm (2F~13F) 、12 及 15cm (1F)
現況用途	住宅(1~13F)
總樓地板(m ²)	4724.84 (1FL~PFL)

2. 重量計算

(1)靜載重:

- ◆ 鋼筋混凝土單位體積自重 2.4 t/m³。
- ◆ 1B 磚牆 0.440 t/m²; 1/2B 磚牆 0.220 t/m²。

◆ 深、柱、樓板依各自斷面尺寸乘以各材質單位重量計算。

◆ 所有牆重依各自材料性質及厚度照實計算。

(2)活載重:

◆ 一般層住宅(2F~11F): 200 kgf/m²

結構分析樓層重如表 3-86 所示:
樓層	柱重 (kgf)	梁重 (kgf)	RC 牆重 (kgf)	樓板重 (kgf)	磚牆重及其 他重量 (kgf)	合計 (kgf)
PFL	0	2170	103100	16637	0	121907
RFL	22794	59238	78526	63805	25172	249535
13FL	55581	107152	16264	123931	169636	472564
12FL	65574	107152	16264	123931	159043	471964
11FL	65574	105091	16264	132031	184715	503675
10FL	65574	108973	16264	132031	180600	503442
9FL	65574	114152	16264	132031	175110	503131
8FL	65574	117080	16264	132031	172006	502956
7FL	65574	120987	16264	132031	167865	502721
6FL	65574	120987	16264	132031	167865	502721
5FL	65574	120987	16264	132031	167865	502721
4FL	65574	120987	16264	132031	167865	502721
3FL	65574	120987	16264	132031	167865	502721
2FL	81968	120987	24395	132031	161976	521358
SUM	816086	1446933	384920	1648615	2067583	6364137

表 3-86 結構分析樓層重

3. 週期及質量貢獻比計算

結構週期及質量貢獻比計算如表 3-87 所示:

表 3-87 結構週期及質量貢獻比

Mode	方向	週期	質量貢獻比(%)
1	X 向平移	2.018	78.01
2	Y向平移	1.560	51.54
3	Z向扭轉	1.256	53.60

(資料來源:本研究整理)

4. 規範側向力計算

依據標的物規模及興建設計年代,推估採用之規範及設計方法概述如下: (1)設計規範:鋼筋混凝土設計規範。 (2)設計方法:鋼筋混凝土極限應力法(USD)
(3)地震力規範:標的物 81~82 年興建,設計年代應為民國 80~81 年間
民國 71 年~86 年:設計地震力 V=ZKCIW
民國 71 年6月 15 日~民國 86 年6月建築技術規則設計地震力之規定: V=ZKCIW;

其中 Z 為震區係數|(強震區 1.00、中震區 0.80、弱震區 0.60); K 為組構係數(由韌性優劣 區分為 0.67、0.80、1.00、1.33), K \geq 1.0 構材得不滿足韌性要求; C 為地震力係數(臺北 盆地之外地區公式說明)= $1/8\sqrt{T} \leq 0.15$; T 為建築物周期(sec)= 0.06 h_n^{0.75}(鋼筋混凝土 構架), h_n為建物高度; I 為用途係數(依重要度分別為 1.00、1.25、1.50); W 為建築物全 部靜載重, 倉庫書庫加 1/4 活載重水箱水池則應加全部水載重。

$$\begin{split} T_x &= T_y = 0.07h_n^{0.75} = 0.07 \times 43.2^{0.75} = 1.17954 \, \text{sec} \quad (code) \\ T_x &= 2.0176 \quad (dynamic) \\ T_y &= 1.5598 \quad (dynamic) \\ T_{x,design} &= \min(1.17954 \times 1.4 = 1.651356, 2.0176) = 1.651356 \\ T_{y,design} &= \min(1.17954 \times 1.4 = 1.651356, 1.5598) = 1.651356 \\ V_x &= ZKC_x IW = 0.8 \times 1.0 \times \frac{1}{8\sqrt{1.651356}} \times 1.0 \times W = 0.07782W \\ V_y &= ZKC_y IW = 0.8 \times 1.0 \times \frac{1}{8\sqrt{1.651356}} \times 1.0 \times W = 0.07782W \\ F_x &= \frac{(V - F_t)W_x h_x}{\sum_{i=1}^n W_i h_i} \qquad V_x = 0.07782W = 0.0932 \times 6364.137 = 495.257 \, tf \\ V_y &= 0.07782W = 0.0932 \times 6364.137 = 495.257 \, tf \end{split}$$

X向規範側向力計算如表 3-88 所示、Y 向規範側向力計算如表 3-89 所示:

表 3-88 X 向規範側向力計算表

唐 届	h_x	W_{x}	$w_x h_x$	F_x	
倭僧	m	tf	tf-m	tf	
PFL	51.35	121907	6259921.214	59.85477	
RFL	43.2	249535	10779921.23	32.65491	
13FL	40	472564	18902555.48	57.26027	
12FL	36.8	471964	17368285.17	52.61261	
11FL	33.6	503675	16923476.51	51.26518	
10FL	30.4	503442	15304636.62	46.36133	
9FL	27.2	503131	13685170.08	41.45559	
8FL	24	502956	12070933.32	36.56569	

塘區	h_x	W_{X}	$w_x h_x$	F_x
後眉	m	tf	tf-m	tf
PFL	51.35	121907	6259921.214	59.85477
RFL	43.2	249535	10779921.23	32.65491
13FL	40	472564	18902555.48	57.26027
7FL	20.8	502721	10456599.63	31.67549
6FL	17.6	502721	8847891.994	26.80234
5FL	14.4	502721	7239184.358	21.92919
4FL	11.2	502721	5630476.723	17.05603
3FL	8	502721	4021769.088	12.18288
2FL	4.8	521358	2502517.384	7.580712
總和		6364137	149993338.8	495.257

第三章 建築結構特性篩檢指標應用及初評案例研討

(資料來源:本研究整理)

表 3-89 Y 向規範側向力計算表

-				
神品	h_y	w_y	$w_y h_y$	F_y
後僧	m	tf	tf-m	tf
PFL	51.35	121907	6259921.214	59.85477
RFL	43.2	249535	10779921.23	32.65491
13FL	40	472564	18902555.48	57.26027
12FL	36.8	471964	17368285.17	52.61261
11FL	33.6	503675	16923476.51	51.26518
10FL	30.4	503442	15304636.62	46.36133
9FL	27.2	503131	13685170.08	41.45559
8FL	24	502956	12070933.32	36.56569
7FL	20.8	502721	10456599.63	31.67549
6FL	17.6	502721	8847891.994	26.80234
5FL	14.4	502721	7239184.358	21.92919
4FL	11.2	502721	5630476.723	17.05603
3FL	8	502721	4021769.088	12.18288
2FL	4.8	521358	2502517.384	7.580712
總和		6364137	149993338.8	495.257

(資料來源:本研究整理)

5. 材料強度

- ◆ 混凝土:取各樓層混凝土試體之平均抗壓強度、各層試體最低強度除以 0.75 之較低 者且不超過原設計強度 210 kgf/cm² 進行評估分析,由於此棟建築物案例未有實際鑽 心試驗,故以原設計強度 210 kgf/cm²。
- ♦ 鋼筋: $f_y=2800 kgf/cm^2 \cdot f_{yh}=2800 kgf/cm^2$

6. 穩定性因子計算

X 向穩定性因子計算如表 3-90 所示、Y 向穩定性因子計算如表 3-91 所示:

樓層	樓層重量	Px為樓層高 度 x 及以上 的垂直向設 計載重	Ie為重要 性因子	Δ/h_x 樓層側位 移角	 Vx 為樓層高 度 x 所在之 設計剪力 	C _d 為變位 放大係數	θ 穩定性因子
	kgf	kgf			kgf		
PFL	121907	121907	1	0.001171	60378	5.6	0.000422201
RFL	249535	371442	1	0.00116	93794	5.6	0.000820326
13FL	472564	844006	1	0.001891	152707	5.6	0.001866337
12FL	471964	1315970	1	0.002618	206949	5.6	0.002972796
11FL	503675	1819645	1	0.003218	260003	5.6	0.004021667
10FL	503442	2323087	1	0.003729	308191	5.6	0.005019385
9FL	503131	2826218	1	0.004145	351492	5.6	0.005951507
8FL	502956	3329174	1	0.004446	389904	5.6	0.006778919
7FL	502721	3831895	1	0.00466	423406	5.6	0.007531034
6FL	502721	4334616	1	0.004756	451991	5.6	0.00814469
5FL	502721	4837337	1	0.004703	475631	5.6	0.00854128
4FL	502721	5340059	1	0.004446	494292	5.6	0.008577169
3FL	502721	5842780	1	0.003964	507932	5.6	0.008142535
2FL	521358	6364137	1	0.002714	516758	5.6	0.005968624

表 3-90 X 向穩定性因子計算表

(資料來源:本研究整理)

樓層	樓層重 量	Px為樓層高 度 x 及以上 的垂直向設 計載重	Ie為重要 性因子	Δ/h_x 樓層側位 移角	 Vx 為樓層高 度 x 所在之 設計剪力 	C _d 為變位 放大係數	θ 穩定性因子
	kgf	kgf			kgf		
PFL	121907	121907	1	0.001123	60156	5.6	0.000406391
RFL	249535	371442	1	0.001107	93241	5.6	0.00078749
13FL	472564	844006	1	0.001788	151433	5.6	0.001779528
12FL	471964	1315970	1	0.002222	204955	5.6	0.002547678
11FL	503675	1819645	1	0.002567	257209	5.6	0.003242934
10FL	503442	2323087	1	0.002807	304566	5.6	0.003823299
9FL	503131	2826218	1	0.002934	347015	5.6	0.004267072
8FL	502956	3329174	1	0.002971	384564	5.6	0.004592858
7FL	502721	3831895	1	0.003004	417208	5.6	0.004926891
6FL	502721	4334616	1	0.002999	444956	5.6	0.005217016
5FL	502721	4837337	1	0.002931	467795	5.6	0.005412255
4FL	502721	5340059	1	0.002762	485710	5.6	0.005422559
3FL	502721	5842780	1	0.002409	498680	5.6	0.005040187
2FL	521358	6364137	1	0.001405	506938	5.6	0.003149729

表 3-91 Y 向穩定性因子計算表

7. 剛重比計算

X 向剛重比計算如表 3-92 所示、Y 向剛重比計算如表 3-93 所示:

表 3-92 X 向剛重比計算表

樓層	樓層	Gi為第i 層的重 力設 荷載值	Fi 第i層 水平力	Hi 第 i 層 高度	H 總樓 層 度	γi=Hi/H	ui 第i層 頂部位 移	EJd 等效側向 剛度	剛重比 側向剛度與 重力荷載的 比值
	kgf	kgf	kgf	cm	cm		cm	kgf-cm ²	
PFL	121907	121907	59855	5135	5135	1	14.5155	1.8611E+14	57.89719666
RFL	249535	371442	32655	4320	5135	0.8412853	13.4748	8.3556E+13	8.53111933
13FL	472564	844006	57260	4000	5135	0.7789679	13.2692	1.3124E+14	5.89720536
12FL	471964	1315970	52613	3680	5135	0.7166504	12.7315	1.0936E+14	3.151668392
11FL	503675	1819645	51265	3360	5135	0.654333	11.9833	9.6957E+13	2.020749798

樓層	樓層重量	Gi為第i 層的重 力載值	Fi 第i層 水平力	Hi 第 i 層 高度	H 總樓 層 度	γi=Hi/H	ui 第i層 頂部位 移	EJd 等效側向 剛度	剛重比 側向剛度與 重力荷載的 比值
	kgf	kgf	kgf	cm	cm		cm	kgf-cm ²	
PFL	121907	121907	59855	5135	5135	1	14.5155	1.8611E+14	57.89719666
RFL	249535	371442	32655	4320	5135	0.8412853	13.4748	8.3556E+13	8.53111933
13FL	472564	844006	57260	4000	5135	0.7789679	13.2692	1.3124E+14	5.89720536
10FL	503442	2323087	46361	3040	5135	0.5920156	11.0646	7.9801E+13	1.302758249
9FL	503131	2826218	41456	2720	5135	0.5296981	10.0054	6.4808E+13	0.869639078
8FL	502956	3329174	36566	2400	5135	0.4673807	8.8308	5.1696E+13	0.588895042
7FL	502721	3831895	31675	2080	5135	0.4050633	7.5713	4.0197E+13	0.397833222
6FL	502721	4334616	26802	1760	5135	0.3427459	6.2532	3.0194E+13	0.264171804
5FL	502721	4837337	21929	1440	5135	0.2804284	4.9095	2.1558E+13	0.169010103
4FL	502721	5340059	17056	1120	5135	0.218111	3.5811	1.4224E+13	0.101018227
3FL	502721	5842780	12183	800	5135	0.1557936	2.3229	8.1705E+12	0.053033391
2FL	521358	6364137	7581	480	5135	0.0934761	1.1932	3.6412E+12	0.021698108
	6364137	6364137	495257		5135			9.2152E+14	5.491388578

如計算整體剛重比,將整體剛重除以屋頂位移後所得之剛重比=4.4272(與表 3-92 之 5.4913 接近)

樓層	樓層重量	Gi為第i 層的重 力設値	Fi 第i層 水平力	Hi 第 i 層 高度	H 總 層 度	γi=Hi/H	ui 第i層 頂部 位移	EJd 等效側向 剛度	剛重比 側向剛度與 重力荷載的 比值
	kgf	kgf	kgf	cm	cm		cm	kgf-cm ²	
PFL	121907	121907	59855	5135	5135	1	8.3493	3.2356E+14	100.6559542
RFL	249535	371442	32655	4320	5135	0.841285	7.7247	1.4575E+14	14.88150048
13FL	472564	844006	57260	4000	5135	0.778968	7.4835	2.3271E+14	10.45649728
12FL	471964	1315970	52613	3680	5135	0.71665	7.1057	1.9595E+14	5.646940645
11FL	503675	1819645	51265	3360	5135	0.654333	6.6279	1.7530E+14	3.653532952
10FL	503442	2323087	46361	3040	5135	0.592016	6.0334	1.4635E+14	2.389117069
9FL	503131	2826218	41456	2720	5135	0.529698	5.3835	1.2045E+14	1.616250921
8FL	502956	3329174	36566	2400	5135	0.467381	4.7032	9.7065E+13	1.105718306
7FL	502721	3831895	31675	2080	5135	0.405063	4.0164	7.5776E+13	0.749953859

表 3-93 Y 向剛重比計算表

樓層	樓層重量	Gi為第i 層的重 力設載 荷	Fi 第i層 水平力	Hi 第 i 層 高度	H 總 層 度	γi=Hi/H	ui 第i層 頂部 位移	EJd 等效側向 剛度	剛重比 側向剛度與 重力荷載的 比值
	kgf	kgf	kgf	cm	cm		cm	kgf-cm ²	
PFL	121907	121907	59855	5135	5135	1	8.3493	3.2356E+14	100.6559542
RFL	249535	371442	32655	4320	5135	0.841285	7.7247	1.4575E+14	14.88150048
13FL	472564	844006	57260	4000	5135	0.778968	7.4835	2.3271E+14	10.45649728
6FL	502721	4334616	26802	1760	5135	0.342746	3.3168	5.6925E+13	0.498046047
5FL	502721	4837337	21929	1440	5135	0.280428	2.6123	4.0515E+13	0.317633925
4FL	502721	5340059	17056	1120	5135	0.218111	1.9171	2.6570E+13	0.188699793
3FL	502721	5842780	12183	800	5135	0.155794	1.2535	1.5141E+13	0.098277832
2FL	521358	6364137	7581	480	5135	0.093476	0.6491	6.6934E+12	0.039886278
	6364137	6364137	495257		5135			1.6587E+15	9.884592792

如計算整體剛重比,將整體剛重除以屋頂位移後所得之剛重比=7.6969(與表 3-93 之 9.8845 接近)

8. 意外扭矩 Ax 檢核

與現行建築物耐震設計規範 2.14 章節意外扭矩做比較,看看目前的 Ax 是否有不保 守的情況。在此採用靜力分析取代動力分析來模擬結構的受震反應。由於質量中心位 置、勁度中心位置、材料性質以及旋轉向地表加速度等不確定性因素,在結構分析時除 了考慮質量中心與勁度中心之間的原始偏心量,無論是靜力分析或是動力分析,耐震設 計規範規定需要再加上與地震力施加方向垂直之建築物平面尺度是否有意外偏心量,以 考慮上述之不確定因素。由表 3-85 原結構 X 向為 37.23 公尺,Y 向為 24.45 公尺,計算 意外扭矩值如表 3-94,可知 X 向所有樓層其值皆小於 1.0。至於 Y 向+5%所有樓層其值 皆小於 1.0;Y 向-5%除 2FL 樓層外其餘樓層其值皆大於 1.0。由表 3-94 可明顯得到 X 向意外扭矩 Ax 小於 Y 向意外扭矩 Ax,此由於 Y 向為 24.45 公尺其尺度小於 X 向為 37.23 公尺之故。

側向力	樓層	樓層最大 位移量 δmax (cm)	平均層間位移 davg (cm)	放大係數 A _x (δmax/1.2δavg)2	平均值 放大係數 A _x
V间台力	PFL	15.0487	14.7099	0.7268	
▲ 1則四刀 ↓ 50/	RFL	14.1461	13.77465	0.7324	0.742471
+3%	13FL	14.1534	13.6154	0.7504	

表 3-94 13 層樓放大係數 Ax 計算表

側向力	樓層	 樓層最大 位移量 δmax (cm) 	平均層間位移	放大係數 A _x (δmax/1.2δavg)2	平均值 放大係數 A _x
	12FL	13.5781	13.05315	0.7514	
	11FL	12.7842	12.28135	0.7525	
	10FL	11.8091	11.34085	0.753	
	9FL	10.6788	10.25595	0.7529	
	8FL	9.4206	9.0513	0.7523	
	7FL	8.0689	7.75895	0.751	
	6FL	6.6519	6.4057	0.7489	
	5FL	5.2058	5.0256	0.7451	
	4FL	3.7765	3.66095	0.739	
	3FL	2.4266	2.36915	0.7285	
	2FL	1.2255	1.21165	0.7104	
	PFL	16.002	14.95155	0.7955	
	RFL	15.0732	14.01645	0.8031	
	13FL	15.7007	14.1725	0.8523	
	12FL	15.0655	13.5896	0.8535	
	11FL	14.184	12.78665	0.8545	
	10FL	13.0997	11.8068	0.8549	
X 側向力	9FL	11.8437	10.6761	0.8546	0.942521
-5%	8FL	10.4491	9.4214	0.8542	0.842521
	7FL	8.955	8.0764	0.8538	
	6FL	7.3898	6.66845	0.8528	
	5FL	5.7923	5.2327	0.8509	
	4FL	4.2117	3.8129	0.8473	
	3FL	2.716	2.4688	0.8405	
	2FL	1.3799	1.26415	0.8274	
	PFL	9.1006	8.32085	0.8307	
	RFL	8.4401	7.49225	0.8813	
	13FL	8.4144	7.652	0.8397	
Valat	12FL	7.9146	7.2501	0.8276	
I 1則回刀	11FL	7.3038	6.72635	0.8188	0.808029
+3%	10FL	6.6044	6.1184	0.8091	
	9FL	5.8446	5.4523	0.798	
	8FL	5.054	4.75615	0.7841	
	7FL	4.2568	4.0529	0.7661	

側向力	側向力 樓層 位移 δmax		平均層間位移 δavg (cm)	放大係數 A _x (δmax/1.2δavg)2	平均值 放大係數 A _x
	6FL	3.4541	3.33785	0.7437	
	5FL	2.656	2.61945	0.714	
	4FL	1.9459	1.91205	0.7193	
	3FL	1.3273	1.23885	0.7971	
	2FL	0.7507	0.631	0.9829	
	PFL	11.085	8.48285	1.1858	
	RFL	10.902	7.391	1.5109	
	13FL	11.7468	8.66105	1.2774	
	12FL	11.1022	8.20715	1.2708	
	11FL	10.2907	7.61605	1.2678	
	10FL	9.347	6.92825	1.264	
Y 側向力	9FL	8.3106	6.17345	1.2585	1 226221
-5%	8FL	7.2232	5.38335	1.2502	1.220821
	7FL	6.119	4.58375	1.2375	
	6FL	4.9993	3.77065	1.2207	
	5FL	3.8782	2.95375	1.1972	
	4FL	2.7792	2.14955	1.1609	
	3FL	1.7403	1.3847	1.0969	
	2FL	0.8265	0.69685	0.9769	

此外,計算本棟建物為13層樓樓錦繡世界大樓,於表3-95列出其X向與Y向各樓層之偏心比值,明顯得知Y向之偏心比值是大於X向之偏心比值。

表 3-95 13 層樓偏心比值計算表

Story	XCM (1)	YCM (2)	XCR (3)	YCR (4)	D _X (5)	D _Y (6)	e _x (1)-(3)	e _y (2)-(4)	e_x/D_x [(1)-(3)]/ (5)	e _y /D _y [(2)-(4)]/ (6)
PFL	2490.683	1676.934	2776.554	1865.624	3723	2445	285.871	188.69	7.68%	7.72%
RFL	2376.791	1818.473	2711.948	1905.522	3723	2445	335.157	87.049	9.00%	3.56%
13FL	2381.878	1676.656	2684.514	1910.412	3723	2445	302.636	233.756	8.13%	9.56%
12FL	2378.145	1659.955	2664.867	1913.914	3723	2445	286.722	253.959	7.70%	10.39%
11FL	2345.209	1649.198	2649.254	1916.159	3723	2445	304.045	266.961	8.17%	10.92%
10FL	2347.858	1647.587	2631.717	1915.831	3723	2445	283.859	268.244	7.62%	10.97%
9FL	2347.858	1647.587	2612.197	1912.947	3723	2445	264.339	265.36	7.10%	10.85%

Story	XCM (1)	YCM (2)	XCR (3)	YCR (4)	D _X (5)	D _Y (6)	e _x (1)-(3)	e _y (2)-(4)	e _x /D _x [(1)-(3)]/ (5)	e _y /D _y [(2)-(4)]/ (6)
8FL	2348.742	1647.05	2590.156	1907.188	3723	2445	241.414	260.138	6.48%	10.64%
7FL	2348.742	1647.05	2565.107	1898.139	3723	2445	216.365	251.089	5.81%	10.27%
6FL	2348.742	1647.05	2536.447	1885.569	3723	2445	187.705	238.519	5.04%	9.76%
5FL	2348.742	1647.05	2500.201	1868.588	3723	2445	151.459	221.538	4.07%	9.06%
4FL	2348.742	1647.05	2447.006	1846.489	3723	2445	98.264	199.439	2.64%	8.16%
3FL	2348.742	1647.05	2348.455	1818.336	3723	2445	0.287	171.286	0.01%	7.01%
2FL	2347.956	1647.446	2171.461	1783.013	3723	2445	176.495	135.567	4.74%	5.54%

由表 3-94 及表 3-95,可知本棟建物表示剛心位於質心的右上方,當進行 X 向側向力 +5%時,表示質心靠近剛心,此時放大係數 A_x 平均值為 0.7425;進行 X 向側向力-5% 時,表示質心遠離剛心,此時放大係數 A_x 平均值為 0.8425。對於進行 Y 向側向力+5% 時,表示質心靠近剛心,此時放大係數 A_x 平均值為 0.8080;進行 Y 向側向力-5%時, 表示質心遠離剛心,此時放大係數 A_x 平均值為 1.2268。由表 3-94 得知各樓層之放大係 數 A_x,將原本各樓層之意外扭矩乘以各樓層之放大係數 A_x,如此可得修正後意外扭矩, 分別對 X 向及 Y 向計算,如表 3-96 及表 3-97 所示:

樓層	h _x	W _x	w _x h _x	F _x	意外扭矩 M _t	修正後意外 扭矩+5%	修正後意外 扭矩-5%
						$M_t \times A_x$	$M_t \times A_x$
單位	m	tf	tf-m	tf	kgf-cm	kgf-cm	kgf-cm
PFL	51.35	121907	6259921	59.85477	146344911.3	7317246	5318188
RFL	43.2	249535	10779921	32.65491	226186165.1	3992063	2923797
13FL	40	472564	18902555	57.26027	366187534.1	7000068	5252917
12FL	36.8	471964	17368285	52.61261	494825363.2	6431891	4833075
11FL	33.6	503675	16923477	51.26518	620168726.6	6267168	4715891
10FL	30.4	503442	15304637	46.36133	733522187.2	5667673	4267610
9FL	27.2	503131	13685170	41.45559	834881103.9	5067946	3815598
8FL	24	502956	12070933	36.56569	924284210.8	4470155	3362756
7FL	20.8	502721	10456600	31.67549	1001730790	3872329	2908255
6FL	17.6	502721	8847892	26.80234	1067262511	3276586	2453677
5FL	14.4	502721	7239184	21.92919	1120879374	2680843	1997598
4FL	11.2	502721	5630477	17.05603	1162581378	2085100	1540834
3FL	8	502721	4021769	12.18288	1192368524	1489357	1085045

表 3-96 13 層樓 X 向修正後意外扭矩計算表

	进 扇 h				音外扭拓	修正後意外	修正後意外				
樓層	h _x	W _x	$w_x h_x$	$F_{\mathbf{x}}$	M	扭矩+5%	扭矩-5%				
					IVIt	$M_t\!\!\times\!\!A_x$	$M_t \!\!\times\! A_x$				
2FL	4.8	521358	2502517	7.580712	1210903365	926742	658367.9				
(資料來	(資料來源:本研究整理)										
表 3-97 13 層樓 Y 向修正後意外扭矩計算表											
					音外扣伍	修正後意外	修正後意外				
樓層	h _x	$w_x = w_x = w_x h_x = F_x = M_t$	$w_x h_x$	$F_{\mathbf{x}}$	息升扭起	扭矩+5%	扭矩-5%				
			IVIt	$M_t\!\!\times\!\!A_x$	$M_t \!\!\times\! A_x$						
單位	m	tf	tf-m	tf	kgf-cm	kgf-cm	kgf-cm				
PFL	51.35	121907	6259921	59.85477	222839306.7	11141965	9255587				
RFL	43.2	249535	10779921	32.65491	344413534.9	6078711	5356976				
13FL	40	472564	18902555	57.26027	557593533.6	10659000	8950563				
12FL	36.8	471964	17368285	52.61261	753470277	9793837	8105137				
11FL	33.6	503675	16923477	51.26518	944330539.5	9543013	7813792				
10FL	30.4	503442	15304637	46.36133	1116933784	8630162	6983087				
9FL	27.2	503131	13685170	41.45559	1271272945	7716958	6157916				
8FL	24	502956	12070933	36.56569	1407407001	6806703	5337448				
7FL	20.8	502721	10456600	31.67549	1525334860	5896393	4517089				
6FL	17.6	502721	8847892	26.80234	1625119971	4989256	3710304				
5FL	14.4	502721	7239184	21.92919	1706762335	4082118	2914466				
4FL	11.2	502721	5630477	17.05603	1770261951	3174981	2283606				
3FL	8	502721	4021769	12.18288	1815618820	2267843	1807804				
2FL	4.8	521358	2502517	7.580712	1843841811	1411150	1387026				

9. 檢核結果

本案例為一於民國 83 年興建完成之住商大樓,其地上結構型式為十三層之鋼筋混 凝土造建築物,其二樓樓地板面積至頂樓樓地板面積為 4695 m²,為一棟平面 L 型之鋼 筋混土建築。本案用途係數 1.0,以民國 100 年公佈之「耐震設計規範與解說」做為耐 震標準進行耐震初步評估,根據結構物情形給予適當之定性及定量評估。相關資料如表 3-98 所示:

構造種類	鋼筋混凝土造
地樓層數	地上13 樓地下1 樓
平面配置	L 形
總樓高	43.2 m
層高	2F~13F : H=3.2 m/1F : H=4.8 m

表 3-98 建築物相關資料

本例採用之材料強度參數如下:

- 1. 混凝土抗壓強度: $f'_{c} = 280 kgf / cm^{2}$
- 2. 主筋降伏強度: $f_y = 4200 kgf / cm^2$
- 3. 箍筋降伏強度: $f_y = 2800 kgf / cm^2$

(一)柱破壞模式檢核

依式 2-20 求出,總重為 6808tf,再依其面積量進行分配,即可得到各柱所需承受之 重量,如表 3-99 及表 3-100。

依照各柱所承受軸力,可算出各柱之剪力強度,即為V_{0i};依照各柱軸力納入並計算 出柱端、底彎矩,兩者相加除上淨高,即可得到剪力V_{Di}。兩者相除即可檢核剪力。

表 3-99 13 層大樓結構 X 向
$$\frac{V_{pi}}{V_{0i}}$$

(單位:kgf)

	軸力	V _c	V_s	V _{0ix}	V_{pi}	V _{pi} / V _{0i}
C1	161717	45608	22759	68367	127000	1.86
C3	161717	43928	29214	73142	106619	1.46
C6	172498	48222	48105	96328	106190	1.10

(資料來源:本研究整理)

表 3-100 13 層大樓結構 Y 向
$$rac{V_{pi}}{V_{0i}}$$

(單位:kgf)

	軸力	V _c	V_s	V _{0ix}	V_{pi}	V _{pi} / V _{0i}
C1	161717	42968	22759	65727	125366	1.91
С3	161717	42376	38953	81328	113902	1.40
C6	172498	48329	32070	80399	175756	2.19

(二)強柱弱梁檢核

將各軸力納入並計算柱端、底彎矩,以及算出梁端彎矩,將柱彎矩總合與梁端彎矩 總合相除,其值需大於1.2,表示為強柱弱梁;若小於1.2,即表示不符合強柱弱梁。計 算值如表 3-101~表 3-107,可知其值皆大於1.2,皆符合強柱弱梁。

表 3-101 13 層建築結構 X 向
$$\frac{M_{nc}}{M_{nb}}$$
(第一列柱線)

С	C3	C1	C1	C6	C6
$M_{nc,ar{ m c}}$	224	267	267	223	223
$M_{nc, III}$	224	267	267	223	223
$\sum M_{nc}$	448	534	534	446	446
M _{nb}	82.2	109.7	154.3	109.7	155.3
M _{nb}	124.3	154.2	124.3	154.2	154.3
$\sum M_{nb}$		264	278.6	264	

С	C3	C1	C1	C6	C6
$M_{nb,\max}$	124.3				155.3
$rac{M_{ m kt}}{{ m M}_{ m R}}$	3.6	2.0	1.9	1.7	2.8

表 3-102 13 層建築結構 X 向
$$\frac{M_{nc}}{M_{nb}}$$
(第二列柱線)

(單位:tonf-m)

С	C3	C6	C6	C6	C6
$M_{nc,ar{ m K}}$	224	223	223	223	223
M _{nc,頂}	224	223	223	223	223
$\sum M_{nc}$	448	446	446	446	446
M _{nb}	82.2	109.7	154.3	109.7	155.3
M _{nb}	124.3	154.2	124.3	154.2	154.3
$\sum M_{nb}$		264	278.6	264	
M _{nb,max}	124.3				155.3
$rac{M_{ m kt}}{ m M_{ m R}}$	3.6	1.7	1.6	1.7	2.9

(資料來源:本研究整理)

表 3-103 13 層建築結構 X 向立面
$$\frac{M_{nc}}{M_{nb}}$$
(第三、四列柱線)

С	C1	C6
$M_{nc, { m k}}$	267	224

第三章 建築結構特性篩檢指標應用及初評案例研討

С	C1	C6
$M_{nc, \mathrm{III}}$	267	224
$\sum M_{nc}$	534	448
M_{nb}	154.3	154.3
M _{nb}	155.3	155.3
$\sum M_{nb}$		
M _{nb,max}	155.3	155.3
$rac{M_{ m kt}}{ m M_{ m R}}$	3.4	2.9

(資料來源:本研究整理)

表 3-104 13 層建築結構 Y 向立面
$$\frac{M_{nc}}{M_{nb}}$$
(第一行柱線)

С	C3	C3
$M_{nc, { m k}}$	234	234
$M_{nc, \mathrm{III}}$	234	234
$\sum M_{nc}$	468	468
M_{nb}	135.7	154.3
M_{nb}	129.3	155.3
$\sum M_{nb}$		
M _{nb,max}	135.7	155.3

С	C3	C3
$rac{M_{ at k \pm}}{{ m M}_{ m R}}$	3.5	3.0

表 3-105 13 層建築結構 Y 向立面
$$\frac{M_{nc}}{M_{nb}}$$
(第二、三行柱線)

(單位:tonf-m)

С	C6	C1
$M_{nc, { m f k}}$	360	257
$M_{nc, III}$	360	257
$\sum M_{nc}$	720	514
M_{nb}	135.7	154.3
M _{nb}	129.3	155.3
$\sum M_{nb}$		
M _{nb,max}	135.7	155.3
$rac{M_{k\pm}}{\mathrm{M}_{ m R}}$	5.5	3.3

(資料來源:本研究整理)

表 3-106 13 層建築結構 Y 向立面
$$\frac{M_{nc}}{M_{nb}}$$
(第四行柱線)

(單位:tonf-m)

С	C1	C1	C6	C6
$M_{nc,ar{ m K}}$	257	257	360	360

168

С	C1	C1	C6	C6
$M_{nc, III}$	257	257	360	360
$\sum M_{nc}$	514	514	720	720
M _{nb}	135.7	128.2	154.3	154.3
M _{nb}	129.3	129.3	128.2	155.3
$\sum M_{nb}$		257.5	282.5	
M _{nb,max}	135.7			155.3
$rac{M_{ m kt}}{ m M_{ m R}}$	3.8	2	2.5	4.6

表 3-107 13 層建築結構 Y 向立面
$$\frac{M_{nc}}{M_{nb}}$$
(第五行柱線)

C	C6	C6	C6	C6
$M_{nc,ar{ m K}}$	360	360	360	360
$M_{nc, \mathrm{III}}$	360	360	360	360
$\sum M_{nc}$	720	720	720	720
M _{nb}	135.7	128.2	154.3	154.3
M _{nb}	129.3	129.3	128.2	155.3
$\sum M_{nb}$		257.5	282.5	
M _{nb,max}	135.7			155.3

С	C6	C6	C6	C6
$rac{M_{ ext{tt}}}{ ext{M}_{ ext{\frac{2}{3}}}}$	5.3	2.8	2.8	4.6

10.初步評估結果(PSERCB)

利用 PSERCB 將此建築物進行耐震能力初步評估,輸入資料分別為建築物之基本資 料、定性評估、參數設置、X向斷面資料、Y向斷面資料等......。圖 3-76 為輸入建築之 基本性質;圖 3-77 為結構系統之定性評分,靜不定程度為 4 跨,得分為 0 分、地下室 面積比為 3.8,得分 0 分、平面對稱性為 L 型及立面屬於一樓挑高,故分數分別為 3.0 及 3.0 分、柱之高深比為 4.1,得分為 1.4, 軟弱層嚴重性高,得分 3.0 分。由圖 3-78 可 知結構細部之定性評分,由設計年份可知其建造年分,得分為1.65,無窗台及氣窗造成 短柱性及牆體造成短梁嚴重性,得分皆為0。圖3-78為結構現況方面:柱及牆之損害程 度皆為高等,得分為 2.0、裂縫鏽蝕程度高,得分為 3.0。圖 3-79 為額外增、減分,分 別為分期興建或工程品質有疑慮、曾經受災害者,如土石流、火災、震災、人為破壞等、 使用用途由低活載重改為高活載重使用者、傾斜程度明顯者、使用用途由高活載重改為 低活載重使用者五項,分別得分為0、0、0、0、0分。圖3-80、圖3-81為輸入參數及 斷面資料,輸入建築結構基本資料,如混凝土抗壓強度、鋼筋降伏強度及柱、牆斷面資 料等。將上述之得分得加總而得,為定性評估分數為21.6分,如圖3-82。由圖3-82可 知定量評分為37.5。其總分為定性評分與定量評分相加,故可得知建築物耐震能力為59.1 分,結果表示建築物之耐震能力確有疑慮,宜進行詳細評估。其餘操作過程如圖 3-83 至圖 3-88 所示。圖 3-89 及圖 3-90 算出定量評分之 X 向建築物 475 年地震回歸期耐震能 力為 0.206 g, Y 向為 0.171 g, X、Y 向均無項符合耐震標準; X 向建築物 2500 年地震 回歸期耐震能力為 0.275 g, Y 向建築物 2500 年地震回歸期耐震能力為 0.228 g, X、Y 方向上不符合耐震標準。

建物名稱		建物烘装		評估日期		評估者	
E01编建用END		DA005TA000005		2017/09/13		48.8	
静市		感媒市區		村里		地址(諸龍人完整地址-廣会縣市和鄉鎮市區)	
喜葉肉	•	802	,	6 K	,	BCN1H	
		地盤種類		建煤年度		設計規範	
新小数据	•	N.2.8		1996/06/21		71年6月至86年5月	
建棕高粱[m]		用途後數[]		X向朝性容量[Rx] ♥		Y向额性音量[Ry] ●	
43.2		1.0		3.08		3.08	
地上楼眉数		地下機屬數		建築物X向週期T計算公式:		建築物Y向週期T計算公式:	
13		1		○ T=0.05h _n ^{0.75} (節刀圖) + T=0.07h _n ^{0.75}		○ T=0.05h _n ^{0.75} (第7)編) = T=0.07h _n ^{0.75}	
建茜物依插模型式分類:		建简节项使用用线分類:		建築物质硬着分類;		本評估參考資料:	
最短期34cm		11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- 1821 F		85.0+W2H	

圖 3-76 基本資料 (資料來源: PSERCB 網站提供)

結構系統 (單位 : kgf.cm)			10
1.靜不定程度	2.地下室面積比ra	3.平面對稱性	4.立面對稱性
○ 單時(1.0)	ra(地下室壶積與建茶壶積之比)	不良(1.0)	图 不良(1.0)
○ 雙時(0.67)	3.8	○ 尚可(0.5)	O 尚可(0.5)
○ 三時(0.33)		○ 頁(0)	O 良(0)
回時以上(0)			
分數:0.0	分數:0.0	分數:3.0	分數:3.0
5.梁之跨深比b	6.柱之高深比c	7.軟弱層顯著性	
5.梁之詞深比b	6.11之高深比e	● 毫(1.0)	
9.8	4,1	○ \phi(0.67)	
		○ (\$(0.33))	
分 ■2 : 0.0	分散:1.4	○ 無(0) 分散:3.0	

圖 3-77 定性評估表(結構系統) (資料來源: PSERCB 網站提供)

8.型奴區稽新細部(由設計年度評估)		9.窗台、氪窗造成短柱巖重性		10.纖體造成短梁嚴重性		
○ 63年2月以杭(1.0)		○ 窖(1.0)		O 窗(1.0)		
O 63年2月至71年6月(0.67)		O ≠(0.67)		O #(0.67)		
71年6月至56年5月(0.33)		O (E(0.33)		〇 任(0.33)		
O 86年5月以後(D)	991 : 1.7	m(0)	÷	(0)	÷##::00	
提得完 (Mith a head come)						
CITE OR AVE STELLE. C. RECENTLY						
11.柱之損害程度	1	12. 總之損害程度	1	13.裂缝镭触渗水等程度		
1.柱之損害程度 ● 毫(1.0)	Ĩ	12.禮之損害程度 ● 弯(1.0)		13.裂蜡播触渗水等程度 ● 高(1.0)		
1.柱之損當程度 ● 毫(1.0) ○ 中(0.67)		12. 總之損害程度 ● 頁(1.0) ○ 中(0.67)		 13.裂雌績会渉水等程度 ● 〒(1.0) ○ 中(0.67) 		
 11.柱之損害程度 ● 頁(10) ○ 年(0.67) ○ ⑤(0.33) 		 12.總之損害程度 ● 至(1.0) ○ 中(0.67) ○ ⑤(0.33) 		 13.裂縫繡臉滲水等程度 ● 荷(1.0) ○ 中(0.67) ○ 低(0.33) 		

圖 3-78 定性評估表(結構細部、結構現況) (資料來源: PSERCB 網站提供)

個外增分(合項最高配分為2分→新資項目相總合最多加8分)(率回:kart-m) 0											
分期與建或工程品質有疑慮 分期與建或工程品質有疑慮 0	曾經受災當者,如土石流、火災、震災、人為破壞等 曾經受災當者,如土石流、火災、震災、人為破壞等 0	使用用途由低活载重改為高活载重使用者 使用用途由低活载重改為高活氧重使用者 0	倾斜程度明顯者 增純程度明顯者 0								
外滅分(所有項目相總含最多減2分) (≢₫÷kgf-cm)											
使用用途由高活戦重改為低活戦重使用者 使用用途由高活戦重改為応活戦重使用者 [0											

圖 3-79 額外增、減分 (資料來源: PSERCB 網站提供)

2模~J楼之楼地板翠位画稿群教章[tfim ²] •	(J+1)橡~k橡之模址板單位面積靜數量[ttim ²]	(k+1)模~屋顶之模地板墓位面積野數量[ttim ²]	
1.4	0	0	
● 推估値 ◎ 設計価	+推估值○設計值	= 推估值 ○ 設計値	
2樓一樓之樓地板單位面積活戰量[ttim ²]	(j+1)模~k棲之棲地板單位面積活動置[tt/m ²]	(X+1)模~屋顶之模地板是位面積活载量[ttim ²]	
03	0	0	
◎ 推估值 □ 設計值	● 推估值 ◎ 股計值	● 推估值 ○ 設計值	
2便一梗之 <mark>傅</mark> 使地扳面積[m ²]	(j+1)樓~k樓之 <mark>總</mark> 模地板面積[m ²]	(k+1)模-屋顶之 <mark>通</mark> 模地板面積[m ²]	
4695	0	0	
◎ 推估值 = 段計值	● 推估值 □ 段計值	● 推估值 ○ 10314值	
柱材料参数(未使用之模位结填0)(率位:kof-cm)			
混凝土抗覆张演(fc)●	主航降伏强度(fy) ●	觸態時伏強度(tyv)	保護層厚度(c)
280	4200	2800	4
■ 推估值 = 12計值	■ 推估值 = 設計值	# 推估值 ○ 10.11值	● 推结値 = 1911個

圖 3-80 參數設置 (資料來源: PSERCB 網站提供)

一般柱	植性 RC模	四禮圖來碑植	三语菌末碑结	無创滾蘆來導稿	使準續醫之RC穩	標準慎層之詳信						
84	EA TEET											li≣kof.cm
name	type	Bc	He	lo(%)	No1	Num1	No2	Num2	ht	No	Num	S Nci
C6	RECT	100	60		#10	24	#6	0	420	#4	6	2 8 0
C1	RECT	75	75	34 	#10	22	#6	0	420	#3	4	2 4 0
C3	RECT	75	75	3.t	#10	18	#6	0	420	#4	3	2 2 0

圖 3-81 參數設置

(資料來源:PSERCB 網站提供)

E01鎢續世界END	林智隆	2017-09-13	19.1	32.7	評估	51.8	分數介於45至60分!

圖 3-82 評分分數 (資料來源: PSERCB 網站提供)

壹、建築物基2	本資料表								
建物名稱 E01 錦繡世界 END		申請案件編號	DA085TAO0000 5	評估人員 林智隆		隆	評估日期	2017-9-13	
建物地址				歸仁路1號					
設計年度 71年6月至86年5 月 建物高度 ^h _a (m) 43.2 用途係數1 1									
系統韌性容量 R	X 向:3.08 Y 向:3.08	地盤種類	第二類地盤	建築物週期(sec):			x 疴: ■ ^{0.07<i>h</i>^{0.75}_n □^{0.05<i>h</i>^{0.75}_n}}		
地上樓層數	13	地下樓層數	1			Y [fi]: ■ 0.07 <i>h</i> ^{0.75}		$0.07h_n^{0.75}$ $0.05h_n^{0.75}$	
建築物依樓層分類	類:□五樓以下 ■フ	卡樓以上							
建築物依結構形	式分類: □一般 RC 建	物 □加强磚造(〕	透天厝) ■其他 :						
建築物依使用用這	途分類: □辦公室 🗆	公寓 □集合住宅	□商場 ■住商混	合□其它:	_	_			
本評估參考資料:	■設計圖説 □計算	書 □現場調查頭	戈推估						

耐震能力初步評估表

圖 3-83 基本資料表 (資料來源: PSERCB 網站提供)

項次		項目	配分	評估内容	權重(1)	評分
B10 1		靜不定程度	5	□單跨(1.0) □雙跨(0.67) □三跨(0.33) ■四跨以上(0)	0.00	0.00
B10 2		地下室面積比, r _a	2	$0 \le (1.5 - r_a) / 1.5 \le 1.0; r_a:$ 地下室面積與建築面積之比 $r_a=3.8$	0	0.00
B10 3	结	平面對稱性	3	■不良(1.0)□尚可(0.5)□良(0)	1.00	3.00
B10 4	構系	立面對稱性	3	■不良(1.0)□尚可(0.5)□良(0)	1.00	3.00
B10 5	統	梁之跨深比 b	3		0	0.00
B10 6		柱之高深比c	3		0.48	1.44
B10 7		軟弱層顯著性	3	■高(1.0) □中(0.67) □低(0.33) □無(0)	1.00	3.00
B20 8	結	塑鉸區箍筋細部(由設 計年度評估)	5	□63 年 2 月以前(1.0) □63 年 2 月至 71 年 6 月(0.67) ■71 年 6 月至 86 年 5 月(0.33) □86 年 5 月以後(0)	0.33	1.65
B20 9	構細	窗台、氣窗造成短柱嚴 重性	3	□高(1.0) □中(0.67) □低(0.33) ■無(0)	0.00	0.00
B21 0	部	牆體造成短梁嚴重性	3	□高(1.0) □中(0.67) □低(0.33) ■無(0)	0.00	0.00
B311	4+	柱之損害程度	2	■高(1.0) □中(0.67) □低(0.33) □無(0)	1.00	2.00
B31 2	結構 相	牆之損害程度	2	■高(1.0) □中(0.67) □低(0.33) □無(0)	1.00	2.00
B31 3	況	裂縫鏽蝕滲水等程度	3	■高(1.0) □中(0.67) □低(0.33) □無(0)	1.00	3.00
B41 4	定量分析	475 年耐震能力初步評 估	30	$ \frac{\text{m}}{M_{413}} \leq 0.25 \text{ , } w=1 \text{ ; } \frac{\text{m}}{\text{m}}0.25 \leq \frac{A_{c1}}{M_{413}} \leq 1, w = \frac{4}{3} \left(1 - \frac{A_{c1}}{M_{413}} \right) \text{ ; } \frac{\text{m}}{M_{413}} \frac{A_{c1}}{M_{413}} > 1 \text{ , } w = 0 $ $ A_{c1} = \min[A_{c1,1}, A_{c1,1}] A_{c1,2} = 0.21 A_{c1,2} = 0.16 A_{c1} = 0.16 $	0.57	17.10
B41 5	101	2500年耐震能力初步評 估	30	$\overset{\text{def}}{\boxplus} \frac{A_{i,2}}{IA_{2500}} \le 0.25 \ , \ w = 1 \ ; \overset{\text{def}}{\boxplus} 0.25 \le \frac{A_{i,2}}{IA_{2500}} \le 1 \ , \ w = \frac{4}{3} \left(1 - \frac{A_{i,2}}{IA_{2500}} \right) \ ; \overset{\text{def}}{\boxplus} \frac{A_{i,2}}{IA_{2500}} > 1 \ , \ w = 0$	0.52	15.60

貳、建築物耐震能力初步評估表

圖 3-84 耐震能力初步評估表

(資料來源:PSERCB 網站提供)

	Т	$A = \min[A = A = 1 A = 0.27 A = 0.22 A = 0.22$									
危険	度	Agamma (Actar) Actar) Act	▶總計(P):	51.79							
額外	卜評	估項目:此部分為外加評分項目,評估人員應就表列「危險度額外增分」、「危險度額外減分」事項 各項最高配分為2分,總共最高配分為8分;減分最高配分為2分									
危	A	分期興建或工程品質有疑慮		0							
險度麵	в	曾經受災害者,如土石流、火災、震災、人為破壞等									
● 額	С	使用用途由低活載重改為高活載重使用者		0							
分	D	傾斜程度明顯者)	0							
危險度額外減分	a	使用用途由高活載重改為低活載重使用者)	0							
		危險度額外評分總計(S):		0							
		危險度總評估分數 R=P+S=	- 51	.79							

備註: (1)權重欄位由評估人員依評估內容評定後填列。

綜合評論

圖 3-85 耐震能力初步評估分數 (資料來源: PSERCB 網站提供)

圖 3-86 耐震能力初步評估結果判定 (資料來源: PSERCB 網站提供)

参、定量評<u>估表</u>

	建築物資訊	
2 樓~j 樓之樓地板面積靜載重 W1D (tf/m2)	1.400	■推估值 □設計值
(j+1)樓~k 樓之樓地板面積靜載重 W2D (tf/m2)	0.000	■推估值 □設計值
(k+1)樓~屋頂之樓地板面積靜載重 W3D (tf/m2)	0.000	■推估值 □設計值
2 樓~j 樓之樓地板面積活載重 w11 (tf/m2)	0.300	■推估值 □設計值
(j+1)樓~k 樓之樓地板面積活載重 W2L (tf/m2)	0.000	■推估值 □設計值
(k+1)樓~屋頂之樓地板面積活載重 W3L (tf/m2)	0.000	■推估值 □設計值
2 樓~j 樓之總樓地板面積 A1 (m ²)	4695.000	■推估值 □設計值
(j+1)樓~k 樓之總樓地板面積 A2 (m2)	0.000	■推估值 □設計值
(k+1)樓~屋頂之總樓地板面積 A ₃ (m ²)	0.000	■推估值 □設計值
建築物靜載重 $W_D = \sum_{i=1}^{3} w_{iD} \times A_i$ (kgf)	6573000.00	
建築物總載重 $W = \sum_{i=1}^{3} (w_{iD} + \frac{1}{2}w_{iL}) \times A_i$ (kgf)	7277250.00	
	一樓柱材料參數	
混凝土抗壓强度 fc (kgf/cm ²)	280	■推估值 □設計值
主筋降伏强度 f _y (kgf/cm ²)	4200	■推估值 □設計值
箍筋降伏强度 fyr (kgf/cm ²)	2800	■推估值 □設計值
柱之保護層厚度 c (cm)	4	■推估值 □設計值

	一樓牆材料參數										
RC 牆混凝土抗壓强度 fc (kgf/cm ²)	280	■推估值 □設計值									
RC 牆主筋降伏强度 f _y (kgf/cm ²)	4200	■推估值 □設計值									
磚牆砂漿塊抗壓强度 f _{mc} (kgf/cm ²)	100	■推估值 □設計值									
磚牆紅磚之單軸抗壓强度 f_{tec} (kgf/cm ²)	150	■推估值 □設計值									

圖 3-87 參數設置

(資料來源:PSERCB 網站提供)

X向定量評估			建	築物週	期(sec):	0.07	$h_n^{0.75}$	0.05 $h_n^{0.5}$		1.18	系統韌性容量R		3.08	
一般柱類別	柱型式 (type)	柱寬 /直徑 (cm) (<i>B_c</i>)/(<i>D_c</i>)	柱深 /直徑 (cm) (<i>H_c</i>) /(<i>D_c</i>)	柱鋼 筋比 (%) ($ ho_s$)	一樓柱 淨高 (cm) (<i>h_i</i>)	橫 症 緊 號 No	橫 箍 緊 根 Num	横向箍、 繫筋總斷 面積 (cm ²) A _v	橫向箍、 繫筋間距 (cm) S	柱根數 (N _{ci})	撓曲破壞控制 (kgf) (V _{m.coli})	剪力破壞控制 (kgf) (Van)	V _{coli} (kgf)	V _{coti} ×N _{ei} (kgf)
						一般	柱(一根	要 柱淨高與	柱淨深之比	值(h1/H	I _c)>2)			
C6	RECT	100	60	3.26	420	#4	6	7.62	20	8	103502.86	101472.76	89733.26	717866.05
C1	RECT	75	75	3.18	420	#3	4	2.84	20	4	127388.80	71607.08	39361.81	157447.22
C3	RECT	75	75	2.61	420	#4	3	3.81	20	2	112243.11	80678.16	54459.72	108919.44
一般柱之極限强度 <i>SVcolt×Ncl</i>											$\Sigma V_{coli} \times N_{ci}$ (kgf)	984	232.71	
			1											

	短柱類別	柱型式 (type)	短柱寬 /直徑 (cm) (B _{sc})/(D _{sc})	短柱深 /直徑 (cm) (H _s)/(D _s)	短柱 淨長 (cm) (h _{si})	橫向箍、 繫筋號數 No	橫向箍、 繫筋根數 Num	橫向箍、 繫筋總斷 (cm ²) A _v	横向箍、 繫筋間距 (cm) S	短柱 根數 (Nsci)	V _{seeli} (kgf)	$V_{scoli} imes N_{sci} \ (kgf)$
						短	柱(短柱淨+	吴與短柱淨	深之比值(h	asi / H _{sc})≦2)	
I								1-8-5		短	包柱之極限强度 ΣV scoli×Nsci (kgf)	0.00

註: 柱深(H.)平行地震力作用方向。

圖 3-88 柱極限層剪力強度計算 (資料來源: PSERCB 網站提供)

建築物 475 年地震回歸期耐震能力計算

一樓屬極限前力强度	j=1	j=2	j=3			
$\sum_{u_j \in T_{u_1} \in \mathcal{V}_{u_j} \subseteq \mathcal{V}_{u_i} \subseteq \mathcal{V}_{u_i} \times \mathcal{N}_{u_i} + C_{u_j} (\Sigma V_{u_{u_i}} \times N_{u_{u_i}} + \Sigma V_{u_{u_i}} \times N_{u_{u_i}}) + C_{u_{u_j}} \Sigma V_{buu_i} \times N_{buu_i}; j=1\sim3 \text{ (kgf)}$	736170.534		711108.136			
新設計建築物之極限剪力强度 $(V_{100})_u = I \left(\frac{S_{aD}}{F_u} \right)_m W_D (kgf)$		1214127.674				
受評估建築物之降伏地表加速度 $A_{y_{j,x}} = \frac{V_{u_j}}{(V_{100})_v} \frac{IA_{475}}{Fu}$ (g); $j = 1 \sim 3$	0.071		0.069			
$\begin{array}{l} R_{j}^{i} = \frac{C_{a_{i}} \times R_{a_{i}}(C_{u} \times \sum I_{u_{i}} \times N_{i}) + C_{u_{i}} \times R_{u} C_{u} \times \sum I_{u_{i}} \times N_{u}} + \frac{\sum I_{u_{i}} \times N_{u}}{C_{u}} \times N_{u} + C_{u} \times X_{u}} \times \sum I_{u_{i}} \times N_{u} + \sum I_{u_{i}} \times N_{u} + C_{u} \times \sum I_{u_{i}} \times N_{u}} \\ j = 1 \sim 3 \end{array};$	1.623		4.000			
$\mathbf{R}_{q'}^{*} = \begin{cases} 1 + \frac{(R_{j}^{*} - 1)}{1.5} (- \Re \Xi h) \\ 1 + \frac{(R_{j}^{*} - 1)}{2.0} (\oplus \# \Xi h) \\ \end{cases}; \ j = 1 \sim 3 \end{cases}$	1.416		3.000			
$F_{uj}^* = F_u(T, R_{uj}^*); j=1 \sim 3$	1.416		3.000			
V _{uj} /W _D	0.112		0.108			
建築物 X 向耐震能力 $A_{cl,x} = \max[A_{ij,x}F_{ij}^*; j=1\sim3]_{(g)}$		0.206				
$\frac{A_{elx}}{IA_{a78}}$	0.736					

圖 3-89 475 年地震回歸期耐震能力計算 (資料來源: PSERCB 網站提供)

建築物	2500	年地震	回歸	期耐	震能力計算	r
And sheet Lal	. min 100	til. ==).	talte	day who	milet .	

一樓屬極限前力强度		j=1			j=2		j=3	
$V_{uj} = C_{uj} \Sigma V_{coli} \times N_{ci} + C_{vg} (\Sigma V_{swi} \times N_{swi} + \Sigma V_{scoli} \times N_{sci}) + C_{ubj} \Sigma V_{bwi} \times N_{bwi}; j = 1 \sim 2$	$= \sum_{vaj} \sum_{coli} N_{ci} + C_{vaj} \sum_{coli} N_{swi} + \sum_{swi} N_{swi} + \sum_{swi} N_{swi} + C_{vbj} \sum_{bwi} N_{bwi}; j=1\sim3 \text{ (kgf)}$			736170.534		711108.136		,
新設計建築物之極限剪力强度 $(V_{100})_u = I \left(\frac{S_{aD}}{F_u} \right)_m W_D (kgf)$				121	4127.674			
受評估建築物之降伏地表加速度 $A_{ij,x} = \frac{V_{uj}}{(V_{100})_u} \frac{IA_{475}}{Fu}$ (g); j=1	~3	0.071					0.069	
$\frac{C_{i,i} \times R_{i,i}(C_{i,i} \times \sum V_{i,i} \times N_{i,i}) + C_{k,i} \times R_{i,i}(C_{i,i} \times (\sum V_{i,i} \times N_{i,i} + \sum V_{i,i} \times N_{i,i})) + C_{k,i} \times R_{k,i}(C_{i,i} \times \sum C_{i,i} \times N_{i,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{i,i} \times N_{i,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times \sum V_{k,i} \times N_{k,i}) + C_{k,i} \times V_{k,i}(C_{i,i} \times N$	$V_{kui} \times N_{kui}$;	1.623					4.000	
$F_{uj}^* = F_u(T, R_j^*)$; j=1~3		1.623					4.000	
V_{uj}/W_D		0.112					0.108	
建築物 X 向耐震能力 $A_{c_{2,x}} = \max[A_{y_{j,x}}F_{u_{j}}^{*}; j=1~3]$ (g)					0.275			
$\frac{A_{c2,x}}{M_{2500}}$					0.763			
註: $\Sigma V_{bwi} \times N_{bwi} \cdot \Sigma V_{bwi} \times N_{bwi} \cdot \Sigma V_{bwij} \times N_{bwij} \cdot \Sigma V_{bwij} \times N_{bwij} \cdot \Sigma V_{bwij} \times N_{bwij}$ R _{col} × R _{sw} 及 R _{bw} 與設計年度有關,建議如下:		係	數 C _{wi}	$C_{Rcj} \sim C_{vsj}$	$C_{Rsj} \sim C_{rsj}$	_{by} 與C _{Rby} 建	議如下:	_
設計年度 R _{col} R _{ow} R _{bw}				j	1	2	3	
63年2日以前 24 20 30			v	Cvcj	0.65	0.95	1	
年2月至71年6月 32 20 30			Vcoi	CRCj	0.35	0.70	1	
年6月至86年5月 4.0 2.0 3.0				Cysi	0.85	0	0	1
86年5月以後 4.8 2.0 3.0			Vswi	CRSI	1	0	0	1
	X2. +94			Cybi	0.95	0.85	0	1
J=I 為 KC 順 朝 吐 元 万 致 烨; J=2 為 髀 牘 朝 吐 尤 分	致 伴;		Vbwi	C _{Rbj}	0.45	1	0	1
	$h_n^{0.75}$			1.18	系約	「韌性容量」	R	

圖 3-90 2500 年地震回歸期耐震能力計算 (資料來源: PSERCB 網站提供)

11.中高樓層初步評估結果

案例建築共有 5 根外柱、9 根內柱。由式(2-18)可知,外柱、內柱之單位面積側向強 度分別為 τ_{CE} = 121.86 - 6.12×(13) = 42.3*tf* / m^2 、 τ_{CI} = 125.9 - 3.49×13 = 80.53*tf* / m^2 ,計算 極限基底剪力強度 X 向及 Y 向分別為

$$V_{bs,x} = \sum_{j=1}^{N_{CE}} \tau_{CE} A_{CE} + \sum_{j=1}^{N_{CI}} \tau_{CI} A_{CI} + \sum_{j=1}^{N_{BW3}} \tau_{BW3} A_{BW3} + \sum_{j=1}^{N_{BW4}} \tau_{BW4} A_{BW4} + \sum \tau_{RC} A_{RC} = 648 tf$$

$$V_{bs,y} = \sum_{j=1}^{N_{CE}} \tau_{CE} A_{CE} + \sum_{j=1}^{N_{CI}} \tau_{CI} A_{CI} + \sum_{j=1}^{N_{BW3}} \tau_{BW3} A_{BW3} + \sum_{j=1}^{N_{BW4}} \tau_{BW4} A_{BW4} + \sum \tau_{RC} A_{RC} = 815 tf$$

透過面積計算,可知此建築物2樓至頂樓層面積皆為4729m²,透過式(2-20)算得此 建築物總靜載重

W = 5481 t f

由案例介紹其為鋼筋混凝土建築物,該建物基面至屋頂高度為43.2公尺,由式(2-22) 可知週期

$$T = 0.07 h_n^{\frac{3}{4}} = 1.113 s$$

根據建築物耐震設計規範及解說可知建築物為第二類地盤,鄰近新化斷層計算工址 短週期、一秒設計水平譜加速度係數如式(2-12)、式(2-24a)

$$S_{DS} = F_a N_A S_S^D = 1.0 \times 1.0 \times 0.7 = 0.7$$

$$S_{D1} = F_v N_v S_1^D = 1.3 \times 1.0 \times 0.4 = 0.52$$

$$S_{MS} = 1.0 \times 1.0 \times 0.9 = 0.9$$

$$S_{M1} = 1.1 \times 1.0 \times 0. = 0.55$$

計算工址設計水平加速度反應譜短週期與中長週期之分界_{T0}^D、T₀^M

$$T_0^D = \frac{S_{D1}}{S_{DS}} = \frac{0.52}{0.7} = 0.743s$$

$$T_0^M = 0.611$$

由式(2-28a)判別, $T_0^{D} \le T \le 2.5T_0^{D}$,故工址設計水平譜加速度係數

$$S_{aD} = \frac{S_{D1}}{T} = \frac{0.52}{1.18} = 0.441$$
$$S_{aM} = \frac{S_{M1}}{T} = 0.494$$

以本研究建議之結構系統韌性容量 R=3.08計算,且為一般工址與近斷層區域,故 容許韌性容量,如式(2-33)

$$R_a = 1 + \frac{(R-1)}{1.5} = 1 + \frac{(3.08-1)}{1.5} = 2.387$$

再代入地盤種類可得結構系統地震力折減係數(式(2-33)),得 $F_u = R_a = 2.387$ 、 $F_{u,m} = 3.08$,並透過式(2-34a)對工址設計水平譜加速度係數進行修正可得

$$\left(\frac{S_{AD}}{F_u}\right) = 0.185 \le 0.3, \left(\frac{S_{AD}}{F_u}\right)_m = 0.185$$

177

$$\left(\frac{S_{AM}}{F_{u,m}}\right) = 0.16 \le 0.3, \left(\frac{S_{AD}}{F_{u}}\right)_{m} = 0.16$$

為算出耐震容量需求比,將結果代入式(2-36a),可得

 $R_{CD,475x} = 0.604$ $R_{CD,475y} = 0.76$ $R_{CD,2500x} = 0.739$ $R_{CD,2500y} = 0.929$

代入式(2-38)並計算耐震能力

 $A_{p,475x} = 0.169 < 0.4S_{DS} = 0.28$ $A_{p,475y} = 0.213 < 0.4S_{DS} = 0.28$ $A_{p,2500x} = 0.266 < 0.4S_{MS} = 0.36$ $A_{p,2500x} = 0.334 < 0.4S_{MS} = 0.36$

以基本耐震性能之 E 值是否大於 100 分為評估標準,評估分數 E 大於 100 分表示並 無疑慮;若 E 值小於 100,表示建築物之耐震能力不足,須再進行詳細評估。故此結果 為小於 100 分,故須進行詳細評估。

第六節 15層集合住宅案例

1. 基本資料

位於臺南之地上 15 層樓地下 1 層樓鋼筋混凝土建築物,約於民國 83 年興建。屬住 宅用途,由樓層平面圖(圖 3-91)可知主要為 RC 梁柱構架系統,建築物基本資料蒐集如 表 3-108 所示:

圖 3-91 15 層樓結構平面圖 (資料來源:本研究整理)

圖 3-92 結構立面圖 (資料來源:本研究整理)

圖 3-93 結構 3D 圖 (資料來源:本研究整理)

建築物名稱	15 層樓集合住宅建築
興建年代	民國 83 年
分期興建	無
構造型式	鋼筋混凝土造
結構系統	RC 梁柱構架, RC 隔戶牆及 RC 電梯牆
平面尺寸	矩形
建築規模	地面 15 層、地下 1 層
樓高(<i>m</i>)	50.2 m
基本振動週期	1.320 sec $(0.07 h_n^{0.75})$
大梁尺寸(cm)	55×65 • 55×80
柱尺寸(<i>cm</i>)	60×120、60×110、80×110
樓版(cm)	15 cm
現況用途	店面(1F)、住宅(2F~15F)

表 3-108 建築物基本資料

2. 重量計算

(1)靜載重:

- ◆ 鋼筋混凝土單位體積自重 2.4 t/m³。
- ◆ 1B 磚牆 0.440 t/m²; 1/2B 磚牆 0.220 t/m²。
- ◆ 梁、柱、板依各自斷面尺寸乘以各材質單位重量計算。
- ◆ 所有牆重依各自材料性質及厚度照實計算。

(2)活載重:

- ◆ 停車場 (B1F): 500 kgf/m²
- ◆ 住家 (1F~15F): 200 kgf/m²

結構分析樓層重如表 3-109 所示:

樓層	高度	質量	重量 (kgf)
Roof	50.2	4992.66979	48978.0907
15F	46.9	72573.0272	711941.397
14F	43.6	76581.3751	751263.29
13F	40.3	76581.3751	751263.29
12F	37	76581.3751	751263.29
111F	33.7	76581.3751	751263.29
10F	30.4	76581.3751	751263.29
9F	27.1	78840.4002	773424.326
8F	23.8	78840.4002	773424.326
7F	20.5	78840.4002	773424.326
6F	17.2	78840.4002	773424.326
5F	13.9	78840.4002	773424.326
4F	10.6	78840.4002	773424.326
3F	7.3	78840.4002	773424.326
2F	4	80057.7773	785366.795
1F	0	0	0
SUM			10716573

表 3-109 結構分析樓層重

3. 週期及質量貢獻比計算

結構週期及質量貢獻比計算如表 3-110 所示:

表 3-110 結構週期及質量貢獻比

Mode	方向	週期	質量貢獻比(%)
1	X向平移	1.678	80.48
2	Y向平移	2.412	78.95
3	Z向扭轉	2.538	79.78

(資料來源:本研究整理)

4. 規範側向力計算

*** DIR - X ***

Site Type(II) 近斷層區域= 2

震區加速度係數 S_D_S,S_D_1,S_M_S,S_M_1.= 0.700.400.900.50

181

近斷層調整因子 Na/Nv/Na_M/Nv_M=	1.00 1.00 1.00 1.00
第三類地盤: 軟弱地盤=	3
工址放大係數 Fa, Fv, Fa_M, Fv_M=	1.10 1.60 1.00 1.40

建築物構造種類 Stype =	2
經驗公式週期 : 0.070*(Hn**0.75) Tcode =	1.1795
動力分析基本振動週期Tdyn=	1.8872
週期上限係數Cu=	1.4000
設計週期 : Min(Cu*Tcode,Tdyn) T=	1.6513

工址設計水平譜加速度係數SaD=	0.3876
(S_DS=0.7700 S_D1=0.6400 T_D_0=0.8312)	
結構系統地震力折減係數Fu=	3.0000
(SaD/Fu)m =	0.1292

(避免中小度地震降伏)......(SaD/Fu)m`= 0.1292

用途係數I=	1.0000
起始降伏地震力放大倍數ay=	1.0000
勃性容量R=	4.0000
容許韌性容量Ra=	3.0000

工址最大水平譜加速度係數SaM =	0.4239
(S_MS=0.9000 S_M1=0.7000 T_M_0=0.7778)	
結構系統地震力折減係數FuM=	4.0000
(SaM/FuM)m =	0.1060

最小設計水平總橫力係數	
I /1.4/ay*(SaD/Fu)m=	0.0923
I*Fu/4.2/ay*(SaD/Fu)m`=	0.0923
I /1.4/ay*(SaM/FuM)m=	0.0757
檢討 Story Drift 之地震力係數	
I"*Fu/4.2 *(SaD/Fu)m"=	0.0808
頂層之外加集中橫力 Min(0.07TV,0.25V) Ft = 1	22.6490

外加横力分配至 PH 者	$Ft(PH) = 37$.5315
外加横力分配至 RF 者	$Ft(RF) = -8$	85.1175

1061.03 T

設計地震力	=

檢討 Story Drift 之地震力 = 928.53 T

*** DIR - Y ***

Site Type(II)	近斷層區域=	2	
震區加速度	_係數 S_D_S,S_D_1,S_M_S,S_M_1.=		0.70 0.40 0.90 0.50
近斷層調整	因子 Na/Nv/Na_M/Nv_M=		1.00 1.00 1.00 1.00
第三類地盤:	軟弱地盤=	3	
工址放大	、係數 Fa, Fv, Fa_M, Fv_M =		1.10 1.60 1.00 1.40

建築物構造種類 Stype =	2
經驗公式週期 : 0.070*(Hn**0.75) Tcode =	1.1795
動力分析基本振動週期Tdyn=	1.9200
週期上限係數Cu=	1.4000
設計週期 : Min(Cu*Tcode,Tdyn) T =	1.6513

工址設計水平譜加速度係數SaD=	0.3876
(S_DS=0.7700 S_D1=0.6400 T_D_0=0.8312)	
結構系統地震力折減係數Fu=	3.0000
(SaD/Fu)m =	0.1292

(避免中小度地震降伏)(SaD/Fu)m`=	0.1292
------------------------	--------

1.0000
1.0000
4.0000
3.0000

工址最大水平譜加速度係數SaM =	0.4239
(S_MS=0.9000 S_M1=0.7000 T_M_0=0.7778)	
結構系統地震力折減係數FuM=	4.0000
(SaM/FuM)m =	0.1060

最小設計水平總橫力係數	

I /1.4/ay*(SaD/Fu)m=	0.0923
I*Fu/4.2/ay*(SaD/Fu)m=	0.0923
I /1.4/ay*(SaM/FuM)m=	0.0757
檢討 Story Drift 之地震力係數	
I"*Fu/4.2 *(SaD/Fu)m"=	0.0794

頂層之外加集中橫力 Min(0.07TV,0.25V)	Ft = 122.6490
外加横力分配至 PH 者	Ft(PH) = 37.5315
外加横力分配至 RF 者	Ft(RF) = 85.1175

設計地震力	=	1061.03 T
檢討 Story Drift 之地震力	=	912.57 T

X 向規範側向力計算如表 3-111 所示、Y 向規範側向力計算如表 3-112 所示:

樓層	h_x	W_{x}	$w_x h_x$	F_x
單位	m	tf	tf-m	tf
Roof	50.2	48.97809068	2458.700152	7.568251
15F	46.9	711.9413973	33390.05153	102.7796
14F	43.6	751.2632895	32755.07942	100.8251
13F	40.3	751.2632895	30275.91057	93.19383
12F	37	751.2632895	27796.74171	85.56258
11F	33.7	751.2632895	25317.57286	77.93132
10F	30.4	751.2632895	22838.404	70.30006
9F	27.1	773.4243256	20959.79922	64.51743
8F	23.8	773.4243256	18407.49895	56.66107
7F	20.5	773.4243256	15855.19867	48.8047
6F	17.2	773.4243256	13302.8984	40.94833
5F	13.9	773.4243256	10750.59813	33.09197
4F	10.6	773.4243256	8198.297851	25.2356
3F	7.3	773.4243256	5645.997577	17.37923
2F	4	785.3667951	3141.46718	9.669911
總和		10716.57301	271094.2162	

表 3-111 X 向規範側向力計算表

(資料來源:本研究整理)

樓層	h_y	w_y	$w_y h_y$	F_y
單位	m	tf	tf-m	tf
Roof	50.2	48.97809068	2458.700152	7.568251
15F	46.9	711.9413973	33390.05153	102.7796
14F	43.6	751.2632895	32755.07942	100.8251
13F	40.3	751.2632895	30275.91057	93.19383
12F	37	751.2632895	27796.74171	85.56258
11F	33.7	751.2632895	25317.57286	77.93132
10F	30.4	751.2632895	22838.404	70.30006
9F	27.1	773.4243256	20959.79922	64.51743
8F	23.8	773.4243256	18407.49895	56.66107
7F	20.5	773.4243256	15855.19867	48.8047
6F	17.2	773.4243256	13302.8984	40.94833
5F	13.9	773.4243256	10750.59813	33.09197
4F	10.6	773.4243256	8198.297851	25.2356
3F	7.3	773.4243256	5645.997577	17.37923
2F	4	785.3667951	3141.46718	9.669911
總和		6950.600364	119100.16	366.6083

表 3-112 Y 向規範側向力計算表

5. 材料強度

- ◆ 混凝土: f'_c = 280kgf / cm²
- ♦ 鋼筋: f_y =4200 kgf/cm² 、 f_{yh} =2800 kgf/cm²

6. 穩定性因子計算

X 向穩定性因子計算如表 3-113 所示、Y 向穩定性因子計算如表 3-114 所示:

樓層	樓層重量	Px 為樓層高度 x 及以上的垂直 向設計載重	Ie重要 性因子	△/h _x 樓層側位 移角	Vx為樓層 高度 X 所在 之設計剪 力	C _d 變位 放大係數	θ 穩定性因子
單位	kgf	kgf			kgf		
Roof	48978.0907	48978	1	0.0067	7.5683	5.6	7.742661769

表 3-113 X 向穩定性因子計算表

樓層	樓層重量	Px 為樓層高度 x 及以上的垂直 向設計載重	Ie重要 性因子	△/h _x 樓層側位 移角	V _x 為樓層 高度 x 所在 之設計剪 力	C _d 變位 放大係數	<i>θ</i> 穩定性因子
15F	711941.397	760919	1	0.0101	110.3479	5.6	12.43678084
14F	751263.29	1512183	1	0.016	211.173	5.6	20.45963367
13F	751263.29	2263446	1	0.0224	304.3668	5.6	29.74629384
12F	751263.29	3014709	1	0.0284	389.9294	5.6	39.20936243
11F	751263.29	3765973	1	0.0332	467.8607	5.6	47.72112261
10F	751263.29	4517236	1	0.0342	538.1608	5.6	51.26238325
9F	773424.326	5290660	1	0.0336	603	5.6	52.67149462
8F	773424.326	6064085	1	0.0359	659	5.6	58.96071065
7F	773424.326	6837509	1	0.0385	708	5.6	66.38180055
6F	773424.326	7610933	1	0.0409	749	5.6	74.20580153
5F	773424.326	8384358	1	0.0429	782	5.6	82.11641139
4F	773424.326	9157782	1	0.0438	807	5.6	88.71088874
3F	773424.326	9931206	1	0.0421	825	5.6	90.5206972
2F	785366.795	10716573	1	0.0329	834	5.6	75.4490178

表 3-114 Y 向穩定性因子計算表

樓層	樓層重量	P _x 為樓層高度x 及以上的垂直 向設計載重	Ie 重要 性因子	△/h _x 樓層側位 移角	V _x 為樓層高 度 x 所在之 設計剪力	C _d 變位 放大係數	θ 穩定性因子
單位	kgf	kgf			kgf		
Roof	48978	48978	1	0.0051	7.5683	5.6	5.893667913
15F	711941	760919	1	0.0064	110.3479	5.6	7.880732411
14F	751263	1512183	1	0.0089	211.173	5.6	11.38067123
13F	751263	2263446	1	0.0118	304.3668	5.6	15.66992265
12F	751263	3014709	1	0.0144	389.9294	5.6	19.88080348
11F	751263	3765973	1	0.0165	467.8607	5.6	23.71682298
10F	751263	4517236	1	0.0172	538.1608	5.6	25.78108163
9F	773424	5290660	1	0.0172	602.6782	5.6	26.96278891
8F	773424	6064085	1	0.0181	659.3393	5.6	29.72670927
7F	773424	6837509	1	0.0192	708.144	5.6	33.10469015
6F	773424	7610933	1	0.0201	749.0923	5.6	36.46788779

樓層	樓層重量	P _x 為樓層高度x 及以上的垂直 向設計載重	Ie重要 性因子	△/h _x 樓層側位 移角	 Vx 為樓層高 度 x 所在之 設計剪力 	C _d 變位 放大係數	θ 穩定性因子
5F	773424	8384358	1	0.0207	782.1843	5.6	39.6226041
4F	773424	9157782	1	0.0206	807.4199	5.6	41.72247279
3F	773424	9931206	1	0.019	824.7991	5.6	40.85257118
2F	785367	10716573	1	0.0137	834.469	5.6	31.41798006

7. 剛重比計算

X 向剛重比計算如表 3-115 所示、Y 向剛重比計算如表 3-116 所示:

樓層	樓 量	Gi 為第 i 層 的重力設計 荷載值	Fi 第 i 層 水平力	Hi 第 層 度	H 總 層 度	γi=Hi/H	ui 第i層 頂部位 移	EJd 等效側向 剛度	剛重比 側向剛度與 重力荷載的 比值
	kgf	kgf	kgf	cm	cm		cm	kgf-cm ²	
ROOF	48978	48978	7568	5020	5020	1	46.0377	6.9322E+12	5.6165E+00
15FL	711941	760919	102780	4690	5020	0.9342629	45.5041	8.5868E+13	4.4780E+00
14FL	751263	1463205	100825	4360	5020	0.8685259	44.4939	7.6820E+13	2.0833E+00
13FL	751263	1502527	93194	4030	5020	0.8027888	42.892	6.4870E+13	1.7132E+00
12FL	751263	1502527	85563	3700	5020	0.7370518	40.6491	5.4559E+13	1.4409E+00
11FL	751263	1502527	77931	3370	5020	0.6713147	37.8055	4.5612E+13	1.2046E+00
10FL	751263	1502527	70300	3040	5020	0.6055777	34.4897	3.7737E+13	9.9664E-01
9FL	773424	1524688	64517	2710	5020	0.5398406	31.0694	3.1391E+13	8.1698E-01
8FL	773424	1524688	56661	2380	5020	0.4741036	27.7082	2.4479E+13	6.2798E-01
7FL	773424	1524688	48805	2050	5020	0.4083665	24.1212	1.8437E+13	4.7298E-01
6FL	773424	1524688	40948	1720	5020	0.3426295	20.2691	1.3288E+13	3.4089E-01
5FL	773424	1524688	33092	1390	5020	0.2768924	16.1759	9.0054E+12	2.3102E-01

表 3-115 X 向剛重比計算表

樓層	樓層重量	 Gi 為第 i 層 的重力設計 荷載值 	Fi 第i層 水平力	Hi 第 層 度	H 總 層 度	γi=Hi/H	ui 第i層 頂部位 移	EJd 等效側向 剛度	剛重比 側向剛度與 重力荷載的 比值
	kgf	kgf	kgf	cm	cm		cm	kgf-cm ²	
4FL	773424	1524688	25236	1060	5020	0.2111554	11.8901	5.5644E+12	1.4275E-01
3FL	773424	1524688	17379	730	5020	0.1454183	7.5067	2.9466E+12	0.07559046
2FL	785367	1558791	9670	400	5020	0.0796813	3.2919	1.1484E+12	0.02923366
	6199337	12364571	296308		2065			1.0626E+14	2.015348242
								整體剛重比	1.590433221

表 3-116 Y 向剛重比計算表

樓層	樓層重量	 Gi 為第 i 層的重力 設計荷載 值 	Fi 第i層 水平力	Hi 第 i 層 高度	H 總 層 度	γi=Hi/H	ui 第i層 頂部位 移	EJd 等效側向 剛度	剛重比 側向剛度與 重力荷載的 比值
	kgf	kgf	kgf	cm	cm		cm	kgf-cm ²	
ROOF	48978	48978	7568	5020	5020	1	22.8934	1.4259E+13	11.55284339
15FL	711941	760919	102780	4690	5020	0.934263	22.3814	1.7458E+14	9.104305997
14FL	751263	1463205	100825	4360	5020	0.868526	21.7419	1.6394E+14	4.44594282
13FL	751263	1502527	93194	4030	5020	0.802789	20.8496	1.4143E+14	3.735245288
12FL	751263	1502527	85563	3700	5020	0.737052	19.6731	1.1273E+14	2.977227208
11FL	751263	1502527	77931	3370	5020	0.671315	18.2304	1.0400E+14	2.746579349
10FL	751263	1502527	70300	3040	5020	0.605578	16.5811	8.7564E+13	2.312579336
9FL	773424	1524688	64517	2710	5020	0.539841	14.8638	6.5615E+13	1.707706387
8FL	773424	1524688	56661	2380	5020	0.474104	13.1429	5.9867E+13	1.535780526
7FL	773424	1524688	48805	2050	5020	0.408367	11.3298	4.7254E+13	1.212232499
6FL	773424	1524688	40948	1720	5020	0.342629	9.4114	2.8618E+13	0.734155765
5FL	773424	1524688	33092	1390	5020	0.276892	7.4028	2.7301E+13	0.70037547
4FL	773424	1524688	25236	1060	5020	0.211155	5.3356	2.0210E+13	0.518451372
3FL	773424	1524688	17379	730	5020	0.145418	3.2737	4.1456E+12	0.106348846
2FL	785366	1558791	9670	400	5020	0.079681	1.3728	1.1547E+12	0.029396183
	6199337	12364571	296308		2065			2.5417E+14	6.544447048
								整體剛重比	3.324439639

(資料來源:本研究整理)
8. 意外扭矩

依建築物耐震設計規範及解說,為計及質量分布不確定性,應將地震力加在計算所 得質心位置向左及向右偏移 5%位置進行結構分析與設計,質心偏移造成之扭矩,稱為 意外扭矩。建築物若具扭轉不規則性時,各層施加之意外扭矩應以係數 Ax 放大。

$$d_{avg} = \frac{d_A + d_B}{2}$$
$$d_{max} = \{d_A, d_B\}_{max}$$

扭轉放大係數 $Ax = (d_{max}/1.2d_{avg})^2$

A_x?1.0 扭轉規則性建築

A_x > 1.0? 扭轉不規則性建築

取當層最大變位,除以兩最外點平均值之 1.2 倍,檢核結果 X 向意外扭矩如表 3-117、表 3-118 所示, Y 向意外扭矩如表 3-119、表 3-120 所示:

表 3-117 X 向側向力+5%意外扭矩 Ax 計算表

	樓層	樓層最大位移量	平均層間位移	放大係數 A _x
		δ_{max} (cm)	δ_{avg} (cm)	$(\delta max/1.2\delta_{avg})^2$
	ROOF	46.4203	46.0634	0.7052
	15FL	47.0188	45.2615	0.7494
	14FL	45.9715	44.2589	0.7492
	13FL	44.3142	42.6678	0.7491
	12FL	41.9956	40.4395	0.7489
X 側向力	11FL	39.0569	37.614	0.7487
+5%	10FL	35.631	34.3185	0.7486
	9FL	32.0957	30.9179	0.7484
	8FL	28.6194	27.5751	0.7480
	7FL	24.9101	24.0068	0.7477
	6FL	20.9275	20.1745	0.7473
	5FL	16.6969	16.1023	0.7467
	4FL	12.2685	11.8382	0.7458
	3FL	7.7413	7.4763	0.7445

中高樓層建築軟弱層及扭轉不規則效應評估研究

2FL	3.3918	3.2805	0.7424
1FL	0	0	0

(資料來源:本研究整理)

	神區	樓層最大位移量	平均層間位移	放大係數 A _x
	倭僧	δmax (cm)	δavg (cm)	$(\delta max/1.2\delta avg)^2$
	ROOF	46.2854	45.9328	0.7051
	15FL	46.5847	45.3878	0.7316
	14FL	45.5523	44.3825	0.7315
	13FL	43.9159	42.7874	0.7316
	12FL	41.6253	40.5536	0.7316
	11FL	38.7212	37.7211	0.7318
	10FL	35.3338	34.4172	0.7319
V间台力	9FL	31.8349	31.0075	0.7320
A 侧 回 刀 50/	8FL	28.3911	27.655	0.7319
-3%	7FL	24.7149	24.0763	0.7318
	6FL	20.7672	20.2328	0.7316
	5FL	16.5733	16.1488	0.7314
	4FL	12.1829	11.8725	0.7312
	3FL	7.693	7.4982	0.7310
	2FL	3.375	3.2902	0.7307
	1FL	0	0	0.0000

表 3-118 X 向側向力-5%意外扭矩 Ax 計算表

(資料來源:本研究整理)

表 3-119 Y 向側向力+5%意外扭矩 Ax 計算表

	 唐 ब	樓層最大位移量	平均層間位移	放大係數 A _x
	倭僧	δmax (cm)	δavg (cm)	$(\delta max/1.2\delta avg)^2$
	ROOF	23.7098	22.8972	0.7446
	15FL	25.7132	22.428	0.9128
	14FL	24.9935	21.7876	0.9138
Y側向力	13FL	23.9808	20.8938	0.9148
. 50 (12FL	22.6389	19.7152	0.9157
+5%	11FL	20.9886	18.2696	0.9165
	10FL	19.0983	16.617	0.9173
	9FL	17.1288	14.8962	0.9182
	8FL	15.1547	13.1718	0.9193

7FL	13.0726	11.355	0.9204
6FL	10.8671	9.4326	0.9217
5FL	8.5556	7.4196	0.9234
4FL	6.1741	5.348	0.9256
3FL	3.7948	3.2815	0.9287
2FL	1.5955	1.3762	0.9334
1FL	0	0	0.0000

	神區	樓層最大位移量	平均層間位移	放大係數 A _x
		δmax (cm)	δavg (cm)	$(\delta max/1.2\delta avg)^2$
	ROOF	23.7098	22.8972	0.7446
	15FL	25.7132	22.428	0.9128
	14FL	24.9935	21.7876	0.9138
	13FL	23.9808	20.8938	0.9148
	12FL	22.6389	19.7152	0.9157
	11FL	20.9886	18.2696	0.9165
Y側向力	10FL	19.0983	16.617	0.9173
	9FL	17.1288	14.8962	0.9182
-5%	8FL	15.1547	13.1718	0.9193
	7FL	13.0726	11.355	0.9204
	6FL	10.8671	9.4326	0.9217
	5FL	8.5556	7.4196	0.9234
	4FL	6.1741	5.348	0.9256
	3FL	3.7948	3.2815	0.9287
	2FL	1.5955	1.3762	0.9334
	1FL	0	0	0

表 3-120 Y 向側向力-5%意外扭矩 Ax 計算表

(資料來源:本研究整理)

9. 檢核結果

本案例為一於民國 86 年興建完成之住商大樓,其地上結構型式為十五層之鋼筋混 凝土造建築物,其二樓樓地板面積至頂樓樓地板面積為 4695 m²,為一棟平面三跨乘四 垮之鋼筋混土建築。本案用途係數 1.0,以民國 100 年公佈之「耐震設計規範與解說」 做為耐震標準進行耐震初步評估,根據結構物情形給予適當之定性及定量評估。建築物 結構配置如

表 3-121 所示:

構造種類	鋼筋混凝土造
地樓層數	地上15 樓地下1 樓
平面配置	矩形
X向尺度	30.84 m
Y向尺度	20.94 m
總樓高	50.2 m
層高	2F~15F ∶ H=3.3 m∕1F ∶ H=4 m

表 3-121 建築物相關資料

(資料來源:本研究整理)

本例採用之材料強度參數如下:

- 1. 混凝土抗壓強度: $f'_{c} = 280 kg f / cm^{2}$
- 2. 主筋降伏強度: $f_v = 4200 kgf / cm^2$
- 3. 箍筋降伏強度: $f_v = 2800 kgf / cm^2$

(一)柱破壞模式檢核

檢核重量計算表格如式 2-20,總重為 13884tf,再依其鋼筋混凝土面積量進行分配, 即可得到各柱所需承受之重量,如表 3-122 及表 3-123。

依照各柱所承受軸力,可算出各柱之剪力強度,即為V_{0i};依照各柱軸力納入並計算 出柱端、底彎矩,兩者相加除上淨高,即可得到剪力V_{pi}。兩者相除即可檢核剪力。

表 3-122 15 層結構 X 向
$$\frac{V_{pi}}{V_{0i}}$$

(單位:kgf)

	軸力	V _c	V_s	V _{0ix}	V_{pi}	V _{pi} / V _{0i}
C1	429771	72393	135939	208331	83865	0.40
C2	429771	73470	137961	211431	93846	0.44
C3	393957	66360	135939	202299	78788	0.39
C4	525276	86934	178084	265018	140229	0.53
C5	525276	86934	178084	265018	140229	0.53

表 3-123 15 層結構 Y 向
$$\frac{V_{pi}}{V_{0i}}$$

(單位:kgf)

	軸力	V _c	V _s	V _{0ix}	V_{pi}	V _{pi} / V _{0i}
C1	429771	70271	131955	202226	159471	0.79
C2	429771	69527	130558	200085	165303	0.83
C3	393957	64083	120335	184418	139688	0.76
C4	525276	86182	182062	268245	189301	0.71
C5	525276	86182	182062	268245	189301	0.71

(資料來源:本研究整理)

(二)強柱弱梁檢核

將各軸力納入並計算柱端、底彎矩,以及算出梁端彎矩,將柱彎矩總合與梁端彎矩 總合相除,其值需大於1.2,表示為強柱弱梁;若小於1.2,即表示不符合強柱弱梁。計 算值如表 3-124~表 3-128,可知其值皆大於1.2,皆符合強柱弱梁。

表 3-124 15 層建築結構 X 向
$$\frac{M_{nc}}{M_{nb}}$$
(第一、四列柱線)

(單位:tonf-m)

С	C1	C2	C2	C1
$M_{nc,ar{ m c}}$	268	300	300	268
$M_{nc, III}$	268	300	300	268
$\sum M_{nc}$	536	600	600	536
M _{nb}	225	225	225	225
M _{nb}	189	189	189	189
$\sum M_{nb}$		414	414	
M _{nb,max}	225			225
$rac{M_{ at kt}}{{ m M}_{ m R}}$	2.4	1.4	1.4	2.4

(資料來源:本研究整理)

表 3-125 15 層建築結構 X 向
$$\frac{M_{nc}}{M_{nb}}$$
(第二列柱線)

(單位:tonf-m)

	C3	C5	C5	C3
$M_{nc, { m ar k}}$	260	463	463	260

	C3	C5	C5	C3
$M_{nc, III}$	260	463	463	260
$\sum M_{nc}$	520	926	926	520
M _{nb}	225	225	225	225
M _{nb}	189	189	189	189
$\sum M_{nb}$				
M _{nb,max}	225	414	414	225
$rac{M_{ m kt}}{ m M_{ m R}}$	2.3	2.2	2.2	2.3

表 3-126 15 層建築結構 X 向立面
$$\frac{M_{nc}}{M_{nb}}$$
(第三列柱線)

(單位:tonf-m)

С	C3	C4	C4	C3
$M_{nc,ar{ m K}}$	260	463	463	260
$M_{nc, III}$	260	463	463	260
$\sum M_{nc}$	520	926	926	520
M _{nb}	225	225	225	225
M _{nb}	189	189	189	189
$\sum M_{nb}$				
M _{nb,max}	225	414	414	225

С	C3	C4	C4	C3
$rac{M_{ at k1}}{{ m M}_{ m R}}$	2.3	2.2	2.2	2.3

表 3-127 15 層樓建築結構 Y 向立面
$$\frac{M_{nc}}{M_{nb}}$$
(第一、四行柱線)

(單位:tonf-m)

С	C1	C3	C3	C1	
$M_{nc, ar{ m K}}$	510	510 447		510	
$M_{nc, \mathrm{III}}$	510	510 447		510	
$\sum M_{nc}$	1020	894	894	1020	
M _{nb}	187	187	187	187	
M _{nb}	187	187	187	187	
$\sum M_{nb}$		374	374		
M _{nb,max}	187			187	
$rac{M_{ m kt}}{ m M_{ m R}}$	5.5	2.4	2.4	5.5	

(資料來源:本研究整理)

表 3-128 15 層樓建築結構 Y 向立面 $\frac{M_{nc}}{M_{nb}}$ (第三行柱線)(資料來源:本研究整理)

(單位:tonf-m)

С	C2	C5	C4	C2
$M_{nc,ar{ m K}}$	545	625	625	545

196

С	C2	C5	C4	C2
$M_{nc, \mathrm{III}}$	545	625	625	545
$\sum M_{nc}$	M _{nc} 1090 1250		1250	1090
M _{nb}	187	187	187	187
M _{nb}	187	187	187	187
$\sum M_{nb}$		374	374	
M _{nb,max}	187			187
$rac{M_{ m kt}}{ m M_{ m R}}$	5.8	3.3	3.3	5.8

10.初步評估結果(PSERCB)

利用 PSERCB 將此建築物進行耐震能力初步評估,輸入資料分別為建築物之基本資 料、定性評估、參數設置、X 向斷面資料、Y 向斷面資料等......。圖 3-94 為輸入建築之 基本性質;圖 3-95 為結構系統之定性評分,靜不定程度為 3 跨,得分為 1.7 分、地下室 面積比為4,得分0分、平面對稱性為兩側大垮中間小跨度型及內部配置不對稱及立面 屬於一樓較標準層高,故分數分別為 3.0 及 1.5 分、柱之高深比為 2.667,得分為 2.5, 軟弱層嚴重性高,得分3.0分。由圖3-96可知結構細部之定性評分,由設計年份可知其 建造年分,得分為1.65,窗台及氣窗造成短柱性低、牆體造成短梁嚴重性低,得分皆為 1.0。圖 3-96 為結構現況方面: 柱及牆之損害程度高等及低等,得分為 2.0 及 0.4、裂縫 鏽蝕程度低,得分為1.0。圖 3-97 為額外增、減分,分別為分期興建或工程品質有疑慮、 曾經受災害者,如土石流、火災、震災、人為破壞等、使用用途由低活載重改為高活載 重使用者、傾斜程度明顯者、使用用途由高活載重改為低活載重使用者五項,分別得分 為 0、0、0、0、0 分。圖 3-98、圖 3-99 為輸入參數及斷面資料,輸入建築結構基本資 料,如混凝土抗壓強度、鋼筋降伏強度及柱、牆斷面資料等。將上述之得分得加總而得, 為定性評估分數為 14.1 分,如圖 3-100。由圖 3-100 可知定量評分為 0。其總分為定性 評分與定量評分相加,故可得知建築物耐震能力為59.1分,結果表示建築物之耐震能力 確有疑慮,宜進行詳細評估。其餘操作過程如圖 3-101 至圖 3-105 所示:圖 3-106 及圖 3-107 算出定量評分之 X 向建築物 475 年地震回歸期耐震能力為 0.385 g, Y 向為 0.339 g, X、Y 向均符合耐震標準;X 向建築物 2500 年地震回歸期耐震能力為 0.522 g,Y 向建 築物 2500 年地震回歸期耐震能力為 0.460 g, X、Y 方向上符合耐震標準。

評估損償與人員 申請人資料 建晶物基本資料			
建物石桶	1度中的10年代	詳估日期	評估者
64	DC083TAO08025	2017/10/02	+18-18
縣市	熔鎮市區	村里	地址(建幅人完整地址-商会展市和相信市面)
827 ·	<u>π</u> π	eg ·	※常用業業業ご約1號
10	地盤種類	建偶年度	101110
	#_# ·	1994/12/18	(16#5R27# ·
建物塞度[m]	用途体教(1)	X向朝住喜豐[Rx] ●	Y向朝性容冊[Ry] ●
50 Z	10 *	3.08	3.06
地上模層較	地下機關數	建筑物x向缓期TH 算公式:	建筑种Y向透圳T計算公式:
15	1	○ T=0.05h ₀ ^{0.75} (約力圖) = T=0.07h ₀ ^{0.75}	○ T+0.05h ₀ ^{0.75} (077) ⁽¹⁰⁾ = T+0.07h ₀ ^{0.75}
建築物位結構型式分類:	罐蒸物衍使用用进分群:	建築物俗機器分類:	本評估參考資料:
-NROIP IN	#台作家. *	六律以下 *	30(2+W2H) *

圖 3-94 基本資料 (資料來源: PSERCB 網站提供)

/結構系統 (単位:kgf-cm)				14
 1.醇不定程度 ○ 漏坪(1.0) ○ 雙坪(0.67) ● 三坪(0.33) 		2.他下至與機比ra ra(地下至與機與建美要模2比) 4	 3.平面射柄性 不良(1.0) 液切(0.5) (○) 肉(0) 	 4.宜商對納性 ○ 不良(1.0) ● 尚可(0.5) ○ 同(0)
O 四時以上(0)	款:1.7	分數:0.0	分數:3/	分散:1.5
5.级之物深比b 8.現之物深比b 4.825 5		6.柱之高深比6 4.柱之高采比6 2.667 分數:25	 7.軟弱器展発性 ※(1.0) ○ ⊕(0.67) ○ ⊕(0.33) ○ 無(0) 分数:33 	

圖 3-95 定性評估表(結構系統) (資料來源: PSERCB 網站提供)

分期與建或工程品質有疑慮 分期與建成工程品質有疑慮 0	曾經受災害者。如土石流、火災、震災、人為破壞等 曾經受災害者。如土石流、火災、震災、人為破壞等 ○	使用用途由低活戦重改為高活戦重使用者 使用用途由低活戦重改為高活戦重使用者 0	績斜程度明顯著 様約程度明顯者 ○
額外減分(所有項目相緣合最多減2分) (單位: kgf-cm)			•
使用用途由高活戦重改為低活戦重使用者 使用用途由高活戦重改為低活戦重使用者 0			

圖 3-97 額外增、減分 (資料來源: PSERCB 網站提供)

建築物重量(未使用之欄位請填0)(單位: tf-m)			
2樓~j樓之棲地板單位雲積靜載重[ttim ²] ●	(j+1)慢~k键之模地板革位面積靜戰重[tilm ²]	(k+1)e~屋顶之模地板單位面積靜數畫[timm ²]	
1.4	0	0	
*推估值○設計值	* 推估值 ○ 設計值	● 推估值 ○ 起話価	
2楼~j楼之楼地板華位面積活載量[ttim ²]	(j+1)樓~k樓之樓地板單位面積活載置[tt/m ²]	(K+1)使~屋顶之模地板草位面積活載量[tf/m ²]	
0.3	0	0	
◎ 推估值 ○ 設計值	●推估值 ○ 設計値	* 推估值 ○ 設計值	
2模~j模之總模地板面積[m ²]	(j+1)樓~K樓之總模地板面積[m ²]	(K+1)樓~屋頂之 <mark>總</mark> 棲地板面積[m ²]	
9467	0	0	
* 推估值○ 設計值	* 推估值 ◇ 設計值	● 推估值 ○ 政計值	
柱材料參數(未使用之欄位請填0)(單位:kgf.cm)			
混凝土抗整强度(f*c) ●	主筋降伏强度(ty) ●	雜肪降伏强度(tyv)	保護層厚度(c)
280	4200	2800	4
* 按休信○ 10計值	● 接伏信 ○ 1011倍	* 地位间 0 101+	● 建伏德 ○ 10 計構

圖 3-98 參數設置 (資料來源:PSERCB 網站提供)

一般性。但	E ROME Z	1進軍大講任 - 3	建重束铸造 机	刘逵罢末译位 1	作単信智之RC恒	標準總醫之得佳						
	an veer	Be	Ho	6/%)	Not	Num 1	No2	Muse 2	b4	No	1 Num	il ⊞kgf-cm
C1	RECT	120	60		#10	24	#6	0	320	#4	8	1 4
C2	RECT	120	60	24.1	#10	28	#6	0	320	#4	8	1 4
C3	RECT	100	60	20	#10	24	#6	0	330	#4	8	1 4
C4	RECT	110	80	(e.)	#10	32	#6	0	330	#4	8	1 2 0
C5	RECT	110	80	551	#10	32	#6	0	330	#4	8	1 2

圖 3-99 參數設置

(資料來源:PSERCB 網站提供)

鄉城	林智隆	2017-10-02	19.2	0.0	評估	19.2	分數小於等於30分!

圖 3-100 評分分數 (資料來源:PSERCB 網站提供)

壹、建築物基本資料表

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/9

鋼筋混凝土建築物耐震能力初步評估表

建物名稱	鄉城	建物編號	DC083TAO0002 5	
評估者	林智隆	評估日期	2017-10-2	

建物名稱 鄉城		建物編號	DC083TAO0002 5	建物地址	台南市東區東仁路1號				
評估者	評估者 林智隆		2017-10-2	e-mail	clot00001.cv04g@g2.nctu.edu.tw				
設計年度	86年5月以後	建物高度 h _n (m)	50.2	用途係數I	1				
地盤種類	第二類地盤	地上樓層數	15	地下樓層數	1				
建築物依樓層分類	頃: □五樓以下 ■六	樓以上							
建築物依結構形式分類: ■一般 RC 建物 □加强磚造(透天厝)□具弱層建物□其它:									
建築物依使用用途分類: □辦公室 □公寓 ■集合住宅 □商場 □住商混合□其它:									

圖 3-101 基本資料表

(資料來源:PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/9

貳、建築物耐震能力初步評估表

項次		項目	配分	評估内容	權重	評分
1	Γ	靜不定程度	5	□單跨(1.0)□雙跨(0.67) ■三跨(0.33)□四跨以上(0)	0.33	1.65
2]	地下室面積比, ra	2	$0 \leq (1.5 - r_a) / 1.5 \leq 1.0; r_a: 地下室面積與建築面積之比 r_a=4$	0	0.00
3	結	平面對稱性	3	■不良(1.0) □尚可(0.5) □良(0)	1.00	3.00
4	愽	立面對稱性	3	□不良(1.0) ■尚可(0.5) □良(0)	0.50	1.50
5	小統	梁之跨深比b	3		0.64	1.92
6	144	柱之高深比c	3		0.83	2.49
7	1	軟弱層顯著性	3	■高(1.0) □中(0.67) □低(0.33) □無(0)	1.00	3.00
8	結構	塑鉸區箍筋細部(由 設計年度評估)	5	□63 年 2 月以前(1.0) □63 年 2 月至 71 年 6 月(0.67) □71 年 6 月至 86 年 5 月(0.33) ■86 年 5 月以後(0)	0.00	0.00
9	一細細	窗台、氣窗造成短柱 嚴重性	3	□高(1.0) □中(0.67) ■低(0.33) □無(0)	0.33	0.99
10	нР	牆體造成短梁嚴重性	3	□高(1.0) □中(0.67) ■低(0.33) □無(0)	0.33	0.99
11	結	柱之損害程度	2	■高(1.0) □中(0.67) □低(0.33) □無(0)	1.00	2.00
12	構	牆之損害程度	2	□高(1.0) □中(0.67) ■低(0.33) □無(0)	0.33	0.66
13	現況	裂縫鏽蝕滲水等程度	3	□高(1.0) □中(0.67) ■低(0.33) □無(0)	0.33	0.99
14	定量	475 年耐震能力初步 評估	30	$\begin{aligned} & \underbrace{\mathfrak{M}}_{\mathcal{A}_{475}} \leq 0.25 \ , \ w=1 \ ; \underbrace{\mathfrak{M}}_{0.25} \leq \underbrace{\mathcal{A}_{e1}}_{\mathcal{M}_{475}} \leq 1, \ w=\frac{4}{3} \left(1 - \frac{\mathcal{A}_{e1}}{\mathcal{M}_{475}} \right) \ ; \underbrace{\mathfrak{M}}_{\mathcal{A}_{475}} \geq 1 \ , \ w=0 \\ & A_{e1} = \min[A_{e1,x}, \ A_{e1,y}] \ A_{e1,x} = 0.38 \ A_{e1,y} = 0.37 \ A_{e1} = 0.37 \end{aligned}$	0	0
15	分析	2500 年耐震能力初 步評估	30	$ \frac{\text{dis}}{H_{2100}} \leq 0.25 , w = 1 ; \frac{\text{dis}}{10.25} \leq \frac{A_{c2}}{H_{2100}} \leq 1, w = \frac{4}{3} \left(1 - \frac{A_{c2}}{H_{2100}} \right) ; \frac{\text{dis}}{10} \frac{A_{c2}}{H_{2100}} > 1 , w = 0 $ $A_{c2} = \min[A_{c2,x}, A_{c2,y}] A_{c2,x} = 0.52 A_{c2,y} = 0.50 A_{c2} = 0.50 $	0	0
分數總	計		100	評分	▶總計(P):	19.19

圖 3-102 耐震能力初步評估表 (資料來源: PSERCB 網站提供)

PSERCE

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/9

額夕	評	估項目:此部分為外加評分項目,評估人員應就表列「額外增分」、「額外減分」事項 各項最高配分為2分,總共最高配分為8分;減分最高配分為2分						
	A	分期興建或工程品質有疑慮	0					
額外	額 B 曾經受災害者,如土石流、火災、震災、人為破壞等							
增分	С	使用用途由低活載重改為高活載重使用者	0					
	D	傾斜程度明顯者	0					
額外減分	a	使用用途由高活載重改為低活載重使用者	0					
		額外評分總計(S):	0					
		總評估分數(R)=P+S=	19.19					

註:評估內容中w為計算之權重。

圖 3-103 耐震能力初步評估分數 (資料來源: PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆

列印日期:2017/10/9

H-X	建筑协资卸	
2 / / / / / / / / / / / / / / / / / / /	建未初頁前 1 400	■推估值 □設計值
(j+1) / / / / / / / / / / / / / / / / / / /	(m ²) 0.000	■進口道 □取目道
(1) (1) (安本) (安本) (安本) (安本) (安本) (安本) (安本) (安本	m^{2} 0.000	■進口區 □政司 區
2 / / / / / / / / / / / / / / / / / / /	0.300	■推估值 □設計值
(i+1) / / / / / / / / / / / / / / / / / / /	(m ²) 0.000	■推估值 □設計值
$(k+1)$ 樓~屋 佰 之 樓地板 面積活載 番 W_{22} (f)	$f(m^2) = 0.000$	■進山區 □設計值
2 樓~i 樓之總樓曲板面積 A. (m ²)	9487.000	■推估值 □設計值
(i+1)樓~k 樓之總樓地板面積 A ₂ (m ²)	0.000	■推估值 □設計值
(k+1)樓~屋頂之總樓地板面積 A ₃ (m ²)	0.000	■推估值 □設計值
建築物靜載重 $W_D = \sum_{i=1}^{3} w_{iD} \times A_i$ (kgf)	13281800.00	
建築物總載重 $W = \sum_{i=1}^{3} (w_{iD} + \frac{1}{2}w_{iL}) \times A_i$ (k	<i>rgf)</i> 14704850.00	
	late Live Laboration and	
汨海に特屈温度するのか	一樓性材科麥數	10. /1. /dz 3/1 3/1 /dz
花焼工11.堅強度 t c (kgf/cm ²)	280	
王筋降伏强度 f _y (kgf/cm ²)	4200	■推估值 □設計值
箍筋降伏强度 fyv (kgf/cm²)	2800	■推估值 □設計值
柱之保護層厚度 c (cm)	4	■推估值 □設計值

一樓溫材料參數									
RC 牆混凝土抗壓强度 fc (kgf/cm ²)	280	■推估值 □設計值							
RC牆主筋降伏强度 f _y (kgf/cm ²)	4200	■推估值 □設計值							
磚牆砂漿塊抗壓强度 fmc (kgf/cm²)	100	■推估值 □設計值							
磚牆紅磚之單軸抗壓强度 f₅ (kgf/cm²)	150	■推估值 □設計值							

圖 3-104 參數設置 Sell 本语: DSEDCD 细計提

(資料來源:PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building]

評估者:林智隆 列印日期-2017/10/0

													21년 日	刑:201//10/9
X 向定	量評估		建築物週期(sec): ■0.07 h _n ^{0.75} □0.05 h _n ^{0.75}								1.32	系統韌	性容量 R	3.08
一般 柱類 別	柱型 式 (type)	柱寬 / 直徑 (cm) (<i>B_c</i>)/(<i>D_c</i>)	柱 深 (cm) (H _c) /(D _c)	柱鋼 (%) (𝒫)	一樓柱 淨高 (cm) (h _i)	橫向箍、 繫筋號數 No	橫向箍、 繫筋根數 Num	橫向箍、 繫筋總斷 面積 (cm ²) A _v	横向箍、 繫筋間距 (cm) S	柱根數 (N _{ci})	撓曲破壞控 制 (kgf) (V _{m.coli})	剪力破壞控 制 (kgf) (V _{sui})	V _{coli} (kgf)	V _{coli} ×N _{ci} (kgf)
						一般	柱(一樓柱著	爭高與柱淨	深之比值(h	$(1/H_c)>2)$				
C1	RECT	120	60	2.71	320	#4	8	10.16	10	4	147438.68	203034.45	132694.81	530779.25
C2	RECT	120	60	3.17	320	#4	8	10.16	10	4	160475.48	202161.07	144427.93	577711.72
C3	RECT	100	60	3.26	330	#4	8	10.16	10	4	133111.26	193821.78	119800.13	479200.53
C4	RECT	110	80	2.96	330	#4	8	10.16	10	2	258442.84	273186.97	232598.55	465197.10
C5	RECT	110	80	2.96	330	#4	8	10.16	10	2	258442.84	273186.97	232598.55	465197.10
	一般柱之極限强度 ΣV _{coli} ×N _{el} (kgf) 2518085.72										8085.72			
	_													

	短柱 類別	柱型 式 (type)	短柱寬 / 直徑 (cm) (B _{sc})/(D _{sc})	短 柱深 / 直徑 (cm) (<i>H</i> _{sc})/(<i>D</i> _{sc})	短柱 淨長 (cm) (h _{sl})	橫向箍、 繫筋號數 No	橫向箍、 繫筋根數 Num	横向箍、 繁筋總斷 面積 (cm ²) A _v	横向箍、 繁筋間 (cm) S	短柱 根數 (N _{si})	V _{scoli} (kgf)	V _{scoli} ×N _{sci} (kgf)	
					3	短柱(短柱湾	長與短柱法	爭深之比值	$(h_{sl}/H_{sc}) \leq 2$?)			
									短柱之植	國强强度	$E \Sigma V_{scoli} \times N_{sci}$ (kgf)	0.00	
註: 柱深()	主: 柱深(H)平行地震力作用方向。												

圖 3-105 柱極限層剪力強度計算 (資料來源: PSERCB 網站提供) PSERCE

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/9

建築物 475 年地震回歸期耐震能力計算 (達容許割性容量地震之地表加速度))] - F H //J.2017/10
	j=1	j=2	j=3
$V_{uj} = C_{vij} \Sigma V_{coli} \times N_{ci} + C_{vij} (\Sigma V_{swi} \times N_{swi} + \Sigma V_{scoli} \times N_{sci}) + C_{vbj} \Sigma V_{bwi} \times N_{bwi}; j=1\sim3 \text{ (kgf)}$	1966867.440	1964965.881	2033354.217
新設計建築物之極限剪力强度 $(V_{100})_u = I \left(\frac{S_{aD}}{F_a} \right)_m W_D (kgf)$		2192010.774	
受評估建築物之降伏地表加速度 $A_{jj,x} = \frac{V_{ij}}{(V_{100})_u} \frac{IA_{475}}{Fu}$ (g); j=1~3	0.105	0.105	0.109
$ \begin{array}{l} \pi_{j}^{c} = \frac{c_{w} \times R_{w}(C_{w} \times \sum I_{w} \times R_{w}) + c_{w} \times R_{w}(C_{w} \times \sum I_{w} \times R_{w}) + c_{w} \times R_{w}(C_{w} \times \sum I_{w} \times R_{w}) + c_{w} \times R_{w}(C_{w} \times \sum I_{w} \times R_{w}) \\ \hline c_{w} \times \sum I_{w} \times R_{w} + c_{w} \times R_{w} + \sum I_{w} \times R_{w} + \sum I_{w} \times R_{w}) + c_{w} \times R_{w} + c_{w} \times R_{w} \\ j = 1 - 3 \end{array} ; $	1.773	3.354	4.800
$\mathbb{R}^*_{ij} = \begin{cases} 1 + \frac{(R_j^* - 1)}{1.5} (-4 \& \mathcal{I}_{-} \&) \\ 1 + \frac{(R_j^* - 1)}{2.0} (\pounds \& \& b) \\ j = 1 - 3 \end{cases}; j = 1 - 3 \end{cases}$	1.515	2.569	3.533
$F_{ij}^* = F_u(T, R_{ij}^*)$; j=1~3	1.515	2.569	3.533
$V_{u/}W_D$	0.148	0.148	0.153
建築物 X 向耐震能力 $A_{cl,x} = \max[A_{ij,x}F_{ij}^*; j = 1 \sim 3]_{(g)}$		0.385	
$\frac{A_{cl,x}}{M_{axx}}$		1.373	

圖 3-106 475 年地震回歸期耐震能力計算 (資料來源: PSERCB 網站提供)

耐震能力初步評估[Preliminary Seismic Evaluation of RC Building] 評估者:林智隆 列印日期:2017/10/9

建築物 2500 年地震回歸期耐震能力計算 (達韌性容量地震之地表加速度)

	j=1	j=2	j=3
$\sum_{u_j \in C_{v_ij} \subseteq V_{coli} \times N_{ci} + C_{v_{ij}} (\Sigma V_{swi} \times N_{swi} + \Sigma V_{scoli} \times N_{sci}) + C_{u_j} \Sigma V_{bwi} \times N_{bwi}; j=1\sim3 \text{ (kgf)}$	1966867.440	1964965.881	2033354.217
新設計建築物之極限剪力强度 $(V_{100})_u = I \left(\frac{S_{aD}}{F_u} \right)_m W_D (kgf)$		2192010.774	
受評估建築物之降伏地表加速度 $A_{_{y_j,x}} = \frac{V_{_{u_j}}}{(V_{_{100}})_u} \frac{IA_{_{475}}}{Fu}$ (g); $j = 1 - 3$	0.105	0.105	0.109
$\begin{split} R_{j}^{*} &= \frac{C_{ab} \times R_{ab}(C_{ab} \times \sum F_{ab} \times N_{ab}) + C_{ab} \times R_{bb} [C_{ab} \times (\sum F_{ab} \times N_{ab} + \sum F_{ab} \times N_{ab})] + C_{ab} \times R_{bb} (C_{ab} \times \sum F_{ab} \times N_{ab}) + C_{ab} \times (\sum F_{ab} \times N_{ab} + \sum F_{ab} \times N_{ab}) + C_{ab} \times \sum F_{ab} \times N_{ab}) \\ j &= 1 \sim 3 \end{split}$	1.773	3.354	4.800
$F_{uj}^* = F_u(T, R_j^*)$; j=1~3	1.773	3.354	4.800
V_{uj}/W_D	0.148	0.148	0.153
建築物 X 向耐震能力 $A_{c2,x} = \max[A_{jj,x}F_{ij}^{*}; j = 1 \sim 3]$ (g)		0.522	
$\frac{A_{c2,x}}{M_{2500}}$		1.451	
it: $\Sigma V_{bwi} \times N_{bwi} - \Sigma V_{bwdi} \times N_{bwdi} + \Sigma V_{bwdi} \times N_{bw3i} + \Sigma V_{bw2i} \times N_{bw3i}$	伝教の	~ ~ ~ ~ ~ [#]	○ 7年送加工

R _{col} · R _{sw}	汉 Kbw 兴议门	千戊有酮,建	DEE XH 1
設計年度	R _{col}	R_{sw}	R_{bw}
63年2月以前	2.4	2.0	3.0
63年2月至71年6月	3.2	2.0	3.0
71年6月至86年5月	4.0	2.0	3.0
86年5月以後	4.8	2.0	3.0

註: j=1 為 RC 牆 朝 性 充 分 發 揮; j=2 為 磚 牆 朝 性 充 分 發 揮; j=3 為構架朝性充分發揮;

、數 C _{vcj} 、C _{Rcj} 、C _{vsj} 、C _{Rsj} 、C _{vbj} 與 C _{Rbj} 建議如下:									
	j	1	2	3					
V	C_{vcj}	0.65	0.95	1					
V _{coi}	C_{Rcj}	0.35	0.70	1					
v	C_{vsj}	0.85	0	0					
V swi	C_{Rsj}	1	0	0					
$V_{\scriptscriptstyle bwi}$	C_{vbj}	0.95	0.85	0					
	C_{Rbj}	0.45	1	0					

圖 3-107 2500 年地震回歸期耐震能力計算 (資料來源: PSERCB 網站提供)

11.中高樓層初步評估結果

案例建築共有4根外柱、12内柱。由式(2-18)可知,外柱、内柱之單位面積側向強

度分別為 $\tau_{CE} = 121.86 - 6.12 \times 15 = 30.06tf / m^2 \cdot \tau_{CI} = 125.9 - 3.94 \times 15 = 66.8tf / m^2$,計算極限基底剪力強度X向及Y向分別為

$$V_{bs,x} = \sum_{j=1}^{N_{CE}} \tau_{CE} A_{CE} + \sum_{j=1}^{N_{CI}} \tau_{CI} A_{CI} + \sum_{j=1}^{N_{BW3}} \tau_{BW3} A_{BW3} + \sum_{j=1}^{N_{BW4}} \tau_{BW4} A_{BW4} + \sum \tau_{RC} A_{RC} = 908 tf$$

$$V_{bs,y} = \sum_{j=1}^{N_{CE}} \tau_{CE} A_{CE} + \sum_{j=1}^{N_{CI}} \tau_{CI} A_{CI} + \sum_{j=1}^{N_{BW3}} \tau_{BW3} A_{BW3} + \sum_{j=1}^{N_{BW4}} \tau_{BW4} A_{BW4} + \sum \tau_{RC} A_{RC} = 858tf$$

透過面積計算,可知此建築物2樓至頂樓層面積皆為9487m²,透過式(2-20)算得 此建築物總靜載重

 $W = 1.5 \times (2 \times 30.84 \times 20.94) + 1.4(12 \times 30.84 \times 20.94) + 1.7(30.84 \times 20.94) = 13884tf$

由案例介紹其為鋼筋混凝土建築物,該建物基面至屋頂高度為 50.2 公尺,由式(2-22) 可知週期

$$T = 0.07 h_n^{\frac{3}{4}} = 1.32s$$

根據建築物耐震設計規範及解說可知建築物為第二類地盤,鄰近新化斷層計算工址 短週期、一秒設計水平譜加速度係數如式(2-12)、式(2-24a)

$$S_{DS} = F_a N_A S_S^D = 1.0 \times 1.0 \times 0.7 = 0.7$$
$$S_{D1} = F_v N_v S_1^D = 1.3 \times 1.0 \times 0.4 = 0.52$$
$$S_{MS} = 1.0 \times 1.0 \times 0.9 = 0.9$$
$$S_{M1} = 1.1 \times 1.0 \times 0.5 = 0.55$$

計算工址設計水平加速度反應譜短週期與中長週期之分界 T₀^D

$$T_0^D = \frac{S_{D1}}{S_{DS}} = \frac{0.52}{0.7} = 0.743s$$

$$T_0^M = 0.611$$

由式(2-28a)判別, $T_0^D \leq T \leq 2.5T_0^D$,故工址設計水平譜加速度係數

$$S_{aD} = \frac{S_{D1}}{T} = 0.394$$

 $S_{aM} = \frac{S_{M1}}{T} = 0.41$

以本研究建議之結構系統韌性容量 R=3.08計算,且為一般工址與近斷層區域,故 容許韌性容量,如式(2-33)

$$R_a = 1 + \frac{(R-1)}{1.5} = 1 + \frac{(3.08-1)}{1.5} = 2.387$$

再代入地盤種類可得結構系統地震力折減係數(式(2-33)),得 $F_u = R_a = 2.387$ 、 $F_{u,m} = 3.08$,並透過式(2-34a)對工址設計水平譜加速度係數進行修正可得:

$$\left(\frac{S_{AD}}{F_{u}}\right) = 0.165 \le 0.3, \left(\frac{S_{AD}}{F_{u}}\right)_{m} = 0.165$$
$$\left(\frac{S_{AM}}{F_{u,m}}\right) = 0.135 \le 0.3, \left(\frac{S_{AD}}{F_{u}}\right)_{m} = 0.135$$

為算出耐震容量需求比,將結果代入式(2-36a),可得

 $R_{CD,475x} = 0.44$ $R_{CD,475y} = 0.422$ $R_{CD,2500x} = 0.56$ $R_{CD,2500x} = 0.516$

代入式(2-38)並計算耐震能力

$$A_{p,475x} = 0.123 < 0.4S_{DS} = 0.28$$
$$A_{p,475y} = 0.118 < 0.4S_{DS} = 0.28$$
$$A_{p,2500x} = 0.2 < 0.4S_{MS} = 0.36$$

$$A_{p,2500y} = 0.185 < 0.4S_{MS} = 0.36$$

以基本耐震性能之 E 值是否大於 100 分為評估標準,評估分數 E 大於 100 分表示並 無疑慮;若 E 值小於 100,表示建築物之耐震能力不足,須再進行詳細評估。故此結果 為小於 100 分,故須進行詳細評估。

第四章 結論與建議

第一節 結論

經本研究蒐集國際重大震災調查結果及相關文獻,並彙整近年來國內外建築物耐震 評估與補強技術報告與參考文獻,配合參酌國內外耐震設計研究現況與發展,針對中高 樓層建築物常因其商業用途及使用機能所需,其結構特性常產生力傳遞路徑不良、贅餘 度不足、底層軟弱、結構不規則效應過大及非韌性配筋等問題,以致易產生震損甚至倒 塌造成大量人命傷亡。本計畫針對臺灣常見的鋼筋混凝土造之既有中高樓層建築物,蒐 集 0206 美濃地震中臺南市區中高樓層災損案例,探討例如結構贅餘度因子、穩定性因 子及剛重比指標等參數,是否可有效篩選及檢視中高樓層建築物是否有底層軟弱、平面 與立面不規則效應、結構穩定性不足、結構贅餘度不足及力傳遞路徑不良等問題,以研 擬後續的既有中高樓層建物耐震初評或篩檢之改進對策。主要結論如下:

本計畫所提有關結構贅餘度因子、穩定性因子、結構不規則、剛重比指標、非韌性配 筋及梁柱構件破壞模式判別等參數與簡易程序,已彙整檢視其計算方法與流程,透過案 例分別求算演示各個指標與簡易程序,以驗證是否可有效篩選及檢視中高樓層建築物是 否有底層軟弱、平面與立面不規則效應、結構穩定性不足、結構贅餘度不足及力傳遞路 徑不良等問題,初步發現本計畫所針對之結構設計分析檢核參數與簡易程序,可適度量 化及篩檢整體結構及抗側力構件之耐震能力。

目前國內外習見既有鋼筋混凝土建物耐震初評程序例如國內正在推行的 PSERCB 等,在結構不規則性、底層梁柱構件強度與韌性及 P-Δ效應等往往僅倚靠工程師直覺定 性的判斷,在評估時易未能適切反應其對建物耐震能力之影響,但在實際建築物震災調 查結果發現這些結構特性常是導致既有中高樓層建物發生震損之重要因素,故應將結構 不規則性、底層梁柱構件強度與韌性及 P-Δ效應加以量化後適度融入建物耐震初評程序 中,為提升國內既有中高樓層建物耐震評估準確度的最有效的手段之一。

目前國內現行建築物耐震設計規範尚未針對結構贅餘度、P-A效應及樓層非線性側

207

向位移限制等,然而在台灣 921 大地震及 0206 美濃地震之建築物震災調查結果發現, 部份嚴重受損的建築結構之贅餘度明顯不足或 P-Δ效應甚大,或存在非線性側向位移過 大等現象,故未來仍應將這些重要因素適度納入耐震設計規範研修規劃之中。

第二節 建議

建議一

增修「鋼筋混凝土建築物耐震能力初步評估平台(PSERCB)」:中長期建議

主辦機關:內政部營建署、內政部建築研究所

協辦機關:中華民國全國建築師公會、中華民國土木技師公會全國聯合會、中華民

國結構工程技師公會全國聯合會

鑒於目前習見之既有建物初評流程中未能將結構不規則性、底層梁柱構件強度與韌 性及P-A效應等加以量化作為評估之具體依據,尤其對既有中高樓層建物有可能影響其 評估結果之準確度,故建議在例如PSERCB初評流程中有關結構系統之平面對稱性與立 面對稱性,可參考本計畫所擬之結構不規則性量化等級作為評分標準;並將剛重比指標 或結構穩定性因子列入評估項目中以適切反映P-A效應;另外,亦可將本計畫所採用之 柱構件剪力比指標與強柱弱梁檢核指標列入評估項目中以適切考量梁柱破壞模式之影 響。後續將持續與PSERCB研究團隊、專家學者,與建築師及專業技師公會研商取得共 識後,由主辦機關進行「鋼筋混凝土建築物耐震能力初步評估平台(PSERCB)」增修訂 工作。建議內政部建築研究所未移交評估平台(PSERCB)至內政部營建署前,本項業務 仍由內政部建築研究所主辦,俟評估平台(PSERCB)移交至內政部營建署後,本項業務

建議二

增訂「建築物耐震設計規範及解說」有關結構贅餘度相關規定:中長期建議 主辦機關:內政部營建署

協辦機關:內政部建築研究所

208

由於國內現行建築物耐震設計規範尚未訂定有關結構贅餘度之相關規定,然而結構 贅餘度之良窳與否著實會影響中高樓層建物之耐震性能,故建議應儘速納入國內現行建 築物耐震設計規範修訂規劃內容中。建議增訂條文及解說內容如下:

條文部份:

任一結構可依其配置,以下列方式決定結構贅餘度因子ρ,並以ρ值乘以結構韌性容 量R以反映結構贅餘度之影響:

在考慮的地震方向上,至少有兩個平行的單跨度抗震構架,p=0.8。

在考慮的地震方向上,至少有兩個平行的雙跨度抗震構架,p=1.0。

在考慮的地震方向上,至少有三個平行的三跨度抗震構架,ρ=1.25。

解說部份:

在MOC-2008規範(Comisión Federal de Electricidad, 2009)條文之規定中,使用抗震構 架之跨度數來反應結構贅餘度之大小,並用結構贅餘度因子ρ來修正結構韌性容量以反 映結構贅餘度對耐震能力之影響,根據Tena-Colunga and Cortés-Benítez (2015)之研究, 結構贅餘度越大,可有效確保結構韌性容量及抗側力強度。

第三節 後續研究課題規劃建議

對於產權複雜,或因工程技術以外之因素而無法完成整體評估及補強作業之建築物,例如建物低樓層為商場,其上為住宅之住商混合情況,常因其所有權人間不易達成 共識,或現況不允許整體結構補強之情況,但經初評結果有耐震安全疑慮須緊急補強 者,須儘速另訂簡易的耐震評估程序與局部補強設計方法,以優先確保建物無局部或整 體崩塌之疑慮為其性能目標,以簡易的耐震補強工法如增加斜撐或框架等施工方式快速 施工,期於短時間內大幅提高此類建築軟弱樓層之抗震能力。為強化既有建物耐震補強 整合意願之誘因,故須儘速研議針對老舊公寓大廈之耐震能力初步評估結果為危險度甚 高者,可提供短期緊急性之處理措施,並將該措施定義為階段性補強,其中須先建立建 物崩塌潛能評估方法,藉由一系列之崩塌潛能量化指標以呈現建物是否有局部或整體崩 塌之疑慮,若有高度疑慮者,應儘速報請主管機關同意後得優先進行階段性耐震補強, 該補強設計應以優先確保無局部或整體崩塌之疑慮為其性能目標。

其次,鑒於目前台灣習見的建築物耐震評估與補強方法常僅針對主體結構及局部結 構元件之反應,仍未能適切考慮非結構元件損失的影響。但非結構元件與設備不但常佔 結構物整體成本的大部分,也往往是耐震能力較差的部份,在中小型地震作用中即有可 能造成一定程度損害之元件,實應被納入耐震性能評估中。故應發展出簡易可行亦兼具 考量非結構元件與設備之耐震評估程序,期可供業主做決策之參考及識別耐震脆弱元件 之依據。

在此針對後續研究課題規劃方向提出下列建議:

(一)建物崩塌潛能量化指標與評估程序研擬

建物崩塌潛能與防崩塌能力量化指標之研擬,例如:

- 結構整體資訊(例如結構基本圖說、地震危害度、材料性質、結構現況等)
- 樓層需求容量比(樓層剪力需求、柱剪力強度、版柱系統、底層柱剪力強度等)
- 結構反應(結構贅餘度及穩定性、等效降伏強度、系統強度比、柱剪力強度、版柱 系統、底層柱剪力強度等)
- 柱構件評估(樓層側位移角需求、關鍵樓層、柱位移能力、最大扭矩放大係數、意
 外扭矩放大係數、柱位移需求容量比等)
- 建築崩塌潛能評等(柱評等、樓層評等、建築評等、不連續性評等)

本研究內容亦應研討各量化指標與建物崩塌潛能之相關性,做為量化指標選擇優先 性之依據,並初步建立建物崩塌潛能評估程序。

(二)既有鋼筋混凝土建物崩塌潛能評估示範案例製作及應用策略研擬

就研擬完成之建物崩塌潛能量化指標與評估程序,本年度蒐集台灣中高樓層實際災 損案例,用以測試驗證該建物崩塌潛能評估程序之適用性與合理性,並考量政策執行推 動層面,研擬台灣既有中高樓層鋼筋混凝土建物崩塌潛能評估應用與執行策略。

(三)既有鋼筋混凝土建物倒塌防止能力可信度分析與應用研究

針對台灣既有鋼筋混凝土建築結構特性,探究各種建物崩塌防止能力可信度分析方法,其中蒐集國內外建物倒塌行為分析模擬技術,結合機率統計手法以估算建物之崩塌 潛能與倒塌防止能力,進而量化為建物崩塌防止能力之可信度。

(四)既有建物非結構元件與設備耐震評估程序研擬

鑒於建築物功能(Functionality)的定義不僅取決於結構本身的耐震表現,同時也 取決於非結構及設備的耐震表現。如科技廠房與醫院等,隨著結構型式、非結構元件及 設備的不同,整體結構之耐震性能要求亦因而不同。由美國巷 1989 年 Loma Prieta 地震、 1995 年 Northridge 地震及台灣 921 地震經驗可知,若要在大地震後保有生命安全、正常 運作等性能,除提升建築結構體耐震能力,亦應同時提升機電等功能性設施,以及重要 設備等的耐震性能。目前台灣習見的建築物耐震評估與補強方法常僅針對主體結構及局 部結構元件之反應,仍未能適切考慮非結構元件損失的影響。根據 NIBS 對美國辦公大 樓、旅館、醫院等房屋結構的統計,結構元件(structural components)佔整體成本不到 20%。然而,超過 80%的成本集中於非結構元件與設備(nonstructural components and contents)。故非結構元件與設備不但佔結構物整體成本的大部分,也往往是耐震能力較 差的部份,在中小型地震作用中即有可能造成一定程度損害之元件,實應被納入耐震性 能評估中。本年度計畫擬引入機率式評估方法,其中審視耐震性能評估的每一環節,包 含地震強度、材料性質、結構反應、破壞情況等項目的不確定性,以機率統計手法展現 各種參數的變異性,試圖發展出簡易可行亦兼具考量非結構元件與設備之耐震評估程 序,期可供業主做決策之參考及識別耐震脆弱元件之依據。

參考書目

- ACI 318-08 (2008), Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08), Farmington Hills, MI.
- [2] ACI 318-14 (2014), Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14), Farmington Hills, MI.
- [3] ASCE/SEI 7-02 (2002), Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-02, published by the American Society of Civil Engineers for the Federal Emergency Management Agency, Washington, D.C.
- [4] ASCE/SEI 7-05 (2005), Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-05, published by the American Society of Civil Engineers for the Federal Emergency Management Agency, Washington, D.C.
- [5] ASCE/SEI 7-10 (2010), Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10, published by the American Society of Civil Engineers, Reston, Virginia.
- [6] ASCE/SEI 41-06 (2006), Seismic Evaluation and Retrofit of Existing Buildings, ASCE/SEI 41-06, published by the American Society of Civil Engineers, Reston, Virginia.
- [7] ASCE/SEI 41-13 (2014), Seismic Evaluation and Retrofit of Existing Buildings, ASCE/SEI 41-13, published by the American Society of Civil Engineers, Reston, Virginia.
- [8] ATC-40 (1996), "Seismic Evaluation and Retrofit of Existing Concrete Building", ATC 40, Applied Technology Council.
- [9] ATC-63 (2008), Recommended Methodology for Quantification of Building Seismic Performance and Response Parameters, Project Report-90% Draft, Applied Technology Council, Redwood City, CA.
- [10] Arturo Tena-Colunga and José Antonio Cortés-Benítez, (2015), "Assessment of Redundancy Factors for the Seismic Design of Special Moment Resisting Reinforced Concrete Frames", Latin American Journal of Solids and Structures, No.12, pp.2330-2350.
- [11] BSSC (2003), NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (2003 Edition), FEMA 450, prepared by the Building Seismic Safety Council for the Federal Emergency Management Agency, Washington, D.C.
- [12] ETABS 2013, "Static and Dynamic Finite Element Analysis of Structure", Computer and Structures Inc., Berkeley, C.A., USA
- [13] FEMA 273/274, (1997), "NEHRP Guidelines for the Seismic Rehabilitation of Buildings", Federal Emergency Management Agency.

- [14] FEMA 356, (2000), "Prestandard and Commentary for the Seismic Rehabilitation of Buildings", FEMA 356, published by the American Society of Civil Engineers for the Federal Emergency Management Agency, Washington, D.C.
- [15] FEMA 451, "Instructional Material Complementing Design Examples", Seismic Load Analysis.
- [16] FEMA P-58, (2012), "Seismic Performance Assessment of Buildings", Federal Emergency Management Agency, Washington, D.C.
- [17] Haselton CB. (2006), "Assessing Collapse Safety of Modern Reinforced Concrete Moment Frame Buildings", PhD Thesis, Department of Civil and Environmental Engineering, Stanford.
- [18] Heidebrecht, A.C. and Stafford Smith, B (1973), "Approximate analysis of tall wall-frame structures", Journal of the structural division.
- [19] Ibarra LF, Krawinkler H. (2005), "Global Collapse of Frame Structures under Seismic Excitations", The John A. Blume Earthquake Engineering Research Center, Department of Civil Engineering, Stanford University, Stanford, Report No. 152.
- [20] ICBO (2000), "International Building Code", 2000 Edition, prepared by the International Code Council, Whittier, CA.
- [21] ICBO (2003), "International Building Code", 2003 Edition, prepared by the International Code Council, Whittier, CA.
- [22] ICBO (2012), "International Building Code," 2012 Edition, prepared by the International Code Council, Whittier, CA.
- [23] IBCO (2006), "International Building Code (IBC 2006)", prepared by the International Code Council, Whittier, CA.
- [24] MOC-2008 (2009), Manual de diseño de obras civiles, diseño por sismo. Comisión Federal de Electricidad, México, November (in Spanish).
- [25] Muto, K (1965), "Seismic Analysis of Reinforced Concrete Building", Shokoku-sha Publishing Co., Inc, Japan.
- [26] Nicola Caterino, Edoardo Cosenza and Behnam Mahzoun Azmoodeh (2013), "Approximate Methods to Evaluate Storey Stiffness and Interstory Drift of RC buildings in Seismic Area", Structural Engineering & Mechanics Vol.46, No.2, pp. 245-267.
- [27] Paulay, T. and Priestley, M.J.N (1992), "Seismic design of reinforcement concrete and mansory buildings", John Wiley & Sons Inc., NewYork.
- [28] SEAOC Vision 2000, (1995), "A Framework for Performance-based Design", California Office of Emergency Services.
- [29] Vamvatsikos D and Cornell C A, (2002), "Incremental Dynamic Analysis", Earthquake Engineering and Structural Dynamics, Vol.31, No.3, pp. 491-514.
- [30] 中國土木水利工程學會,(2011),「混凝土工程設計規範與解說(土木 401-100)」, 科技圖書。

- [31] 中華人民共和國住房和城鄉建設部,2010,「高層建築混凝土結構技術規程 JGJ 3-2010」,中國建築工業出版社,北京,中國。
- [32] 內政部,1974,「建築技術規則」,台內營字第 573693 號令公布實施,臺灣,臺 北。
- [33] 內政部,2006,「建築物耐震設計規範及解說」,台內營字第 0940087319 號令修 正,臺灣,臺北。
- [34] 吳俊霖、郭武威、黃世建、楊元森、羅俊雄,2009,「在地震力作用下非韌性鋼筋 混凝土構架倒塌行為研究」,國家地震工程研究中心研究報告(NCREE-09-025),臺 灣,臺北。
- [35] 林士涵、Soheil Yavari、吳俊霖、黃世建、Kenneth J. Elwood、楊元森、翁樸文、 Beyhan Bayhan、Jack P. Moehle, 2010,「非韌性配筋鋼筋混凝土構架振動台實驗 研究」,國家地震工程研究中心研究報告(NCREE-10-002),臺灣,臺北。
- [36] 張筑媛,2017,「中高樓層初步評估」,碩士論文,國立臺灣大學土木工程學系, 臺灣,臺北。
- [37] 蔡宛婷,2015,「鋼筋混凝土橫箍柱耐震圍束之研究」,碩士論文,國立臺灣大學 土木工程學系,臺灣,臺北。

附錄一 第1次工作會議意見與回覆

開會時間:106年6月7日(星期三)10時00分 開會地點:內政部建築研究所13樓簡報室(新北市新店區北新路三段200號) 主持人:陳建忠 組長 與會專家學者:周中哲教授、邱建國教授

審查委員		審查意見	意見回覆
一、周中哲教授	1.	選擇有傾倒及無傾倒的大樓	期中至期末階段會針對已蒐集的
駿民(國立臺灣大		利用此方法來評估,才可檢	案例圖說資訊,至少製作一個實
學土木工程系)		核此方法是否可適用在一般	際上已傾倒或嚴重破壞的案例建
		性的大樓,無傾倒及傾倒的	物進行分析比較。
		指标均可反應出。採用真實	
		結構較實際	
	2.	將類維冠大樓與實際結構物	因維冠大樓目前正進行司法訴訟
		的差異性應說明清楚	程序,本計畫報告內容應避免引
			用其相關圖說資訊,但會就本計
			畫所提之類維冠大樓結構資訊力
			求詳盡說明清楚。
	3.	贅餘度因子的考慮在設計	目前美國 IBC2012 及墨西哥
		用,在評估時如何用,因為	MOC2008 規範均將贅餘度因子
		非量化的指標如何去根據實	的評估方式儘量加以量化,故應
		際結構物反映出ρ	可就實際結構物的結構配置加以
			判別。
二、邱建國教授	1.	進行評估時,報告所提及之	期中至期末階段會針對本計畫所
駿民(國立臺灣科		因子(贅餘度因子、P-Δ)如	提之結構設計檢核參數與量化指
技大學營建工程		何反應於構件及系統之耐震	標,利用所選定之數個案例進行
系)		能力上	評估與估算,並與其實際災損原
			因進行比對,以查驗各個因子對
			構件及整體結構耐震能力的影
			響。
	2.	是否舉例說明各評估方法對	目前常見的建築結構耐震初評方
		於贅餘度因子、P-Δ之反應	法往往以工程師現場勘察目視結
			果或檢視結構圖說資訊加以判
			別,主要取決於工程師專業經驗

審查委員	審查意見	意見回覆
		判斷,故對例如結構贅餘度、 $P-\Delta$
		效應往往無法定量化,有可能導
		致其評估結果未能適切反應其耐
		震能力或與其災損原因之關連
		性,故本計畫主要利用贅餘度因
		子、P-Δ 因子、構件破壞模式判
		別及結構不規則分類等參數,與
		災損原因進行連結,預期提出可
		適切反映既有結構耐震能力之初
		評方法。
	3. 不同構件之考量,當中高樓	期中至期末階段進行研擬既有建
	層進行分析時,如壁體、非	物耐震初評或篩檢程序時,會藉
	結構牆等如何考慮	由案例分析以探討如何考慮例如
		剪力牆或非結構牆等構件之影
		響。
	4. 未來提出之評估流程或構架	會藉由數個案例分析以探討各個
	應先確立,再進行關鍵因子	關鍵因子對耐震能力之敏感度分
	之量化分析,以便未來之應	析,使未來提出之評估流程或架
	用	構架更加合理可行。
三、陳建忠組長	1. 計畫表格架構指標參數六項	計畫表格架構所列六項指標參數
(內政部建築研究	與調查結果五項不一致,是	與五項調查結果非一對一之對應
所)	否已涵括?而且其中是現有	關係。
	國內規範,部分是國外規	其次,所列結構設計檢核參數之
	範,包括國內規範之檢討,	案例分析結果,應可作為國內耐
	以及國外借鏡,請務實就其	震規範修訂之參考。
	成果提供修正意見	
	2. PSERCB的試算,數值與檢核	本計畫會針對常見之初評方法
	接近,如是鑑别性不足,則	(例如 PSERCB)進行案例評估比
	可提供原則性改進意見,以	較,屆時應可提供相關之原則性
	便提供另一專案調查參考	改進意見,以便提供其它專案調
		查參考。

附錄二 期末審查意見與回覆

開會時間:106年10月31日(星期三)09時00分

開會地點:內政部建築研究所13樓簡報室(新北市新店區北新路三段200號)

審查委員	審查意見	意見回覆
一、陳建忠組長	1. 本案所完成 PSERCB 的程式	本計畫主要針對有關既有中高樓
	開發,宜請將原始碼程式說明	層建物初評程序,與力傳遞路徑
	及軟件交存本所。(其分析宜	不良、贅餘度不足、底層軟弱、
	有可綜合交叉分析、統計功	結構不規則效應過大及非韌性配
	能)	筋等因素之相關性,以研擬例如
		PSERCB 初評等程序之修正方
		案,並未撰寫程式碼或軟件,但
		會將本計畫的成果與相關建議傳
		達給 PSERCB 研發團隊參酌修
		正。
	2. PSERCB 所建議修正部分是	本計畫針對結構不規則性、底層
	否以表面量测、目視及有內部	梁柱構件強度與韌性及 P-ム效
	無法鑽心探視的參考值(如剛	應等提出相對應之量化方法,工
	重比等)可参考的方式來修正	程師若無法獲取建築結構圖說等
	或增列,以降低人力負擔。	資訊,或無法進行內部混凝土鑽
		心取樣等,可依工程上之經驗值
		配合參酌本計畫所提之量化指標
		以進行初評,應可適切彌補相關
		資訊不足的缺憾。
	3. 修正的 PSERCB 請檢核是否	根據本計畫所進行之案例研討中
	較有鑑別度?是否以 0206 已	發現有關底層梁柱構件強度與韌
	收集的倒塌案例核算即知,如	性及 P-Δ效應等與建物嚴重損
	怎麼修正在鑑別度上產生效	壞或倒塌原因有明顯相關,故建
	果,請具體反映,以便	議 PSERCB 初評程序可適度將有
	PSERCB 協助研修,各研究人	關結構不規則性、底層梁柱構件
	員注意參考。	強度與韌性及 P-Δ效應等參酌
		本計畫所建議之量化方法,加以
		量化後融入定量評估內容之項目
		與分級,應可適度提昇其鑑別度。

審查委員	審查意見	意見回覆
二、林鴻志建築	1. 本案題目與研究內容之關聯	本計畫題目所提底層軟弱與扭轉
師	性須再清楚一些,就其實際內	不規則等內容,利用結構不規則
	容主要是放在耐震初步評估	性、底層梁柱構件強度與韌性及P
	法比較研究及建議。	- △效應等提出對應之量化方
		法,並經一系列之案例研討以探
		究其對既有中高樓層建物耐震能
		力之影響
	2. 請團隊加強說明歷年耐震設	本計畫將在成果報告簡要整理近
	計規範之影響極大,以我所在	年建築物耐震規範的主要變革及
	某區域而言,光是新舊規範在	其原因,以說明其新舊規範差異
	某條件下,設計地震力竟可達	所在。
	到 30%之差異(新規範較高),	
	而未列為耐震不足之因素,實	
	為不足(上述所謂舊規範泛指	
	建築技術規則構造篇)。	
三、陳焕煒副總	1. 案例評估結果「梁之跨深比」	梁之跨深比意指梁構件跨度長與
	的定義為何?簡報提及幸福	梁深之比值。
	與旺林深梁過淺,但跨深比確	
	比較小?	
	2. 簡報資料 P.3 勘災分布圖都是	報告中圖表皆改以正體字為準。
	「簡體字」?母片有「國家地	
	震工程研究中心」似不妥。	
	3. 本研究對於目前的耐震初評	謝謝委員建議。
	方式能有效改進且執行的方	
	式尚屬簡易。	
四、王亭復技師	1. 本案若為補充 PSERCB 初步	本計畫所提(1)贅餘度;(2)穩定因
	評估,則(1)贅餘度;(2)穩定	子;(3)立面不規則;(4)耐震容量
	因子;(3)立面不規則;(4)耐	需求比之量化方法時皆力求儘量
	震容量需求比等應予簡化,不	不必進行結構分析,利用圖說資
	必結構分析且數據化。	訊及簡易估算方式直接進行簡易
		估算即可。
	2. 贅餘度亦即 PSERCB 中之第	謝謝委員建議,遵照辦理
	(1)項靜不定,或可依 MOC 規	
	範給分。	
	3. PSERCB 第(3)項中平面對稱	謝謝委員建議,遵照辦理
	性,則宜依技術規則表 1.2 之	
	2.3 項予量化給分。	

審查委員		審查意見	意見回覆
	4. PSEI	RCB 第(4)項中立面對稱	謝謝委員建議,遵照辦理
	性,	則宜依技術規則表 1.1 或	
	IBC(1a, 1b, 1c, 2, 3, 4, 5, 5a)予	
	量化	,若為極軟層(lc)及極弱	
	層(5:	a),則初評給分應予 60 分	
	不及	格。	
	5. 極軟	层之各层横向刚度可简	有關樓層側向剛度之簡易估算方
	化為	各柱及牆上下均為固	法會在成果報告中再加詳細說
	接,	$\mathbb{P} \ k_{c} = \frac{12 EI_{c}}{h^{3}} \ (P.23) \ ,$	明。
	$k_w =$	<u>GA</u> 1.2h予計算。	
	6. 極弱	層則依 P.39 初步評估簡	謝謝委員建議,遵照辦理
	單計	- 算耐震容量需求比	
	RCD	,依其評分反推入	
	PSEI	RCB 第(7)項中,惟若	
	RCD	<0.5(即 E<50%)則屬極弱	
	層,	此第(7)項直接計 60 分為	
	不合	格。	
	7. 增列	穩定因子 <i>θ</i> ,為簡化計	謝謝委員建議,遵照辦理
	算,	依本研究 P.15 公式	
	$ heta_{ m max}$	$=rac{0.5}{C_d} \le 0.25$, 若大於	
	0.25	,則在初評給 60 分不合	
	格,	另分 0.1、0.15 酌給分。	
五、邱昌平教授	1. 本研	究目前完成之重點在第	已改正,謝謝委員悉心指正。
	三章	,以第二節至第六節的六	
	個既	有中高樓層建築物進行	
	耐震	初評,所得之 Ex、Ey值皆	
	小於	100分,須進行詳評。其	
	所採	之 PSERCB 方法等證明	
	方法	可行(第二章第五節),但	
	圖 2-	22 中公式(2.5.12)(2.53)	
	及(2.	54)等似與第四節、第五	
	節中	之(2-1)至(2-32)等不符。	
	2. 改進	補強對策為何,似尚敘明	有關改進補強對策會在成果報告

1.1.4.77	N. 1. N	h = - 7
審查委員	審查意見	意見回覆
	於成果報告中(簡報中已有)。	中再加具體說明。
	3. 6 個案例對 B1(或 B1、B2)地	有關本計畫所研討的6個案例地
	下層之結構耐震力與其在初	下層相關資訊,若已有獲取相關
	評中之位階或如何量化未說	圖說者則補充於成果報告中,並
	明之。	說明其在初評中之位階及量化方
		式。
	4. 原有建築 A/E 圖之檢核與現	建議營建署等相關單位在推動執
	場實地探勘之比對,使用中有	行既有建物初評作業時,應要求
	否嚴重之結構變更或超限使	工程師進行現場實地探勘之比
	用等皆未見於流程中。	對,並調查使用中有否嚴重之結
		構變更或超限使用等,且應列入
		初評估程序有關結構現況之評估
		內容中。
	5. 30 年前已一再強調軟弱層及	建議營建署等相關單位應再適切
	扭轉效應之弊病,為何仍一再	檢討建築監督管理制度與相關法
	出現?	規,強化設計要求能確切落實。
	6. 結論與建議中提及 P-∆效	建議初評程序應納入有關工址所
	應,更應考慮單薄中高樓而只	在土層地盤資訊,並檢討有否產
	有入土一層時,於軟弱層 B1	生 rocking 效應及檢核邊柱拉拔
	層之 rocking 效應及邊柱拉拔	力之能力是否足夠。
	力之能力檢核,不宜一昧將尚	
	部結構模擬完全固定於 GL	
	面。	
	7. 文字修正	謝謝委員建議,遵照辦理
	(1)第三章中第一節至第六節	
	的文字結尾:須在進行詳細	
	評估,「在」字改為「再」字。	
	第二節中興建年代之描述有	
	81 年、79 年。	
	(2)第三章第四節之圖 3-55 有	
	甲棟及乙棟(須加註),而在	
	6、7、9中只見乙棟,請本節	
	再修正。	
六、曾慶祥協理	1. P.201:評估項目「剛重比指	請修訂「剛重比指標」權重 W的
	標」沒有訂定權重 W,請補	訂定方式,謝謝委員指正。
	充。	
	2. P.202、203:建議三,增訂有	已增補有關結構贅餘度、P-∆ 效

審查委員	審查意見	意見回覆
	關結構贅餘度、P-△ 效應及樓	應及樓層非線性側向位移限制等
	層非線性側向位移限制等及	及相關規定草案之具體建議內
	相關規定,請說明具體建議內	容。
	容。	
附錄A 建築結構樓層側向勁度計算方法

A.1 原理與模型特性

A.1.1 基本假設

- 一. 建物質量沿樓層高度分佈均勻,
- 二. 結構側向勁度沿樓層高度分佈均勻,

三. 各振態形狀函數可用各振態側向力作用所得之彈性側向變位形狀函數取代。

A.1.2 簡化模型力學原理

若將建築結構看成如圖 A.1(a)由撓曲懸臂梁與剪力懸臂梁以傳遞水平力之軸向剛性連桿 相連而成的連體系統,此時兩個懸臂梁之側向變位為相等。如圖 A.1(b)所示,若簡化模 型承受一側向力 $\omega(z)$,使其兩個懸臂梁間之水平內力分佈為 q(z),且各懸臂梁自由端處 各有一水平集中力 Q 來維持撓曲與剪力懸臂梁間之變位諧和與力平衡,故可得到撓曲懸 臂梁與剪力懸臂梁之控制微分方程式分別如下:

圖 4.7 多樓層建築結構之簡化力學模型

flexural cantilever beam:

$$-EI\frac{d^{3}u}{dz^{3}} = \int_{z}^{H} \omega(z) - q(z)dz - Q$$
(A.1)

其中 u 為側向變位, EI 為撓曲剛度, H 為建物高度,

shear cantilever beam:

$$GA \frac{du}{dz} = \int_{z}^{H} q(z) dz + Q$$
 (A.2)

其中 GA 為剪力剛度,

將(A.1)、(A.2)式分別加以微分後並相加,可得下式:

$$\frac{d^4u}{dz^4} - \frac{\alpha^2}{H^2} \frac{d^2u}{dz^2} = \frac{\omega_i(z)}{EI}$$
(A.3a)

$$\frac{\alpha^2}{H^2} = \frac{GA}{EI}$$
(A.3b)

其中 α 為剪力剛度與撓曲剛度之比值,在此用以反映此一簡化模型之側向變位中撓曲與 剪力側向變形參與程度之比例。若當 α 為 0 時,建物可視為近似純撓曲模型;而當 α 為 無限大時,建物可視為近似純剪力模型。而 EI 與 GA 之計算方式如下:

$$EI = \sum (EI)_j \tag{A.4a}$$

$$GA = \sum (GA)_j \tag{A.4b}$$

其中 $(EI)_j$ 為第j個垂直構件之撓曲剛度,而各樓層之 racking rigidity $(GA)_i$ 隨結構系統 配置而有所不同,主要分類及其計算方式如下:

(1) Coupled Shear Wall (如圖 A.2):

$$\left(GA\right)_{i} = \frac{12EI_{b}l^{2}}{b^{3}h} \tag{A.5}$$

(2) Rigid frame (如圖 A.3):

$$(GA)_{i} = \frac{12E}{h\left[\frac{1}{\sum\left(\frac{I_{b(i)}}{I_{(i)}}\right)} + \frac{1}{\sum\left(\frac{I_{c(j)}}{h}\right)}\right]}$$
(A.6)

(3) Wall and Column (如圖 A.4):

$$(GA)_{i} = \frac{6EI_{b}}{lh} (1+r)(1+2r+s)$$
(A.7)

其中r = b/l, $s = (\beta - 3r - 1)/(\beta + 2)$, 而 $\beta = (6EI_c/EI_b) \cdot (l/h)$, 若柱兩側皆與牆連接, 則兩側之 (GA_i) 皆要計算並相加。

- (4) Braced Frame :
 - A. Single Diagonal Bracing (圖 A.5 (a)):

$$\left(GA\right)_{i} = \frac{hl^{2}E}{\left[\frac{2h^{3}}{A_{c}} + \frac{d^{3}}{A_{d}}\right]}$$
(A.8)

B. Double Diagonal Bracing (圖 A.5 (b)):

$$\left(GA\right)_{i} = \frac{2hl^{2}E}{\left[\frac{h^{3}}{A_{c}} + \frac{d^{3}}{A_{d}}\right]}$$
(A.9)

C. K Bracing (圖 A.5 (c)):

$$(GA)_i = \frac{hl^2 E}{2\left[\frac{h^3}{A_c} + \frac{d^3}{A_d}\right]}$$
(A.10)

D. Full-Story Knee Bracing (圖 A.5 (d)):

$$(GA)_{i} = \frac{2hE}{\left[\frac{h^{2}l}{6I_{b}} + \frac{h^{3}}{u^{2}A_{c}} + \frac{d^{3}}{u^{2}A_{d}}\right]}$$
(A.11)

圖 A.2 Coupled Shear Wall Story-Height Segment

圖 A.3 Rigid Frame Story-Height Segment

圖 A.5 Braced Frame : (a) Single Diagonal; (b) Double Diagonal; (c) K Bracing; and (d)Full-Story Knee Bracing